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Abstract

In the Okounkov-Vershik approach to the complex irreducible representations
of S, and G ~ §,, we parametrize the irreducible representations and their bases
by spectral objects rather than combinatorial objects and then, at the end, give a
bijection between the spectral and combinatorial objects. The fundamental ideas are
similar in both cases but there are additional technicalities involved in the G ~ S,
case. This was carried out by Pushkarev (J. Math. Sci. 96, 3590-3599 (1999)).

The present work gives a fully detailed exposition of Pushkarev’s theory incor-
porating the following new elements

e QOur definition of a Gelfand-Tsetlin subspace, based on a multiplicity free chain
of subgroups, leads to a more natural development of the theory.

e Ceccherini-Silberstein, Scarabotti, and Tolli (Adv. Math. 206, 503-537 (2006))
defined the “generalized Johnson scheme”, a certain multiplicity free G ~
Sy permutation module. We give an algorithm to explicitly write down the
Gelfand-Tsetlin subspaces of this module. This gives the simplest nontrivial
example of the Okounkov-Vershik theory.



1 Introduction

Let G be a finite group. The symmetric group S,, acts on G = G X --- X G (n factors)
by permuting the coordinates and this action defines the semidirect product G™ x S,, of
G"™ by S,,. The group G™ x S, is called the wreath product of G by S, and is denoted
G ~ S, (our notation follows [7]). We set G,, = G ~ S,,. The elements of G,, are the set
of all (n+ 1)-tuples (g1, ..., gn, ), where m € S,,, and g; € G for all i. The multiplication
rule and inverse of an element in ), are given by

(G153 G ) (P oo, 7)) = (G1ha1(1)s - -5 GnPin—1(n), TT),

(gb <y n, 7T>71 = (g;(11)7 s 7g;({n)7 7771)'

The complex representation theory of GG, is a classical and well studied topic. Among
the many sources we mention James and Kerber [6], Macdonald [7], and the recent book
of Ceccherini-Silberstein, Scarabotti, and Tolli [3]. The basic problem can be stated as
follows.

Let P denote the set of all partitions (there is a unique partition of zero with zero
parts) and let P, denote the set of all partitions of n. For a finite set X, we define

PX)={p|p: X —P}

For 1 € P(X), define ||pu|| = >, cx |n(x)|, where |pu(z)| is the sum of the parts of the
partition u(x) and define

Pu(X) = {n € P(X) | ||ull = n}.

Let G, denote the set of conjugacy classes in G. The conjugacy classes of G,, are

parametrized by P,(G.) ([6, 7, 3]).

Let Y denote the set of all Young diagrams (there is a unique Young diagram with
zero boxes) and ), denote the set of all Young diagrams with n boxes. For a finite set
X, we define

YX)={p|p: X =V}

For € Y(X), define ||u|| = > cx [p(x)], where |u(x)| is the number of boxes of the
Young diagram p(z) and define

Yn(X) = {p € YX) | [l = n}.

Denote by G the (finite) set of equivalence classes of finite dimensional complex
irreducible representations of G. Given o € G”, we denote by V7 the corresponding
irreducible G-module. Elements of Y(G") are called Young G-diagrams and elements of
V.(G") are called Young G-diagrams with n bozes. Given u € Y(G") and o € G", we
denote by p | o the set of all Young G-diagrams obtained from p by removing one of the
inner corners in the Young diagram pu(o).



Let p € Y. A Young tableau of shape p is obtained by taking the Young diagram pu
and filling its |u| boxes (bijectively) with the numbers 1,2,... |u|. A Young tableau is
said to be standard if the numbers in the boxes strictly increase along each row and each
column of the Young diagram of u. Let tab(n, u), where p € Y, denote the set of all
standard Young tableaux of shape p and let tab(n) = U,ey, tab(n, i).

Let u € Y(G"). A Young G-tableau of shape p is obtained by taking the Young
G-diagram p and filling its ||| boxes (bijectively) with the numbers 1,2,... ||ul. A
Young G-tableau is said to be standard if the numbers in the boxes strictly increase
along each row and each column of all Young diagrams occuring in p. Let tabg(n, p),
where p € Y,(G"), denote the set of all standard Young G-tableaux of shape p and let
taba(n) = Uuey, anytabg(n, p).

Let T € tabg(n) and ¢ € {1,...,n}. If i appears in the Young diagram (o), where u
is the shape of T" and o € G", we write r(i) = 0.

The complex irreducible representations of G,, are parametrized by ),(G”) and the
basic problem of the representation theory of G,, is to explain this correspondence between
irreducible representations of G, and elements of ), (G"). This is done in [7] using
symmetric functions and the characteristic map and in [6, 3] using Clifford theory and
the little group method.

In [12] Pushkarev, building on the Okounkov-Vershik approach in the S, case [10,
11, 2], gave a spectral explanation for this correspondence, namely, an internal analysis of
the irreducible representations of GG,, yields spectral objects parametrizing the irreducible
representations and then a bijection is given between these spectral objects and ), (G").
This approach is inductive in nature and has the following advantages:

(a) The group G,, can be identified with the subgroup
{(g1,-- -y gn,e,m) | T E Spy1 withm(n+1)=n+1land g; € G, 1 <i<n}
of G411 (e = identity element of G) and we have an infinite chain of finite groups
Gl g G2 g T

As a natural byproduct of the theory we get the branching rule from G, to G,: denote
the irreducible G, 1-module corresponding to p € V,+1(G") by V#. Then we have G,,-
module isomorphisms

Ve B dim(V) (@aeueV?)

oceGN

A referee has kindly pointed out that this branching rule appears explicitly in Okada
[9] (as Theorem 4.1).

(b) Another natural byproduct of the theory yields a parametrization of the bases of
irreducible G,-modules using standard Young G-tableaux and bases of irreducible G"-
modules. More precisely, for p € V,,(G"), we have a canonical direct sum decomposition
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of V# into subspaces, called Gelfand-Tsetlin subspaces,

ve = v

Tetabg(n,u)

where each Vr is closed under the action of G = G X --- x G (n factors) and, as a
G™-module, is isomorphic to the irreducible G™-module

) o yrr® g L. gy,

The present work gives a fully detailed exposition of Pushkarev’s theory. Our develop-
ment, based on a multiplicity free chain of subgroups, is slightly different from the original
and is along the following lines.

For g € G and 1 < i < n we denote by g% the element (e,...,e,g,e,...,e,1) € Gy,
where ¢ is in the 7th spot, e denotes the identity element of (G, and 1 denotes the identity
element of S,,. Denote by G the subgroup {¢g”|g € G} of G,,. Note that GV, ..., G™
commute. We may also think of S,, as the subgroup {(e,...,e,7m)|m € S,}. We write

the element (e,...,e,m) as m. We may thus write an element (gi,...,gn,7) € G, as

1 n m1 m1(n n

For n > 1, set H,,,, = G,, and consider the following chain of subgroups
Hip CHyp Cooo C Hyp, (1)
where, for 1 <i<n-—1,
Hin={(g1, -, gn,7) €Gy | w(j) =7 fori+1<j<n}

Note that H, ,, is isomorphic to G". The following are the main steps in the representation
theory of G,,.

(i) A direct argument shows that branching from H;,, to H;_ , is simple, i.e., multiplicity
free.

(ii) Consider an irreducible H,,,-module V. Since the branching is simple the decom-
position of V' into irreducible H,,_; ,-modules is canonical. Each of these modules, in
turn, decompose canonically into irreducible H,,_s ,-modules. Iterating this construction
we get a canonical decomposition of V' into irreducible G" = H; ,-modules, called the
Gelfand-Tsetlin decomposition (GZ-decomposition) of V. The irreducible G"-modules in
this decomposition are called the Gelfand-Tsetlin subspaces (GZ-subspaces) of V.

(iii) Let Z,,,, denote the center of the group algebra C[H,,,|. The Gelfand-Tsetlin algebra
(GZ-algebra), denoted GZ,, ,,, is defined to be the (commutative) subalgebra of C[H,, ]
generated by Z, U Zy,, U---U Z,,,. It is shown that GZ,,,, consists of all elements in
C[Hy,.n) that act by scalars on the GZ-subspaces in every irreducible representation of
H,, . It follows that if we have a finite generating set for GZ,, ,, then the GZ-subspaces
are determined by the eigenvalues of this generating set on these subspaces.
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(iv) Following Pushkarev, we define the (generalized) YJM elements X1, ..., X,, of C[H,, ,]:

-1

ZZ k;z) 1<i<n.
e

k=1

Note that X; = 0. Throughout the paper we follow the convention that the empty
sum equals 0. For an algebra A, let Z[A] denote the center of A. It is shown that
GZpmn = (Z[CIG"]], X1, Xay ..., Xin).

(v) By a GZ-subspace of GG, we mean a GZ-subspace in some irreducible representation
of G,,. Let W be a GZ-subspace of GG,. Then W is an irreducible G™-module and hence
is isomorphic to V”* @ --- @ VP where p; € G, for all i. We call p = (p1,...,pn) the
label of the GZ-subspace W.

It follows from steps (iii) and (iv) above that a GZ-subspace W of G,, is uniquely
determined by its label and the eigenvalues of Xy,..., X,, on W. To a GZ-subspace W
we associate the tuple

a(W) = (p,a1,as,...,a,),

where p is the label of W and a; = eigenvalue of X; on W. We call a(W) the weight of
the GZ-subspace W. Define

specg(n) = {a(W) : W is a GZ-subspace of G},

called the spectrum of G,,.

We have dim GZ,, = |specs(n)|. There is a natural equivalence relation ~ on
specg(n): for a, B € specs(n), a ~ [ iff the corresponding GZ-subspaces are in same
Gp-irreducible. Clearly, we have |specs(n)/ ~ | = |G2|.

The representation theory of G, is governed by the spectral object specy(n).

(vi) In the final step we construct a bijection between specs(n) and tabg(n) such that
tuples in specg(n) related by ~ go to standard Young G-tableaux of the same shape. This
step is carried out inductively using an analysis of the following commutation relations
that hold in G,, (where s; = the Coxeter generator (7,7 + 1)):

(a) Xl,.. X,, commute.

() X;g¥ =g¥X;, g€ G, 1<4,1<n.

(c) s; s—g(’“,gEG,lSzgn—l.

(d) szgl)—g Dsiy1<i<n—1,1<1<n/l#ii+1.

(€) 8:iXisi + Y geq 9 silg™)HY = Xipy, 1<i<n— 1.
(f) $,X; = Xis;, 1 <i<n—-1,1<I<n,l#4i+1.

We now give a brief synopsis of the paper. Section 2 collects some preliminaries on
wreath products. Section 3 discusses Gelfand-Tsetlin subspaces, Gelfand-Tsetlin decom-
positions, and Gelfand-Tsetlin algebras for an inductive chain of finite groups with simple
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branching. In Section 4 we first show that the chain (1) is multiplicity free and then
show that the corresponding Gelfand-Tsetlin algebras are generated over Z[C[G™]] by the
YJM elements, thereby defining the weight of a GZ-subspace and the spectrum spec(n)
of Gy,. Section 5 describes, using the commutation relations (a)-(f) above, the action of
the Coxeter generators on the Gelfand-Tsetlin subspaces in terms of transformations of
weights. In Section 6, using the results of Section 5, we give a bijection between spec(n)
and tabg(n) via the content vectors of standard Young G-tableaux. In Section 7 we study
the simplest nontrivial example of the Okounkov-Vershik theory, the classical “Johnson
schemes” and the “generalized Johnson schemes”. We consider multiplicity free S,,, G-
actions and explicitly write down the GZ-vectors (in the S, case) and the GZ-subspaces
(in the G, case) and also identify the irreducibles which occur.

2 Preliminaries

The positive integers are denoted P and the nonnegative integers are denoted N.

We enumerate the conjugacy classes of G as G, = {Cy,...,C;} and assume that
C1 = {e}. We say that g € G is of type j if g € C;. Define an involution 7 : {1,...,t} —
{1,...,t} as follows: Z(j) = 7' if ;' is the type of g7, for g € C}.

Let h =(g1,...,09n,7) € Gy, and let 7 = (4,149, . .., i) be a k-cycle in w. The element
9i.Gi,_, -+ 9iy € G is called the cycle product of h corresponding to the cycle 7 of m and
its type is easily seen to be independent of the k different orders in which the elements of
7 can be listed. Thus we may define p, : G, — P by

pn(C;) = Multiset of lengths of all cycles of m whose cycle product lies in C;, 1 <1 <t.
Clearly p, € P,(G.). We say that pj, is the type of h € G,,.

Suppose two elements (g1, ..., gn, ) and (f1,..., fu, 7) are conjugate in G,,. Then we
have

(hiy. s hp,0)(g1,- - ,gn,ﬂ)(h;(ll), .. .,h;(ln),afl) = (fi, -, fn7), (2)

for some hy,...,h, € G and o € S,. Thus 7 = owro~! and 7 and 7 are conjugate in S,,.

We now want to consider the cycle products in (g1, ..., gn, 7) and (f1,..., fn, 7). For
simplicity we shall write the element (g1,...,gn,7) as (..., gi,...,m) (it being understood
that g; is in the i¢th spot). We have

(...,hi,...,U)(...,gi,...,W)(...,h;(li),...,afl)

= (...,higafl(i),...,O'ﬂ')(...,h;(li),...,O'_l)
= (..., higg—1(l-)h;ﬂ_la_l(i), ., omo )

= (...,higg&(i)h;,ll(i),...ﬂ')

= (~--;fi7--~77-)



Let (i1,...,4) be a cycle in . Then (o(41),...,0(ix)) is a cycle in 7. We have, using the
calculation above,
-1
fo) = o) 9o 1(0600) 1r=1 (0 (1)
= No(iy) i, ;(11,671)- (3)
Thus we have (using 77(o(i1)) = o(ix))

Jotin Jotiy) - Jotin)
- (hO'(Zk)g’Lk ;(lzk 1))(h0(ik—l)gik—1 ;(lik_Q)) e (ha(i1)gi1 ;(lzk))
= oG9 9l 1zk

Thus the type of the cycle products g;, - -+ g;; and fy(,) - - - fo@,) are the same. It follows
that if two elements of (5,, are conjugate then they have the same type.

Conversely, suppose that (g1, ..., gn, 7), (f1, ..., fu,7) € G, have the same type. Then
we can easily write down a o € S, such that omo~! = 7 and such that, for every cycle
(i1,...,14) of m, the cycle products g;, - - - g;, and f,@,) - - - fo(;,) have the same type. Now,
using (3), we can find hy, ..., h, € G such that (2) holds. It follows that two elements of
G, are conjugate if and only if they have the same type.

An element g = (g1, ..., 9n,m) € G, is said to be a nontrivial cycle of type j if (exactly)
one of the following conditions holds:

(i) All cycles of 7 have length 1 (i.e., 7 is the identity permutation) and, for some
1<i<mn, g =eforl+#i, g;is of type j, and 2 < j < t. We say that {i} is the support
of g. We say that g is a nontrivial 1-cycle of type j.

(i) There is exactly one cycle, say (i1, ..., i), in the cycle decomposition of 7 of length
> 2, the cycle product g;, ... g;, is of type j, and g, = e, for [ & {i1,...,ir}. We say that
{i1,...,ix} is the support of g. Note that in this case there is no restriction on j, i.e.,

1 <7 <t. We say that g is a nontrivial k-cycle of type j.

Just as in the S,, case every element of (G, can be written as a product of commuting
nontrivial cycles with disjoint support.

By a nontrivial part of a partition we mean a part > 2. For a partition u € P we
denote by #p the sum of all the nontrivial parts (with multiplicity) of p.

Let p € Pn(G.). By a part of p we mean a pair (k, j), where k € P, j € {1,...,t}, and
k is a part of p(C;). We may specify p by giving its multiset of parts (for example, if k
appears m times in p(C;) then the part (k,j) appears m times in the multiset of parts).
We say the part (k, j) is nontrivial if (k, j) # (1,1). We define

le )|+ #(p(Ch)),

i.e., #p is the sum of the first components (with multiplicity) of all the nontrivial parts
of p.



For a permutation s € S,, we denote by ¢(s) the number of inversions in s. It is well
known that s can be written as a product of ¢(s) Coxeter transpositions s; = (¢,i+1), i =
1,2,...,n—1 and that s cannot be written as a product of fewer Coxeter transpositions.

All our algebras are finite dimensional, over C, and have units. Subalgebras contain
the unit, and algebra homomorphisms preserve units. Given elements or subalgebras
Ay, Ay, ..., A, of an algebra A we denote by (Aj, Ao, ..., A,) the subalgebra of A gener-
ated by Ay UAsU---UA,.

If Ais an algebra and p: A — End(V) is a representation then we use several notations
for the action of A on the elements of V. For a € A and v € V we set

pla)(v) =a-v=av=av).

Similarly, for a € A and W C V we set

pla)W)=a-W =aW = a(W).

3 Gelfand-Tsetlin subspaces, Gelfand-Tsetlin decomposition,
and Gelfand-Tsetlin algebras

The fundamental building blocks of the spectral approach to the representation theory of
S, and G,, are the concepts of Gelfand-Tsetlin subspaces (GZ-subspaces), Gelfand-Tsetlin
decompositions (GZ-decompositions), and Gelfand-Tsetlin algebras (GZ-algebras), to-
gether with a convenient set of generators for the GZ algebras, for an inductive chain
of finite groups with simple branching. We discuss this in the present and next sections.

Let
FRCFRC---CF, (4)

be an inductive chain of finite groups. Note that we have not assumed that Fj is the
trivial group with one element. We call Fj the base group. Define the following directed
graph, called the branching multigraph or Bratteli diagram of this chain: its vertices are
the elements of the set

HF ™ (disjoint union)
i=1

and two vertices u, A are joined by k directed edges from u to A whenever u € F/*; and
A € F for some i, and the multiplicity of p in the restriction of A\ to F;_; is k. We say
that F is level i of the branching multigraph. We write 1 A if there is an edge from
1 to A

For the rest of this section assume that the branching multigraph defined above is
actually a graph, i.e., the multiplicities of all restrictions are 0 or 1. We say that the
branching or multiplicities are simple.



Consider the Fj,-module V*, where A € F”. Since the branching is simple, the decom-
position (into irreducible F),_;-modules)

V=P,
n

where the sum is over all 4 € F/* | with " A, is canonical (here, for convenience, we
have identified V* with the corresponding submodule of V). Iterating this decomposition
we obtain a canonical decomposition of V* into irreducible F;-submodules, i.e.,

V=D, Vi, (5)
where the sum is over all possible chains
T = MN/N/ M (6)

with A\; € F* and A, = \.

We call (5) the Gelfand-Tsetlin decomposition (GZ-decomposition) of V* and we call
each Vr in (5) a Gelfand-Tsetlin subspace (GZ-subspace) of V. By the definition of V7,
we have, for 0 # vy € Vp,

Also note that chains in (6) are in bijection with directed paths in the branching graph
from an element A; of F}* to A.

Fix a distinguished basis B* for each V# 1 € F{*. Considering the Fourier transform,
i.e., the algebra isomorphism

C[F,) = €P End(V?), (7)

AEF)
given by
g— (VYL VA . NXeF)), g€ F,,

we can define three natural subalgebras of C[F},] based on the GZ-decomposition (5).

Ao(n) = {a € C[F,]:a acts by a scalar on each GZ-subspace of V*, for all A € F'},

Ai(n) = {a € C[F,]: a acts diagonally in the distinguished basis of each
GZ-subspace of V?*, for all A € F/'},

As(n) = {a € C[F,] : each GZ-subspace of V* is a invariant, for all A € F/'}.

Clearly, Ag(n) C Ai(n) C Ax(n), Ao(1) = Z[C[F1]] and Ay(1) = C[F].

For each A € F and u € F}, let my,, be the number of GZ-subspaces of V* isomorphic
to V¥, i.e., my, is the number of directed paths from p to A in the branching graph. It is



easily seen that 4;(n) is a maximal commutative subalgebra of C[F},] and that

dim Ag(n) = Y > my, (8)

AEF) peF)

dim Aj(n) = > > my, dim V#, (9)

AEFY peF)

dim Ay(n) = Z Z my, (dim V#)2. (10)

AEF) peF]
We denote Z[C[F}]] by Z;.

Theorem 3.1 We have

(i) Ao(n) = (Z1, Za, ..., Zy).

(i) Ai(n) = (A1(1), Z1, Zs, ..., Zy).
(1ii) Ax(n) = (C[F1], Z1, Zay ..., Zn).

Proof (i) Consider the chain T" from (6) above. For ¢ = 1,2,...,n, let p), € Z; denote
the primitive central idempotent corresponding to the representation \; € F/*. Define
pr € <ZI,ZQ7 - ,Zn> by
Pr = Px\iPx; """ Phn-

A little reflection shows that the image of pr under the isomorphism (7) is (f, : p € F)),
where f, =0, if 4 # X and f is the projection on V (with respect to the decomposition
(5) of V*). The result follows since the primitive central idempotents corresponding to
the irreducible representations of a finite group form a basis of the center of the group
algebra of the group.

(ii) Note that C[F}] commutes with Z;, ..., Z,. The result now follows from part (i) and
the isomorphism (7) with n = 1.
(ili) Similar to part (ii). O

We call Ay(n) the Gelfand-Tsetlin algebra (GZ-algebra) of the multiplicity free chain of
groups (4) and denote it by GZ,,. Following [12] we call Ay(n) the generalized Gelfand-
Tsetlin algebra. By a GZ-subspace of F, we mean a G Z-subspace of some irreducible
representation V* of F,, A € F». By a GZ-vector of F,, we mean a vector in some

G Z-subspace of some irreducible representation V* of F,, A € F/. As an immediate
consequence of the theorem above we get the following result.

Lemma 3.2 (i) Let v € V*, X\ € F). If v is an eigenvector (for the action) of every
element of GZ,, then v belongs to some GZ-subspace of V.

(ii) Let v,u be two GZ-vectors of F,,. If v and u have the same eigenvalues for every
element of GZ,, then v and u belong to the same GZ-subspace of V>, for some A € F.

In Section 4 we define a multiplicity free chain of subgroups of G,, and consider the
corresponding GZ-algebras.
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4  Simplicity of branching and Young-Jucys-Murphy elements

Let M be a complex finite dimensional semisimple algebra and let N be a semisimple
subalgebra. Define the relative commutant of this pair to be the subalgebra

Z(M,N) = {meM|mn=nmforalneN},

consisting of all elements of M that commute with N.

The following result, due to Wigner, is well known. We include a proof for complete-
ness.

Theorem 4.1 Let M be a complex finite dimensional semisimple algebra. Let N be a
semisimple subalgebra of M. Then Z (M, N) is semisimple and the following conditions
are equivalent:

1. The restriction of any finite dimensional complex irreducible representation of M to
N is multiplicity free.

2. The relative commutant Z (M, N) is commutative.

Proof By Wedderburn’s theorem we may assume, without loss of generality, that M =
M,®- - -@® My, where each M, is a matrix algebra. We write elements of M as (myq, ..., my),
where m; € M;. For ¢« = 1,... k, let N; denote the image of N under the natural
projection of M onto M;. Being the homomorphic image of a semisimple algebra, N;
itself is semisimple.

We have Z(M,N) = Z(M;, N1)® - - - @& Z(Mjy, Ni). By the double centralizer theorem
each Z(M;, N;), and thus Z(M, N), is semisimple.

For i = 1,...,k, let V; denote the M-submodule consisting of all (my,...,my) € M
with m; = 0 for j # ¢ and with all entries of m; not in the first column equal to zero.
Note that Vi,..., V, are all the distinct inequivalent irreducible M-modules and that the
decomposition of V; into irreducible N-modules is identical to the decomposition of V;
into irreducible N;-modules.

It now follows from the double centralizer theorem that V; is multiplicity free as a
N;-module, for all 7 if and only if all irreducible modules of Z(M;, N;) have dimension 1,
for all 7 if and only if Z(M;, N;) is abelian, for all 7 if and only if Z(M, N) is abelian. O

Define the following subalgebras of C[H,, ,]:
(i) For 2 <m < n, set Zym-1n = Z[C|Hpn|, C[Hmn—1,]]-
(ii) For 1 <m <mn, set Z,,, = Z|C[H,»]|-

In this section we show that the branching from H,,, to Hy,—1,, 2 < m < n is mul-
tiplicity free and find a convenient set of generators, the Young-Jucys-Murphy elements,
of the Gelfand-Tsetlin algebra of the chain of groups,

Hl,n g H2,n g T g Hn,n7 (11)
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over the center Z;,, of the group algebra of the base group H;, = G".
Fori=1,...,n—1and j =1,...,t define the following elements of C[H,, ,]:

)/;J,j = E T,
T

where the sum is over all elements 7 € H, , satisfying the following properties: 7 is a
nontrivial i-cycle of type 7 and n does not belong to the nontrivial cycle. Note that
Y11 = 0 and that all other Y; ; are nonzero. We also set Y, ; =0 for all 1 <j <t.

Fori=1,...,nand j=1,...,t define the following elements of C[H,,,]:
Y=

where the sum is over all elements 7 € H, , satisfying the following properties: 7 is a
nontrivial i-cycle of type j and n belongs to the nontrivial cycle. Note that Y/, = 0 and
that all other Y;; are nonzero.

Define

PLG) = {(pAd)| p € PulG)AER,j € {1,....1} with A € p(C))}.

For (p,\,j) € P, (G.) define ¢, ;) € C[H, ] to be the sum of all elements 7 € H,,,
satisfying

(i) type(r) = p.

(ii) size of the cycle of 7 containing n is A and the corresponding cycle product is of type

j.
Note that, for 1 <7 < n, 1 < j <t Y;; and Y;’] are equal to c(, ), for suitable
choice of p, A\, and k.

Lemma 4.2 (i) {cnj) | (p, A, J) € P, (Gy)} is a basis of Zy,p—1,. It follows that
Vi, Vi [1<i<n, 1<j<1t) CZyp 1

(11) For (p, A, j) € Pl (G.) we have
Copg) € Yip, Yip | 1<p <t 1 <i<k),

where k = #p.
(iii) Ly = <Y;',j>Yz':j ’ I1<yj<t 1<:1< n>
(1) Zn1n=(Yiy, Y{; | 1< <t 1<i<n—1).
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Proof (i) Let 7,7 € H, . Then, using the same argument that characterized conjugacy
in G,, in Section 2, we can show that 7 = o7/0~! for some o € H,_ 1, if and only if
type(r) = type(7’), the length of the cycle containing n is same in both 7 and 7/, and
the cycle products of the cycles containing n are of the same type in both 7 and 7/. The
result follows.

(ii) By induction on #p. If #p = 0, then ¢(, » ;) is the identity element of C[H,,,] and the
result is clearly true. Assume the result whenever #p < [. Consider (p, A,j) € P! (G.)
with #p =1+ 1.

Denote the multiset of nontrivial parts of p by {(A1,71), (A2, 72)s -y (Amsy Jm) }. Con-
sider the following two subcases:

(a) A=1and j = 1: Consider the product Yy, ;, Y, j, - - Ya,..5.- Using part (i) we see
that this product is in Z, ,,_1, and thus can be expanded in the basis given in part (i).
A little reflection shows that

Y)\lajl Y)\27j2 to Y)"ma]’m = a(pv)"])c(pv)‘a]) + : : a(plv)‘l»j/)c(p,’)‘/7j/)7
(0" N35")

where a(, ;) € P, a(y v ;) € N and the sum is over all (p/, N, j') with #p" < #p. The
result follows by induction.

(b) A # 1 or j # 1: Without loss of generality we may assume (A, j) = (A1, j1). Now
consider the product
Y/\’l;jl YA2J2 e Y>\m7]m - a(vaJ)c(vaJ) + Z Oé(plv)‘/?j/)c(p/?Alv.j/)’

where o, ;) € P, oy .vjr) € N and the sum is over all (o', N, j') with #p" < #p. The
result follows by induction.

(iii) Follows from parts (i) and (ii).

(iv) Embed H,_1,-1 into H,_;, in the obvious way giving rise to an embedding ¢ :
Zpn-1n-1 — Zn-1n. Note that Z,_,, is isomorphic to the tensor product of ¢(Z,_1,-1)
and Z[C[G™]]. Now Z[C[G™]] is generated by Y{;,1 < j <t and a proof similar to the
proof of part (iii) shows that ¢(Z,_1,—1) is generated by Y;;,1 < j <t 1 <i<n-—1.
The result follows. O

For i =1,...,n, following [12], we define the following elements of C[H,, ,]:

Xo= S S Pgk, ).

k=1 geG

Note that X; = 0. It is easy to see that X; is the difference of an element in Z;,, and an
element in Z;_; ,. These elements are called the Young-Jucys-Murphy (YJM) elements.

Theorem 4.3 (i) Zym—1n = (Zm—1.n, Xm), 2 <m <n.

(11) Zpm—1n, 2 <m <mn, is commutative.
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Proof (i) We first consider the case m = n. Clearly Z, ,_1, 2 (Zn,-1n, X,) (note that
X, = Y;,). To show the converse we need to show (by Lemma 4.2 (iii) and (iv)) that
Y €{Zn 1, Xp), fori=2.. . nand j=1,... ¢t

Observe that, for 2 <i <n and 2 < 75 <t, we have
Y/, = Y)Y/ (12)

2y

Since Y{; € Z, 1, for 1 < j < t it is enough to show that Y/, € (Z, 1, Xy), for
1 =2,...,n. We show this by induction on 1.

Since Y5, = X, we have Yy, € (Z, 10, Xp). Suppose Y5,,..., Y/ 1| € (Zn 10, Xn).
We shall now show that Y}, € (Z, 1., Xy).

We write Y, ; as
Z g§ll)g( 2. gl(c )912?1(i17~--7ik7n)7
U1 yeeeybhes 1o k41

where the sum is over all (iy,...,4;) € {1,...,n — 1}* with distinct components and all
(915 gr1) € GFM with gry1gx -+ 9291 = e. In the following we use this summation
convention implicitly.

Now consider the product Y\, X, € (Z, 1, Xn):

n—1
Z g(ll)gélg) g,(;k)g,(zl(ib---,ik,n) { Z(g—l)(i)g(n)(z,n)}. (13)

U1yeeslh s Gl se ey Gkt 1

Take a typical element

gV gs g gl (i, i) (g7 D g™ (i n)

of this product. If i # 4;, for [ = 1,..., k, this product is
(™) (g19) ™M gs - g g\ (i, i),
Note that gii1---g2(919)(g7") = e.

On the other hand if ¢ = 4;, for some 1 <[ < k, this product becomes

(g19) W gs?) . -gl(i’)(gz+1g‘1)(““)g(ﬁf) x -g,ﬁ’i)l (i1 oy i)(itg1y ooy m).

Note that, since gxy119x - - - g1 = e, we have

Gt Gir2(gi19 ) = 9(g- - 92(919)) g

It follows that the element (13) above is equal to

S i) "

88150 500,9591 e Tk

+ Z ZZ Z |C| (Zl ”'gl(fik)gg—ll—)l@h'"?il)(il+17"'7ik7n)7

U1yl =1 §=1 g1,...,9k+1
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where the first sum is over all (, 4y, . ..,ix) € {1,2,...,n— 1} with distinct components
and all (g,91,...,9k41) € G*2 with gp1---91g = e and the second sum is over all
(i1,...,ix) € {1,2,...,n — 1}* with distinct components and all (gy,...,gx11) € G**?
with type of gx11- - g41 equal to j and the type of g; - - - g1 equal to Z(j).

We can rewrite (14) as

Yiioq + Z XpX) C(pAG)
(2¥))

where a(, ;) € N and the sum is over all (p,\,j) with #p < k + 1. By induction
hypothesis, (12), and part (ii) of Lemma 4.2 it follows that Y}, ,, € (Z, 10, X»).

We have now shown Z,,_1, = (Z,—1,,Xn). The case of general Z,, ,,_1, can be
shown by embedding Z,, ;n—1.m I Zy m—1, (as in part (iv) of Lemma 4.2).

(i) This follows from part (i) since X,,, € Zpp — Zy—15. O
It follows from Theorem 4.1 and part (ii) of Theorem 4.3 that the chain (11) is mul-
tiplicity free. Set, for 1 < m < n,
GZm,n - <Zl,na Z2,n7 ceey Zm,n>7

so that GZ, ,, is the Gelfand-Tsetlin algebra of the chain (11). Note that X; € GZ;,, C
GZpp.

Theorem 4.4 We have

GZm,n == <Z[C[Gn]],X1,X2, [ ,Xm>, 1 S m S n.

Proof The proof is by induction on n and, for each n, by induction on m. The case
n = 1 is clear. Now consider general n. The case m = 1 is obvious. Assume we
have proved that GZ,,_1, = (Z|C|G"]], X1, Xa,..., X;n-1). It remains to show that
GZpypn = (GZp—1n, Xm). The left hand side clearly contains the right hand side so it
suffices to check that the left hand side is contained in the right hand side. For this it
suffices to check that Z,,,, C (GZ;—1n, X;n). This follows from part (i) of Theorem 4.3
since Zmpn C Zmm—1n- O

Let V be a GZ-subspace of GG,,. Then V is an irreducible G"-module and is thus
isomorphic to p1 ® -+ ® py,, p; € G for all i. We call p = (p1, ..., pn) the label of V.

Define
aV) = (p,ai,...,a,) € (G x C",

where «; = eigenvalue of X; on V. We call a(V') the weight of V' (note that oy = 0 since
X1 = 0). Define the spectrum of G, by

specg(n) = {a(V) : V is a GZ-subspace of G,,} .
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Let V be a GZ-subspace of GG,, with label p. Then the primitive central idempotent in
Z|[C[G™]] corresponding to p will have eigenvalue 1 on V' and eigenvalue 0 on GZ-subspaces
with different labels. It now follows from Lemma 3.2 and Theorem 4.4 that a GZ-subspace
is uniquely determined by its weight.

By definition of GZ-subspaces and Lemma 3.2, the set spec(n) is in natural bijection
with chains

T = M/X/ Ay (15)
where \; € Hﬁn, 1 <i < mn, in the Bratteli diagram of (11).

Given « € specg(n) we denote by V,, the GZ-subspace with weight « and by T, the
corresponding chain in the branching graph. Similarly, given a chain 7" as in (15) we
denote the correponding GZ-subspace by Vr and the weight vector a(Vr) by a(T'). Thus
we have 1-1 correspondences

T—aVr), a—T,

between chains (15) and specg(n). For A € H;}, define

speca(n, \) = {a € specs(n)|T, ends at A}

We have, from (8),
dim GZ,,, = |specq(n)|,
dim V* = > dimV,, A€ H,,
a€SPEC,(n\)
There is a natural equivalence relation ~ on specg(n): for a, 3 € specg(n),
a~f & a,f€specg(n, ) for some A € H)y .

Clearly we have [specg(n)/ ~ | = |H),|.

9 Action of Coxeter generators on GZ-subspaces

In this section we describe the action of the Coxeter generators on GZ-subspaces in terms
of transformations of weights.

Let A € H},. We have the GZ-decomposition
Vo= b v (16)
aespec, (n,\)

of V* into irreducible G™modules.

We now consider the action of the Coxeter generators s; = (¢,i+ 1) of S,, on V. Since
the V,, consist of common eigenvectors of X7,...,X,, and are G™-invariant, it is useful to
know the commutation relations satisfied by the s;, the X;, and the g(¥).
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Lemma 5.1 The following relations hold in G, :
(i) Xi,..., X, commute.
(i) Xig® = gWX;, g€ G, 1<i,l<n.
(iii) s;gWs; = g, g€ G, 1 <i <n—1. In particular, s> =1, 1 <i<n— 1.
(iv) 5,9V =gWs;, 1<i<n—1,1<1<n, l#ii+]1.
(v) 8iXisi + 3 e g Vsi(g ) = X, 1<i<n—1.
(vi) $; X, = Xis;, 1 <i<n—1,1<I1<mn, I #i,i+1.

Proof (i) We have already seen this.

(ii) This can be checked directly. An alternative proof is as follows. On every GZ-subspace
of G,,, the actions of X; and ¢ clearly commute. By considering the isomorphism

@ End(V?),
AEG)

given by
g— (VL VA xe@h), ged,,
we see that X; and ¢ commute in G,,.
(iii) and (iv) This is clear.
(v) We have

$iX;s8; = (i,i+1) (ZZ ) ”k‘z)) (t,94+1)

k=1 geG
i—1
= > ) (g W ki + 1)
k=1 geG
= Xp— Y (g7 HPgi i+ 1).
geG

(vi) First assume [ < i — 1. Then

-1
i X, = (i,i+1) ( Z kl))

k=1 geG

— (ZZ ) k;l)) (4,94 1)
= )st ’
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Now assume [ > ¢ + 2. Then

siX = (i,i+1) (ijZ(g—l)““ Z > (gHP () Ok, 1)

k=1 geG k=i+2 geCG
+> (g7 i)+ (g7 (i—i—l,l))
g€G geG
1—1
S 09 STUCEITEND »p wIR RLT:
k=1 geG k=i+2 geG
+) (Y9 OE+ 1,0+ (g7 @l))(i,i+1)
geG geqG
= Xlsi- O

Using part (iii) of Lemma 5.1 we can rewrite part (v) of Lemma 5.1 as

Xisi+ Y _gP(g ) = Xy, 1<i<n—1 (17)

geG

Consider the irreducible G"-module V,, in the decomposition (16) above. Let V' be the
subspace of V' spanned by V,, and s, - V,,. Lemma 5.1 shows that V is invariant under
the actions of s;, X;, X;11, and G". A study of this action will enable us to write down
matrices for the action of s; on V.

Lemma 5.2 For i = 1,2,...,n — 1, let A; be the subalgebra of C[G,] generated by
G",s;, X;, and X;y1. Then A; is semisimple and the actions of X; and X;y1 on any
A;-module are simultaneously diagonalizable.

Proof Let Mat(n) denote the algebra of complex (|G|"n!) x (|G|"n!) matrices, with
rows and columns indexed by elements of G,,. Consider the left regular representation of

G,. Writing this in matrix terms gives an embedding of C[G,] into Mat(n). We write
v : ClG,] — Mat(n).

Note that
(a) The left action of (i,7 4+ 1) on G, is inverse to itself.
(b) For k < i, the left action of (g71)*¢g®(k,4) on G, is inverse to itself.

(c) For g € G and 1 < I < n, the left action of ¢) on G,, is inverse to the left action
of (g71)W.

It follows that the matrices v(s;), 7(X;), 7(X;+1) are real and symmetric and that the
generating set

{7(s0), 7(X:), ¥ (Xiz)} U {v(g") 1 1 <1 <m,g € G}
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of y(A;) is closed under the matrix * operation M s (M), So v(A4;) itself is closed under
the % operation and a standard result on finite dimensional C*-algebras now shows that
7(A4;) (and hence A;) is semisimple.

Part (ii) follows since v(X;) and v(X;;1) are commuting real, symmetric matrices and
thus the s-subalgebra of 7(A;) generated by them is commutative. O

Before proceeding further we introduce some useful notation. For 1 < i < n — 1, let
w; be the involution on {1,2,...,n} defined by w;() =1, if | # i+ 1, w;(i) = i + 1,
and w;(i + 1) = 4. Parts (iii) and (iv) of Lemma 5.1 may be written as follows. For
1<i<n-—1and1l<1!<n we have

Let W be a vector space and set X = W @ W. We can define a switch operator on X
that sends w; ® wsy to we ® wy. Now let U be a vector space having the same dimension
as X. We can fix an isomorphism between U and X and transfer the switch operator on
X to U via this isomorphism. However, since the isomorphism between U and X is not
canonical, there is no canonically defined switch operator on U. This situation does not
arise when we consider irreducible G"-modules.

Let p = (p1,...,pn), where p; € G" for all j. Consider the irreducible G"-module
VA .- @ VP and, for 1 <¢ < n — 1, define the switch operator,

Tip VO @ @V VA @V @V @ Vi@ Ve
by switching the ¢ and ¢ + 1 factors:
Tip1®@ - ®Vp) = MR- Vi1 ®Vig1 QU QVig2 ® -+ ® Uy,
We have, forge G, ve V" ®.-.- VP 1 <[ <n,
TiplgPv) = g« W7, (v). (19)

Now assume that p; = p; 41 for some 1 < ¢ < n—1 and let V' be an irreducible G™-module
isomorphic to V/ ®@ --- ® VP». Fix a G"-linear isomorphism f : V — VA ®...® Ve,
Define an involution

Tiv:V =V

by v = f'7,f. It is easily seen by Schur’s lemma that 7,y is independent of the
chosen f and therefore 7;y is canonically defined. We have, for g € G, v eV, 1 <1 <mn,

miv(gWv) = g“ir (v). (20)

In what follows we shall use (18), (19), (20) (and (22), (25), (23), (24), (27) below) without
explicit mention.

Let p = (p1,...,pn), where p; € G” for all j. Let V* be a subspace of V*,\ € H),
closed under G™-action and G™-isomorphic to V1 ®- - -@V? . Fix a G"-linear isomorphism

VP SV Q. @ VP,
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Let 1 <i<n—1. Since s? = 1 the map v — s; - v on V> is an involution. Consider
the subspace s;V* of V*. Then, by Lemma 5.1 (iii) and (iv), s,V is also closed under the
G"-action. The map

fn VP VAR VP VPHQ VP VP Q... ® Vpn’ (21)

given by f7(s;v) = 7, ,(f(v)) is a G"-linear isomorphism. To see this, let v € V. Then,
for 1 <1 <n, we have

gV M (siw) = gV (m,(f(v)),
fT"(g(l)Sﬂ)) _ f‘rz'(sig(wi(l))v)

For 1 <i <n—1, define the element b; = Y, 9" (g1 € C[G,]. For h € G we
have hOb; = b;a®, 1 +£i,i+ 1 and

h(i)bi — deG(hg)(i) (g—1>(i+1) _ ZQEG(hg)(i)((hg)—l)(iﬂ)h(iﬂ) — bih(i—i-l)_
Similarly, we can show hUTVb; = b;h). We have, for 1 <1 <n and h € G,

hOp, = b)), (22)

The map V* — s;V? given by v — s;b;v is a G"-linear map. Indeed, for 1 <[ < n,

sibi(gWv) = s;(¢“ D) = gVsbv. (23)

It follows that
pi # pir1 implies bjv =0, v € VP, (24)

We now deduce an important consequence of (24). First note that we can rewrite (17) as
follows

Xisi = SiXH—l — bz‘, XZ‘+181' = Sz‘Xz' + bz (25)

Let p; # piy1. Let (1, B2 be scalars and consider the YJM elements X;, X;,1. It follows
from (25) and (24) above that, for v € V7,

Xi(v) = fv, Xig1(v) = Bov it X;(s0) = fasiv, Xiv1(s,v) = Fisiv. (26)

Now assume p; = p;41. The map V* — s,V given by v — ;7 v0(v) is a G"-linear
isomorphism. This follows from, for 1 <[ < n,

smyp(g(l)v) = si(g(w"(l))n,w(v)) = g(l)smyp(v).
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Thus we have bjv = 07, ve(v),v € VP, for some scalar 3. Now the trace of the action of
bon VAA Q. - - VP is
dim(V*1) - dim(V P _ dim(V*r1) .- - dim(V P
V) dim(V2) ) (gt = Tml) o dim(V) o
dim(Vei) dim(Vri+1) dim(Vei) dim(Vri+1)

geG

by the first orthogonality relation for characters (y = character of V*#). Since the trace
of 7 vr is

dim(V*1) - - - dim(V*~)

dim(Vr:) ’
it follows that § = ﬁ(‘lﬂ)) We have
pi = piy1 1mplies bv = ir (v), ve VP (27)
4 i+1 4 dlm(VPZ) i, Ve ) .

The following result relates the action of s; on GZ-subspaces to transformations on
the corresponding weights.

Theorem 5.3 Let a = ((p1,---,pn), 01, .., ) € speca(n, ) and consider the GZ-
subspace Vi, of V. Then
(1) For 1 <i<n-—1,s;-Vo =V, iff pi = pix1 and aj11 = o; £ 1G]

dim (Vi) *
(ii) For 1 <i<mn—1 we have

(a) pi = pir1 and o = o + % implies s;v = Ty, (v), v € V,.
(b) pi = piy1 and a1 = a; — % implies ;v = —T; v, (v), v € V,.
191) 1 Z:llthenozz all,lgzgn—l
Pi = Pit +
(iv) Fori=1,...,n— 2 the following statements are not true.
G
(a) pi = pisy1 = piy2 and o; = Qi1 + W = Qj42.
|G|

(b) Pi = Pit1 = Pit2 and o; = Qg1 — Tm(vey — dit2

(v) For 1 <i<mn—1, if pi # pis1 then U = s; - Vi, is a GZ-subspace of V> with weight
Si - Q0 = ((p17 <o Pie1y Pit1s Pis Pit2y - - - 7pn)7 Qpy ey A1y A1, Ay B2, - - ,Oén).

(vi) For 1 <i<n—1, if p; = pis1 and a1 # a; + % then, setting

|G|
U == i N 7 VOH
(S (i1 — ;) dlm(v’”)T’V&
we have that U is a GZ-subspace of V> with weight

S; 0 = ((017 e ,pn),Oél, ey O, O, Oy Oy, . ,Oén>.
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Proof (i) (only if) That p; = p;11 is clear from (21). The maps V,, — V,, given by v +— s;v
and v — 7;y, (v) are both involutions. Therefore the possible eigenvalues are 1 and -1.

Let u,v € V,,u,v # 0 with s;,uv = v and s;u = —u. Then

oV = X1<U) = XZ'(SZ'U) = (SiX/L'Jrl — bl)U = Q41U — di%(l//’i)n’v‘l (’U), (28)
;U = XZ(’LL) = Xz(—SZU) = _(SiXi—l—l — b,)u = QiU + diHllL(\‘/pi)Ti’Va (U) (29)

It follows that 7;y, (v) is a multiple of v and is thus either v or —v. Similarly, 7; v, (u) is a
multiple of v and is thus either u or —u. Since there exists an eigenvector of s; : V,, — V,,
the result follows.

(if) Since s;V,, is also an irreducible G"-module (by (21)) either V,, = s;V,, or s;V,NV,, =
{0}. Assume that s;V, NV, = {0}. We shall derive a contradiction.

We assume that

_ |G|
i1 = O + dlm(sz) . (30)

G|

- is similar.
dimve:)

The case ;11 = a; —

The subspace V, @ s;V,, of V* is an A;-module, by Lemma 5.1. Define a subspace
M = {v—s -7y, ()eV,} TV, & sV,

We check that M is an A;-submodule, i.e., is closed under the action of s;, X;, X;,1, and
W 1=1,...,n, g€ G. We have, forv eV,

si(v—s;Tiv, (V) = sv—Tiy,(v)
= —Tiv,(v) = si(Tiv. (=Tiv, (v))) € M,
V(v =51y, (v) = gV —gWsimiy, (v)
= ¢y — 5,g@ W, v (v )
= g(l)v — 5;T; Va( )
Xi(v—=simiy,(v)) = v —(siXipy1 — bi)(7, Va( )
o
dim(Vri)
= ai1(v— sy, (v) € M,
Xip1(v =iy, (v) = v — (85X + 03) (Tiv, (v))
[
dim(Vri)
= (v —smy,(v) € M.

= QU — 18Ty, (V) +

= 1V — Q;8;T; v, (v) —

We shall now show that M is the only nonempty, proper A;-submodule of V,, & s;V,.
Since dim(M) = dim(V,,) < dim(V,, @ s;V,,), this contradicts the fact that V, @ s;V, is a
semisimple A;-module (since A; is a semisimple algebra by Lemma 5.2).
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Let M’ be a nonempty, proper A;-submodule of V,, & s;V,,. Since M’ is closed under s;
we have M' ¢ V,, and M’ Z s;V,,. Also, M’ is in particular a G"-submodule of V, & s;V,.
Since V,, and s;V,, are isomorphic irreducible G"-modules and v — s;7; v, (v) is a G™-linear
isomorphism between them, it follows by Schur’s lemma that

M = {v+ysmy,(v)|veV,},
for some 0 # v € C. We shall show that v = —1.

Now
_ _ ¥5:Ti v, (VTiv. (V)
si(v+vsimiv, (V) = siv + Ty, (V) = YTy, (V) + " :
which yields 42 = 1 and hence v = %1.

We have

XZ'(U + SiTi,Va (U)) = 40 —+ OéH_lSsz Vo (U — b, i Ti Va( )

o — ’G‘ U+O‘z+1327—z\/ ( )
dim (Vi) o
Xi(v—=smv,(v) = v — a8, (V) + by, (V)

= o+ —— |G‘ — Q118;T; v, (U)
dim(V#) STV

and thus v = —1 because of our assumption (30). Thus M’ = M and the proof of the if
part is complete.

(ii) This follows from (28) and (29).

(iii) Either s;V,, =V, or s;,V,NV, = {0}. If s;V, = V,, then by part (i) a;11 = «; dlII‘l l/m)
S0 Q # Q1.

Now assume s;V, NV, = {0}. Then, as checked before, V,, @ s;V,, is A;-invariant.
Choose a basis B of V,, and consider the basis B U s;B of V, & s;V,. Let N be the
matrix of 7;y, with respect to the basis B and set kK = diIrllG(\‘/pi)‘ Using the relation
X;s; = $;X;11 — b; we see that the matrices of X; and X1 (respectively) with respect to
B U s; B are given in block form as follows

a;] —kN a1l kKN
0 &i+1[ 0 Qi[

The actions of X; and X, on V, & s;V,, are diagonalizable by Lemma 5.2 and thus
Q; 7A Oq (Since N ?é 0)

(iv) Suppose statement (a) is true. Since, as a G"-module, V,, is isomorphic to V" ®---®
VP we can choose a v € V,, such that 7y, (v) = 741y, (v) = v. By part (ii) we have
s;v = —v and s;.1v = v. Now consider the Coxeter relation

S5iSi+18; = Si+1S5iSi+1
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and let both sides act on v. The left hand side yields v and the right hand side yields —v,
a contradiction. So, statement (a) must be false. The proof for the falsity of statement
(b) is similar.

(v) This follows from (21), Lemma 5.1(iv), and (26).

(vi) By part (i) s;V, NV, = {0} and by part (iii) o; # ;1. Clearly, U is a subspace
of V, & s;V, and since v — s;7; v, (v) (or, equivalently, 7; v, (v) — s;v) is a G"-linear
isomorphism between V,, and s;V,, it follows that U is also an irreducible G"-module with
label (p1,...,pn). It remains to check that X;, X;;; act on U by appropriate scalars.

. o |G‘ .
Setting k = Ty Ve have, using (27),
K QiR
Xi <Si’U — —Ti,Va (’U)) = Q441 (Si’U) — bi’U — : Ti,Va (’U)
Qi1 — O Qg1 — O
K
= Q41 | SV — ————Tiv, (U) )
Qi1 — @
K i1k
XiJrl (SiU - T,V (U)) = Oéi<3ﬂ)> + bi'U — il Ti Ve (’U)
Qi1 — @ Qiy1 — Q

K
= a; | siv—— v, (v) |-
Qi1 — @

That completes the proof. O

Let @ = ((p1,...,pn),Q1,...,0n) € specg(n). We say that the transposition s; is
admissible for a if one of the following conditions holds:

(i) pi # pit1 or
. a
(ii) pi = pis1 and a; # aiy1 £ w
The following two observations are easy to see:

(a) For a, B € specy(n), we have a ~ 3 if v is obtained from 3 by a sequence of admissible
transpositions.

(b) We have
((Iolv s 7pn)7 aq, ... 7an) S SpecG(”) lmphes

((p1y- -y Pr-1), 01y ... Q1) € specg(n —1). (31)

6 Content vectors and Young G-tableaux

In the Okounkov-Vershik theory Young G-tableaux are related to irreducible representa-
tions of (G,, via their content vectors. Let us define these first.

Let a = (a1, as,...,a,) € Z". We say that « is a content vector if

(i) a; = 0.
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(i) {a; — 1,a; + 1} N{a1,a9,...,a;1} # 0, for all i > 1.
(iii) if a; = a; = a for some i < j then {a —1,a+ 1} C {a;41,...,a;-1} (i.e., between two
occurrences of a there should also be occurrences of a — 1 and a + 1).

Condition (ii) in the definition above can be replaced (in the presence of conditions
(i) and (iii)) by condition (ii’) below.
(ii") For all ¢ > 1, if a; > 0 then a; = a; — 1 for some j < i and if a; < 0 then a; = a; + 1
for some j < 1.

The set of all content vectors of length n is denoted cont(n) C Z". It is convenient to

assume that the empty sequence is a content vector of length 0 and is the unique element
of cont(0).

Let o = ((p1,---5pn),01,---,a,), where p; € G" for all i, and (aq,...,a,) € C". For
ceGMleto(J)={j <jo <+ <Jn,.} €{1,2,...,n} be the set of indices satisfying
pj,=0,i=1,...,n,0 and py # o for L € {1,2,...,n} —o(J). Let o(a) be the sequence

dim(V7) dim (V)
( |G| CLJI,..., |G| Cljnga .

We say that « is a content vector with respect to G of length n if o(a) € cont(n,.a)
for all 0 € G*. Since dim(V7) divides |G| it follows that a; € Z for all i. Denote by
contg(n) C Z" the set of all content vectors with respect to G of length n.

Theorem 6.1 We have specs(n) C contg(n).

Proof Let a = (p,aq,...,a,) € specs(n), where p = (o0,...,0), 0 € G". We will show
that dim(V) dim (V)
im(V° im(V°
———2ay,...,————=a, | € cont(n).
( I G| )

Using Theorem 5.3(v) and (31) we see that this proves the result.

Clearly a; = 0 as X; = 0. We verify conditions (ii) and (iii) in the definition of content
vectors by induction on n. Consider the case n = 2. By Theorem 5.3 (iii) as # 0. By
Theorem 5.3 (vi) as # +-—%_— implies ay = 0. So ay = +—%._ and thus condition (ii)

dim(Vo) dim(V'7)
is verified (and condition (111) does not apply). Now assume n > 3.
We first verify condition (ii). If a,_1 = a, % there is nothing to prove, so

assume this does not hold. Then the transposition (n — 1,n) is admissible for a and, by
Theorem 5.3(vi), (p, a1,...,Gn—2,0n, an_1) € specg(n). Now, by (31) and the induction
hypothesis, {a, — din‘ﬂ/o) Ly + dmllG‘La)}ﬁ{al, ey Gp_2} # 0. Thus condition (ii) is verified.

We now verify condition (iii). Assume that a; = a, = a for some i < n. We may
assume that ¢ is the largest possible index, i.e., a does not occur between a; and a,, so

el .
a & {ait1,...,a,—1}. Now assume that a — dm‘l J/g Z {ai+1,...,a,_1}. We shall derive a
.. el L.
contradiction (the case where a + T (V) Z {aii1,...,a,_1} is similar).
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By induction hypothesis the number a+ 3 |( | 7y occurs in{a;y1,...,a,_1} at most once

(for, if it occured twice, then by the mductlon hypothesis a would also occur contradicting
our choice of 7). Thus there are two possibilities:

o
dim(Ve)” 7

_lGl |G|
Tmve) 4t Gy

(@iy. . yan) = (a,*,...,%,a) or (a;,...,a,) = (a,*,...,% a+ L%, a),

where * stands for a number different from a —

In the first case we can apply a sequence of admissible transpositions to infer that

(p,...,a,a,...) € specs(n),

contradicting Theorem 5.3(iii) and in the second case we can apply a sequence of admis-
_lGl

Tmve): & ...) € specy(n), contradicting

sible transpositions to infer that (p,...,a,a +
Theorem 5.3(iv)(b). O

Let o = ((p1s---5pn)sa1,...,a,) € contg(n) We say that the transposition s; is ad-
missible for a if p; # pir1, or p; = piy1 and a; # a;4q = ﬁ We define the following
equivalence relation on contg(n): « ~ § if § can be obtained from « by a sequence of

(zero or more) admissible transpositions.
We now introduce Young G-tableaux into the picture.

Let T} € tabg(n) and assume that either ¢ and ¢+ 1 do not appear in the same Young
diagram of T} or that they are in the same Young diagram of 7} but do not appear in
the same row or same column of this Young diagram. Then exchanging ¢ and ¢ + 1 in T}
produces another standard Young G-tableau T, € tabg(n). We say that 75 is obtained
from T by an admissible transposition. For Ty, Ty € tabg(n), define Ty ~ T5 if T can be
obtained from T} by a sequence of (zero or more) admissible transpositions (it is easily
seen that ~ is an equivalence relation).

Lemma 6.2 Let T}, Ts € tabg(n). Then Ty = Ty if and only if Ty and Ty have the same
shape.

Proof The only if part is obvious. To prove the if part we proceed as follows. Let
i € Vo (G"). Enumerate the elements of G" as 071, ...,0;. Let n; be the number of boxes
in the Young diagram p(o;). Then ny + - -+ +n, = n.

Define the following element R of tabg(n, p): fill the Young diagram of (o) with the
numbers 1,2, ..., ny in row major order, i.e., the first row with the numbers 1,2, ... 1,
(in increasing order, here [; = length of first row), the second row with iy +1,...,1; + s
(in increasing order, here Iy = length of second row) and so on till the last row of u(oy).
Now fill the Young diagram of p(oy) with the numbers ny + 1,...,n; + ng in row major
order and so on till the last Young diagram p(oy).

We show that any 7" € tabg(n, p) satisfies T &~ R. This will prove the if part. Consider
the last box of the last row of the last Young diagram p(o;). Let ¢ be written in this box
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of T. Exchange i and i+ 1 in T" (which is clearly an admissible transposition). Now repeat
this procedure with ¢ + 1 and 7 + 2, then 7 + 2 and ¢ 4+ 3, and finally n — 1 and n. At the
end of this sequence of admissible transpositions we have the number n written in the last
box of the last row of u(c;). Now repeat the same procedure for n — 1,n —2,...,2. O

Let us make a remark about the proof of Lemma 6.2. Let s denote the permutation
that maps R to T. Then the proof shows that R can be obtained from 7" by a sequence
of {(s) admissible transpositions. Thus 7" can be obtained from R by a sequence of £(s)
admissible transpositions.

The content ¢(b) of a box b of a Young diagram is its y-coordinate — its z-coordinate
(our convention for drawing Young diagrams is akin to writing down matrices with x-axis
running downwards and y axis running to the right).

Lemma 6.3 Let @ : tabg(n) — contg(n) be defined as follows. Given T € tabg(n) and
1 <4< n, let bp(i) be the box (in one of the Young diagrams of T ) where the number i
resides. Define

O(T) = ((rr(1), ... re(n)), % c(br()), ..., % ¢(br(n))).

Then ® is a bijection which takes ~-equivalent standard Young G-tableaux to =-equivalent
content vectors with respect to G.

Proof The general case clearly follows from the |G| = 1 case for which we need to give a
bijection between content vectors of length n and standard Young tableaux with n boxes.
This is well known. The content vector of any standard Young tableau clearly satisfies
conditions (i), (ii), and (iii) in the definition of a content vector and these conditions
uniquely determine the numbers to be filled in the boxes of the Young diagram. This
bijection clearly preserves the ~ relation. O

Theorem 6.4 (i) speci(n) = contg(n) and the equivalence relations ~ and & coincide.

(11) The map @1 : specs(n) — tabg(n) is a bijection and, for a, 3 € specs(n), we have
a ~ B if and only if @1 (a) and ®~1(B) have the same shape.

Proof We have

(a) speci(n) C contg(n).

(b) If & € spec(n), § € contg(n), and a ~ [ then it is easily seen that 3 € spec(n) and
a ~ . It follows that given an ~-equivalence class A of specs(n) and an ~-equivalence
class B of contg(n), either ANB =0 or B C A.

(c) |(speca(n)/ ~)| = |G2| = [Pu(GL)| = |Vu(G")|, since the number of irreducible
G ,-representations is equal to the number of conjugacy classes in G,, and similarly for G.

(d) |(contg(n)/ =)| = |Vu(G")], by Lemmas 6.3 and 6.2.
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The four statements above imply part (i). Part (ii) is now clear. O

Using Theorem 6.4 and Lemma 6.2 we may parametrize the irreducible represen-
tations of G, by elements of V,(G"). The following result is a reformulation of the
GZ-decomposition in terms of standard Young G-tableaux.

Theorem 6.5 Let u € V,(G"). Then we may index the GZ-subspaces of V* by standard
Young G-tableauz of shape p and write the GZ-decomposition (16) as

Ve = P (32)

where each Vr is closed under the action of G* = G x --- x G (n factors) and, as a
G™-module, is isomorphic to the irreducible G™-module

) ® V(2 R ® yrrn).

Fori=1,...,n, the eigenvalue of X; on Vr is given by % c(bp(i)). O
The branching rule for the pair G,, C G, is now clear. As stated in the introduction
this rule appears in [9] (as Theorem 4.1).

Theorem 6.6 Let pu € YV, .1(G"). Then we have a G,-module isomorphism

Ve o= B dim(V) (@aeurV?) . O

oceGN

The dimension of an irreducible representation of G, (see [3, 6, 7]) easily follows from
Theorem 6.5. For a Young diagram p let f* denote the number of standard Young
tableaux of shape pu.

Theorem 6.7 Let p € Y, (G"). Write the elements of G" as {o1,...,0:} and set
i = ILL(O'Z‘), n;, = |,ul\, dl = dim(V‘”), 1= 1, Ce ,t.

Then
n

dim(V*) = ( ) N L R
t

ny,...,n

We now discuss the choice of a basis of V#, u € Y,(G"), with respect to which we
may write down the matrices for the action of the Coxeter generators si,...,s,_1. We
begin with a few observations.

Fix p € V,,(G") and consider the irreducible G,,-module V#. Let T € tabg(n, 1) and
let pr denote the projection of V# onto Vi determined by the decomposition (32). Let s;
be an admissible transposition for 1. Two cases arise:
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(a) 7 and i+ 1 are in different Young diagrams of T": It follows from Theorem 5.3 (v) that
s; - B = ps,.7(s; - B) is a basis of V;,.p for any basis B of V7.

(b) i and i 4 1 are in the same Young diagram of 7" but are not in the same row or the
same column of this Young diagram: Consider Vr,s; - Vp, and Vj, 7.

(i) The map Vp — s; - Vi given by v +— s;7; v,.(v) (or, equivalently, 7; v, (v) — s;v) is
a G"-linear isomorphism.

(ii) From Theorem 5.3 (vi) we have that

Vi = {siv—r 'miv.(v) |v €V} = {simiv, (v) —r v | v € Vi),

where r = (C(bT(i+1|)C)1TC(bT(i))) dim(vrT(i)).
(iii) The map Vr — Vj,.r given by v+ s;7; v, (v) — r~'v is a G"-linear isomorphism.

Let v € Vp and set u = pg,.r(s;v). It follows from Theorem 5.3 (vi) that u = s;v —

17 v, (v) and hence

sv = u+r Ty (v). (33)
Thus the map Vi — V. .1 given by v — p,.7(s; - v) is a linear isomorphism. In particular,
ps;7(8; - B) is a basis of V,.p for any basis B of V.
From (33) we see that

siu = pT(siu)—r_lTivai‘T(u), (34)

where there is a minus sign in front of the second term since ¢ and ¢ + 1 have changed
places in going from 7" to s; - T'.

We can write pr(s;u) in terms of v as follows. Applying s; to both sides of (33) we get
siu = v—rsTiv.(v) = (1 —r v —r " smy(v) —r 1 (v))

= (I—r?pw-— T_lTZ'7VSi_T(u). (35)

Now let R be the tableau defined in the proof of Lemma 6.2. Fix a basis Br of Vj.
Consider a standard G-tableau T' € tabg(n, ). Let s be the permutation that maps R
to T'. Define

Br = {pr(s-v)|v € Bg}, (36)

and define £(T), the length of T, to be £(s). The following result now easily follows, by
induction on the length of T" € tabg(n, i), using observations (a), (b) above and the fact,
remarked after the proof of Lemma 6.2, that T € tabg(n, 1) can be obtained from R by
a sequence of ¢(T") admissible transpositions and no fewer Coxeter transpositions.

Lemma 6.8 (i) By is a basis of Vi, for all T € tabg(n, ).
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(ii) Let T € tabg(n, ) and let s; be an admissible transposition for T. Then
(a) If i and i + 1 are in different Young diagrams of T we have

By,r = {ps;(si-v) | v € Br}.

(b) If i and i+ 1 are in the same Young diagram of T but not in the same row or same
column of this Young diagram we have

Bs,r = Apsir(si-v)|ve Br}, ifl(s;-T)=40T)+1,
Bs,-~T = {(1 — T_2>_1psi.T(Si : ’U) | NS BT}, fo(Sz : T) = g(T) — 17

where = COrGH)—cbr@) i, (7rr()y.

|G|

We now choose a basis of Vi in a certain way and then apply the method above to
get bases of all the GZ-subspaces. For ¢ € G", fix a basis B of V7. Then, for p =
(p1y---5pn), where p; € G" for all i, we have that B? = B”* ® --- ® B is a basis of
VP =V @ @ VP, Thus, for T € tabg(n,pn), we have that B’ is a basis of V"7,
where rp = (rr(1),...,rr(n)). If ro(i) = re(i+ 1), then we let N;,.,. be the matrix of the
switch operator 7;,, on V"7 with respect to the basis B'7.

Let R be the standard G-tableau defined above and fix a G"-linear isomorphism
f:VrD . @ VRM
Define the basis o
Br = f(B*V g ... @ Brr®)
of Vz. Now use (36) to define a basis By of Vi for all T' € tabg(n, u).

Let T' € tabg(n, ) and s be the permutation that maps R to T. Now S, acts on
V'™ by permuting the coordinates and the image of the action of s™* on V"7 is V"%, The
following result now follows.

Lemma 6.9 The map V'™ — Vr given by v — pr(sfs~'(v)) is a G"-linear isomorphism
that takes the basis B™ of V' to the basis By of Vp. Thus, for rp(i) = rp(i + 1), the
matriz N; v of 7; v, with respect to Br is equal to N; ...

We now have the following result.

Theorem 6.10 Consider the basis UTGtabg(n,u)B_T of V¥, Fiz T € tabg(n, ) an_d let
O(T) = ((p1,---5pn),01,...,an). Let s; be a Coxeter generator. Let I denote the |Bp| X

|Br| identity matriz. Set r = (a"“*aféﬁhm(wi)

The action of s; on Vr is as follows.
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(i) Suppose i and i + 1 are not in the same Young diagram of T. Let S = s;-T. Then
Vir @ Vg is closed under the action of s; and the matriz of this action, with respect to the
basis By U Bg, is given by
0 I
7ol

Now suppose that i and i + 1 are in the same Young diagram of T'. Set N = N, r.

(i) If i and i + 1 are in the same column of the same Young diagram of T then Vs
closed under the action of s; and the matriz of this action with respect to the basis By is
—N.

(#i) If i and i+ 1 are in the same row of the same Young diagram of T then Vi is closed
under the action of s; and the matrix of this action with respect to the basis By is N.

(iv) Suppose i and i + 1 are in the same Young diagram of T' but not in the same row or
same column of this Young diagram. Let S =s;-T. Then N = N, g.

If6(S) = {(T) + 1 then Vr & Vs is closed under the action of s; and the matriz of this
action, with respect to the basis Br U Bg, is given by

r N (1—r"?)I
I —r~IN

If 0(S) = U(T) — 1 then the matriz of the action of s; on the subspace Vi & Vs with
respect to the basis basis By U Bgs is given by the transpose of the matrixz above.

Proof Parts (i), (ii), (iii) and part (iv) with ¢(S) = ¢(T) 4+ 1 follow from Theorem 5.3,
Lemma 6.8, and Lemma 6.9 above. To prove the case ¢(S) = ¢(T) — 1 of part (iv), switch
T and S in the £(S) = ¢(T') 4+ 1 case along with switching a; and a;;;. This is equivalent
to transposing the matrix. O

The basis of V# and the action of s; described above correspond to Young’s seminormal
form in the case of the symmetric groups. Now let us consider the analog of Young’s
orthogonal form. Since V* is irreducible there is a unique (up to scalars) G,-invariant inner
product on V*#. Choose and fix one such inner product. Since the branching from H; , to
H;_1, is multiplicity free we have that the decomposition of an irreducible H; ,-module
into irreducibles H;_; ,-modules is orthogonal. It follows that the GZ-decomposition (32)
of V# is orthogonal.

For 0 € G, fix a G-invariant inner product (unique up to scalars) on V7, and fix
an orthonormal basis C? of V7. Then, for p = (p1,...,pn), where p; € G" for all
7, we have that C? = C” ® --- ® C?* is an orthonormal basis of V¥ = V1 @ - ®
VPr (under the inner product obtained by multiplying the component inner products).
Thus, for T € tabg(n, ), we have that C'™ is an orthonormal basis of V"7, where
re = (re(1),...,rp(n)). If rp(i) = rr(i + 1), then we let M;,, be the matrix of the
switch operator 7;,, on V7 with respect to the basis C"7.
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Let R be the standard G-tableau defined above and fix a G"-linear isometry
f: VR .. g VTR Vi.
Define the orthonormal basis
Cr= f(CWR(l) R ® CTR(H))
of Vz. Now use (36) to define a basis Cr of Vp for all T' € tabg(n, p).

Let T € tabg(n, 1) and s be the permutation that maps R to T. We have

Lemma 6.11 The map V™™ — Vp given by v — pr(sfs~'(v)) is a G"-linear isometry
that takes the basis C'™ of V'™ to the basis Cr of Vp. Thus, for rp(i) = ro(i + 1), the
matrix M; v of v, with respect to Cr is equal to M; ...

The following result can be proved along the lines of the previous result.

Theorem 6.12 Consider the orthonormal basis Uretabe(n u)CT of V# defined above. Fix
T € tabg(n,p) and let &(T) = ((p1,...,pn),a1,...,a,). Let s; be a Cozeter generator.

Let I denote the |Cr| x |Cr| identity matriz. Set r = (a”l_a‘ig'ﬁm(vpi)

The action of s; on Vr is as follows.

(i) Suppose i and i + 1 are not in the same Young diagram of T. Let S = s;-T. Then
Vi ® Vs s closed under the action of s; and the matrixz of this action, with respect to the
basis Cr U Cg, is given by
0 I
7ol

Now suppose that i and i + 1 are in the same Young diagram of T'. Set M = M, .

(ii) If i and i + 1 are in the same column of the same Young diagram of T then Vi is

closed under the action of s; and the matriz of this action with respect to the basis Cr is
—M.

(#i) If i and i+ 1 are in the same row of the same Young diagram of T then Vi is closed
under the action of s; and the matrix of this action with respect to the basis Cr is M.

(iv) Suppose i and i + 1 are in the same Young diagram of T but not in the same row or
same column of this Young diagram. Let S = s, -T. Then M = M, g.

Then Vi ®Vy is closed under the action of s; and the matrix of this action, with respect
to the basis Cp U Cgs, is given by

roiM V1=12]
Vi—r2I —r'M
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7 Generalized Johnson scheme

The simplest nontrivial examples of the Okounkov-Vershik theory are the classical “John-
son schemes” and the “generalized Johnson schemes” of Ceccherini-Silberstein, Scarabotti,
and Tolli [1, 3, 8]. We consider multiplicity free S,,, G,-actions and explicitly write down
the GZ-vectors (in the S, case) and the GZ-subspaces (in the G, case) and also identify
the irreducibles which occur.

We begin with the S, action. Let B(n) denote the set of all subsets of [n] =
{1,2,...,n} and, for 0 < ¢ < n, let B(n); denote the set of all subsets of [n| with
cardinality i. There is a natural action of S,, on B(n); and B(n). For a finite set S, let
V(S) denote the complex vector space with S as basis.

We have the following direct sum decomposition into S,-submodules of the permuta-
tion representation of S, on V(B(n)):

V(B(n)) = V(B(n)) ®V(B(n))®-- & V(B(n)a). (37)

The following result is classical ([2, 15]). We give a constructive proof that produces
an explicit Gelfand-Tsetlin basis.

Theorem 7.1 For 0 < i <n, V(B(n);) is a multiplicity free S,-module with S,,-module
isomorphism

1%

V(B(n):)

@ V(n—k,k)’
k

where the sum is over all partitions (n — k, k) of n with at most two parts satisfying
k<i<n-—k.

An element v € V(B(n)) is homogeneous if v € V(B(n)) for some k. We say that a
nonzero homogeneous element v is of rank k, and we write r(v) = k, if v € V(B(n)).
The up operator U, : V(B(n)) — V(B(n)) is defined, for X € B(n), by

Un(X) =) Y,

where the sum is over all Y € B(n) covering X, i.e., X CY and |Y| = |X|+ 1.

A symmetric Jordan chain (SJC) in V(B(n)) is a sequence v = (vy, ..., vp) of nonzero
homogeneous elements of V(B(n)) such that U,(v;_1) = v;, for i = 2,...h, U,(vy) = 0,
and r(vy) + r(vy) = n, if h > 2, or else 2r(v;) = n, if h = 1. Note that the elements
of the sequence v are linearly independent, being nonzero and of different ranks. We say
that v starts at rank r(v;) and ends at rank n — r(vy). We do not distinguish between
the sequence (vq,...,v,) and the underlying set {v1,...,v5}. A symmetric Jordan basis

(SJB) of V(B(n)) is a basis of V(B(n)) consisting of a disjoint union of SJC’s in V(B(n)).
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Given an SJB J(n) of V(B(n)) and 0 < k < n/2, let J(n, k) denote the set of all SJC’s
in J(n) starting at rank & and ending at rank n — k and let J(n, k) denote the union of
all SJC’s in J (n, k).

Given T € tab(n,u), where p has at most two rows, we denote by T +; (n + 1)
the standard Young tableaux obtained from 7" by adding n + 1 at the end of the first
row. Similarly, given T' € tab(n, 1), where p has at most two rows with the second row
containing fewer elements than the first row, we denote by T +5 (n + 1) the standard
Young tableaux obtained from 7" by adding n+ 1 at the end of the second row. The basic
idea of the following algorithm is from [13], though we have added new elements here,
namely, Theorems 7.4 and 7.5.

Theorem 7.2 There exists an inductive procedure to explicitly construct a symmetric
Jordan basis J(n) of V(B(n)) and, for 0 <k <n/2, a bijection

By : tab(n, (n — k. k)) — J(n, k). (38)

Proof The case n =1 is clear.

Let V.= V(B(n+1)). Define V(0) to be the subspace of V' generated by all subsets
of [n + 1] not containing n + 1 and define V(1) to be the subspace of V' generated by
all subsets of [n + 1] containing n + 1. We have V = V(0) & V(1). The linear map
R :V(0) — V(1), given by X — X U{n+ 1}, X C [n] is an isomorphism. We write
R(v) = v. We write U for the up operator U, 1 on V and we write Uy for the up operator
on V(0) (=V(B(n))). We have, for v € V(0),

Uv) = Us(v) + 7, U®) = Up(v). (39)

By induction hypothesis there is an SJB J(n) of V(B(n)) = V(0) and bijections B,
as in (38) above. We shall now produce an SJB J(n+ 1) of V' by producing, for each SJC
in J(n), either one or two SJC’s in V' such that the collection of all these SJC’s is a basis.

Let 0 < k < n/2. Consider T' € tab(n, (n — k,k)) and consider the SJC B, x(T) =
(Tky -y Tnek) € T (n, k), where r(xy) = k.

We now consider two cases.

(a) k =n —k : From (39) we have U(zy) = T} and U(Ty) = Up(zx) = 0. Since R is
an isomorphism 7y # 0. Define

Bpi1x(TH+1(n+1)) = (vg Tx). (40)

(b) k<n—Fk: Set 51 = T,41- = 0 and define

Yy = (yk7 cee 7yn+1fk)7 and z = (Zk+17 cee 7Zn7k>7 (41)

by
w = u+l—-—kT, k<I<n+1-k. (42)
2z = m—k—=Il+1)T -2, k+1<I<n-—k. (43)
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From (39) we have

U@) = Up(z1) = Tig1, k<1<n—k (44)

It thus follows from (39) and (44) that, for k <1 <n+1— k, we have
Uly) = Uz + (= k)Ti=7) = i + T+ (L= k)T = 2 + (= K+ 177 = g

Note that when [ = k the second step above is justified because of the presence of the
(I—Fk) factor even though U(Tr—1) = 0 # T. We also have U(yn41-x) = U((n+1)T,—%) =
(n+ D)Uy(zp—x) = 0.

Similarly, for £+ 1 <1 <n — k, we have
Ulz) =U(n—k—=1l+1)71—x;) = (n—k—=I+1)T;—x101—T; = (n—k =0T — 2141 = 2141.

and U(z,—x) = U(Tp_k—1 — Tn—k) = Tn_k — Tn_r = 0.

Since Yy = xp # 0, Ynr1-k = (n+1—2k)T,—x # 0, x; and T;_; are linearly independent,
for k+1<[<n-—Fkand the 2 x 2 matrix

1 -k
-1 n—-k—-1+1

is nonsingular for £ + 1 <1 < n — k, it follows that (41) gives two independent SJC’s in
V. Define

Bn+1,k(T+1 (n+1)) = v,
By (T +2(n+1) = =z,

and set J(n + 1) to be the union of all SJC’s obtained in steps (40) and (41) above.

Since V =V (0) ® V(1) and R is an isomorphism it follows that J(n+ 1) is an SJB of
V. That the maps B,,11 are bijections is also clear. O

Example 7.3 In this example we work out the SJB’s of V(B(n)), for n = 2,3, starting
with the SJB of V(B(1)), using the formulas (40, 41, 42, 43) given in the proof of Theorem
7.2.

(i) The SJB of V(B(1)) is given by
(0, {1})
(ii) The SJB of V(B(2)) consists of

(0, {13+ {2}, 2{1,2})
({2} ={1})
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(iii) The SJB of V(B(3)) consists of

(0, {1} + {2} + {3}, 2({1,2} + {1,3} + {2,3}), 6{1,2,3} )
(203} — {1} = {2}, {1,3} +{2,3} —2{1,2} )
({2 = {1}, {2,3} = {1,3})

For 0 <k <i<n—k<ndefine
J(n,k,i) = {veJnk):rv) =i}

Let W (n, k, i) be the subspace of V(B(n);) spanned by J(n, k,7). Then we have the direct
sum decomposition

min{in—i}
V(B(n)) = P Wnki), 0<i<n (45)

k=0

We claim that each W (n, k, i) is a S,,-submodule of V(B(n);). We prove this by induction
on i, the case i = 0 being clear. Assume inductively that W (n,0,i—1),...,W(n,i—1,i—1)
are submodules, where ¢ < [n/2]. Since U, is S,-linear, U, (W (n,j,i — 1)) = W(n, j,1),
0 < j <i—1 are submodules. Now consider W (n,i,i). Let u € W(n,i,i) and w € S,,.
Since U, is S,-linear we have U1 =% (qu) = 7U 1% (y) = 0. It follows that mu €
W(n,i,i). So the claim is proven for 0 < ¢ < n/2 and it follows for i > n/2 since U, is
S,-linear.

Theorem 7.4 As S,,-modules we have

W(n, ki) = VO bR g<k<i<n—k<n. (46)

Proof By induction on n. The cases n = 1,2, 3 can be directly verified from Example 7.3
(the main point to check is that W (3,1, 1) is the standard representation of Ss).

Now assume we have proven the result up to n > 3. By the algorithm of Theorem 7.2
we have, for 0 <i<n+1,

Wn+1,ki) = Wn, ki) eWn,k—1i—1), (47)
where W = {v | v € W(n,k — 1,7 — 1)} (in the notation used in the proof of Theorem
7.2) and where W (n, k, ) is taken to be the zero subspace if i < k or i > n — k.

Now, W(n+1,k,4) is a S,1-module and it is easily seen that W (n, k,4) and W (n, k —
1,4 — 1) are S,-submodules of W (n + 1,k,i). By induction hyphothesis we have, as
Sp-modules,

W(n, ki) = Vikh), (48)
Wn,k—1,4i—1) = Vhrkili-l) (49)
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Suppose an S, -irreducible V*, where the Young diagram A has 3 or more rows, occurs
in W(n+1,k,i). Since n+1 > 4, it follows that A\ has an inner corner whose removal still
leaves 3 or more rows. By the branching rule this contradicts (47), (48), and (49). So, for
any S, 1-irreducible V* occuring in W(n + 1, k, i), there are at most two rows in \. It is
now easy to see using the branching rule and (48) and (49) that W (n+1, k,4) = V(n+i=kk),
O

Theorem 7.1 now follows from (45) and Theorem 7.4. We also have from Theorem 7.2

that
dim(VOkH)y = (Z) - (k " 1). (50)

Summing (45) over i and taking dimensions we get

o — mz/éj(n—%Jrl){(Z)—(kil)}. (51)

k=0

We denote the YJM elements of S,, by Yi,...,Y,.

Theorem 7.5 For T € tab(n, (n —k, k)) and every vector v in the SJC By, ;(T') we have

Yi(v) = c(br(y))v, 1=1,2,...,n. (52)

Proof We first show inductively that each element of J(n) is a simultaneous eigenvector
of Y1,...,Y,, the case n = 1 being clear.

Note that if v € V(B(n)g) is an eigenvector for Y;, for some 1 < i < n, then 7 €
V(B(n + 1)g41) is also an eigenvector for Y; with the same eigenvalue. Thus it follows
from (40, 41, 42, 43) that each element of J(n + 1) is an eigenvector for Yi,...,Y,. It
remains to show that each element of J(n + 1) is an eigenvector for Y;, 1.

We now have from Theorem 7.4 that, for 0 <17 < ”TH, W(n+1,0,7),..., W(n+1,i,14)
are mutually nonisomorphic irreducibles. Consider the S, i-linear map f : V(B(n +
1);) = V(B(n+ 1);) given by f(v) = av, where

a = sum of all transpositions in S, ;1 =Y, +---+ Y, 1.

It follows by Schur’s lemma that there exist scalars ay, ..., q; such that f(u) = azu, for
u € W(n+1,k,i). Thus each element of J(n+ 1, k,4) is an eigenvector for Y; +-- -+ Y, 11
(and also for Y3,...,Y,). It follows that each element of J(n + 1,k,4) is an eigenvector
for Y, 41.

The paragraph above has shown that the first element of each symmetric Jordan chain
in J(n + 1) is a simultaneous eigenvector for Y3,...,Y, ;1. It now follows (since U, is
Sn+1-linear) that each element of J(n + 1) is a simultaneous eigenvector for Y7, ..., Y, 1.
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We are left to show that, for each v € B, x(T'), the eigenvalues of Y;,...,Y,, on v are
given by (52). We can show this by induction, the case n = 1 being trivial.

Just like above the eigenvalues of Y7,....,Y,, on v € B, 11 4(T) will continue to satisfy
(52). Now, since v is an eigenvector for Y,,;; and v lies in an S,,1-irreducible isomorphic
to V(+1=kk) it follows that the eigenvalue of Y, on v also satisfies (52). That completes
the proof. O

See [4] for an elegant direct construction of the GZ-basis given above and see [5] for
an application to complexity theory.

Now we study the G,, analog of the S,-action considered above, studied in [1, 3, 8].
Let G be a finite group acting on the finite set X. Assume that the corresponding
permutation representation on V(X)) is multiplicity free. This implies, in particular, that
the action is transitive.

Let Ly be a symbol not in X and let Y denote the alphabet Y = {Lo} U X. We call the
elements of X the nonzero letters in Y. Define Bx(n) = {(a1,...,a,) : a; € Y for all i},
the set of all n-tuples of elements of Y (we use Ly instead of 0 for the zero letter for
later convenience. We do not want to confuse the letter 0 with the vector 0). Given
a = (ay,...,a,) € Bx(n), define the support of a by S(a) = {i € [n] : a; # Lo}. For
0 <i <mn, Bx(n); denotes the set of all elements a € Bx(n) with |S(a)| = ¢. We have

Bx(n)] = (IX] + 1", |Bx(n)] = (”) X

(We take the binomial coefficient (}) to be 0 if n < 0 or k < 0).

There is a natural action of the wreath product G, on Bx(n) and Bx(n);: permute
the n coordinates followed by independently acting on the nonzero letters by elements
of G. In detail, given (g1,92,...,9n,7) € G, and a = (ay,...,a,) € Bx(n), we have
(91, GnsT)(ar, ... an) = (by, ..., by), where b; = gjar—1(;), if ar-1(;) is a nonzero letter
and b; = Lo, if az-1) = Lo. We have the following direct sum decomposition into G-
submodules of the permutation representation of G,, on V(Bx(n)):

V(Bx(n)) = V(Bx(n)) ®V(Bx(n)1)®---®V(Bx(n)n). (53)

We now introduce some notation. Let oy,...,0,,, 0; € G", be the distinct irreducible
G-representations occuring in the multiplicity free G-module V(X). We assume that oy
is the trivial representation. Now enumerate all the elements of G as o1, ..., 0y, so that
Om+1,---,0¢ do not appear in V(X). Fori=1,...,m, set d; = dim(V7), so that d; = 1
and dy + -+ - +d,,, = | X|.

Denote by V5, (G") the set of all u € Y,(G") such that
(i) u(o;) is the empty partition, for i =m +1,...t.

(ii) p(o;) has at most one part, denoted p;(u), for i = 2,... . m. We have p;(u) = 0 if
w(o;) is the empty partition. We set s(u) = po(p) + -+ + pim ().
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(iii) p(oq) has at most two parts, denoted a(u),b(p), with a(u) > b(p). Just like in item
(ii) above, one or both of a(u), b(x) may be 0.

We have the following combinatorial identity (recall that V# denotes the irreducible
Gp-module parametrized by p € V,(G")).

Theorem 7.6 We have

(X[+D" = > (1+a(p) —b(u) dim(V*). (54)
nEYV2 n(G")

Proof The proof is in two steps.

(a) Let C(n,m) denote the set of all m-tuples of nonnegative integers with sum n. We
have, using the multinomial theorem and (51) above,

(X[ +1)"
= (dh+do+---+d, +1)"
= (dy+-+d,+2)"

_ Z ( n ) db? ... drm P
Py Pm "

(P1,-+-spm ) EC(1,m)

lp1/2] . o )
= —2k+1 SR {( )_( )}
2 , kZ:o@l )(p1,~--,pm> 2 k k—1
(b) Let pt € Y20 (G"). We have

ViE o= EB V.

Tetabg(n,,u)

The dimension of the GZ-subspace Vi of V* is clearly d2™) ... b With p bijectively
associate the pair of elements

(a(p) +0(p), p2(p), - - s pm(p)) € C(n,m) and b(p) € N with b(u) < [(a(u) + b())/2].

It is easy to see, using (50) above, that the cardinality of tabg(n, i) is

<a(u) + b(u);p?(u) - ,pm(u)) {<G(M2)(Z)b(m) - <a(bl&)+_b (1M)> } ‘

The result now follows from steps (a) and (b) above. O
We shall now give a representation theoretic interpretation to Theorem 7.6 above.

Consider the tensor product

é VY)=V({Y)®- - V(Y) (n factors),
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with the natural G,-action (permute the factors and then independently act on the factors
by elements of GG). There is a G,-linear isomorphism

V(Bxm) = QVE) (55)

given by a = (a1,...,a,) — a1 ® -+ ® a,, a € Bx(n). From now onwards, we shall
not distinguish between V' (Bx(n)) and ®!_,V(Y). The image of V(Bx(n);) is denoted
(@5 V(Y))i-

Consider the canonical decomposition
VX)=W1 & W,,
of V(X) into distinct irreducible G-submodules, where W; is isomorphic to V7, for 1 <
1 <m. Thus d; =dim W;,, 1 =1,... ,m.
Define the vector z € V(Y) by z =) _ .
For 0 <7 <n set

VoGP = {p € Yon(G") [ b(n) + s(p) <@ < alp) + s(p)}-

Theorem 7.7 For(0 <i <n, V(Bx(n);) is a multiplicity free G,,-module with G,,-module
1somorphism

V(Bx(n)) = & v~

HEY2 n(GN);

Proof Let p € V5, (G") and b(p) + s(p) < i < a(p) + s(pn). Let R € tabg(n, p) be as
defined in the proof of Lemma 6.2. We shall exhibit a GZ-subspace W of (®7_,V(Y));
of type Vg, i.e, W is closed under the G™-action and, as a G™-module, is isomorphic to
ViED) @ ... @ Ve and, for v € W and j = 1,2,...,n, we have

) = Gty rle (50

This will show that V# appears in V(Bx(n);). The dimension count given by Theorem
7.6 then completes the proof.

(a) Set ¢ = a(p) + b(u). There is an injection

given as follows: for S C [¢], we have I'(S) = vy ® - - - ® u,, where u; = Lo, if k ¢ S and
u, =z, if ke s.
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Since b(p) < i — s(p) < a(w) and b(u) < |(a(p) + b(w))/2], it follows from Theorem
7.1 that there is a vector v € V(B(q)i—s(u)), determined uniquely up to scalars and
constructed by the algorithm in the proof of Theorem 7.2, such that

Yiw) = e(brG)us j=1,...,q (57)

(b) Let 0 € G" and consider the Gy-module V7 ® --- ® V7 (k factors). It follows from
Theorem 5.3(i) and (ii)(a) that, forallv e Vo ® --- @ V7,

G

Xj(v):(j—l)mv, j=1,...,k. (58)

Consider the subspace W of (®7_,V(Y)); given by
W =Span(T(u)) @Wo @ - @Wa @ W3 @+ @ W5+ @ Wy @ - -+ @ W,

where Wy is repeated po(p) times, Ws is repeated ps(u) times, and so on until W, is
repeated p,,(u) times.

Since g - Ly = Ly and g - z = z, for all g € G, it follows that W is closed under the
G"-action and, as a G"-module, is isomorphic to V'ED @. .. @ V=™ Moreover, it follows
from (57) above that, for v € W,

Gl

K0 = o)

cbr(i))v, 7=1,...,q.
From (58) above and (26) we see that, for v € W,

X (0 Gl

j(v) = Wc{bR(j))v,j:qul,...,n.

That completes the proof. O
Acknowledgement

We are grateful to the two anonymous referees for their very careful reading of the
manuscript and useful suggestions on the write up. We thank the second referee for
suggesting an informative title for this paper and also for bringing Okada’s paper [9] to
our attention.

The research of the first author was supported by the Council of Scientific and Indus-
trial Research, Government of India.

41



References

1]

2]

8]

[9]

[10]

[11]

Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F., Trees, wreath products, and
finite Gelfand pairs, Adv. Math. 206, 503-537 (2006).

Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F., Representation theory of the sym-
metric groups, The Okounkov-Vershik approach, character formulas, and partition
algebras , Cambridge University Press (2010).

Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F., Representation theory and har-
monic analysis of wreath products of finite groups, Cambridge University Press
(2014).

Filmus, Y., An Orthogonal basis for functions over a slice of the Boolean hypercube,
FElectronic J. Comb. 23(1), Paper 23 (27 Pages) (2016).

Filmus, Y., Kindler, G., Mossel, E., Wimmer, K., Invariance principle on the slice,
arXiv: 1504.01689, (2015).

James, G. D., Kerber, A., The representation theory of the symmetric groups,

Addison-Wesley (1981).

Macdonald, 1. G., Symmetric functions and Hall polynomials (2nd Edition), Oxford
University Press (1995).

Mishra, A., Srinivasan, M. K., Wreath product action on generalized Boolean alge-
bras, Electronic J. Comb. 22(2), Paper 43 (19 Pages) (2015).

Okada, S., Wreath products by the symmetric groups and product posets of Young’s
lattices, J. Combin. Theory Ser. A 55(1), 14-32 (1990).

Okounkov, A., Vershik, A. M., A new approach to the representation theory of
symmetric groups. Selecta Math. (N.S.) 2, 581-605 (1996).

Okounkov, A., Vershik, A. M., A new approach to the representation theory of
symmetric groups. II. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst.
Steklov. (POMI) 307 (2004), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10,
57-98, 281; translation in J. Math. Sci. (N.Y.) 131, 5471-5494 (2005).

Pushkarev, I. A., On the representation theory of wreath products of finite groups
and symmetric groups, J. Math. Sci. 96, 3590-3599 (1999).

Srinivasan, M. K., Symmetric chains, Gelfand-Tsetlin chains, and the Terwilliger
algebra of the binary Hamming scheme, J. Algebraic Comb. 34, 301-322 (2011).

Stanley, R. P., Enumerative Combinatorics - Volume 1 (Second Edition). Cambridge
University Press (2012).

42



[15] Stanley, R. P., Enumerative Combinatorics - Volume 2. Cambridge University Press
(1999).

43



