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A nonempty subset W of a vector space V is a subspace of V
if W satisfies the two closure axioms.

Proof: Suppose now that W satisfies the closure axioms. We
just need to prove existence of inverses and the zero element.
Let x € W. By distributivity

0x = (0 +0)x = 0x + Ox.

Hence 0 = 0x. By closure axioms 0 € W. If x € W then
—x = (—1)xis in W by closure axioms. O
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C'|a, b] is a subspace of the vector space C?[a, b] for
s < r. All of them are subspaces of F([a, b]; R).

Mm.n(R) is a subspace of the real vector space M, 5(C).

The set of points on the x-axis form a subspace of the
plane. More generally, the set of points on a line passing
through the origin is a subspace of R?. Likewise the set of
real solutions of a;xy + ... + apxp, = 0 form a subspace of
R". It is called a hyperplane.

More generally, the set of solutions of a homogeneous
system of linear equations in n variables forms a subspace
of K". In other words, if A € M n(K), then the set

{x € K" : Ax = 0} is a subspace of K". It is called the null
space of A.
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Linear Span of a set in a Vector Space

Let S be a subset of a vector space V. The linear span of S is
the subset

L(S)={>7 cx:xi,....xn€ Sandcy,...,cyarescalars} .
We set L(0) = {0} by convention.
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the subset

LS)={>7 cx:x,....xn€ Sandcy,...,c,are scalars} .
We set L(0) = {0} by convention. A typical element ", c;x; of
L(S) is called a linear combination of x;’s. Thus L(S) is the set
of all finite linear combinations of elements of S. In case

V = L(S), we say that S spans V or generates V.

The smallest subspace of V containing S is L(S).

Proof: If Sc W c V and W is a subspace of V then by
closure axioms, L(S) c W. If we show that L(S) itself is a
subspace of V, then the proof will be completed. It is easy to
verify that 0 € L(S) and that L(S) is closed under addition as

well as scalar multiplication (exercise!). O
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Different sets may span the same subspace. For example
L{i.J}) = LELT T +]}) = B2,

More generally, the standard basis vectors e, .. .,e, span
R" and so does any set S C R" containing ey, ... ,€en
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More generally, the standard basis vectors eq, . ..,e, span
R" and so does any set S C R" containing ey, ... ,€en

The vector space R[t] is spanned by {1,t,t2,...,t",...}
andalsoby {1,(1+1),....,(1 +0",...}.

The linear span of any non zero element in a field K is the
field itself.

While talking about the linear span or any other vector
space notion, the underlying field of scalars is understood.
If we change this we get different objects and relations.
For instance, the real linear span of 1 € C is R where as
the complex linear span is the whole of C.
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Linear Dependence

Let V be a vector space. A subset S of V is called linearly
dependent (L.D.) if there exist distinct elements vy, ...,V € S
and «; € K, not all zero, such that

n
> ai=0. (%)
i=1
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Let V be a vector space. A subset S of V is called linearly
dependent (L.D.) if there exist distinct elements v, ..., Vv, € S
and «; € K, not all zero, such that

n
> ai=0. (%)
i=1

S is called linearly independent (L.1.) if it is not linearly
dependent.

Thus a relation such as () holds in a linearly independent
set S with distinct v; s iff all the scalars «; = 0.

Any subset which contains a L.D. set is again L.D.
The singleton set {0} is L.D. in every vector space.
Any subset of a L.l. setis L.1.
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The set{e;=(0,...,1,...,0):1 <i<n}isL.linK"
This can be shown easily by taking dot product with e; with
a relation of the type (x).
Theset S = {1,t,t2,...,1",... }is L.I. in K[t]. This follows
from the definition of a polynomial (!). Alternatively, if we
think of polynomial functions (from K to K) defined by the
polynomials, then linear independence can be proved by
evaluating a dependence relation as well as its derivatives
of sufficiently high orders at f = 0.

In the space CJa, b] for a < b € R consider the set

S = {1,co0s? t,sin? t}. The familiar formula

cos’t + sin’t =1  tells us that S is linearly dependent.
What about the set {1, cos t,sin t}?

If Ejj denotes the m x n matrix with 1 in (/, /)™ position and
0 elsewhere, thenthe set {E;:i=1,....m, j=1,...,n}
is linearly independent in the vector space My, n(K).
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A useful Lemma

Let T be a linearly independent subset of a vector space V. If
v e VA\L(T), then T U{v} is linearly independent.

Proof: Suppose there is a linear dependence relation in the
elements of T U {v} of the form

k
> aivi+Bv =0,

i=1

withv; e T
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A useful Lemma

Let T be a linearly independent subset of a vector space V. If
v e VA\L(T), then T U{v} is linearly independent.

Proof: Suppose there is a linear dependence relation in the
elements of T U {v} of the form

k
> ai+ By =0,
i=1
with v; € T If 3 0 then v = = (S04 av;) € L(T). Therefore
B = 0. But then ZL ajV; = 0 and this implies that
a1 =ao =...= oy =0, since T is linearly independent

A subset S of a vector space V is called a basis of V if
V =L(S), and
S is linearly independent.
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Let S be a finite subset of a vector space V such that V = L(S).
Suppose Sy is a subset of S which is linearly independent.
Then there exists a basis S> of V such that S; C S> C S.
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Suppose Sy is a subset of S which is linearly independent.
Then there exists a basis S> of V such that S; C S> C S.

Proof: If S C L(Sy), then L(S;) = L(S) = V and we can take
S, = Sy. Otherwise there exists vi € S\ Sy and by the Lemma
above, S| := S; U {v4} is linearly independent. Replace S; by
S} and repeat the above argument. Since S is finite, this
process will terminate in a finite number of steps and yield the
desired result. O

A vector space V is called finite dimensional if there exists a
finite set S C V such that L(S) = V.

By the above theorem, it follows that every finite dimensional
vector space has a finite basis. To see this, choose a finite set

S such that L(S) = V and apply the theorem with Sy = ().
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If a vector space V contains a finite subset S = {v1,...,Vn}
such that V = L(S), then every subset of V with n+ 1 (or more)
elements is linearly dependent.

Proof:
Letuy,...u, 1 be any n+ 1 elements of V. Since V = L(S),
we can write

n
uij=> ayv; forsomea;cKandfori=1,... n+1
=

Consider the (n+ 1) x n matrix A = (a;). Let A’ be a REF of A.
Then A’ can have at most n pivots, and so the last row of A’
must be full of zeros. On the other hand, A’ = RA for some
(n+1) x (n+ 1) invertible matrix R (which is a product of
elementary matrices). Now if (cq, ..., cy.1) denotes the last
row of R, then not all ¢;’s are zero since R is invertible. Also
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Proof Contd.

since the the last row of A’ = RAis 0, we see that
n+1
> ciaj=0 foreachj=1,...,n
=1

Multiplying by v; and summing over j, we obtain

n n+1 n+1 n+1
0= Z (Z c,a,,) v = Z ci (Z a,jvj) = Z ciu;.
i=1 i=1

This proves that u4,...u,, 1 are linearly dependent. O

For a finite dimensional vector space, the number of elements
in any two bases are the same.
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Proof Contd.

since the the last row of A’ = RAis 0, we see that
n+1
> ciaj=0 foreachj=1,...,n
=1

Multiplying by v; and summing over j, we obtain

n n+1 n+1 n+1
0= Z (Z c,a,,) v = Z ci Z ajvj | = Z ciu;.
i=1 i=1

This proves that uq,...u, ¢ are Ilnearly dependent. O

For a finite dimensional vector space, the number of elements
in any two bases are the same.

Given a finite dimensional vector space V, the dimension of V
is defined to be the number of elements in any basis for V.

w
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Exercises

Show that in any vector space of dimension n any subset S
such that L(S) = V has at least n elements.

Let V be a finite dimensional vector space. Suppose S is a
maximal linearly independent set
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Exercises

Show that in any vector space of dimension n any subset S
such that L(S) = V has at least n elements.

Let V be a finite dimensional vector space. Suppose S is a
maximal linearly independent set

Show that S is a basis for V.

Show that a subspace W of a finite dimensional space V is
finite dimensional. Further prove that dim W < dim V and
equality holds iff W = V.

Let V and W be vector subspaces of another vector space
U. Show that (VU W) ={v+w:ve V,we W} This
subspace is denoted by V + W and is called the sum of V
and W. Show that V n W is a subspace and

dim(V + W) =dim V +dim W — dim(V n W).
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matrices with entries in K. What is the dimension of
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matrices with entries in K. What is the dimension of
Symn(K)? (Answer: n(n+ 1)/2.) Indeed, check that

{Ei:1<i<nfU{E;j+E;:i<j}

forms a basis.

Let Herm,(C) be the space of all n x n matrices A with
complex entries such that A = A*(:= AT). This is a vector
space over R and not over C. (Why?) What is the value of
dimg[Herm,(C)]? (Answer: n?). Indeed

{Ei,1 <i<ntU{Ej+E;:i<j}U{uE;j—E;):i<j}

forms a basis.
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4. Linear Transformations

Let V, W be any two vector spaces over K. By a linear map (or
a linear transformation) f : V. — W we mean a function f
satisfying

f(Ot1V1 = 042V2) = o1 f(V1) aF agf(Vg)
forallv; € V and a; € K.
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4. Linear Transformations

Let V, W be any two vector spaces over K. By a linear map (or
a linear transformation) f : V. — W we mean a function f
satisfying

f(O41V1 = a2V2) = o1 f(V1) I+ Oégf(Vg)
forallv; € V and a; € K.

A1 aivi) = iy (V).
If{vy,...,Vk} is a basis for a finite dimensional vector
space V, then every element of V is a linear combination
of thesev;, say v =YX_ av;. Therefore

F(v) = 321 aif (V).
Thus, it follows that f is completely determined by its value
on a basis of V,
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If V has a basis {v1, ... v} then

for each ordered k tuple {wy, ..., wy} of elements of W
we obtain a unique linear transformation f : V — W by
choosing f(v;) = w; for all i,
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for each ordered k tuple {wy, ..., wy} of elements of W
we obtain a unique linear transformation f : V — W by
choosing f(v;) = w; for all i, and vice versa.

Example:
Consider the space C" = C'[a,b], r > 1. Toeach f € C"
consider its derivative ' € C"~'. This defines a function
D:C"—C~'by D(f)y=f
We know that D is a linear map, i.e.,

D(af + Bg) = aD(f) + BD(g).
Now for each f € C"~' define Z(f) € C" by

I(f)(x) = /a " Kbt

Then Z is also a linear map. Moreover, we have Do Z = Id.

Canyousay Z o D = Id? Is D a one-one map?
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Let us write
DK:=DoDo...oD (kfactors)

Thus DX : C" — C"* is the map defined by D*(f) = f(X) where
(k) is the k' derivative of f, (r > k).
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Let us write
DK:=DoDo...oD (kfactors)

Thus DX : C" — C"* is the map defined by D*(f) = f(X) where
(k) is the k' derivative of f, (r > k).

Determining the zeros of this
linear map is precisely the problem of solving the
homogeneous linear differential equation of order k :

yi+ a1y '+ .. +ay+a =0.

Exercise: On the vector space P[x] of all polynomials in
one-variable, determine all linear maps ¢ : P[x] — P[x] having

the property ¢(fg) = fo(g) + go(f) and ¢(x) = 1.
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A linear transformation f : V. — W is called an isomorphism if it
is invertible,
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Then £(S) is linearly independent.

17/4%3



Letf: V — W be a linear transformation.

Suppose f is infective and S C V is linearly independent.
Then f(S) is linearly independent.

Suppose f is onto and S spans V. Then f(S) spans W.

17/4%3



Letf: V — W be a linear transformation.

Suppose f is infective and S C V is linearly independent.
Then f(S) is linearly independent.

Suppose f is onto and S spans V. Then f(S) spans W.

Suppose S is a basis for V and f is an isomorphism then
f(S) is a basis for W.

17/4%3



Letf: V — W be a linear transformation.

Suppose f is infective and S C V is linearly independent.
Then f(S) is linearly independent.

Suppose f is onto and S spans V. Then f(S) spans W.

Suppose S is a basis for V and f is an isomorphism then
f(S) is a basis for W.

Proof:
Let K, a;f(v;) = O where v; € S.

17/4%3



Letf: V — W be a linear transformation.

Suppose f is infective and S C V is linearly independent.
Then f(S) is linearly independent.

Suppose f is onto and S spans V. Then f(S) spans W.

Suppose S is a basis for V and f is an isomorphism then
f(S) is a basis for W.

Proof:
Let 2%, a;f(v;) = O where v; € S. So (3, av;) = 0.

17/4%3



Letf: V — W be a linear transformation.

Suppose f is infective and S C V is linearly independent.
Then f(S) is linearly independent.

Suppose f is onto and S spans V. Then f(S) spans W.

Suppose S is a basis for V and f is an isomorphism then
f(S) is a basis for W.

Proof:
Let 2%, a;f(v;) = O where v; € S. So (3, av;) = 0.
Since f is injective, we have ), aiv; =0

17/4%3



Letf: V — W be a linear transformation.

Suppose f is infective and S C V is linearly independent.
Then f(S) is linearly independent.

Suppose f is onto and S spans V. Then f(S) spans W.

Suppose S is a basis for V and f is an isomorphism then
f(S) is a basis for W.

Proof:
Let 2%, a;f(v;) = O where v; € S. So (3, av;) = 0.
Since f is injective, we have ), aiv; =0
and since SisL.l., a;=...=a,=0.

17/4%3



Letf: V — W be a linear transformation.

Suppose f is infective and S C V is linearly independent.
Then f(S) is linearly independent.

Suppose f is onto and S spans V. Then f(S) spans W.

Suppose S is a basis for V and f is an isomorphism then
f(S) is a basis for W.

Proof:
Let 2%, a;f(v;) = O where v; € S. So (3, av;) = 0.
Since f is injective, we have ), aiv; =0
and since SisL.l., a;=...=a,=0.
Given w € W. Pick v € V such that f(v) = w.

17/4%3



Letf: V — W be a linear transformation.

Suppose f is infective and S C V is linearly independent.
Then f(S) is linearly independent.

Suppose f is onto and S spans V. Then f(S) spans W.

Suppose S is a basis for V and f is an isomorphism then
f(S) is a basis for W.

Proof:
Let 2%, a;f(v;) = O where v; € S. So (3, av;) = 0.
Since f is injective, we have ), aiv; =0
and since SisL.l., a;=...=a,=0.
Given w € W. Pick v € V such that f(v) = w. Now
L(S) = V implies that we can write v = Y"1, a;v; with
v, e S.

17/4%3



Letf: V — W be a linear transformation.

Suppose f is infective and S C V is linearly independent.
Then f(S) is linearly independent.

Suppose f is onto and S spans V. Then f(S) spans W.

Suppose S is a basis for V and f is an isomorphism then
f(S) is a basis for W.

Proof:
Let 2%, a;f(v;) = O where v; € S. So (3, av;) = 0.
Since f is injective, we have ), aiv; =0
and since SisL.l., a;=...=a,=0.
Given w € W. Pick v € V such that f(v) = w. Now
L(S) = V implies that we can write v = Y"1, a;v; with
v; € S. Butthenw = f(v) = >, aif(v;) € L(f(S)).

17/4%3
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Then f(S) is linearly independent.

Suppose f is onto and S spans V. Then f(S) spans W.

Suppose S is a basis for V and f is an isomorphism then
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Proof:
Let 2%, a;f(v;) = O where v; € S. So (3, av;) = 0.
Since f is injective, we have ), aiv; =0
and since SisL.l., a;=...=a,=0.
Given w € W. Pick v € V such that f(v) = w. Now
L(S) = V implies that we can write v = Y"1, a;v; with
v; € S. Butthenw = f(v) = >, aif(v;) € L(f(S)).
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Let V and W be any two vector spaces of dimension n. Then V
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Let V and W be any two vector spaces of dimension n. Then V
and W are isomorphic to each other and conversely.

Proof: Pick bases A and B for V and W respectively. Then
both A and B have same number of elements. Let f : A — B be
any bijection.

If g: B— Aistheinverse of f : A— Bthen g also extends to a
linear map.

Since go f = Id on A, it follows that g o f = Id\, on the whole of
V. Likewise fo g = ldy .
Converse follows from part (c) of the previous lemma. a

Because of the above theorem any vector space of dimension n
is isomorphic to K".
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We have seen that the study of ‘linear transformations on
euclidean spaces’ can be converted into the ‘study of
matrices’.

It follows that the study of ‘linear transformations on finite
dimensional vector spaces’ can also be converted into the
‘study of matrices’.

Exercises:

Clearly a bijective linear transformation is invertible. Show
that the inverse is also linear.
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Let V be a finite dimensional vector space and f: V — V
be a linear map. Prove that the following are equivalent:
(i)

(ii) (iii)
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Let V be a finite dimensional vector spaceand f: V — V
be a linear map. Prove that the following are equivalent:
(1)

(ii
(iv)
(

v)

(i)

Let A and B be any two n x n matrices and AB = [I,. Show
that both A and B are invertible and they are inverses of
each other.

Proof: If f and g denote the corresponding linear maps
thenfog=Id:R" — R".

From the exercise (2) above, f is an isomorphism and
fog=gof=Id. Hence AB = |, = BA which means
A=B".
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Rank and Nullity

Letf:V — W be a linear transformation of finite dimensional
vector spaces. By the rank of f we mean the dimension of the
range of f, i.e., rk(f) = dim f(V) = dim R(f).
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By nullity of f we mean the dimension of the null space, i.e.,
n(f) = dim N (f).

(Rank and Nullity Theorem): The rank and nullity of a linear
transformation f : V — W on a finite dimensional vector space
V add up to the dimension of V :

rk(f) + n(f) = dim V.
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Proof: Suppose dim V = n. Let S = {v4,Vz,...,Vk} be a basis
of N (f).

729/43



Proof: Suppose dim V = n. Let S = {vq,va,...,V,} be a basis
of N(f). We can extend S to a basis
S ={Vi,Vo, ..., Vi, Wi, Wo, ..., W, ,} Of V.

729/43



Proof: Suppose dim V = n. Let S = {vq,va,...,V,} be a basis
of N(f). We can extend S to a basis

S ={Vi,Vo, ..., Vi, Wi, Wo, ..., W, ,} Of V.
We would show that

T = {f(wy), f(wz),...,f(W,_k)}

is a basis of R(f).

729/43



Proof: Suppose dim V = n. Let S = {vq,va,...,V,} be a basis
of N(f). We can extend S to a basis

S ={Vi,Vo, ..., Vi, Wi, Wo, ..., W, ,} Of V.
We would show that

T = {f(wy), f(wz),...,f(W,_k)}

is a basis of R(f).

729/43



Proof: Suppose dim V = n. Let S = {vq,va,...,V,} be a basis
of N(f). We can extend S to a basis

S ={Vi,Vo, ..., Vi, Wi, Wo, ..., W, ,} Of V.
We would show that

T = {f(wy), f(wz), ..., f(Wn_k)}
is a basis of R(f).
Suppose
B1f(W1) + ...+ Bn_kf(Wp_k) = 0.

Then f(B1W1 + ...+ Bn_kWp_g) = 0.

729/43



Proof: Suppose dim V = n. Let S = {vq,va,...,V,} be a basis
of N(f). We can extend S to a basis

S ={Vi,Vo, ..., Vi, Wi, Wo, ..., W, ,} Of V.
We would show that

T = {f(wy), f(wz), ..., f(Wn_k)}
is a basis of R(f).
Suppose
B1f(W1) + ...+ Bn_kf(Wp_k) = 0.

Then f(B1W1 + ...+ Bn_kWp_g) = 0.
Thus B1W1 + ... + Bn_kWp_k EN(f)

729/43



Proof: Suppose dim V = n. Let S = {vq,va,...,V,} be a basis

of N(f). We can extend S to a basis
S ={Vq{,Vo, ..., Vi, Wy, Wo, ..., W, ,} Of V.
We would show that
T = {f(wq),f(w2),...,f(wp_x)}
is a basis of R(f).
Suppose

B1f(Wy) + ...+ Bnkf(Wh_k) = 0.

Then f(B1W1 S i /Bn—kwn—k) =0.
Thus B1W1 + ... + Bn_kWp_k GN(f).
Hence there are scalars «q, as, . .., ax such that

a1Vi + aoVo + ... + auVi = B{W1 + BoWo + ... + Bp_kWp_k-
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By linear independence of {v{,Vso,..., Vk, Wi, W2, ... W, } We
conclude that 841 = 8> = ... = B,_x = 0. Hence T is L. I.
Therefore it is a basis of R(f). O
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By linear independence of {v{,Vso,..., Vk, Wi, W2, ... W, } We
conclude that 841 = 8> = ... = B,_x = 0. Hence T is L. I.
Therefore it is a basis of R(f). O

The trace of a square matrix which is defined as the sum of the
diagonal entries, i.e., for A = ((a;)) € Mp

n
trace (A) = > _ aj
e
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