Subspaces and Linear Span

Definition
A nonempty subset W of a vector space V is called a subspace of V if it is a vector space under the operations in V.

Subspaces and Linear Span

Definition
A nonempty subset W of a vector space V is called a subspace of V if it is a vector space under the operations in V.

Theorem
A nonempty subset W of a vector space V is a subspace of V if W satisfies the two closure axioms.

Subspaces and Linear Span

Definition
A nonempty subset W of a vector space V is called a subspace of V if it is a vector space under the operations in V.

Theorem
A nonempty subset W of a vector space V is a subspace of V if W satisfies the two closure axioms.

Proof: Suppose now that W satisfies the closure axioms. We just need to prove existence of inverses and the zero element.

Subspaces and Linear Span

Definition
A nonempty subset W of a vector space V is called a subspace of V if it is a vector space under the operations in V.

Theorem
A nonempty subset W of a vector space V is a subspace of V if W satisfies the two closure axioms.

Proof: Suppose now that W satisfies the closure axioms. We just need to prove existence of inverses and the zero element. Let $x \in W$. By distributivity

$$
0 x=(0+0) x=0 x+0 x
$$

Hence $0=0 x$. By closure axioms $0 \in W$.

Subspaces and Linear Span

Definition
A nonempty subset W of a vector space V is called a subspace of V if it is a vector space under the operations in V.

Theorem
A nonempty subset W of a vector space V is a subspace of V if W satisfies the two closure axioms.

Proof: Suppose now that W satisfies the closure axioms. We just need to prove existence of inverses and the zero element. Let $x \in W$. By distributivity

$$
0 x=(0+0) x=0 x+0 x
$$

Hence $0=0 x$. By closure axioms $0 \in W$. If $x \in W$ then
$-x=(-1) x$ is in W by closure axioms.

Examples

1. \mathbb{R} is a subspace of the real vector space \mathbb{C}. But it is not a subspace of the complex vector space \mathbb{C}.

Examples

1. \mathbb{R} is a subspace of the real vector space \mathbb{C}. But it is not a subspace of the complex vector space \mathbb{C}.
2. $C^{r}[a, b]$ is a subspace of the vector space $C^{s}[a, b]$ for $s<r$.

Examples

1. \mathbb{R} is a subspace of the real vector space \mathbb{C}. But it is not a subspace of the complex vector space \mathbb{C}.
2. $C^{r}[a, b]$ is a subspace of the vector space $C^{s}[a, b]$ for $s<r$. All of them are subspaces of $F([a, b] ; \mathbb{R})$.

Examples

1. \mathbb{R} is a subspace of the real vector space \mathbb{C}. But it is not a subspace of the complex vector space \mathbb{C}.
2. $C^{r}[a, b]$ is a subspace of the vector space $C^{s}[a, b]$ for $s<r$. All of them are subspaces of $F([a, b] ; \mathbb{R})$.
3. $M_{m, n}(\mathbb{R})$ is a subspace of the real vector space $M_{m, n}(\mathbb{C})$.

Examples

1. \mathbb{R} is a subspace of the real vector space \mathbb{C}. But it is not a subspace of the complex vector space \mathbb{C}.
2. $C^{r}[a, b]$ is a subspace of the vector space $C^{s}[a, b]$ for $s<r$. All of them are subspaces of $F([a, b] ; \mathbb{R})$.
3. $M_{m, n}(\mathbb{R})$ is a subspace of the real vector space $M_{m, n}(\mathbb{C})$.
4. The set of points on the x-axis form a subspace of the plane.
5. \mathbb{R} is a subspace of the real vector space \mathbb{C}. But it is not a subspace of the complex vector space \mathbb{C}.
6. $C^{r}[a, b]$ is a subspace of the vector space $C^{s}[a, b]$ for $s<r$. All of them are subspaces of $F([a, b] ; \mathbb{R})$.
7. $M_{m, n}(\mathbb{R})$ is a subspace of the real vector space $M_{m, n}(\mathbb{C})$.
8. The set of points on the x-axis form a subspace of the plane. More generally, the set of points on a line passing through the origin is a subspace of \mathbb{R}^{2}.

Examples

1. \mathbb{R} is a subspace of the real vector space \mathbb{C}. But it is not a subspace of the complex vector space \mathbb{C}.
2. $C^{r}[a, b]$ is a subspace of the vector space $C^{s}[a, b]$ for $s<r$. All of them are subspaces of $F([a, b] ; \mathbb{R})$.
3. $M_{m, n}(\mathbb{R})$ is a subspace of the real vector space $M_{m, n}(\mathbb{C})$.
4. The set of points on the x-axis form a subspace of the plane. More generally, the set of points on a line passing through the origin is a subspace of \mathbb{R}^{2}. Likewise the set of real solutions of $a_{1} x_{1}+\ldots+a_{n} x_{n}=0$ form a subspace of \mathbb{R}^{n}. It is called a hyperplane.
5. \mathbb{R} is a subspace of the real vector space \mathbb{C}. But it is not a subspace of the complex vector space \mathbb{C}.
6. $C^{r}[a, b]$ is a subspace of the vector space $C^{s}[a, b]$ for $s<r$. All of them are subspaces of $F([a, b] ; \mathbb{R})$.
7. $M_{m, n}(\mathbb{R})$ is a subspace of the real vector space $M_{m, n}(\mathbb{C})$.
8. The set of points on the x-axis form a subspace of the plane. More generally, the set of points on a line passing through the origin is a subspace of \mathbb{R}^{2}. Likewise the set of real solutions of $a_{1} x_{1}+\ldots+a_{n} x_{n}=0$ form a subspace of \mathbb{R}^{n}. It is called a hyperplane.
More generally, the set of solutions of a homogeneous system of linear equations in n variables forms a subspace of \mathbb{K}^{n}. In other words, if $A \in M_{m, n}(\mathbb{K})$, then the set $\left\{\mathbf{x} \in \mathbb{K}^{n}: A \mathbf{x}=\mathbf{0}\right\}$ is a subspace of \mathbb{K}^{n}. It is called the null space of A.

Linear Span of a set in a Vector Space

Definition

Let S be a subset of a vector space V. The linear span of S is the subset
$L(S)=\left\{\sum_{i=1}^{n} c_{i} x_{i}: x_{1}, \ldots, x_{n} \in S\right.$ and c_{1}, \ldots, c_{n} are scalars $\}$. We set $L(\varphi)=\{0\}$ by convention.

Linear Span of a set in a Vector Space

Definition

Let S be a subset of a vector space V. The linear span of S is the subset
$L(S)=\left\{\sum_{i=1}^{n} c_{i} x_{i}: x_{1}, \ldots, x_{n} \in S\right.$ and c_{1}, \ldots, c_{n} are scalars $\}$. We set $L(\emptyset)=\{0\}$ by convention. A typical element $\sum_{i=1}^{n} c_{i} x_{i}$ of $L(S)$ is called a linear combination of x_{i} 's. Thus $L(S)$ is the set of all finite linear combinations of elements of S. In case $V=L(S)$, we say that S spans V or generates V.

Linear Span of a set in a Vector Space

Definition

Let S be a subset of a vector space V. The linear span of S is the subset
$L(S)=\left\{\sum_{i=1}^{n} c_{i} x_{i}: x_{1}, \ldots, x_{n} \in S\right.$ and c_{1}, \ldots, c_{n} are scalars $\}$. We set $L(\emptyset)=\{0\}$ by convention. A typical element $\sum_{i=1}^{n} c_{i} x_{i}$ of $L(S)$ is called a linear combination of x_{i} 's. Thus $L(S)$ is the set of all finite linear combinations of elements of S. In case $V=L(S)$, we say that S spans V or generates V.

Proposition
The smallest subspace of V containing S is $L(S)$.

Linear Span of a set in a Vector Space

Definition
Let S be a subset of a vector space V. The linear span of S is the subset
$L(S)=\left\{\sum_{i=1}^{n} c_{i} x_{i}: x_{1}, \ldots, x_{n} \in S\right.$ and c_{1}, \ldots, c_{n} are scalars $\}$.
We set $L(\emptyset)=\{0\}$ by convention. A typical element $\sum_{i=1}^{n} c_{i} x_{i}$ of $L(S)$ is called a linear combination of x_{i} 's. Thus $L(S)$ is the set of all finite linear combinations of elements of S. In case $V=L(S)$, we say that S spans V or generates V.

Proposition
The smallest subspace of V containing S is $L(S)$.
Proof: If $S \subset W \subset V$ and W is a subspace of V then by closure axioms, $L(S) \subset W$. If we show that $L(S)$ itself is a subspace of V, then the proof will be completed.

Linear Span of a set in a Vector Space

Definition
Let S be a subset of a vector space V. The linear span of S is the subset
$L(S)=\left\{\sum_{i=1}^{n} c_{i} x_{i}: x_{1}, \ldots, x_{n} \in S\right.$ and c_{1}, \ldots, c_{n} are scalars $\}$. We set $L(\emptyset)=\{0\}$ by convention. A typical element $\sum_{i=1}^{n} c_{i} x_{i}$ of $L(S)$ is called a linear combination of x_{i} 's. Thus $L(S)$ is the set of all finite linear combinations of elements of S. In case $V=L(S)$, we say that S spans V or generates V.

Proposition
The smallest subspace of V containing S is $L(S)$.
Proof: If $S \subset W \subset V$ and W is a subspace of V then by closure axioms, $L(S) \subset W$. If we show that $L(S)$ itself is a subspace of V, then the proof will be completed. It is easy to verify that $\mathbf{0} \in L(S)$ and that $L(S)$ is closed under addition as well as scalar multiplication (exercise!).

Remark

(i) Different sets may span the same subspace. For example

$$
L(\{\hat{i}, \hat{j}\})=L(\{\hat{i}, \hat{j}, \hat{i}+\hat{j}\})=\mathbb{R}^{2} .
$$

More generally, the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ span \mathbb{R}^{n} and so does any set $S \subset \mathbb{R}^{n}$ containing $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$

Remark

(i) Different sets may span the same subspace. For example

$$
L(\{\hat{i}, \hat{j}\})=L(\{\hat{i}, \hat{j}, \hat{i}+\hat{j}\})=\mathbb{R}^{2} .
$$

More generally, the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ span \mathbb{R}^{n} and so does any set $S \subset \mathbb{R}^{n}$ containing $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$
(ii) The vector space $\mathbb{R}[t]$ is spanned by $\left\{1, t, t^{2}, \ldots, t^{n}, \ldots\right\}$ and also by $\left\{1,(1+t), \ldots,(1+t)^{n}, \ldots\right\}$.

Remark
(i) Different sets may span the same subspace. For example

$$
L(\{\hat{i}, \hat{j}\})=L(\{\hat{i}, \hat{j}, \hat{i}+\hat{j}\})=\mathbb{R}^{2} .
$$

More generally, the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ span \mathbb{R}^{n} and so does any set $S \subset \mathbb{R}^{n}$ containing $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$
(ii) The vector space $\mathbb{R}[t]$ is spanned by $\left\{1, t, t^{2}, \ldots, t^{n}, \ldots\right\}$ and also by $\left\{1,(1+t), \ldots,(1+t)^{n}, \ldots\right\}$.
(iii) The linear span of any non zero element in a field \mathbb{K} is the field itself.

Remark
(i) Different sets may span the same subspace. For example

$$
L(\{\hat{i}, \hat{j}\})=L(\{\hat{i}, \hat{j}, \hat{i}+\hat{j}\})=\mathbb{R}^{2} .
$$

More generally, the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ span \mathbb{R}^{n} and so does any set $S \subset \mathbb{R}^{n}$ containing $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$
(ii) The vector space $\mathbb{R}[t]$ is spanned by $\left\{1, t, t^{2}, \ldots, t^{n}, \ldots\right\}$ and also by $\left\{1,(1+t), \ldots,(1+t)^{n}, \ldots\right\}$.
(iii) The linear span of any non zero element in a field \mathbb{K} is the field itself.
(iv) While talking about the linear span or any other vector space notion, the underlying field of scalars is understood. If we change this we get different objects and relations.

Remark
(i) Different sets may span the same subspace. For example

$$
L(\{\hat{i}, \hat{j}\})=L(\{\hat{i}, \hat{j}, \hat{i}+\hat{j}\})=\mathbb{R}^{2} .
$$

More generally, the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ span \mathbb{R}^{n} and so does any set $S \subset \mathbb{R}^{n}$ containing $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$
(ii) The vector space $\mathbb{R}[t]$ is spanned by $\left\{1, t, t^{2}, \ldots, t^{n}, \ldots\right\}$ and also by $\left\{1,(1+t), \ldots,(1+t)^{n}, \ldots\right\}$.
(iii) The linear span of any non zero element in a field \mathbb{K} is the field itself.
(iv) While talking about the linear span or any other vector space notion, the underlying field of scalars is understood. If we change this we get different objects and relations. For instance, the real linear span of $1 \in \mathbb{C}$ is \mathbb{R} where as the complex linear span is the whole of \mathbb{C}.

Linear Dependence

Definition

Let V be a vector space. A subset S of V is called linearly dependent (L.D.) if there exist distinct elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in S$ and $\alpha_{i} \in \mathbb{K}$, not all zero, such that

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}=0 \tag{*}
\end{equation*}
$$

Linear Dependence

Definition

Let V be a vector space. A subset S of V is called linearly dependent (L.D.) if there exist distinct elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in S$ and $\alpha_{i} \in \mathbb{K}$, not all zero, such that

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}=0 \tag{*}
\end{equation*}
$$

S is called linearly independent (L.I.) if it is not linearly dependent.

Linear Dependence

Definition
Let V be a vector space. A subset S of V is called linearly dependent (L.D.) if there exist distinct elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in S$ and $\alpha_{i} \in \mathbb{K}$, not all zero, such that

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}=0 \tag{*}
\end{equation*}
$$

S is called linearly independent (L.I.) if it is not linearly dependent.

Remark
(i) Thus a relation such as (*) holds in a linearly independent set S with distinct \mathbf{v}_{i} 's iff all the scalars $\alpha_{i}=0$.

Linear Dependence

Definition
Let V be a vector space. A subset S of V is called linearly dependent (L.D.) if there exist distinct elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in S$ and $\alpha_{i} \in \mathbb{K}$, not all zero, such that

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}=0 \tag{*}
\end{equation*}
$$

S is called linearly independent (L.I.) if it is not linearly dependent.

Remark
(i) Thus a relation such as (*) holds in a linearly independent set S with distinct \mathbf{v}_{i} 's iff all the scalars $\alpha_{i}=0$.
(ii) Any subset which contains a L.D. set is again L.D.

Linear Dependence

Definition
Let V be a vector space. A subset S of V is called linearly dependent (L.D.) if there exist distinct elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in S$ and $\alpha_{i} \in \mathbb{K}$, not all zero, such that

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}=0 \tag{*}
\end{equation*}
$$

S is called linearly independent (L.I.) if it is not linearly dependent.

Remark
(i) Thus a relation such as (*) holds in a linearly independent set S with distinct \mathbf{v}_{i} 's iff all the scalars $\alpha_{i}=0$.
(ii) Any subset which contains a L.D. set is again L.D.
(iii) The singleton set $\{0\}$ is L.D. in every vector space.

Linear Dependence

Definition
Let V be a vector space. A subset S of V is called linearly dependent (L.D.) if there exist distinct elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in S$ and $\alpha_{i} \in \mathbb{K}$, not all zero, such that

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}=0 \tag{*}
\end{equation*}
$$

S is called linearly independent (L.I.) if it is not linearly dependent.

Remark
(i) Thus a relation such as (*) holds in a linearly independent set S with distinct \mathbf{v}_{i} 's iff all the scalars $\alpha_{i}=0$.
(ii) Any subset which contains a L.D. set is again L.D.
(iii) The singleton set $\{0\}$ is L.D. in every vector space.
(iv) Any subset of a L.I. set is L.I.

Examples

(i) The set $\left\{\mathbf{e}_{i}=(0, \ldots, 1, \ldots, 0): 1 \leq i \leq n\right\}$ is L.I. in \mathbb{K}^{n}.

Examples

(i) The set $\left\{\mathbf{e}_{i}=(0, \ldots, 1, \ldots, 0): 1 \leq i \leq n\right\}$ is L.I. in \mathbb{K}^{n}. This can be shown easily by taking dot product with \mathbf{e}_{i} with a relation of the type $(*)$.

Examples

(i) The set $\left\{\mathbf{e}_{i}=(0, \ldots, 1, \ldots, 0): 1 \leq i \leq n\right\}$ is L.I. in \mathbb{K}^{n}.

This can be shown easily by taking dot product with \mathbf{e}_{i} with a relation of the type ($*$).
(ii) The set $S=\left\{1, t, t^{2}, \ldots, t^{n}, \ldots\right\}$ is L.I. in $\mathbb{K}[t]$. This follows from the definition of a polynomial (!). Alternatively, if we think of polynomial functions (from \mathbb{K} to \mathbb{K}) defined by the polynomials, then linear independence can be proved by evaluating a dependence relation as well as its derivatives of sufficiently high orders at $t=0$.
(i) The set $\left\{\mathbf{e}_{i}=(0, \ldots, 1, \ldots, 0): 1 \leq i \leq n\right\}$ is L.I. in \mathbb{K}^{n}.

This can be shown easily by taking dot product with \mathbf{e}_{i} with a relation of the type $(*)$.
(ii) The set $S=\left\{1, t, t^{2}, \ldots, t^{n}, \ldots\right\}$ is L.I. in $\mathbb{K}[t]$. This follows from the definition of a polynomial (!). Alternatively, if we think of polynomial functions (from \mathbb{K} to \mathbb{K}) defined by the polynomials, then linear independence can be proved by evaluating a dependence relation as well as its derivatives of sufficiently high orders at $t=0$.
(iii) In the space $C[a, b]$ for $a<b \in \mathbb{R}$ consider the set $S=\left\{1, \cos ^{2} t, \sin ^{2} t\right\}$.
(i) The set $\left\{\mathbf{e}_{i}=(0, \ldots, 1, \ldots, 0): 1 \leq i \leq n\right\}$ is L.I. in \mathbb{K}^{n}.

This can be shown easily by taking dot product with \mathbf{e}_{i} with a relation of the type $(*)$.
(ii) The set $S=\left\{1, t, t^{2}, \ldots, t^{n}, \ldots\right\}$ is L.I. in $\mathbb{K}[t]$. This follows from the definition of a polynomial (!). Alternatively, if we think of polynomial functions (from \mathbb{K} to \mathbb{K}) defined by the polynomials, then linear independence can be proved by evaluating a dependence relation as well as its derivatives of sufficiently high orders at $t=0$.
(iii) In the space $C[a, b]$ for $a<b \in \mathbb{R}$ consider the set $S=\left\{1, \cos ^{2} t, \sin ^{2} t\right\}$. The familiar formula $\cos ^{2} t+\sin ^{2} t=1 \quad$ tells us that S is linearly dependent.
What about the set $\{1, \cos t, \sin t\}$?
(i) The set $\left\{\mathbf{e}_{i}=(0, \ldots, 1, \ldots, 0): 1 \leq i \leq n\right\}$ is L.I. in \mathbb{K}^{n}.

This can be shown easily by taking dot product with \mathbf{e}_{i} with a relation of the type ($*$).
(ii) The set $S=\left\{1, t, t^{2}, \ldots, t^{n}, \ldots\right\}$ is L.I. in $\mathbb{K}[t]$. This follows from the definition of a polynomial (!). Alternatively, if we think of polynomial functions (from \mathbb{K} to \mathbb{K}) defined by the polynomials, then linear independence can be proved by evaluating a dependence relation as well as its derivatives of sufficiently high orders at $t=0$.
(iii) In the space $C[a, b]$ for $a<b \in \mathbb{R}$ consider the set $S=\left\{1, \cos ^{2} t, \sin ^{2} t\right\}$. The familiar formula $\cos ^{2} t+\sin ^{2} t=1 \quad$ tells us that S is linearly dependent. What about the set $\{1, \cos t, \sin t\}$?
(iv) If $E_{i j}$ denotes the $m \times n$ matrix with 1 in $(i, j)^{\text {th }}$ position and 0 elsewhere, then the set $\left\{E_{i j}: i=1, \ldots, m, j=1, \ldots, n\right\}$ is linearly independent in the vector space $M_{m, n}(\mathbb{K})$.

A useful Lemma

Lemma
Let T be a linearly independent subset of a vector space V. If $\mathbf{v} \in V \backslash L(T)$, then $T \cup\{\mathbf{v}\}$ is linearly independent.

Proof: Suppose there is a linear dependence relation in the elements of $T \cup\{\mathbf{v}\}$ of the form

$$
\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}+\beta \mathbf{v}=0
$$

with $\mathbf{v}_{i} \in T$

A useful Lemma

Lemma
Let T be a linearly independent subset of a vector space V. If $\mathbf{v} \in V \backslash L(T)$, then $T \cup\{\mathbf{v}\}$ is linearly independent.

Proof: Suppose there is a linear dependence relation in the elements of $T \cup\{\mathbf{v}\}$ of the form

$$
\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}+\beta \mathbf{v}=0
$$

with $\mathbf{v}_{i} \in T$ If $\beta \neq 0$ then $\mathbf{v}=\frac{-1}{\beta}\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}\right) \in L(T)$.

A useful Lemma

Lemma
Let T be a linearly independent subset of a vector space V. If $\mathbf{v} \in V \backslash L(T)$, then $T \cup\{\mathbf{v}\}$ is linearly independent.

Proof: Suppose there is a linear dependence relation in the elements of $T \cup\{\mathbf{v}\}$ of the form

$$
\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}+\beta \mathbf{v}=0
$$

with $\mathbf{v}_{i} \in T$ If $\beta \neq 0$ then $\mathbf{v}=\frac{-1}{\beta}\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}\right) \in L(T)$. Therefore
$\beta=0$. But then $\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}=0$ and this implies that $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{k}=0$, since T is linearly independent
Definition
A subset S of a vector space V is called a basis of V if
(i) $V=L(S)$, and
(ii) S is linearly independent.

Theorem
Let S be a finite subset of a vector space V such that $V=L(S)$. Suppose S_{1} is a subset of S which is linearly independent. Then there exists a basis S_{2} of V such that $S_{1} \subset S_{2} \subset S$.

Theorem
Let S be a finite subset of a vector space V such that $V=L(S)$. Suppose S_{1} is a subset of S which is linearly independent. Then there exists a basis S_{2} of V such that $S_{1} \subset S_{2} \subset S$.

Proof: If $S \subseteq L\left(S_{1}\right)$, then $L\left(S_{1}\right)=L(S)=V$ and we can take $S_{2}=S_{1}$.

Theorem
Let S be a finite subset of a vector space V such that $V=L(S)$. Suppose S_{1} is a subset of S which is linearly independent. Then there exists a basis S_{2} of V such that $S_{1} \subset S_{2} \subset S$.

Proof: If $S \subseteq L\left(S_{1}\right)$, then $L\left(S_{1}\right)=L(S)=V$ and we can take $S_{2}=S_{1}$. Otherwise there exists $\mathbf{v}_{1} \in S \backslash S_{1}$ and by the Lemma above, $S_{1}^{\prime}:=S_{1} \cup\left\{\mathbf{v}_{1}\right\}$ is linearly independent.

Theorem
Let S be a finite subset of a vector space V such that $V=L(S)$. Suppose S_{1} is a subset of S which is linearly independent. Then there exists a basis S_{2} of V such that $S_{1} \subset S_{2} \subset S$.

Proof: If $S \subseteq L\left(S_{1}\right)$, then $L\left(S_{1}\right)=L(S)=V$ and we can take $S_{2}=S_{1}$. Otherwise there exists $\mathbf{v}_{1} \in S \backslash S_{1}$ and by the Lemma above, $S_{1}^{\prime}:=S_{1} \cup\left\{\mathbf{v}_{1}\right\}$ is linearly independent. Replace S_{1} by S_{1}^{\prime} and repeat the above argument. Since S is finite, this process will terminate in a finite number of steps and yield the desired result.

Theorem
Let S be a finite subset of a vector space V such that $V=L(S)$. Suppose S_{1} is a subset of S which is linearly independent. Then there exists a basis S_{2} of V such that $S_{1} \subset S_{2} \subset S$.

Proof: If $S \subseteq L\left(S_{1}\right)$, then $L\left(S_{1}\right)=L(S)=V$ and we can take $S_{2}=S_{1}$. Otherwise there exists $\mathbf{v}_{1} \in S \backslash S_{1}$ and by the Lemma above, $S_{1}^{\prime}:=S_{1} \cup\left\{\mathbf{v}_{1}\right\}$ is linearly independent. Replace S_{1} by S_{1}^{\prime} and repeat the above argument. Since S is finite, this process will terminate in a finite number of steps and yield the desired result.

Theorem
Let S be a finite subset of a vector space V such that $V=L(S)$. Suppose S_{1} is a subset of S which is linearly independent. Then there exists a basis S_{2} of V such that $S_{1} \subset S_{2} \subset S$.

Proof: If $S \subseteq L\left(S_{1}\right)$, then $L\left(S_{1}\right)=L(S)=V$ and we can take $S_{2}=S_{1}$. Otherwise there exists $\mathbf{v}_{1} \in S \backslash S_{1}$ and by the Lemma above, $S_{1}^{\prime}:=S_{1} \cup\left\{\mathbf{v}_{1}\right\}$ is linearly independent. Replace S_{1} by S_{1}^{\prime} and repeat the above argument. Since S is finite, this process will terminate in a finite number of steps and yield the desired result.
Definition
A vector space V is called finite dimensional if there exists a finite set $S \subset V$ such that $L(S)=V$.

Theorem
Let S be a finite subset of a vector space V such that $V=L(S)$. Suppose S_{1} is a subset of S which is linearly independent. Then there exists a basis S_{2} of V such that $S_{1} \subset S_{2} \subset S$.

Proof: If $S \subseteq L\left(S_{1}\right)$, then $L\left(S_{1}\right)=L(S)=V$ and we can take $S_{2}=S_{1}$. Otherwise there exists $\mathbf{v}_{1} \in S \backslash S_{1}$ and by the Lemma above, $S_{1}^{\prime}:=S_{1} \cup\left\{\mathbf{v}_{1}\right\}$ is linearly independent. Replace S_{1} by S_{1}^{\prime} and repeat the above argument. Since S is finite, this process will terminate in a finite number of steps and yield the desired result.
Definition
A vector space V is called finite dimensional if there exists a finite set $S \subset V$ such that $L(S)=V$.

Remark
By the above theorem, it follows that every finite dimensional vector space has a finite basis.

Theorem
Let S be a finite subset of a vector space V such that $V=L(S)$. Suppose S_{1} is a subset of S which is linearly independent. Then there exists a basis S_{2} of V such that $S_{1} \subset S_{2} \subset S$.

Proof: If $S \subseteq L\left(S_{1}\right)$, then $L\left(S_{1}\right)=L(S)=V$ and we can take $S_{2}=S_{1}$. Otherwise there exists $\mathbf{v}_{1} \in S \backslash S_{1}$ and by the Lemma above, $S_{1}^{\prime}:=S_{1} \cup\left\{\mathbf{v}_{1}\right\}$ is linearly independent. Replace S_{1} by S_{1}^{\prime} and repeat the above argument. Since S is finite, this process will terminate in a finite number of steps and yield the desired result.
Definition
A vector space V is called finite dimensional if there exists a finite set $S \subset V$ such that $L(S)=V$.

Remark
By the above theorem, it follows that every finite dimensional vector space has a finite basis. To see this, choose a finite set S such that $L(S)=V$ and apply the theorem with $S_{1}=\emptyset$.

Theorem

If a vector space V contains a finite subset $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ such that $V=L(S)$, then every subset of V with $n+1$ (or more) elements is linearly dependent.

Proof:

Let $\mathbf{u}_{1}, \ldots \mathbf{u}_{n+1}$ be any $n+1$ elements of V. Since $V=L(S)$, we can write

$$
\mathbf{u}_{i}=\sum_{j=1}^{n} a_{i j} \mathbf{v}_{j} \quad \text { for some } a_{i j} \in \mathbb{K} \text { and for } i=1, \ldots, n+1
$$

Consider the $(n+1) \times n$ matrix $A=\left(a_{i j}\right)$. Let A^{\prime} be a REF of A. Then A^{\prime} can have at most n pivots, and so the last row of A^{\prime} must be full of zeros. On the other hand, $A^{\prime}=R A$ for some $(n+1) \times(n+1)$ invertible matrix R (which is a product of elementary matrices). Now if $\left(c_{1}, \ldots, c_{n+1}\right)$ denotes the last row of R, then not all c_{i} 's are zero since R is invertible. Also

Proof Contd.

since the the last row of $A^{\prime}=R A$ is 0 , we see that

$$
\sum_{i=1}^{n+1} c_{i} a_{i j}=0 \quad \text { for each } j=1, \ldots, n
$$

Multiplying by v_{j} and summing over j, we obtain

$$
0=\sum_{j=1}^{n}\left(\sum_{i=1}^{n+1} c_{i} a_{i j}\right) \mathbf{v}_{j}=\sum_{i=1}^{n+1} c_{i}\left(\sum_{j=1}^{n} a_{i j} v_{j}\right)=\sum_{i=1}^{n+1} c_{i} \mathbf{u}_{i} .
$$

This proves that $\mathbf{u}_{1}, \ldots \mathbf{u}_{n+1}$ are linearly dependent.
Corollary
For a finite dimensional vector space, the number of elements in any two bases are the same.

Proof Contd.

since the the last row of $A^{\prime}=R A$ is 0 , we see that

$$
\sum_{i=1}^{n+1} c_{i} a_{i j}=0 \quad \text { for each } j=1, \ldots, n
$$

Multiplying by v_{j} and summing over j, we obtain

$$
0=\sum_{j=1}^{n}\left(\sum_{i=1}^{n+1} c_{i} a_{i j}\right) \mathbf{v}_{j}=\sum_{i=1}^{n+1} c_{i}\left(\sum_{j=1}^{n} a_{i j} v_{j}\right)=\sum_{i=1}^{n+1} c_{i} \mathbf{u}_{i} .
$$

This proves that $\mathbf{u}_{1}, \ldots \mathbf{u}_{n+1}$ are linearly dependent.
Corollary
For a finite dimensional vector space, the number of elements in any two bases are the same.

Definition
Given a finite dimensional vector space V, the dimension of V is defined to be the number of elements in any basis for V.

Exercises

(i) Show that in any vector space of dimension n any subset S such that $L(S)=V$ has at least n elements.
(ii) Let V be a finite dimensional vector space. Suppose S is a maximal linearly independent set

Exercises

(i) Show that in any vector space of dimension n any subset S such that $L(S)=V$ has at least n elements.
(ii) Let V be a finite dimensional vector space. Suppose S is a maximal linearly independent set

Exercises

(i) Show that in any vector space of dimension n any subset S such that $L(S)=V$ has at least n elements.
(ii) Let V be a finite dimensional vector space. Suppose S is a maximal linearly independent set

Show that S is a basis for V.

Exercises

(i) Show that in any vector space of dimension n any subset S such that $L(S)=V$ has at least n elements.
(ii) Let V be a finite dimensional vector space. Suppose S is a maximal linearly independent set

Show that S is a basis for V.
(iii) Show that a subspace W of a finite dimensional space V is finite dimensional.

Exercises

(i) Show that in any vector space of dimension n any subset S such that $L(S)=V$ has at least n elements.
(ii) Let V be a finite dimensional vector space. Suppose S is a maximal linearly independent set

Show that S is a basis for V.
(iii) Show that a subspace W of a finite dimensional space V is finite dimensional. Further prove that $\operatorname{dim} W \leq \operatorname{dim} V$ and equality holds iff $W=V$.

Exercises

(i) Show that in any vector space of dimension n any subset S such that $L(S)=V$ has at least n elements.
(ii) Let V be a finite dimensional vector space. Suppose S is a maximal linearly independent set

Show that S is a basis for V.
(iii) Show that a subspace W of a finite dimensional space V is finite dimensional. Further prove that $\operatorname{dim} W \leq \operatorname{dim} V$ and equality holds iff $W=V$.

Exercises

(i) Show that in any vector space of dimension n any subset S such that $L(S)=V$ has at least n elements.
(ii) Let V be a finite dimensional vector space. Suppose S is a maximal linearly independent set

Show that S is a basis for V.
(iii) Show that a subspace W of a finite dimensional space V is finite dimensional. Further prove that $\operatorname{dim} W \leq \operatorname{dim} V$ and equality holds iff $W=V$.
(iv) Let V and W be vector subspaces of another vector space U. Show that $L(V \cup W)=\{\mathbf{v}+\mathbf{w}: \mathbf{v} \in V, \mathbf{w} \in W\}$. This subspace is denoted by $V+W$ and is called the sum of V and W.

Exercises

(i) Show that in any vector space of dimension n any subset S such that $L(S)=V$ has at least n elements.
(ii) Let V be a finite dimensional vector space. Suppose S is a maximal linearly independent set

Show that S is a basis for V.
(iii) Show that a subspace W of a finite dimensional space V is finite dimensional. Further prove that $\operatorname{dim} W \leq \operatorname{dim} V$ and equality holds iff $W=V$.
(iv) Let V and W be vector subspaces of another vector space U. Show that $L(V \cup W)=\{\mathbf{v}+\mathbf{w}: \mathbf{v} \in V, \mathbf{w} \in W\}$. This subspace is denoted by $V+W$ and is called the sum of V and W. Show that $V \cap W$ is a subspace and

$$
\operatorname{dim}(V+W)=\operatorname{dim} V+\operatorname{dim} W-\operatorname{dim}(V \cap W)
$$

Examples:

1.

Examples:

1.
2.

Examples:

1.
2.
3.

Examples:

1.
2.
3.
4.

Examples:
1.
2.
3.
4.
5. Let $\operatorname{Sym}_{n}(\mathbb{K})$ denote the space of all symmetric $n \times n$ matrices with entries in \mathbb{K}. What is the dimension of $\operatorname{Sym}_{n}(\mathbb{K})$?

Examples:

1.
2.
3.
4.
5. Let $\operatorname{Sym}_{n}(\mathbb{K})$ denote the space of all symmetric $n \times n$ matrices with entries in \mathbb{K}. What is the dimension of Sym $_{n}(\mathbb{K})$? (Answer: $n(n+1) / 2$.) Indeed, check that

$$
\left\{E_{i i}: 1 \leq i \leq n\right\} \cup\left\{E_{i j}+E_{j i}: i<j\right\}
$$

forms a basis.

Examples:

1.
2.
3.
4.
5. Let $\operatorname{Sym}_{n}(\mathbb{K})$ denote the space of all symmetric $n \times n$ matrices with entries in \mathbb{K}. What is the dimension of Sym $_{n}(\mathbb{K})$? (Answer: $n(n+1) / 2$.) Indeed, check that

$$
\left\{E_{i i}: 1 \leq i \leq n\right\} \cup\left\{E_{i j}+E_{j i}: i<j\right\}
$$

forms a basis.
6. Let $\operatorname{Herm}_{n}(\mathbb{C})$ be the space of all $n \times n$ matrices A with complex entries such that $A=A^{*}\left(:=\bar{A}^{T}\right)$.

Examples:

1.
2.
3.
4.
5. Let $\operatorname{Sym}_{n}(\mathbb{K})$ denote the space of all symmetric $n \times n$ matrices with entries in \mathbb{K}. What is the dimension of Sym $_{n}(\mathbb{K})$? (Answer: $n(n+1) / 2$.) Indeed, check that

$$
\left\{E_{i i}: 1 \leq i \leq n\right\} \cup\left\{E_{i j}+E_{j i}: i<j\right\}
$$

forms a basis.
6. Let $\operatorname{Herm}_{n}(\mathbb{C})$ be the space of all $n \times n$ matrices A with complex entries such that $A=A^{*}\left(:=\bar{A}^{T}\right)$. This is a vector space over \mathbb{R} and not over \mathbb{C}. (Why?)

Examples:

1.
2.
3.
4.
5. Let $\operatorname{Sym}_{n}(\mathbb{K})$ denote the space of all symmetric $n \times n$ matrices with entries in \mathbb{K}. What is the dimension of $\operatorname{Sym}_{n}(\mathbb{K})$? (Answer: $n(n+1) / 2$.) Indeed, check that

$$
\left\{E_{i i}: 1 \leq i \leq n\right\} \cup\left\{E_{i j}+E_{j i}: i<j\right\}
$$

forms a basis.
6. Let $\operatorname{Herm}_{n}(\mathbb{C})$ be the space of all $n \times n$ matrices A with complex entries such that $A=A^{*}\left(:=\bar{A}^{T}\right)$. This is a vector space over \mathbb{R} and not over \mathbb{C}. (Why?) What is the value of $\operatorname{dim}_{\mathbb{R}}\left[\operatorname{Herm}_{n}(\mathbb{C})\right]$?

Examples:

1.
2.
3.
4.
5. Let $\operatorname{Sym}_{n}(\mathbb{K})$ denote the space of all symmetric $n \times n$ matrices with entries in \mathbb{K}. What is the dimension of $\operatorname{Sym}_{n}(\mathbb{K})$? (Answer: $n(n+1) / 2$.) Indeed, check that

$$
\left\{E_{i i}: 1 \leq i \leq n\right\} \cup\left\{E_{i j}+E_{j i}: i<j\right\}
$$

forms a basis.
6. Let $\operatorname{Herm}_{n}(\mathbb{C})$ be the space of all $n \times n$ matrices A with complex entries such that $A=A^{*}\left(:=\bar{A}^{T}\right)$. This is a vector space over \mathbb{R} and not over \mathbb{C}. (Why?) What is the value of $\operatorname{dim}_{\mathbb{R}}\left[\operatorname{Herm}_{n}(\mathbb{C})\right]$? (Answer: n^{2}). Indeed

$$
\left\{E_{i i}, 1 \leq i \leq n\right\} \cup\left\{E_{i j}+E_{j i}: i<j\right\} \cup\left\{\iota\left(E_{i j}-E_{j i}\right): i<j\right\}
$$

forms a basis.

4. Linear Transformations

Definition

Let V, W be any two vector spaces over \mathbb{K}. By a linear map (or a linear transformation) $f: V \rightarrow W$ we mean a function f satisfying

$$
f\left(\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}\right)=\alpha_{1} f\left(\mathbf{v}_{1}\right)+\alpha_{2} f\left(\mathbf{v}_{2}\right)
$$

for all $\mathbf{v}_{i} \in V$ and $\alpha_{i} \in \mathbb{K}$.

4. Linear Transformations

Definition

Let V, W be any two vector spaces over \mathbb{K}. By a linear map (or a linear transformation) $f: V \rightarrow W$ we mean a function f satisfying

$$
f\left(\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}\right)=\alpha_{1} f\left(\mathbf{v}_{1}\right)+\alpha_{2} f\left(\mathbf{v}_{2}\right)
$$

for all $\mathbf{v}_{i} \in V$ and $\alpha_{i} \in \mathbb{K}$.
Remark
(i) $f\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{k} \alpha_{i} f\left(\mathbf{v}_{i}\right)$.

4. Linear Transformations

Definition
Let V, W be any two vector spaces over \mathbb{K}. By a linear map (or a linear transformation) $f: V \rightarrow W$ we mean a function f satisfying

$$
f\left(\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}\right)=\alpha_{1} f\left(\mathbf{v}_{1}\right)+\alpha_{2} f\left(\mathbf{v}_{2}\right)
$$

for all $\mathbf{v}_{i} \in V$ and $\alpha_{i} \in \mathbb{K}$.
Remark
(i) $f\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{k} \alpha_{i} f\left(\mathbf{v}_{i}\right)$.
(ii) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a basis for a finite dimensional vector space V, then every element of V is a linear combination of these \mathbf{v}_{i}, say $\mathbf{v}=\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}$.

4. Linear Transformations

Definition
Let V, W be any two vector spaces over \mathbb{K}. By a linear map (or a linear transformation) $f: V \rightarrow W$ we mean a function f satisfying

$$
f\left(\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}\right)=\alpha_{1} f\left(\mathbf{v}_{1}\right)+\alpha_{2} f\left(\mathbf{v}_{2}\right)
$$

for all $\mathbf{v}_{i} \in V$ and $\alpha_{i} \in \mathbb{K}$.
Remark
(i) $f\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{k} \alpha_{i} f\left(\mathbf{v}_{i}\right)$.
(ii) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a basis for a finite dimensional vector space V, then every element of V is a linear combination of these \mathbf{v}_{i}, say $\mathbf{v}=\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}$. Therefore

$$
f(\mathbf{v})=\sum_{i=1}^{k} \alpha_{i} f\left(\mathbf{v}_{i}\right) .
$$

4. Linear Transformations

Definition
Let V, W be any two vector spaces over \mathbb{K}. By a linear map (or a linear transformation) $f: V \rightarrow W$ we mean a function f satisfying

$$
f\left(\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}\right)=\alpha_{1} f\left(\mathbf{v}_{1}\right)+\alpha_{2} f\left(\mathbf{v}_{2}\right)
$$

for all $\mathbf{v}_{i} \in V$ and $\alpha_{i} \in \mathbb{K}$.
Remark
(i) $f\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{k} \alpha_{i} f\left(\mathbf{v}_{i}\right)$.
(ii) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a basis for a finite dimensional vector space V, then every element of V is a linear combination of these \mathbf{v}_{i}, say $\mathbf{v}=\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}$. Therefore

$$
f(\mathbf{v})=\sum_{i=1}^{k} \alpha_{i} f\left(\mathbf{v}_{i}\right) .
$$

Thus, it follows that f is completely determined by its value on a basis of V, i.e., if f and g are two linear maps such that $f\left(v_{i}\right)=g\left(v_{i}\right)$ for all $i=1, \ldots, k$, then $f=g$.

Remark
(iii) If V has a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ then for each ordered k tuple $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ of elements of W we obtain a unique linear transformation $f: V \rightarrow W$ by choosing $f\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$ for all i,

Remark
(iii) If V has a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ then for each ordered k tuple $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ of elements of W we obtain a unique linear transformation $f: V \rightarrow W$ by choosing $f\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$ for all i, and vice versa.

Remark
(iii) If V has a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ then for each ordered k tuple $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ of elements of W we obtain a unique linear transformation $f: V \rightarrow W$ by choosing $f\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$ for all i, and vice versa.

Example:

Consider the space $C^{r}=C^{r}[a, b], r \geq 1$.

Remark
(iii) If V has a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ then for each ordered k tuple $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ of elements of W we obtain a unique linear transformation $f: V \rightarrow W$ by choosing $f\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$ for all i, and vice versa.

Example:

Consider the space $C^{r}=C^{r}[a, b], r \geq 1$. To each $f \in C^{r}$ consider its derivative $f^{\prime} \in C^{r-1}$. This defines a function $D: C^{r} \rightarrow C^{r-1}$ by $D(f)=f^{\prime}$

Remark
(iii) If V has a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ then for each ordered k tuple $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ of elements of W we obtain a unique linear transformation $f: V \rightarrow W$ by choosing $f\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$ for all i, and vice versa.

Example:

Consider the space $C^{r}=C^{r}[a, b], r \geq 1$. To each $f \in C^{r}$ consider its derivative $f^{\prime} \in C^{r-1}$. This defines a function
$D: C^{r} \rightarrow C^{r-1}$ by $D(f)=f^{\prime}$
We know that D is a linear map, i.e.,

$$
D(\alpha f+\beta g)=\alpha D(f)+\beta D(g)
$$

Remark
(iii) If V has a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ then for each ordered k tuple $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ of elements of W we obtain a unique linear transformation $f: V \rightarrow W$ by choosing $f\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$ for all i, and vice versa.

Example:
Consider the space $C^{r}=C^{r}[a, b], r \geq 1$. To each $f \in C^{r}$ consider its derivative $f^{\prime} \in C^{r-1}$. This defines a function
$D: C^{r} \rightarrow C^{r-1}$ by $\quad D(f)=f^{\prime}$
We know that D is a linear map, i.e.,

$$
D(\alpha f+\beta g)=\alpha D(f)+\beta D(g) .
$$

Now for each $f \in C^{r-1}$ define $\mathcal{I}(f) \in C^{r}$ by

$$
\mathcal{I}(f)(x)=\int_{a}^{x} f(t) d t .
$$

Then \mathcal{I} is also a linear map. Moreover, we have $D \circ \mathcal{I}=I d$.

Remark
(iii) If V has a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ then for each ordered k tuple $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ of elements of W we obtain a unique linear transformation $f: V \rightarrow W$ by choosing $f\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$ for all i, and vice versa.

Example:
Consider the space $C^{r}=C^{r}[a, b], r \geq 1$. To each $f \in C^{r}$ consider its derivative $f^{\prime} \in C^{r-1}$. This defines a function
$D: C^{r} \rightarrow C^{r-1}$ by $D(f)=f^{\prime}$
We know that D is a linear map, i.e.,

$$
D(\alpha f+\beta g)=\alpha D(f)+\beta D(g) .
$$

Now for each $f \in C^{r-1}$ define $\mathcal{I}(f) \in C^{r}$ by

$$
\mathcal{I}(f)(x)=\int_{a}^{x} f(t) d t
$$

Then \mathcal{I} is also a linear map. Moreover, we have $D \circ \mathcal{I}=I d$. Can you say $\mathcal{I} \circ D=I d$? Is D a one-one map?

Let us write

$$
D^{k}:=D \circ D \circ \ldots \circ D \quad(k \text { factors })
$$

Thus $D^{k}: C^{r} \rightarrow C^{r-k}$ is the map defined by $D^{k}(f)=f^{(k)}$ where $f^{(k)}$ is the $k^{\text {th }}$ derivative of $f,(r>k)$.

Let us write

$$
D^{k}:=D \circ D \circ \ldots \circ D \quad(k \text { factors })
$$

Thus $D^{k}: C^{r} \rightarrow C^{r-k}$ is the map defined by $D^{k}(f)=f^{(k)}$ where $f^{(k)}$ is the $k^{\text {th }}$ derivative of $f,(r>k)$.

Let us write

$$
D^{k}:=D \circ D \circ \ldots \circ D \quad(k \text { factors })
$$

Thus $D^{k}: C^{r} \rightarrow C^{r-k}$ is the map defined by $D^{k}(f)=f^{(k)}$ where $f^{(k)}$ is the $k^{\text {th }}$ derivative of $f,(r>k)$.

Determining the zeros of this

linear map is precisely the problem of solving the homogeneous linear differential equation of order k :

$$
y^{k}+a_{k-1} y^{k-1}+\ldots+a_{1} y+a_{0}=0
$$

Let us write

$$
D^{k}:=D \circ D \circ \ldots \circ D \quad(k \text { factors })
$$

Thus $D^{k}: C^{r} \rightarrow C^{r-k}$ is the map defined by $D^{k}(f)=f^{(k)}$ where $f^{(k)}$ is the $k^{\text {th }}$ derivative of $f,(r>k)$.

Determining the zeros of this
linear map is precisely the problem of solving the homogeneous linear differential equation of order k :

$$
y^{k}+a_{k-1} y^{k-1}+\ldots+a_{1} y+a_{0}=0
$$

Exercise: On the vector space $\mathcal{P}[x]$ of all polynomials in one-variable, determine all linear maps $\phi: \mathcal{P}[x] \rightarrow \mathcal{P}[x]$ having the property $\phi(f g)=f \phi(g)+g \phi(f)$ and $\phi(x)=1$.

Definition

A linear transformation $f: V \rightarrow W$ is called an isomorphism if it is invertible,

Definition

A linear transformation $f: V \rightarrow W$ is called an isomorphism if it is invertible, i.e., there exist $g: W \rightarrow V$ such that $g \circ f=I d_{V}$ and $f \circ g=I d_{w}$.

Definition

A linear transformation $f: V \rightarrow W$ is called an isomorphism if it is invertible, i.e., there exist $g: W \rightarrow V$ such that $g \circ f=I d V$ and $f \circ g=I d_{W}$. If there exists an isomorphism $f: V \rightarrow W$ then we call V and W are isomorphic to each other.

Definition

A linear transformation $f: V \rightarrow W$ is called an isomorphism if it is invertible, i.e., there exist $g: W \rightarrow V$ such that $g \circ f=I d v$ and $f \circ g=I d_{W}$. If there exists an isomorphism $f: V \rightarrow W$ then we call V and W are isomorphic to each other.

Definition
Let $f: V \rightarrow W$ be a linear transformation. Define
$\mathcal{R}(f):=f(V):=\{f(v) \in W: v \in V\}$,
$\mathcal{N}(f):=\{v \in V: f(v)=0\}$.

Definition
A linear transformation $f: V \rightarrow W$ is called an isomorphism if it is invertible, i.e., there exist $g: W \rightarrow V$ such that $g \circ f=I d v$ and $f \circ g=I d_{W}$. If there exists an isomorphism $f: V \rightarrow W$ then we call V and W are isomorphic to each other.

Definition
Let $f: V \rightarrow W$ be a linear transformation. Define
$\mathcal{R}(f):=f(V):=\{f(v) \in W: v \in V\}$,
$\mathcal{N}(f):=\{v \in V: f(v)=0\}$.
One can easily check that $\mathcal{R}(f)$ and $\mathcal{N}(f)$ are both vector subspace of W and V respectively. They are respectively called the range and the null space of f.

Definition
A linear transformation $f: V \rightarrow W$ is called an isomorphism if it is invertible, i.e., there exist $g: W \rightarrow V$ such that $g \circ f=I d v$ and $f \circ g=I d_{W}$. If there exists an isomorphism $f: V \rightarrow W$ then we call V and W are isomorphic to each other.

Definition
Let $f: V \rightarrow W$ be a linear transformation. Define
$\mathcal{R}(f):=f(V):=\{f(v) \in W: v \in V\}$,
$\mathcal{N}(f):=\{v \in V: f(v)=0\}$.
One can easily check that $\mathcal{R}(f)$ and $\mathcal{N}(f)$ are both vector subspace of W and V respectively. They are respectively called the range and the null space of f.

Lemma
Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.

Lemma

Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.
(b) Suppose f is onto and S spans V. Then $f(S)$ spans W.

Lemma

Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.
(b) Suppose f is onto and S spans V. Then $f(S)$ spans W.
(c) Suppose S is a basis for V and f is an isomorphism then $f(S)$ is a basis for W.

Lemma

Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.
(b) Suppose f is onto and S spans V. Then $f(S)$ spans W.
(c) Suppose S is a basis for V and f is an isomorphism then $f(S)$ is a basis for W.

Proof:

(a) Let $\sum_{i=1}^{k} a_{i} f\left(\mathbf{v}_{i}\right)=0$ where $\mathbf{v}_{i} \in S$.

Lemma

Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.
(b) Suppose f is onto and S spans V. Then $f(S)$ spans W.
(c) Suppose S is a basis for V and f is an isomorphism then $f(S)$ is a basis for W.

Proof:

(a) Let $\sum_{i=1}^{k} a_{i} f\left(\mathbf{v}_{i}\right)=0$ where $\mathbf{v}_{i} \in S$. So $f\left(\sum_{i} a_{i} \mathbf{v}_{i}\right)=0$.

Lemma

Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.
(b) Suppose f is onto and S spans V. Then $f(S)$ spans W.
(c) Suppose S is a basis for V and f is an isomorphism then $f(S)$ is a basis for W.

Proof:

(a) Let $\sum_{i=1}^{k} a_{i} f\left(\mathbf{v}_{i}\right)=0$ where $\mathbf{v}_{i} \in S$. So $f\left(\sum_{i} a_{i} \mathbf{v}_{i}\right)=0$. Since f is injective, we have $\sum_{i} a_{i} \mathbf{v}_{i}=0$

Lemma

Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.
(b) Suppose f is onto and S spans V. Then $f(S)$ spans W.
(c) Suppose S is a basis for V and f is an isomorphism then $f(S)$ is a basis for W.

Proof:

(a) Let $\sum_{i=1}^{k} a_{i} f\left(\mathbf{v}_{i}\right)=0$ where $\mathbf{v}_{i} \in S$. So $f\left(\sum_{i} a_{i} \mathbf{v}_{i}\right)=0$. Since f is injective, we have $\sum_{i} a_{i} \mathbf{v}_{i}=0$ and since S is L. l., $\quad a_{1}=\ldots=a_{k}=0$.

Lemma

Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.
(b) Suppose f is onto and S spans V. Then $f(S)$ spans W.
(c) Suppose S is a basis for V and f is an isomorphism then $f(S)$ is a basis for W.

Proof:

(a) Let $\sum_{i=1}^{k} a_{i} f\left(\mathbf{v}_{i}\right)=0$ where $\mathbf{v}_{i} \in S$. So $f\left(\sum_{i} a_{i} \mathbf{v}_{i}\right)=0$. Since f is injective, we have $\sum_{i} a_{i} \mathbf{v}_{i}=0$ and since S is L. I., $\quad a_{1}=\ldots=a_{k}=0$.
(b) Given $\mathbf{w} \in W$. Pick $\mathbf{v} \in V$ such that $f(\mathbf{v})=\mathbf{w}$.

Lemma

Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.
(b) Suppose f is onto and S spans V. Then $f(S)$ spans W.
(c) Suppose S is a basis for V and f is an isomorphism then $f(S)$ is a basis for W.

Proof:

(a) Let $\sum_{i=1}^{k} a_{i} f\left(\mathbf{v}_{i}\right)=0$ where $\mathbf{v}_{i} \in S$. So $f\left(\sum_{i} a_{i} \mathbf{v}_{i}\right)=0$. Since f is injective, we have $\sum_{i} a_{i} \mathbf{v}_{i}=0$ and since S is L. I., $\quad a_{1}=\ldots=a_{k}=0$.
(b) Given $\mathbf{w} \in W$. Pick $\mathbf{v} \in V$ such that $f(\mathbf{v})=\mathbf{w}$. Now $L(S)=V$ implies that we can write $\mathbf{v}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}$ with $\mathbf{v}_{i} \in S$.

Lemma

Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.
(b) Suppose f is onto and S spans V. Then $f(S)$ spans W.
(c) Suppose S is a basis for V and f is an isomorphism then $f(S)$ is a basis for W.

Proof:

(a) Let $\sum_{i=1}^{k} a_{i} f\left(\mathbf{v}_{i}\right)=0$ where $\mathbf{v}_{i} \in S$. So $f\left(\sum_{i} a_{i} \mathbf{v}_{i}\right)=0$. Since f is injective, we have $\sum_{i} a_{i} \mathbf{v}_{i}=0$ and since S is L. I., $\quad a_{1}=\ldots=a_{k}=0$.
(b) Given $\mathbf{w} \in W$. Pick $\mathbf{v} \in V$ such that $f(\mathbf{v})=\mathbf{w}$. Now $L(S)=V$ implies that we can write $\mathbf{v}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}$ with $\mathbf{v}_{i} \in S$. But then $\mathbf{w}=f(\mathbf{v})=\sum_{i} a_{i} f\left(\mathbf{v}_{i}\right) \in L(f(S))$.

Lemma

Let $f: V \rightarrow W$ be a linear transformation.
(a) Suppose f is injective and $S \subset V$ is linearly independent. Then $f(S)$ is linearly independent.
(b) Suppose f is onto and S spans V. Then $f(S)$ spans W.
(c) Suppose S is a basis for V and f is an isomorphism then $f(S)$ is a basis for W.

Proof:

(a) Let $\sum_{i=1}^{k} a_{i} f\left(\mathbf{v}_{i}\right)=0$ where $\mathbf{v}_{i} \in S$. So $f\left(\sum_{i} a_{i} \mathbf{v}_{i}\right)=0$. Since f is injective, we have $\sum_{i} a_{i} v_{i}=0$ and since S is L. I., $\quad a_{1}=\ldots=a_{k}=0$.
(b) Given $\mathbf{w} \in W$. Pick $\mathbf{v} \in V$ such that $f(\mathbf{v})=\mathbf{w}$. Now $L(S)=V$ implies that we can write $\mathbf{v}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}$ with $\mathbf{v}_{i} \in S$. But then $\mathbf{w}=f(\mathbf{v})=\sum_{i} a_{i} f\left(\mathbf{v}_{i}\right) \in L(f(S))$.
(c) Put (a) and (b) together.

Theorem

Let V and W be any two vector spaces of dimension n. Then V and W are isomorphic to each other and conversely.

Theorem

Let V and W be any two vector spaces of dimension n. Then V and W are isomorphic to each other and conversely.

Proof: Pick bases A and B for V and W respectively. Then both A and B have same number of elements.

Theorem

Let V and W be any two vector spaces of dimension n. Then V and W are isomorphic to each other and conversely.

Proof: Pick bases A and B for V and W respectively. Then both A and B have same number of elements. Let $f: A \rightarrow B$ be any bijection. Then by the above discussion f extends to a linear map $f: V \rightarrow W$.

Theorem
Let V and W be any two vector spaces of dimension n. Then V and W are isomorphic to each other and conversely.

Proof: Pick bases A and B for V and W respectively. Then both A and B have same number of elements. Let $f: A \rightarrow B$ be any bijection. Then by the above discussion f extends to a linear map $f: V \rightarrow W$.
If $g: B \rightarrow A$ is the inverse of $f: A \rightarrow B$ then g also extends to a linear map.

Theorem
Let V and W be any two vector spaces of dimension n. Then V and W are isomorphic to each other and conversely.

Proof: Pick bases A and B for V and W respectively. Then both A and B have same number of elements. Let $f: A \rightarrow B$ be any bijection. Then by the above discussion f extends to a linear map $f: V \rightarrow W$.
If $g: B \rightarrow A$ is the inverse of $f: A \rightarrow B$ then g also extends to a linear map.
Since $g \circ f=I d$ on A, it follows that $g \circ f=I d V$ on the whole of V. Likewise $f \circ g=I d_{W}$.

Theorem
Let V and W be any two vector spaces of dimension n. Then V and W are isomorphic to each other and conversely.

Proof: Pick bases A and B for V and W respectively. Then both A and B have same number of elements. Let $f: A \rightarrow B$ be any bijection. Then by the above discussion f extends to a linear map $f: V \rightarrow W$.
If $g: B \rightarrow A$ is the inverse of $f: A \rightarrow B$ then g also extends to a linear map.
Since $g \circ f=I d$ on A, it follows that $g \circ f=I d_{V}$ on the whole of V. Likewise $f \circ g=I d_{w}$.
Converse follows from part (c) of the previous lemma.

Theorem
Let V and W be any two vector spaces of dimension n. Then V and W are isomorphic to each other and conversely.

Proof: Pick bases A and B for V and W respectively. Then both A and B have same number of elements. Let $f: A \rightarrow B$ be any bijection. Then by the above discussion f extends to a linear map $f: V \rightarrow W$.
If $g: B \rightarrow A$ is the inverse of $f: A \rightarrow B$ then g also extends to a linear map.
Since $g \circ f=I d$ on A, it follows that $g \circ f=I d_{V}$ on the whole of V. Likewise $f \circ g=I d_{w}$.
Converse follows from part (c) of the previous lemma.
Remark
Because of the above theorem any vector space of dimension n is isomorphic to \mathbb{K}^{n}.

Remark

- We have seen that the study of 'linear transformations on euclidean spaces' can be converted into the 'study of matrices'.

Remark

- We have seen that the study of 'linear transformations on euclidean spaces' can be converted into the 'study of matrices'.
- It follows that the study of 'linear transformations on finite dimensional vector spaces' can also be converted into the 'study of matrices'.

Remark

- We have seen that the study of 'linear transformations on euclidean spaces' can be converted into the 'study of matrices'.
- It follows that the study of 'linear transformations on finite dimensional vector spaces' can also be converted into the 'study of matrices'.

Exercises:

(1) Clearly a bijective linear transformation is invertible. Show that the inverse is also linear.
(2) Let V be a finite dimensional vector space and $f: V \rightarrow V$ be a linear map. Prove that the following are equivalent:
(i) f is an isomorphism.
(ii) f is surjective. (iii) f is injective.
(2) Let V be a finite dimensional vector space and $f: V \rightarrow V$ be a linear map. Prove that the following are equivalent:
(i) f is an isomorphism.
(ii) f is surjective. (iii) f is injective.
(iv) there exist $g: V \rightarrow V$ such that $g \circ f=I d v$.
(v) there exists $h: V \rightarrow V$ such that $f \circ h=I d v$.
(2) Let V be a finite dimensional vector space and $f: V \rightarrow V$ be a linear map. Prove that the following are equivalent:
(i) f is an isomorphism.
(ii) f is surjective. (iii) f is injective. (iv) there exist $g: V \rightarrow V$ such that $g \circ f=I d v$. (v) there exists $h: V \rightarrow V$ such that $f \circ h=I d v$.
(3) Let A and B be any two $n \times n$ matrices and $A B=I_{n}$. Show that both A and B are invertible and they are inverses of each other.
(2) Let V be a finite dimensional vector space and $f: V \rightarrow V$ be a linear map. Prove that the following are equivalent:
(i) f is an isomorphism.
(ii) f is surjective. (iii) f is injective.
(iv) there exist $g: V \rightarrow V$ such that $g \circ f=l d v$.
(v) there exists $h: V \rightarrow V$ such that $f \circ h=I d v$.
(3) Let A and B be any two $n \times n$ matrices and $A B=I_{n}$. Show that both A and B are invertible and they are inverses of each other.
Proof: If f and g denote the corresponding linear maps then $f \circ g=I d: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
(2) Let V be a finite dimensional vector space and $f: V \rightarrow V$ be a linear map. Prove that the following are equivalent:
(i) f is an isomorphism.
(ii) f is surjective. (iii) f is injective.
(iv) there exist $g: V \rightarrow V$ such that $g \circ f=I d V$.
(v) there exists $h: V \rightarrow V$ such that $f \circ h=I d v$.
(3) Let A and B be any two $n \times n$ matrices and $A B=I_{n}$. Show that both A and B are invertible and they are inverses of each other.
Proof: If f and g denote the corresponding linear maps then $f \circ g=I d: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
From the exercise (2) above, f is an isomorphism and $f \circ g=g \circ f=I d$. Hence $A B=I_{n}=B A$ which means $A=B^{-1}$.

Rank and Nullity

Definition

Let $f: V \rightarrow W$ be a linear transformation of finite dimensional vector spaces. By the rank of f we mean the dimension of the range of f, i.e., $r k(f)=\operatorname{dim} f(V)=\operatorname{dim} \mathcal{R}(f)$.

Rank and Nullity

Definition

Let $f: V \rightarrow W$ be a linear transformation of finite dimensional vector spaces. By the rank of f we mean the dimension of the range of f, i.e., $r k(f)=\operatorname{dim} f(V)=\operatorname{dim} \mathcal{R}(f)$.
By nullity of f we mean the dimension of the null space, i.e., $n(f)=\operatorname{dim} \mathcal{N}(f)$.

Rank and Nullity

Definition
Let $f: V \rightarrow W$ be a linear transformation of finite dimensional vector spaces. By the rank of f we mean the dimension of the range of f, i.e., $r k(f)=\operatorname{dim} f(V)=\operatorname{dim} \mathcal{R}(f)$.
By nullity of f we mean the dimension of the null space, i.e., $n(f)=\operatorname{dim} \mathcal{N}(f)$.

Theorem
(Rank and Nullity Theorem): The rank and nullity of a linear transformation $f: V \rightarrow W$ on a finite dimensional vector space V add up to the dimension of V :

Rank and Nullity

Definition
Let $f: V \rightarrow W$ be a linear transformation of finite dimensional vector spaces. By the rank of f we mean the dimension of the range of f, i.e., $r k(f)=\operatorname{dim} f(V)=\operatorname{dim} \mathcal{R}(f)$.
By nullity of f we mean the dimension of the null space, i.e., $n(f)=\operatorname{dim} \mathcal{N}(f)$.

Theorem
(Rank and Nullity Theorem): The rank and nullity of a linear transformation $f: V \rightarrow W$ on a finite dimensional vector space V add up to the dimension of V :

$$
r k(f)+n(f)=\operatorname{dim} V .
$$

Proof: Suppose $\operatorname{dim} V=n$. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a basis of $\mathcal{N}(f)$.

Proof: Suppose $\operatorname{dim} V=n$. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a basis of $\mathcal{N}(f)$. We can extend S to a basis

$$
S^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-k}\right\} \text { of } V
$$

Proof: Suppose $\operatorname{dim} V=n$. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a basis of $\mathcal{N}(f)$. We can extend S to a basis

$$
S^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-k}\right\} \text { of } V
$$

We would show that

$$
T=\left\{f\left(\mathbf{w}_{1}\right), f\left(\mathbf{w}_{2}\right), \ldots, f\left(\mathbf{w}_{n-k}\right)\right\}
$$

is a basis of $\mathcal{R}(f)$.

Proof: Suppose $\operatorname{dim} V=n$. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a basis of $\mathcal{N}(f)$. We can extend S to a basis

$$
S^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-k}\right\} \text { of } V
$$

We would show that

$$
T=\left\{f\left(\mathbf{w}_{1}\right), f\left(\mathbf{w}_{2}\right), \ldots, f\left(\mathbf{w}_{n-k}\right)\right\}
$$

is a basis of $\mathcal{R}(f)$.

Proof: Suppose $\operatorname{dim} V=n$. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a basis of $\mathcal{N}(f)$. We can extend S to a basis

$$
S^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-k}\right\} \text { of } V
$$

We would show that

$$
T=\left\{f\left(\mathbf{w}_{1}\right), f\left(\mathbf{w}_{2}\right), \ldots, f\left(\mathbf{w}_{n-k}\right)\right\}
$$

is a basis of $\mathcal{R}(f)$.

Suppose

$$
\beta_{1} f\left(\mathbf{w}_{1}\right)+\ldots+\beta_{n-k} f\left(\mathbf{w}_{n-k}\right)=0 .
$$

Then

$$
f\left(\beta_{1} \mathbf{w}_{1}+\ldots+\beta_{n-k} \mathbf{w}_{n-k}\right)=0
$$

Proof: Suppose $\operatorname{dim} V=n$. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a basis of $\mathcal{N}(f)$. We can extend S to a basis

$$
S^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-k}\right\} \text { of } V
$$

We would show that

$$
T=\left\{f\left(\mathbf{w}_{1}\right), f\left(\mathbf{w}_{2}\right), \ldots, f\left(\mathbf{w}_{n-k}\right)\right\}
$$

is a basis of $\mathcal{R}(f)$.

Suppose

$$
\beta_{1} f\left(\mathbf{w}_{1}\right)+\ldots+\beta_{n-k} f\left(\mathbf{w}_{n-k}\right)=0 .
$$

Then

$$
\begin{aligned}
& f\left(\beta_{1} \mathbf{w}_{1}+\ldots+\beta_{n-k} \mathbf{w}_{n-k}\right)=0 \\
& \beta_{1} \mathbf{w}_{1}+\ldots+\beta_{n-k} \mathbf{w}_{n-k} \in \mathcal{N}(f)
\end{aligned}
$$

Thus

Proof: Suppose $\operatorname{dim} V=n$. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a basis of $\mathcal{N}(f)$. We can extend S to a basis

$$
S^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-k}\right\} \text { of } V
$$

We would show that

$$
T=\left\{f\left(\mathbf{w}_{1}\right), f\left(\mathbf{w}_{2}\right), \ldots, f\left(\mathbf{w}_{n-k}\right)\right\}
$$

is a basis of $\mathcal{R}(f)$.

Suppose

$$
\beta_{1} f\left(\mathbf{w}_{1}\right)+\ldots+\beta_{n-k} f\left(\mathbf{w}_{n-k}\right)=0 .
$$

Then

$$
f\left(\beta_{1} \mathbf{w}_{1}+\ldots+\beta_{n-k} \mathbf{w}_{n-k}\right)=0
$$

Thus

$$
\beta_{1} \mathbf{w}_{1}+\ldots+\beta_{n-k} \mathbf{w}_{n-k} \in \mathcal{N}(f) .
$$

Hence there are scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ such that

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k}=\beta_{1} \mathbf{w}_{1}+\beta_{2} \mathbf{w}_{2}+\ldots+\beta_{n-k} \mathbf{w}_{n-k} .
$$

By linear independence of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-k}\right\}$ we conclude that $\beta_{1}=\beta_{2}=\ldots=\beta_{n-k}=0$. Hence T is L. I. Therefore it is a basis of $\mathcal{R}(f)$.

By linear independence of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-k}\right\}$ we conclude that $\beta_{1}=\beta_{2}=\ldots=\beta_{n-k}=0$. Hence T is L. I. Therefore it is a basis of $\mathcal{R}(f)$.

The trace of a square matrix which is defined as the sum of the diagonal entries,

By linear independence of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n-k}\right\}$ we conclude that $\beta_{1}=\beta_{2}=\ldots=\beta_{n-k}=0$. Hence T is L. I. Therefore it is a basis of $\mathcal{R}(f)$.

The trace of a square matrix which is defined as the sum of the diagonal entries, i.e., for $A=\left(\left(a_{i j}\right)\right) \in M_{n}$

$$
\operatorname{trace}(A)=\sum_{i=1}^{n} a_{i i}
$$

