
Subspaces and Linear Span

Definition
A nonempty subset W of a vector space V is called a subspace
of V if it is a vector space under the operations in V .

Theorem
A nonempty subset W of a vector space V is a subspace of V
if W satisfies the two closure axioms.

Proof: Suppose now that W satisfies the closure axioms. We
just need to prove existence of inverses and the zero element.
Let x ∈W . By distributivity

0x = (0 + 0)x = 0x + 0x .

Hence 0 = 0x . By closure axioms 0 ∈W . If x ∈W then
−x = (−1)x is in W by closure axioms. 2
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Examples

1. R is a subspace of the real vector space C. But it is not a
subspace of the complex vector space C.

2. Cr [a,b] is a subspace of the vector space Cs[a,b] for
s < r . All of them are subspaces of F ([a,b];R).

3. Mm,n(R) is a subspace of the real vector space Mm,n(C).

4. The set of points on the x-axis form a subspace of the
plane. More generally, the set of points on a line passing
through the origin is a subspace of R2. Likewise the set of
real solutions of a1x1 + . . .+ anxn = 0 form a subspace of
Rn. It is called a hyperplane.

More generally, the set of solutions of a homogeneous
system of linear equations in n variables forms a subspace
of Kn. In other words, if A ∈ Mm,n(K), then the set
{x ∈ Kn : Ax = 0} is a subspace of Kn. It is called the null
space of A.
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Linear Span of a set in a Vector Space

Definition
Let S be a subset of a vector space V . The linear span of S is
the subset
L(S) =

{∑n
i=1 cixi : x1, . . . , xn ∈ S and c1, . . . , cn are scalars

}
.

We set L(∅) = {0} by convention.

A typical element
∑n

i=1 cixi of
L(S) is called a linear combination of xi ’s. Thus L(S) is the set
of all finite linear combinations of elements of S. In case
V = L(S), we say that S spans V or generates V .

Proposition

The smallest subspace of V containing S is L(S).

Proof: If S ⊂W ⊂ V and W is a subspace of V then by
closure axioms, L(S) ⊂W . If we show that L(S) itself is a
subspace of V , then the proof will be completed. It is easy to
verify that 0 ∈ L(S) and that L(S) is closed under addition as
well as scalar multiplication (exercise!). 2
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Remark
(i) Different sets may span the same subspace. For example

L({̂i , ĵ}) = L({̂i , ĵ , î + ĵ}) = R2.

More generally, the standard basis vectors e1, . . . ,en span
Rn and so does any set S ⊂ Rn containing e1, . . . ,en

(ii) The vector space R[t ] is spanned by {1, t , t2, . . . , tn, . . .}
and also by {1, (1 + t), . . . , (1 + t)n, . . .}.

(iii) The linear span of any non zero element in a field K is the
field itself.

(iv) While talking about the linear span or any other vector
space notion, the underlying field of scalars is understood.
If we change this we get different objects and relations.
For instance, the real linear span of 1 ∈ C is R where as
the complex linear span is the whole of C.
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Linear Dependence

Definition
Let V be a vector space. A subset S of V is called linearly
dependent (L.D.) if there exist distinct elements v1, . . . ,vn ∈ S
and αi ∈ K, not all zero, such that

n∑
i=1

αivi = 0. (∗)

S is called linearly independent (L.I.) if it is not linearly
dependent.

Remark
(i) Thus a relation such as (∗) holds in a linearly independent

set S with distinct vi ’s iff all the scalars αi = 0.
(ii) Any subset which contains a L.D. set is again L.D.
(iii) The singleton set {0} is L.D. in every vector space.

(iv) Any subset of a L.I. set is L.I.
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Examples
(i) The set {ei = (0, . . . ,1, . . . ,0) : 1 ≤ i ≤ n} is L.I. in Kn.

This can be shown easily by taking dot product with ei with
a relation of the type (∗).

(ii) The set S = {1, t , t2, . . . , tn, . . . } is L.I. in K[t ]. This follows
from the definition of a polynomial (!). Alternatively, if we
think of polynomial functions (from K to K) defined by the
polynomials, then linear independence can be proved by
evaluating a dependence relation as well as its derivatives
of sufficiently high orders at t = 0.

(iii) In the space C[a,b] for a < b ∈ R consider the set
S = {1, cos2 t , sin2 t}. The familiar formula
cos2t + sin2t = 1 tells us that S is linearly dependent.
What about the set {1, cos t , sin t}?

(iv) If Eij denotes the m × n matrix with 1 in (i , j)th position and
0 elsewhere, then the set {Eij : i = 1, . . . ,m, j = 1, . . . ,n}
is linearly independent in the vector space Mm,n(K).
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A useful Lemma

Lemma
Let T be a linearly independent subset of a vector space V . If
v ∈ V\L(T ), then T ∪ {v} is linearly independent.

Proof: Suppose there is a linear dependence relation in the
elements of T ∪ {v} of the form

k∑
i=1

αivi + βv = 0,

with vi ∈ T

If β 6= 0 then v = −1
β (
∑k

i=1 αivi) ∈ L(T ). Therefore

β = 0. But then
∑k

i=1 αivi = 0 and this implies that
α1 = α2 = . . . = αk = 0, since T is linearly independent

Definition
A subset S of a vector space V is called a basis of V if

(i) V = L(S), and
(ii) S is linearly independent.
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Theorem
Let S be a finite subset of a vector space V such that V = L(S).
Suppose S1 is a subset of S which is linearly independent.
Then there exists a basis S2 of V such that S1 ⊂ S2 ⊂ S.

Proof: If S ⊆ L(S1), then L(S1) = L(S) = V and we can take
S2 = S1. Otherwise there exists v1 ∈ S\S1 and by the Lemma
above, S′1 := S1 ∪ {v1} is linearly independent. Replace S1 by
S′1 and repeat the above argument. Since S is finite, this
process will terminate in a finite number of steps and yield the
desired result. 2

Definition
A vector space V is called finite dimensional if there exists a
finite set S ⊂ V such that L(S) = V .

Remark
By the above theorem, it follows that every finite dimensional
vector space has a finite basis. To see this, choose a finite set
S such that L(S) = V and apply the theorem with S1 = ∅.
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Theorem
If a vector space V contains a finite subset S = {v1, . . . ,vn}
such that V = L(S), then every subset of V with n + 1 (or more)
elements is linearly dependent.

Proof:
Let u1, . . .un+1 be any n + 1 elements of V . Since V = L(S),
we can write

ui =
n∑

j=1

aijvj for some aij ∈ K and for i = 1, . . . ,n + 1

Consider the (n + 1)× n matrix A = (aij). Let A′ be a REF of A.
Then A′ can have at most n pivots, and so the last row of A′

must be full of zeros. On the other hand, A′ = RA for some
(n + 1)× (n + 1) invertible matrix R (which is a product of
elementary matrices). Now if (c1, . . . , cn+1) denotes the last
row of R, then not all ci ’s are zero since R is invertible. Also
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Proof Contd.

since the the last row of A′ = RA is 0, we see that
n+1∑
i=1

ciaij = 0 for each j = 1, . . . ,n.

Multiplying by vj and summing over j , we obtain

0 =
n∑

j=1

(
n+1∑
i=1

ciaij

)
vj =

n+1∑
i=1

ci

 n∑
j=1

aijvj

 =
n+1∑
i=1

ciui .

This proves that u1, . . .un+1 are linearly dependent. 2

Corollary
For a finite dimensional vector space, the number of elements
in any two bases are the same.

Definition
Given a finite dimensional vector space V , the dimension of V
is defined to be the number of elements in any basis for V .
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Exercises

(i) Show that in any vector space of dimension n any subset S
such that L(S) = V has at least n elements.

(ii) Let V be a finite dimensional vector space. Suppose S is a
maximal linearly independent set

(i.e., if you put any more
elements V in S then it will not remain linearly
independent.) Show that S is a basis for V .

(iii) Show that a subspace W of a finite dimensional space V is
finite dimensional. Further prove that dim W ≤ dim V and
equality holds iff W = V . (Most of these results are true for
infinite dimensional case also. But this last mentioned
result is an exception.)

(iv) Let V and W be vector subspaces of another vector space
U. Show that L(V ∪W ) = {v + w : v ∈ V ,w ∈W}. This
subspace is denoted by V + W and is called the sum of V
and W . Show that V ∩W is a subspace and

dim(V + W ) = dim V + dim W − dim(V ∩W ).
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Examples:
1. dimK = 1 for any field considered as a vector space over

itself.

2. dimCC = 1; however, dimRC = 2.
3. dimRn = n.
4. dim Mm,n(K) = mn.
5. Let Symn(K) denote the space of all symmetric n × n

matrices with entries in K. What is the dimension of
Symn(K)? (Answer: n(n + 1)/2.) Indeed, check that

{Eii : 1 ≤ i ≤ n} ∪ {Eij + Eji : i < j}

forms a basis.
6. Let Hermn(C) be the space of all n × n matrices A with

complex entries such that A = A∗(:= ĀT ). This is a vector
space over R and not over C. (Why?) What is the value of
dimR[Hermn(C)]? (Answer: n2). Indeed

{Eii ,1 ≤ i ≤ n} ∪ {Eij + Eji : i < j} ∪ {ι(Eij − Eji) : i < j}

forms a basis.
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space over R and not over C. (Why?) What is the value of
dimR[Hermn(C)]? (Answer: n2). Indeed

{Eii ,1 ≤ i ≤ n} ∪ {Eij + Eji : i < j} ∪ {ι(Eij − Eji) : i < j}

forms a basis.

12/43



Examples:
1. dimK = 1 for any field considered as a vector space over

itself.
2. dimCC = 1; however, dimRC = 2.
3. dimRn = n.
4. dim Mm,n(K) = mn.
5. Let Symn(K) denote the space of all symmetric n × n

matrices with entries in K. What is the dimension of
Symn(K)? (Answer: n(n + 1)/2.) Indeed, check that

{Eii : 1 ≤ i ≤ n} ∪ {Eij + Eji : i < j}

forms a basis.

6. Let Hermn(C) be the space of all n × n matrices A with
complex entries such that A = A∗(:= ĀT ). This is a vector
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4. Linear Transformations

Definition
Let V ,W be any two vector spaces over K. By a linear map (or
a linear transformation) f : V →W we mean a function f
satisfying

f (α1v1 + α2v2) = α1f (v1) + α2f (v2)
for all vi ∈ V and αi ∈ K.

Remark

(i) f (
∑k

i=1 αivi) =
∑k

i=1 αi f (vi).

(ii) If {v1, . . . ,vk} is a basis for a finite dimensional vector
space V , then every element of V is a linear combination
of these vi , say v =

∑k
i=1 αivi . Therefore

f (v) =
∑k

i=1 αi f (vi).
Thus, it follows that f is completely determined by its value
on a basis of V , i.e., if f and g are two linear maps such
that f (vi) = g(vi) for all i = 1, . . . , k , then f = g.
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Remark
(iii) If V has a basis {v1, . . . ,vk} then

for each ordered k tuple {w1, . . . ,wk} of elements of W
we obtain a unique linear transformation f : V →W by
choosing f (vi) = wi for all i ,

and vice versa.

Example:
Consider the space Cr = Cr [a,b], r ≥ 1. To each f ∈ Cr

consider its derivative f ′ ∈ Cr−1. This defines a function
D : Cr → Cr−1 by D(f ) = f ′

We know that D is a linear map, i.e.,
D(αf + βg) = αD(f ) + βD(g).

Now for each f ∈ Cr−1 define I(f ) ∈ Cr by

I(f )(x) =

∫ x

a
f (t)dt .

Then I is also a linear map. Moreover, we have D ◦ I = Id .
Can you say I ◦ D = Id? Is D a one-one map?
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Let us write

Dk := D ◦ D ◦ . . . ◦ D (k factors)

Thus Dk : Cr → Cr−k is the map defined by Dk (f ) = f (k) where
f (k) is the k th derivative of f , (r > k).

Given real numbers
a0, . . . ,ak (= 1), consider f =

∑k
i=0 aiDi . Then show that

f : Cr → Cr−k is a linear map. Determining the zeros of this
linear map is precisely the problem of solving the
homogeneous linear differential equation of order k :

yk + ak−1yk−1 + . . .+ a1y + a0 = 0.

Exercise: On the vector space P[x ] of all polynomials in
one-variable, determine all linear maps φ : P[x ]→ P[x ] having
the property φ(fg) = fφ(g) + gφ(f ) and φ(x) = 1.
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Definition
A linear transformation f : V →W is called an isomorphism if it
is invertible,

i.e., there exist g : W → V such that g ◦ f = IdV
and f ◦ g = IdW . If there exists an isomorphism f : V →W then
we call V and W are isomorphic to each other.

Definition
Let f : V →W be a linear transformation. Define
R(f ) := f (V ) := {f (v) ∈W : v ∈ V},
N (f ) := {v ∈ V : f (v) = 0}.

One can easily check that R(f ) and N (f ) are both vector
subspace of W and V respectively. They are respectively
called the range and the null space of f .
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Lemma
Let f : V →W be a linear transformation.
(a) Suppose f is injective and S ⊂ V is linearly independent.

Then f (S) is linearly independent.

(b) Suppose f is onto and S spans V . Then f (S) spans W .

(c) Suppose S is a basis for V and f is an isomorphism then
f (S) is a basis for W .

Proof:
(a ) Let

∑k
i=1 ai f (vi) = 0 where vi ∈ S. So f (

∑
i aivi) = 0.

Since f is injective, we have
∑

i aivi = 0
and since S is L. I., a1 = . . . = ak = 0.

(b) Given w ∈W . Pick v ∈ V such that f (v) = w. Now
L(S) = V implies that we can write v =

∑n
i=1 aivi with

vi ∈ S. But then w = f (v) =
∑

i ai f (vi) ∈ L(f (S)).

(c) Put (a) and (b) together. 2
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Theorem
Let V and W be any two vector spaces of dimension n. Then V
and W are isomorphic to each other and conversely.

Proof: Pick bases A and B for V and W respectively. Then
both A and B have same number of elements. Let f : A→ B be
any bijection. Then by the above discussion f extends to a
linear map f : V →W .

If g : B → A is the inverse of f : A→ B then g also extends to a
linear map.

Since g ◦ f = Id on A, it follows that g ◦ f = IdV on the whole of
V . Likewise f ◦ g = IdW .
Converse follows from part (c) of the previous lemma. 2

Remark
Because of the above theorem any vector space of dimension n
is isomorphic to Kn.
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Remark
We have seen that the study of ‘linear transformations on
euclidean spaces’ can be converted into the ‘study of
matrices’.

It follows that the study of ‘linear transformations on finite
dimensional vector spaces’ can also be converted into the
‘study of matrices’.

Exercises:

(1) Clearly a bijective linear transformation is invertible. Show
that the inverse is also linear.
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(2) Let V be a finite dimensional vector space and f : V → V
be a linear map. Prove that the following are equivalent:
(i) f is an isomorphism.
(ii) f is surjective. (iii) f is injective.

(iv) there exist g : V → V such that g ◦ f = IdV .
(v) there exists h : V → V such that f ◦ h = IdV .

(3) Let A and B be any two n × n matrices and AB = In. Show
that both A and B are invertible and they are inverses of
each other.
Proof: If f and g denote the corresponding linear maps
then f ◦ g = Id : Rn → Rn.
From the exercise (2) above, f is an isomorphism and
f ◦ g = g ◦ f = Id . Hence AB = In = BA which means
A = B−1.

20/43



(2) Let V be a finite dimensional vector space and f : V → V
be a linear map. Prove that the following are equivalent:
(i) f is an isomorphism.
(ii) f is surjective. (iii) f is injective.
(iv) there exist g : V → V such that g ◦ f = IdV .
(v) there exists h : V → V such that f ◦ h = IdV .

(3) Let A and B be any two n × n matrices and AB = In. Show
that both A and B are invertible and they are inverses of
each other.
Proof: If f and g denote the corresponding linear maps
then f ◦ g = Id : Rn → Rn.
From the exercise (2) above, f is an isomorphism and
f ◦ g = g ◦ f = Id . Hence AB = In = BA which means
A = B−1.

20/43



(2) Let V be a finite dimensional vector space and f : V → V
be a linear map. Prove that the following are equivalent:
(i) f is an isomorphism.
(ii) f is surjective. (iii) f is injective.
(iv) there exist g : V → V such that g ◦ f = IdV .
(v) there exists h : V → V such that f ◦ h = IdV .

(3) Let A and B be any two n × n matrices and AB = In. Show
that both A and B are invertible and they are inverses of
each other.

Proof: If f and g denote the corresponding linear maps
then f ◦ g = Id : Rn → Rn.
From the exercise (2) above, f is an isomorphism and
f ◦ g = g ◦ f = Id . Hence AB = In = BA which means
A = B−1.

20/43



(2) Let V be a finite dimensional vector space and f : V → V
be a linear map. Prove that the following are equivalent:
(i) f is an isomorphism.
(ii) f is surjective. (iii) f is injective.
(iv) there exist g : V → V such that g ◦ f = IdV .
(v) there exists h : V → V such that f ◦ h = IdV .

(3) Let A and B be any two n × n matrices and AB = In. Show
that both A and B are invertible and they are inverses of
each other.
Proof: If f and g denote the corresponding linear maps
then f ◦ g = Id : Rn → Rn.

From the exercise (2) above, f is an isomorphism and
f ◦ g = g ◦ f = Id . Hence AB = In = BA which means
A = B−1.

20/43



(2) Let V be a finite dimensional vector space and f : V → V
be a linear map. Prove that the following are equivalent:
(i) f is an isomorphism.
(ii) f is surjective. (iii) f is injective.
(iv) there exist g : V → V such that g ◦ f = IdV .
(v) there exists h : V → V such that f ◦ h = IdV .

(3) Let A and B be any two n × n matrices and AB = In. Show
that both A and B are invertible and they are inverses of
each other.
Proof: If f and g denote the corresponding linear maps
then f ◦ g = Id : Rn → Rn.
From the exercise (2) above, f is an isomorphism and
f ◦ g = g ◦ f = Id . Hence AB = In = BA which means
A = B−1.

20/43



Rank and Nullity

Definition
Let f : V →W be a linear transformation of finite dimensional
vector spaces. By the rank of f we mean the dimension of the
range of f , i.e., rk(f ) = dim f (V ) = dimR(f ).

By nullity of f we mean the dimension of the null space, i.e.,
n(f ) = dimN (f ).

Theorem
(Rank and Nullity Theorem): The rank and nullity of a linear
transformation f : V →W on a finite dimensional vector space
V add up to the dimension of V :

rk(f ) + n(f ) = dim V .
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Proof: Suppose dim V = n. Let S = {v1,v2, . . . ,vk} be a basis
of N (f ).

We can extend S to a basis
S′ = {v1,v2, . . . ,vk ,w1,w2, . . . ,wn−k} of V .

We would show that

T = {f (w1), f (w2), . . . , f (wn−k )}

is a basis of R(f ).
Observe that f (S′) = T . By part (b) of the previous lemma it
follows that T spans f (V ) = R(f ). Suppose

β1f (w1) + . . .+ βn−k f (wn−k ) = 0.

Then f (β1w1 + . . .+ βn−kwn−k ) = 0.
Thus β1w1 + . . .+ βn−kwn−k ∈ N (f ).
Hence there are scalars α1, α2, . . . , αk such that

α1v1 + α2v2 + . . .+ αkvk = β1w1 + β2w2 + . . .+ βn−kwn−k .
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By linear independence of {v1,v2, . . . ,vk ,w1,w2, . . . ,wn−k} we
conclude that β1 = β2 = . . . = βn−k = 0. Hence T is L. I.
Therefore it is a basis of R(f ). 2

The trace of a square matrix which is defined as the sum of the
diagonal entries, i.e., for A = ((aij)) ∈ Mn

trace (A) =
n∑

i=1

aii
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