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PrefaeDuring Deember 2000, I gave a ourse of ten letures on Algebrai Number Theory at the Universityof Kiel in Germany. These letures were aimed at giving a rapid introdution to some basi aspets ofAlgebrai Number Theory with as few prerequisites as possible. I had also hoped to over some parts ofAlgebrai Geometry based on the idea, whih goes bak to Dedekind, that algebrai number �elds andalgebrai urves are analogous objets. But in the end, I had no time to disuss any Algebrai Geometry.However, I tried to be thorough in regard to the material disussed and most of the proofs were eitherexplained fully or at least skethed during the letures. These leture notes are a belated ful�llment ofthe promise made to the partiipants of my ourse and the Kieler Graduiertenkolleg. I hope that theywill still be of some use to the partiipants of my ourse and other students alike.The �rst hapter is a brisk review of a number of basi notions and results whih are usuallyovered in the ourses on Field Theory or Galois Theory. A somewhat detailed disussion of the notionof norm, trae and disriminant is inluded here. The seond hapter begins with a disussion ofbasi onstrutions onerning rings, and goes on to disuss rudiments of noetherian rings and integralextensions. Although both these hapters seem to belong to Algebra, they are mostly written with aview towards Number Theory. Chapters 3 and 4 disuss topis suh as Dedekind domains, rami�ationof primes, lass group and lass number, whih belong more properly to Algebrai Number Theory.Some motivation and historial remarks an be found at the beginning of Chapter 3. Several exerisesare sattered throughout these notes. However, I have tried to avoid the temptation of relegating asexerises some messy steps in the proofs of the main theorems. A more extensive olletion of exerisesis available in the books ited in the bibliography, espeially [4℄ and [13℄.In preparing these notes, I have borrowed heavily from my notes on Field Theory and Rami�ationTheory for the Instrutional Shool on Algebrai Number Theory (ISANT) held at Bombay Universityin Deember 1994 and to a lesser extent, from my notes on Commutative Algebra for the InstrutionalConferene on Combinatorial Topology and Algebra (ICCTA) held at IIT Bombay in Deember 1993.Nevertheless, these notes are neither a subset nor a superset of the ISANT Notes or the ICCTA notes. Inorder to make these notes self-ontained, I have inserted two appendies in the end. The �rst appendixontains my Notes on Galois Theory, whih have been in private irulation at least sine Otober 1994.The seond appendix reprodues my reent artile in Bona Mathematia whih gives a leisurely aountof disriminants. There is a slight repetition of some of the material in earlier hapters but this artilemay be useful for a student who might like to see some onnetion between the disriminant in theontext of �eld extensions and the lassial disriminant suh as that of a quadrati.It is a pleasure to reord my gratitude to the partiipants of my ourse, espeially, Andreas Baltz,Hauke Klein and Prof. Maxim Skriganov for their interest, and to the Kiel graduate shool \EÆientAlgorithms and Multisale Methods" of the German Researh Foundation (\Deutshe Forshungsge-meinshaft") for its support. I am partiularly grateful to Prof. Dr. Anand Srivastav for his keeninterest and enouragement. Comments or suggestions onerning these notes are most welome andmay be ommuniated to me by e-mail. Corretions or future revisions to these notes will be posted onmy web page at http://www.math.iitb.a.in/�srg/Lenotes.html and the other notes mentionedin the above paragraph will also be available here.Mumbai, January 7, 2002 Sudhir Ghorpade3
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Chapter 1Field ExtensionsWe begin with a quik review of the basi fats regarding �eld extensions. For more details,onsult Appendix A or any of the standard texts suh as Lang [11℄ or Jaobson [9℄.1.1 Basi FatsSuppose L=K is a �eld extension (whih means that L is a �eld andK is a sub�eld of L). We allL=K to be �nite if as a vetor spae over K, L is of �nite dimension; the degree of L=K, denotedby [L : K℄, is de�ned to be the vetor spae dimension of L over K. Given �1; : : : ; �n 2 L,we denote by K(�1; : : : ; �n) (resp: K[�1; : : : ; �n℄) the smallest sub�eld (resp: subring) of Lontaining K and the elements �1; : : : ; �n. If there exist �nitely many elements �1; : : : ; �n 2 Lsuh that L = K(�1; : : : ; �n), then L=K is said to be �nitely generated. An element � 2 L suhthat L = K(�) is alled a primitive element, and if suh an element exists, then L=K is said tobe a simple extension. If L0=K is another extension, then a homomorphism � : L! L0 suh that�() =  for all  2 K is alled a K{homomorphism of L! L0. Note that a K{homomorphismis always injetive and if [L : K℄ = [L0 : K℄, then it is surjetive. Thus if L = L0, then suh mapsare alledK{automorphisms of L. The set of allK{automorphisms of L is learly a group wherethe group operation de�ned by omposition of maps. This is alled the Galois group of L=K andis denoted by Gal(L=K) or G(L=K). Given any subgroup H of the group of automorphisms ofL, we an assoiate a sub�eld LH of L de�ned by LH = f� 2 L : �(�) = � for all � 2 Hg; thisis alled the �xed �eld of H.An element � 2 L is said to be algebrai over K if it satis�es a nonzero polynomial withoeÆients in K. Suppose � 2 L is algebrai over K. Then a nonzero polynomial of leastpossible degree satis�ed by � is learly irreduible and, moreover, it is unique if we require itto be moni; this moni irreduible polynomial will be denoted by Irr(�;K), and alled theminimal polynomial of � over K. The extension L=K is said to be algebrai if every � 2 L isalgebrai over K. If L=K is algebrai, then we all it separable if Irr(�;K) has distint roots(in some extension of K) for every � 2 L, and we all it normal if Irr(�;K) has all its roots inL for every � 2 L. It may be noted that if L=K is algebrai, then it is normal if and only ifany K{homomorphism of L into some extension L0 of L maps L onto itself. We all L=K tobe a Galois extension if it is �nite, separable and normal.To hek separability, one generally uses the fat that an irreduible polynomial inK[X℄ has6



distint roots i� (= if and only if) its derivative is a nonzero polynomial. This fat follows, inturn, from the elementary observation that a root � of a polynomial f(X) 2 K[X℄ is a multipleroot i� f 0(�) = 0. The above fat an be used to show that K is perfet (whih means eitherthe harateristi of K is 0 or the harateristi of K is p 6= 0 and K = Kp, i.e., for any x 2 K,there exists y 2 K suh that x = yp) i� every algebrai extension of K is separable. On theother hand, normality an be heked using the fat a �nite extension of K is normal i� it isthe \splitting �eld" of some polynomial in K[X℄. Reall that given a nononstant polynomialf(X) 2 K[X℄, we an �nd an extension E of K suh that f(X) splits into linear fators inE[X℄, and E is generated over K by the roots of f(X) in E. Suh an extension is unique upto a K{isomorphism, and is alled the splitting �eld of f(X) over K. If deg f(X) = n, thenthe degree of the splitting �eld of f(X) over K is at most n!. Thus if f(X) is a nononstantpolynomial in K[X℄ having distint roots, and L is its splitting �eld over K, then L=K is anexample of a Galois extension. A K{automorphism of L permutes the roots of f(X), and thispermutation uniquely determines the automorphism. Thus Gal(L=K) may be thought of asa �nite group of permutations. In this ase, Gal(L=K) is also alled the Galois group of thepolynomial f(X) or of the equation f(X) = 0.Some basi results regarding �eld extensions are the following.(i) L=K is �nite () L=K is algebrai and �nitely generated.(ii) Given any � 2 L, we have:� is algebrai over K , K(�)=K is �nite , K(�) = K[�℄:Moreover, if � is algebrai over K and deg Irr(�;K) = n, then f1; �; �2; : : : ; �n�1g formsa K{basis of K(�).(iii) If �1; : : : ; �n 2 L are algebrai, then K(�1; : : : ; �n) is an algebrai extension of K. Fur-ther, if �1; : : : ; �n are separable over K, then it is also a separable extension. In partiular,the elements of L whih are algebrai over K form a sub�eld of L and among these, thosewhih are separable form a smaller sub�eld.(iv) Finiteness, algebraiity and separability are \transitive" properties. That is, if E is asub�eld of L ontaining K, then L=K is �nite (resp: algebrai, separable) i� both L=Eand E=K are �nite (resp: algebrai, separable). Moreover, if L=K is �nite, then [L :K℄ = [L : E℄[E : K℄. In ase of normality, all we an say in general is that L=K is normalimplies that L=E is normal1. Thus, a fortiori, the same thing holds for Galois extensions.(v) (Primitive Element Theorem). If L=K is �nite and separable, then it is simple, i.e., thereexists � 2 L suh that L = K(�).In Number Theory, one has to usually deal with algebrai extensions of Q , the �eld ofrationals, or of Fp = Z=pZ, the �nite �eld with p elements. Sine Q and Fp are learly perfet�elds, every suh extension is separable and thus saying that it is Galois amounts to sayingthat it is �nite and normal.1Find examples to show that the other two possible impliations are not true.7



Now we ome to the entral result in Galois Theory. Suppose L=K is a Galois extension.Then Gal(L=K) is a �nite group of order [L : K℄ and its �xed �eld is K. In fat, we have aninlusion{reversing one{to{one orrespondene between the subgroups of the Galois group ofL=K and the intermediate �elds between K and L. This orrespondene is given as follows.Given an intermediate �eld E (i.e., a sub�eld of L ontainingK), the orresponding subgroup ofGal(L=K) is Gal(L=E). And given a subgroup H of Gal(L=K), the orresponding intermediate�eld is the �xed �eld LH of H. Moreover, given a sub�eld E of L ontaining K, the \bottompart" E=K is Galois i� Gal(L=E) is a normal subgroup of Gal(L=K), and if this is the ase,then Gal(E=K) is isomorphi to the fator group Gal(L=K)=Gal(L=E). The above result isusually alled the Fundamental Theorem of Galois Theory.Adjetives appliable to a group are generally inherited by a Galois extension. Thus a Galoisextension is said to be abelian if its Galois group is abelian, and it is said to be yli if itsGalois group is yli.Before ending this setion, we make some remarks about the important notion of omposi-tum (or omposite) of �elds, whih is very useful in Algebrai Number Theory. Let E and Fbe sub�elds of the �eld L. The ompositum (or the omposite) of E and F (in L), denoted byEF , is de�ned to be the smallest sub�eld of L ontaining both E and F . The ompositum ofan arbitrary family of sub�elds of L is de�ned in a similar fashion; we use an obvious analogueof the above notation in ase of a �nite family of sub�elds. Now suppose K is a sub�eld of bothE and F , i.e., a sub�eld of the �eld E \ F . We list below some elementary fats onerningompositum of �elds, whih the reader may prove as exerises.(i) If E=K is �nitely generated (resp: �nite, algebrai, separable, normal, Galois, abelian),then so is EF=F .(ii) If both E=K and F=K are �nitely generated (resp: �nite, algebrai, separable, normal,Galois, abelian), then so is EF=K.(iii) If E=K is Galois, then the map � ! �jE de�nes an isomorphism of Gal(EF=F ) with thesubgroup Gal(E=E \ F ) of Gal(E=K). If both E=K and F=K are Galois, then the map� ! (�jE ; �jF ) de�nes an isomorphism of Gal(EF=K) with the subgroup Gal(E=E\F )�Gal(F=E\F ) of Gal(E=K)�Gal(F=K). In partiular, if E\F = K, then we have naturalisomorphisms Gal(EF=F ) ' Gal(E=K) and Gal(EF=K) ' Gal(E=K) �Gal(F=K).Observe that in view of the above properties, we an de�ne the maximal abelian extensionof K in L (as the ompositum of all abelian extensions of K ontained in L).Exerise 1.1. Suppose L=K is a Galois extension. Let H1 and H2 be subgroups of Gal(L=K),and E1 and E2 be their �xed �elds respetively. Show that the �xed �eld of H1 \ H2 is theompositum E1E2 whereas the �xed �eld of the smallest subgroup H of Gal(L=K) ontainingH1 and H2 (note that if either H1 or H2 is normal, then H = H1H2) is E1 \E2.Exerise 1.2. Let L1; : : : ; Lr be Galois extensions of K with Galois groups G1; : : : ; Gr respe-tively. Suppose for 1 � i < r we have Li+1 \ (L1L2 : : : Li) = K. Then show that the Galoisgroup of L1L2 : : : Lr is isomorphi to G1 �G2 � � � � �Gr.Exerise 1.3. Suppose L=K is Galois and Gal(L=K) an be written as a diret produt G1 �� � � � Gr. Let Li be the �xed �eld of the subgroup G1 � : : : Gi�1 � f1g � Gi+1 � � � � � Gr8



of G. Show that Li=K is Galois with Gal(Li=K) ' Gi, and Li+1 \ (L1L2 : : : Li) = K, andL1L2 : : : Lr = L.1.2 Basi ExamplesIn this setion, we will disuss some examples of Galois extensions, whih are quite importantin Number Theory and Algebra.Example 1: Quadrati Extensions.An extension of degree 2 is alled a quadrati extension. Let L=K be a quadrati extension.Suppose � 2 L is any element suh that � =2 K. Then [K(�) : K℄ must be > 1 and itmust divide [L : K℄ = 2. Therefore L = K(�) and � satis�es an irreduible quadrati, sayX2 + bX + , with oeÆients in K. The other root, say �, of this quadrati must satisfy� + � = �b, and hene it is also in L. So L=K is normal. Also if harK 6= 2, then learly� 6= � and so L=K is separable as well. Thus a quadrati extension is always a Galois extensionexept possibly in harateristi two. Now assume that harK 6= 2. Then Gal(L=K) is a groupof order 2, and the nonidentity element in it is the automorphism of L whih maps � to �.Using the (Shreedharaharya's) formula for roots of quadrati polynomial, we an replae �by pa so that L = K(pa), where a is some element of K and pa denotes an element of Lwhose square is a. With this, we an write L = fr + spa : r; s 2 Kg and Gal(L=K) = fid; �g,where id denotes the identity automorphism of L and � is the K{automorphism de�ned by�(r + spa) = r � spa.If K = Q and L is a sub�eld of C suh that [L : Q ℄ = 2, then it is alled a quadrati �eld.In general, a sub�eld of C whih is of �nite degree over Q is known as an algebrai number �eldor simply, a number �eld. In view of the above disussion, we easily see that if L is a quadrati�eld, then there exists a unique squarefree integer m, withm 6= 0; 1, suh that L = Q(pm). Wesay that L is a real quadrati �eld or imaginary quadrati �eld aording as m > 0 or m < 0.Exerise 1.4. Suppose L=K is a biquadrati extension, i.e., L = K(�; �) where �; � are elementsof L whih are not inK but whose squares are distint elements of K. Assume that harK 6= 2.Show that L=K is a Galois extension and ompute its Galois group.Example 2: Cylotomi Extensions.Let k be a �eld and n be a positive integer. An element ! 2 k suh that !n = 1 is alledan nth root of unity (in k). Let �n = �n(k) denote the set of all nth roots of unity in k. Then�n is a �nite subgroup of the multipliative group k� of nonzero elements of k, and thereforeit is yli. Any generator of �n is alled a primitive nth root of unity in k. For example,if k = C , then � = �n = e2�i=n is a primitive nth root of unity, and �n(C ) onsists of then elements 1; �; �2; : : : ; �n�1; among these the elements �j where (j; n) = 1, are preisely theprimitive nth roots of unity (verify!). The sub�eld Q(�) of C generated by � over Q is alledthe nth ylotomi �eld, and the extension Q(�)=Q is alled a ylotomi extension. Sine thepolynomial Xn � 1 splits into distint linear fators in Q(�)[X℄ asXn � 1 = n�1Yi=0(X � �i)9



we see that Q(�)=Q is a Galois extension whose degree is at most n. Suppose G = Gal(Q(�)=Q )and � 2 G. Then �(�) must also be a root of Xn � 1, and therefore �(�) = �j for some integerj = j(�). It is lear that � uniquely determines j(�) modulo n. Hene the map � ! j(�) isinjetive. Moreover, if �; � 2 G, then we have j(��) = j(�)j(�)(mod n). Sine G is a group,we see that j(�)(mod n) is a unit in Z=nZ, and � ! j(�) de�nes an injetive homomorphismof G into (Z=nZ)�, the multipliative group of units2 in Z=nZ. It follows that G is abelian andits order is at most '(n), where ' is the Euler totient funtion de�ned by'(n) = the number of positive integers � n and relatively prime to n:We will now show that the order of G, i.e., [Q(�) : Q ℄, is exatly equal to '(n), whih will implythat the Galois group of Q(�)=Q is naturally isomorphi to (Z=nZ)�. For this, we need thefollowing elementary fat whih will be proved later in Setion 2.4.FACT: If a moni polynomial with integer oeÆients fators as f(X)g(X), where f(X) andg(X) are moni polynomials with rational oeÆients, then the oeÆients of f(X) and g(X)must be integers.To prove the earlier assertion, let �n(X) denote the minimal polynomial of � = �n over Q .Then it must divide Xn � 1 in Q [X℄. Hene by the FACT above, �n(X) must have integeroeÆients and Xn � 1 = �n(X)g(X), for some moni polynomial g(X) 2 Z[X℄. Now let p bea prime number whih doesn't divide n and � be a root of �n(X). We laim that �p must alsobe a root of �n(X). To prove the laim, assume the ontrary. Then �p is a root of g(X) andhene � is a root of g(Xp). Thus g(Xp) = �n(X)h(X) for some h(X) 2 Z[X℄ (using the FACTone again!). Now redue (mod p), i.e., onsider the polynomials �g(X); �h(X), et obtained byreduing the oeÆients of g(X); h(X), et., (mod p). Then (by Fermat's little theorem!), we�nd that (�g(X))p = �g(Xp) = ��n(X)�h(X). This implies that �g(X) and ��n(X) have a ommonroot, and therefore the polynomial Xn � �1 in Z=pZ[X℄ has a multiple root. But the latter isimpossible sine the derivative of Xn � �1 is �nXn�1, whih has zero as its only root sine n isnot divisible by p. This proves our laim, and, as a onsequene, it follows that �j is a root of�n(X) for all integers j suh that (j; n) = 1. Hene we �nd that jGj = [Q(�) : Q ℄ = deg �n(X)is � '(n). This together with the previous argument proves the equality. We also �nd thatIrr(�;Q) = �n(X) = Y0�j�n�1(j;n)=1 (X � �j):The above polynomial is alled the nth ylotomi polynomial. As noted above, it has integeroeÆients and its degree is '(n). Collating the terms suitably in the produt representationof Xn � 1, we readily see that Xn � 1 =Ydjn �d(X)2The struture of this group is well{known from Elementary Number Theory. To begin with, if n = pe11 : : : peggis the fatorization of n as a produt of powers of distint primes, then by Chinese Remainder Theorem [see, forexample. Prop. 2.3 in the next hapter℄, we have (Z=nZ)� ' (Z=pe11 Z)�� � � � � (Z=pegg Z)�. If p is a prime ande a positive integer, then (Z=peZ)� is yli if p is odd or p = 2 and e � 2. If e > 2, then (Z=2eZ)� is the diretprodut of Z=2Zand Z=2e�2Z. In partiular, (Z=nZ)� is yli, i.e., primitive roots (mod n) exist i� n = 2; 4; peor 2pe where p is an odd prime. See, for example, [2℄ or [8℄ for details.10



and so, in partiular n = Pdjn '(d). The above formula, in fat, gives an eÆient way toompute �n(X) in a reursive manner.Let m and n be relatively prime positive integers. We know from Elementary NumberTheory, that ' is a multipliative funtion, and thus '(mn) = '(m)'(n). This implies that[Q(�mn) : Q ℄ = [Q(�m ) : Q ℄[Q (�n) : Q ℄. Moreover, we learly have that �mmn is a primitive nthroot of unity, �nmn is a primitive mth root of unity, and �m�n is a primitive mnth root of unity.Therefore Q(�mn) must equal the ompositum Q(�m )Q(�n). This together with the previousequality shows that Q(�m) \ Q(�n) = Q .Exerise 1.5. If p is a prime number, then show that�p(X) = Xp � 1X � 1 = Xp�1 +Xp�2 + � � �+X + 1and for any e � 1, �pe(X) = �p(Xpe�1). Use this and the Eisenstein Criterion for �pe(X + 1)to show diretly that �pe(X) is irreduible in Q [X ℄.Exerise 1.6. [This exerise assumes some familiarity with Elementary Number Theory.3℄ Letp be an odd prime, and � be a primitive pth root of unity. Consider the Gauss sum g =Pp�1t=1 � tp� �t. Show that g2 = (�1)(p�1)=2p. Dedue that the quadrati extension Q(pp) isontained in pth or (2p)th ylotomi extension. Conlude that any quadrati extension isontained in some ylotomi extension.Example 3: Finite �eldsLet F be a �nite �eld. Its harateristi must be a prime number, say p. Thus we mayassume that it ontains Fp = Z=pZ as a sub�eld. The extension F=Fp has to be �nite and if itsdegree is m, then, evidently, F ontains preisely q = pm elements. Now sine F � = F n f0gis a group of order q � 1, eah of the q elements of F satis�es the polynomial Xq �X. ThusF is a splitting �eld of Xq � X over Fp . It follows that for any prime power q, there is, upto isomorphism, a unique �eld of order q. Expliitly, it is the splitting �eld of Xq � X overZ=pZ. For this reason, one uses the notation Fq or GF (q) to denote a �eld of order q. Nowsuppose L is a �nite extension of F of degree n. Then L is a �nite �eld and jLj = qn. Also, Lis a splitting �eld over Fp (and hene over F ) of the polynomial Xqn � X whih has distintroots (sine its derivative is �1, whih is never zero). It follows that L=F is a Galois extension.The map � : L ! L de�ned by �(�) = �q is an F{automorphism of L (Verify!). Its powersid; �; �2; : : : ; �n�1 are distint beause otherwise �i = id for some i with 0 < i < n and thusevery x 2 L satis�es xqi = x, whih is a ontradition sine jLj = qn > qi. Moreover, �n = id.Sine Gal(L=F ) must have order n = [L : F ℄, it follows that the Galois group of L=F is theyli group of order n generated by �. The map � whih is a anonial generator of the Galoisgroup of L=F is alled the Frobenius automorphism.3All you need to know really is that if p is prime and a is an integer not divisible by p, then the Legendresymbol �ap� is, by de�nition, equal to 1 if a � x2(mod p) for some integer x, and is equal to �1 otherwise. Itis multipliative, i.e., �abp � = �ap�� bp�, and Euler's Criterion, viz., �ap� � a(p�1)=2(mod p) holds for any oddprime p. 11



1.3 Norm, Trae and DisriminantIn this setion we briey reall the notions of norm, trae and the disriminant in the ontextof �eld extensions.Suppose L=K is a �nite extension of degree n. Given any � 2 L, we de�ne its trae w.r.t.L=K, denoted by TrL=K(�), to be the trae of the K{linear transformation x 7! �x of L! L.The determinant of this linear transformation is alled the norm of � w.r.t L=K and is denotedby NL=K(�). Equivalently, if �(X) = Xn + a1Xn�1 + � � �+ an is the harateristi polynomialof the above linear transformation (whih is alled the �eld polynomial of � w.r.t. L=K), thenTr(�) = �a1 and N(�) = (�1)nan. As done here, the subsript L=K is usually dropped if it islear from the ontext.Basi properties of norm and trae are as follows.(i) TrL=K is a K{linear map of L! K. For a 2 K, Tr(a) = na.(ii) NL=K is a multipliative map of L ! K (i.e., N(��) = N(�)N(�) for �; � 2 L). Fora 2 K, N(a) = an.(iii) If L=K is a Galois extension, then trae is the sum of the onjugates whereas the normis the produt of the onjugates. More preisely, for any � 2 L, we haveTrL=K(�) = X�2Gal(L=K) �(�) and NL=K(�) = Y�2Gal(L=K) �(�):(iv) Norm and trae are transitive. That is, if E is a sub�eld of L ontaining K, then for any� 2 L, we haveTrL=K(�) = TrE=K(TrL=E(�)) and NL=K(�) = NE=K(NL=E(�)):In fat, Property (iii) holds in a more general ontext. Indeed, if L=K is separable and N issome (�xed) normal extension of K ontaining L, then every � 2 L has exatly n = [L : K℄onjugates (w.r.t. L=K) in N [these are, by de�nition, the elements �(�) as � varies over allK{homomorphisms of L! N ℄. In the ase L = K(�), these n onjugates are distint and theyare preisely the roots (in N) of the minimal polynomial Irr(�;K) of � over K. In any ase, ifL=K is separable and �(1); �(2); : : : ; �(n) denote the onjugates of � w.r.t. L=K, then we haveTrL=K(�) = �(1) + �(2) + � � �+ �(n) and NL=K(�) = �(1)�(2) : : : �(n):It may also be noted that in the above set-up, the �eld polynomial of � w.r.t. L=K is givenby Qni=1 �X � �(i)�, and moreover, it equals Irr(�;K)[L:K(�)℄. For a more detailed disussionof the notions of norm and trae and proofs of the above results, one may refer to Appendix Aor the books [18℄ or [20℄.Remark 1.7. It should be noted that the de�nitions of trae and norm make sense even whenL is a ring ontaining the �eld K as a subring suh that L is of �nite dimension n as a vetorspae over K. In this generality, the properties 1 and 2 above ontinue to hold. We shall havean oasion to use trae in this general ontext in some later setions.12



We shall now review the notion of disriminant as it appears in the theory of �eld extensions.For onnetion of this to the lassial notions of disriminant (suh as that of a quadrati or aubi), see Appendix B.Let K be �eld and L be a ring whih ontainsK as a sub�eld and whih has �nite dimensionn as a vetor spae overK. [In most of the appliations, L will be a �eld extension ofK of degreen.℄ As remarked above, the notions of trae and norm of elements of L w.r.t K make sense inthis general set-up. Given any n elements �1; : : : ; �n 2 L, the disriminant DL=K(�1; : : : ; �n)of �1; : : : ; �n w.r.t. L=K is de�ned to be the determinant of the n� n matrix �TrL=K(�i�j)� [1 � i; j � n℄. Note that DL=K(�1; : : : ; �n) is an element of K.Lemma 1.8. If �1; : : : ; �n 2 L satisfy DL=K(�1; : : : ; �n) 6= 0, then f�1; : : : ; �ng is a K{basisof L.Proof. It suÆes to show that �1; : : : ; �n are linearly independent over K. SupposePni=1 i�i =0 for some 1; : : : ; n 2 K. Multiplying the equation by �j and taking the trae, we �nd thatPni=1 iTr(�i�j) = 0. By hypothesis, the matrix �TrL=K(�i�j)� is nonsingular. Hene it followsthat j = 0 for j = 1; : : : ; n.Lemma 1.9. If f�1; : : : ; �ng and f�1; : : : ; �ng are two K{bases of L and �i = Pnj=1 aij�j,aij 2 K, then we have DL=K(�1; : : : ; �n) = [det(aij)℄2DL=K(�1; : : : ; �n):In partiular, sine (aij) is nonsingular, DL=K(�1; : : : ; �n) = 0 i� DL=K(�1; : : : ; �n) = 0.Proof. For any i; j 2 f1; : : : ; ng, we have�i�j =  nXk=1 aik�k!�j = nXk=1 aik�k nXl=1 ajl�l! = nXk=1 nXl=1 aikajl�k�l:Taking trae of both sides, and letting A denote the matrix (aij), we see that(Tr(�i�j)) = At (Tr(�i�j))Aand so the result follows.Remarks 1.10. 1. We shall say that the disriminant of L=K is zero (or nonzero) and writeDL=K = 0 (or DL=K 6= 0) if for some K{basis f�1; : : : ; �ng of L, DL=K(�1; : : : ; �n) is zero (ornonzero). The last lemma justi�es this terminology.2. Observe that TrL=K(xy) is learly a symmetri K{bilinear form [whih means that themap (x; y) 7! TrL=K(xy) of L � L ! K is a symmetri K{bilinear map℄. The ondition thatDL=K 6= 0 is equivalent to saying that this form is non-degenerate. From Linear Algebra, oneknows that if the non-degeneray ondition is satis�ed, then for any K{basis f�1; : : : ; �ng ofL, we an �nd a \dual basis" f�1; : : : ; �ng of L over K suh that TrL=K(�i�j) = Æij , where Æijis the usual Kroneker delta whih is 1 if i = j and 0 otherwise.We now prove an important result whih is very useful in expliit omputations of thedisriminant. Here, and heneforth in this setion, we shall require L to be a �eld.13



Theorem 1.11. If L=K is a �nite separable �eld extension, then its disriminant is nonzero.In fat, if � is a primitive element (so that L = K(�) and f1; �; �2; : : : ; �n�1g is a K{basis ofL) and f(X) is its minimal polynomial, then we haveDL=K(1; �; �2; : : : ; �n�1) = Yi>j ��(i) � �(j)�2 = (�1)n(n�1)=2 NL=K(f 0(�))where �(1); �(2); : : : ; �(n) denote the onjugates of � w.r.t. L=K and f 0(�) denotes the derivativeof f(X) evaluated at �.Proof. Sine L=K is separable, the trae of any element of L equals the sum of its onjugatesw.r.t. L=K (in some �xed normal extension N of K ontaining L). Thus if fu1; : : : ; ung is aK{basis of L and ui(1); ui(2); : : : ; ui(n) denote the onjugates of ui w.r.t. L=K, then we haveTr(uiuj) = Pnk=1 u(k)i u(k)j . In other words, the matrix (Tr(uiuj)) equals the produt of thematrix �u(j)i � with its transpose. ThereforeDL=K(u1; : : : ; un) = ���������� u(1)1 u(2)1 : : : u(n)1u(1)2 u(2)2 : : : u(n)2... ... . . . ...u(1)n u(2)n : : : u(n)n
����������2:In ase u1; u2; : : : ; un are 1; �; : : : ; �(n�1) respetively, then the determinant above is a Vander-monde determinant and the RHS beomes��������� 1 1 : : : 1�(1) �(2) : : : �(n)... ... . . . ...��n�1�(1) ��n�1�(2) : : : ��n�1�(n) ���������2 = Yi>j ��(i) � �(j)�2 = (�1)n(n�1)=2Yi6=j ��(i) � �(j)� :Moreover, we learly havef(X) = nYi=1 �X � �(i)� ; f 0(X) = nXi=1 Yj 6=i �X � �(j)� ; and NL=K(f 0(�)) = nYi=1 f 0 ��(i)� :Therefore, we obtain the desired formulae. Our �rst assertion follows from the fat that ifL = K(�) is separable over K, then the onjugates �(1); �(2); : : : ; �(n) of � w.r.t L=K aredistint.Corollary 1.12. If L=K is a �nite separable extension, then the symmetri bilinear formTrL=K(xy) is nondegenerate.Remark 1.13. The onverse of the above Theorem, viz., if DL=K 6= 0 then L=K is separable, isalso true. For a proof, see [20℄. 14



Chapter 2Ring ExtensionsIn this hapter, we review some basi fats from Ring Theory.2.1 Basi Proesses in Ring TheoryThere are three basi proesses in Algebra using whih we an obtain a new ring from a givenring1. Let us disuss them briey.Polynomial Ring: Given a ring A, we an form the ring of all polynomials in n variables(say, X1; : : : ;Xn) with oeÆients in A. This ring is denoted by A[X1; : : : ;Xn℄. Elements ofA[X1; : : : ;Xn℄ look like f =X ai1:::inXi11 : : : Xinn ; ai1:::in 2 A;where (i1; : : : ; in) vary over a �nite set of nonnegative integral n{tuples. A typial term (ex-luding the oeÆient), viz., Xi11 : : : Xinn , is alled a monomial; its (usual) degree is i1+ � � �+ in.If f 6= 0, then the (total) degree of f is de�ned by deg f = maxfi1 + � � � + in : ai1:::in 6= 0g.Usual onvention is that deg 0 = �1. A homogeneous polynomial of degree d in A[X1; : : : ;Xn℄is simply a �nite A{linear ombination of monomials of degree d. The set of all homogeneouspolynomials of degree d is denoted by A[X1; : : : ;Xn℄d. Note that any f 2 A[X1; : : : ;Xn℄ anbe uniquely written as f = f0 + f1 + : : : , where fi 2 A[X1; : : : ;Xn℄i and fi = 0 for i > deg f ;we may all fi's to be the homogeneous omponents of f . If f 6= 0 and d = deg f , then learlyfd 6= 0 and f = f0 + f1 + � � � + fd.Quotient Ring: That is, the residue lass ring A=I obtained by `moding out' an ideal Ifrom a ring A. This is same as taking a homomorphi image. Passing to A=I from A has thee�et of making I the null element. We have a natural surjetive homomorphism q : A! A=Igiven by q(x) = x+ I for x 2 A. There is a one-to-one orrespondene between the ideals of Aontaining I and the ideals of A=I given by J 7! q(J) = J=I and J 0 7! q�1(J 0).Loalization: That is, the ring of frations S�1A of a ring A w.r.t. a multipliativelylosed (m: :) subset S of A [i.e., a subset S of A suh that 1 2 S and a; b 2 S ) ab 2 S℄.Elements of S�1A are, essentially, frations of the type as , where a 2 A and s 2 S; the notionof equality in S�1A is understood as follows. as = bt , u(at � bs) = 0, for some u 2 S.1here, and hereafter, by a ring we mean a ommutative ring with identity.15



Quite often, we onsider S�1A when A is a domain and 0 =2 S; in this ase, the notion ofequality (or, if you like, equivalene) is simpler and more natural. Note that if A is a domainand S = A n f0g, then S�1A is nothing but the quotient �eld of A. Important instane ofloalization is when S = A n p, where p is a prime ideal of A; in this ase S�1A is ustomarilydenoted by Ap. Passing from A to Ap has the e�et of making p into a maximal ideal thatonsists of all nonunits; indeed, Ap is a loal ring [whih means, a ring with a unique maximalideal℄ with pAp as its unique maximal ideal. In general, we have a natural homomorphism� : A ! S�1A de�ned by �(x) = x1 . This is injetive if S onsists of nonzerodivisors, and inthis ase A may be regarded as a subring of S�1A. Given an ideal I of A, the ideal of S�1Agenerated by �(I) is alled the extension of I, and is denoted by IS�1A or by S�1I. For anideal J of S�1A, the inverse image ��1(J) is an ideal of A and is alled the ontration of Jto A. By abuse of language, the ontration of J is sometimes denoted by J \ A. We haveS�1(J \A) = J and S�1I \A � I, and the last inlusion an be strit. This implies that thereis a one-to-one orrespondene between the ideals J of S�1A and the ideals I of A suh thatfa 2 A : as 2 I for some s 2 Sg = I. This, in partiular, gives a one-to-one orrespondenebetween the prime ideals of S�1A and the prime ideals P of A suh that P \ S = ;.Exerise 2.1. Show that loalization ommutes with taking homomorphi images. More pre-isely, if I is an ideal of a ring A and S is a m: : subset of A, then show that S�1A=S�1I isisomorphi to �S�1(A=I), where �S denotes the image of S in A=I.Given ideals I1 and I2 in a ring A, their sum I1 + I2 = fa1 + a2 : a1 2 I1; a2 2 I2g, theirprodut I1I2 = fP aibi : ai 2 I1; bi 2 I2g, and intersetion I1 \ I2 are all ideals. Analogue ofdivision is given by the olon ideal (I1 : I2), whih is de�ned to be the ideal fa 2 A : aI2 � I1g.If I2 equals a prinipal ideal (x), then (I1 : I2) is often denoted simply by (I1 : x). The idealsI1 and I2 are said to be omaximal if I1 + I2 = A. We an also onsider the radial of an idealI, whih is de�ned by pI = fa 2 A : an 2 I for some n � 1g, and whih is readily seen to bean ideal (by Binomial Theorem!). One says that I is a radial ideal if pI = I. Note that thenotions of sum and intersetions of ideals extend easily to arbitrary families of ideals.Exerise 2.2. Show that olon ommutes with intersetions. That is, if fIig is a family of idealsof a ring A, then for any ideal J of A, we have \(Ii : J) = (\Ii : J). Further, if fIig is a �nitefamily, then show that p\Ii = \pIi. Give examples to show that these results do not hold(for �nite families) if intersetions are replaed by produts.A useful fat about ideals is the following. The ase when the ring in question is Z isonsidered, for example, in Ch'in Chiu-Shao's Mathematial Treatise in the year 1247.Proposition 2.3 (Chinese Remainder Theorem). Let I1; I2; : : : ; In are pairwise omaxi-mal ideals in a ring A (i.e., Ii + Ij = A for all i 6= j). Then:(i) I1I2 : : : In = I1 \ I2 \ � � � \ In.(ii) Given any x1; : : : ; xn 2 A, there exists x 2 A suh that x � xj(mod Ij) for 1 � j � n.(iii) The map x(mod I1I2 � � � In) 7! (x(mod I1); : : : ; x(mod In)) de�nes an isomorphism ofA=I1I2 : : : In onto the diret sum A=I1 �A=I2 � � � � �A=In.Proof. (i) Given any i 2 f1; : : : ; ng, let Ji = I1 � � � Ii�1Ii+1 � � � In. Sine Ii+ Ij = A, we an �ndaij 2 Ij suh that aij � 1(mod Ii), for all j 6= i. Let ai = Qj 6=i aij . Then ai � 1(mod Ii) andai 2 Ji. Thus Ii + Ji = A. Now, x = x1a1 + � � � + xnan satis�es x � xj(mod Ij) for 1 � j � n.16



(ii) Clearly, I1I2 : : : In � I1 \ I2 \ � � � \ In. To prove the other inlusion, we indut on n.The ase of n = 1 is trivial. Next, if n = 2, then we an �nd a1 2 I1 and a2 2 I2 suh thata1 + a2 = 1. Now, a 2 I1 \ I2 implies that a = aa1 + aa2, and thus a 2 I1I2. Finally, if n > 2,then as in (i), let J1 = I2 � � � In and note that I1 + J1 = A. Hene by indution hypothesis andthe ase of two ideals, I1 \ I2 \ � � � \ In = I1 \ J1 = I1J1 = I1I2 � � � In.(iii) The map x(mod I1I2 � � � In) 7! (x(mod I1); : : : ; x(mod In)) is learly well-de�ned anda homomorphism. By (i), it is surjetive and by (ii), it is injetive.Exerise 2.4. With I1; : : : ; In and A as in Proposition 2.3, show that the map in (iii) induesan isomorphism of (A=I1I2 : : : In)� onto the diret sum (A=I1)� � (A=I2)� � � � � � (A=In)�.Dedue that the Euler �-funtion is multipliative.2.2 Noetherian Rings and ModulesA ring A is said to be noetherian if every ideal of A is �nitely generated. It is easy to see thatthis ondition equivalent to either of the two onditions below.(i) (Asending Chain Condition or a...) If I1; I2; : : : are ideals of A suh that I1 � I2 � : : : ,then there exists m � 1 suh that In = Im for n � m.(ii) (Maximality Condition) Every nonempty set of ideals of A has a maximal element.The lass of noetherian rings has a speial property that it is losed w.r.t. eah of the threefundamental proesses. Indeed, if A is a noetherian ring, then it is trivial to hek that bothA=I and S�1A are noetherian, for any ideal I of A and any m: : subset S of A; moreover, thefollowing basi result implies, using indution, that A[X1; : : : ;Xn℄ is also noetherian.Theorem 2.5 (Hilbert Basis Theorem). If A is a noetherian ring, then so is A[X℄.Proof. Let I be any ideal of A[X℄. For 0 6= f 2 I, let LC(f) denote the leading oeÆientof f , and J = f0g [ fLC(f) : f 2 I; f 6= 0g. Then J is an ideal of A and so we an �ndf1; : : : ; fr 2 I n f0g suh that J = (LC(f1); : : : ;LC(fr)). Let d = maxfdeg fi : 1 � i � rg. For0 � i < d, let Ji = f0g[fLC(f) : f 2 I; deg f = ig; then Ji is an ideal of A and so we an �ndfi1; : : : ; firi 2 I suh that Ji = (LC(fi1); : : : ;LC(firi)). Now if I 0 is the ideal of A[X℄ generatedby ff1; : : : ; frg [ ffij : 0 � i < d; 1 � j � rig, then I 0 � I and for any 0 6= f 2 I, there isf 0 2 I 0 suh that deg(f � f 0) < deg f . Thus an indutive argument yields I = I 0.A �eld as well as a PID (e.g., Z, the ring of integers) is learly noetherian, and onstrutingfrom these, using ombinations of the three fundamental proesses, we obtain a rather inex-haustible soure of examples of noetherian rings. Espeially important among these are �nitelygenerated algebras over a �eld or, more generally, over a noetherian ring. Let us reall therelevant de�nitions.De�nition 2.6. Let B be a ring and A be a subring of B. Given any b1; : : : ; bn 2 B, we denoteby A[b1; : : : ; bn℄ the smallest subring of B ontaining A and the elements b1; : : : ; bn. Thissubring onsists of all polynomial expressions f(b1; : : : ; bn) as f varies over A[X1; : : : ;Xn℄. Wesay that B is a �nitely generated (f: g:) A{algebra or an A{algebra of �nite type if there existb1; : : : ; bn 2 B suh that B = A[b1; : : : ; bn℄. Finitely generated k{algebras, where k is a �eld,are sometimes alled aÆne rings. 17



A module over a ring A or an A{module is simply a vetor spae exept that the salars omefrom the ring A instead of a �eld. Some examples of A{modules are: ideals I of A, quotientrings A=I, loalizations S�1A, and f: g: A{algebras A[x1; : : : ; xn℄. The notions of submodules,quotient modules, diret sums of modules and isomorphism of modules are de�ned in an obviousfashion. The onept of loalization (w.r.t. m: : subsets of A) also arries to A{modules, andan analogue of the property in Exerise 2.1 an be veri�ed easily. Diret sum of (isomorphi)opies of A is alled a free A{module; An = A� � � � �A| {z }n times is referred to as the free A{module ofrank n.Let M be an A{module. Given submodules fMig of M , their sumXMi = fX xi : xi 2Mi and all exept �nitely many xi's are 0gand their intersetion \Mi are also submodules of M . Produts of submodules doesn't makesense but the olon operation has an interesting and important ounterpart. If M1;M2 aresubmodules of M , we de�ne (M1 : M2) to be the ideal fa 2 A : aM2 � M1g of A. The ideal(0 : M) is alled the annihilator of M and is denoted by Ann(M); for x 2 M , we may writeAnn(x) for the ideal (0 : x), i.e., for Ann(Ax). Note that if I is an ideal of A, then Ann(A=I) = Iand if Ann(M) � I, then M may be regarded as an A=I{module. Let us also note that for anysubmodulesM1;M2 of M , we always have the isomorphisms (M1+M2)=M2 'M1=(M1 \M2),and, if M2 �M1 and N is a submodule of M2, (M1=N)=(M2=N) 'M1=M2.We say that M is �nitely generated (f: g:) or that M is a �nite A{module if there existx1; : : : ; xn 2 M suh that M = Ax1 + � � � + Axn. Note that in this ase M is isomorphi to aquotient of An. We an, analogously, onsider the a... for submodules of M , and in the aseit is satis�ed, we allM to be noetherian. Artinian modules are de�ned similarly. Observe thatM is noetherian i� every submodule of M is �nitely generated. In general, if M is f: g:, then asubmodule of M needn't be f: g:, i.e., M needn't be noetherian. However, the following basiresult assures that `most' f: g: modules are noetherian.Lemma 2.7. Finitely generated modules over noetherian rings are noetherian.Proof (Sketh). First note that given a submodule N of M , we have that M is noetherian i�both N and M=N are noetherian. Use this and indution to show that if A is noetherian, thenso is An, and, hene, any of its quotient modules.Another basi fat about modules is the following.Lemma 2.8 (Nakayama's Lemma). Let M be a f: g: A{module and I be an ideal of A suhthat IM = M . Then there exists a 2 I suh that (1� a)M = 0. In partiular, if I 6= A and Ais a domain or a loal ring, then M = 0.Proof. Write M = Ax1 + � � � + Axn. Then xi = Pnj=1 aijxj, for some aij 2 I. Let d =det(Æij � aij). Then d = 1� a, for some a 2 I, and, by Cramer's rule, dxj = 0 for all j.Remark 2.9. The `determinant trik' in the above proof shows more generally that if M and Iare as in (3.2) above and � : M ! M is an A{linear map suh that �(M) � IM , then thereexist a1; : : : ; an 2 I suh that �n + a1�n�1 + � � � + an = 0. Thus Nakayama's Lemma may beonsidered as an analogue of Cayley{Hamilton Theorem of Linear Algebra.18



2.3 Integral ExtensionsThe theory of algebrai �eld extensions has a useful analogue to ring extensions, whih isdisussed in this setion.Let B be a ring and A be a subring of B. We may express this by saying that B is a (ring)extension of A or that B is an overring of A.De�nition 2.10. An element x 2 B is said to be integral over A if it satis�es a moni polynomialwith oeÆients in A, i.e., xn+ a1xn�1+ � � �+ an = 0 for some a1; : : : ; an 2 A. If every elementof B is integral over A, then we say that B is an integral extension of A or that B is integralover A.Evidently, if x 2 B satis�es an integral equation suh as above, then 1; x; x2; : : : ; xn�1generate A[x℄ as an A{module. And if B0 is a subring of B ontaining A[x℄ suh that B0 =Ax1 + � � � + Axn, then for any b 2 B0, bxi = P aijxj for some aij 2 A so that b satis�es themoni polynomial det(XÆij � aij) 2 A[X℄. Thus we obtain the following riteria.x 2 B is integral over A , A[x℄ is a �nite A{module, a subring B0 of B ontaining A[x℄ is a �nite A{module.In partiular, if B is a �nite A{module, then B is integral over A. The onverse is true if wefurther assume (the neessary ondition) that B is a f: g: A{algebra. This follows by observingthat the above riteria implies, using indution, that if x1; : : : ; xn 2 B are integral over A, thenA[x1; : : : ; xn℄ is a �nite A{module. This observation also shows that the elements of B whihare integral over A form a subring, say C, of B. If C = B, we say that A is integrally losed inB. A domain is alled integrally losed or normal if it is integrally losed in its quotient �eld.Note that if S is a m: : subset of A, B is integral over A, and J is an ideal of B, then S�1B(resp: B=J) is integral over S�1A (resp: A=J \ A); moreover, if A is a normal domain and0 =2 S, then S�1A is also a normal domain.Exerise 2.11. Show that a UFD is normal. Also show that if A is a domain, then A is normali� A[X℄ is normal. Further, show that if A is a normal domain, K is its quotient �eld, and xis an element of a �eld extension L of K, then x is integral over A implies that the minimalpolynomial of x over K has its oeÆients in A.Example 2.12. Let B = k[X;Y ℄=(Y �X2), and let x; y denote the images of X;Y in B so thatB = k[x; y℄. Let A = k[y℄. Then x is integral over A, and hene B is integral over A. On theother hand, if B = k[X;Y ℄=(XY � 1) = k[x; y℄, then x is not integral over A = k[y℄. It may beinstrutive to note, indiretly, that B ' k[Y; 1=Y ℄ is not a �nite k[Y ℄{module. These examplesorrespond, roughly, to the fat that the projetion of parabola along the x{axis onto the y{axis is a `�nite' map in the sense that the inverse image of every point is at `�nite distane',whereas in the ase of hyperbola, this isn't so. Similar examples in \higher dimensions" an beonstruted by onsidering projetions of surfaes onto planes, solids onto 3{spae, and so on.Examples of integral (resp: non{integral) extensions of Z are given by subrings B of number�elds (viz., sub�elds of C of �nite degree over Q) suh that B � OK (resp: B 6� OK), whereOK denotes the ring of integers in K. Indeed, OK is nothing but the integral losure of Z inK. A preise de�nition of dimension for arbitrary rings an be given as follows.19



De�nition 2.13. The (Krull) dimension of a ring A is de�ned asdimA = maxfn : 9 distint primes p0; p1; : : : ; pn of A suh that p0 � p1 � � � � � png:Remark 2.14. Observe that a �eld has dimension 0. A PID whih is not a �eld, in partiularZ as well as k[X℄, is learly of dimension 1. It an be proved that dimk[X1; : : : ;Xn℄ = n. Formore on this topi, see [1℄.Some of the basi results about integral extensions are as follows. In the �ve results givenbelow, B denotes an integral extension of A and p denotes a prime ideal of A.Theorem 2.15. A is a �eld if and only if B is a �eld. Also, if q is a prime ideal of B suhthat q\A = p, then p is maximal i� q is maximal. Moreover, if q0 is any prime ideal of B suhthat q � q0 and q0 \A = p, then q = q0.Corollary 2.16. dimB � dimA. In partiular, if B is a domain and dimA � 1, then dimA =dimB.Theorem 2.17 (Lying Over Theorem). There exists a prime ideal q of B suh that q\A =p. In partiular, pB \A = p.Theorem 2.18 (Going Up Theorem). If q is a prime ideal of B suh that q \ A = p, andp0 is a prime ideal of A suh that p � p0, then there exists a prime ideal q0 of B suh that q � q0and q0 \A = p.Corollary 2.19. dimA = dimB.Proofs (Sketh). Easy manipulations with integral equations of relevant elements proves the�rst assertion of Theorem 2.15; the seond and third assertions follow from the �rst one bypassing to quotient rings and loalizations respetively. To prove Theorem 2.17, onsider A0 =Ap and B0 = S�1B where S = A n p. Then B0 is an integral extension of A0 and if q0 is anymaximal ideal of B0, then q0\A0 is neessarily maximal and thus q0\A0 = pA0. Now q = q0 \Blies over p, and thus Theorem 2.17 is proved. Theorem 2.18 follows by applying Theorem 2.17to appropriate quotient rings.Exerise 2.20. Prove the two orollaries above using the results preeding them.Remark 2.21. It may be noted that Corollary 2.19 is an analogue of the simple fat that ifL=K is an algebrai extension of �elds ontaining a ommon sub�eld k, then tr:deg:kL =tr:deg:kK. Reall that if K is a ring ontaining a �eld k, then elements �1; : : : ; �d of K are saidto be algebraially independent over k if they do not satisfy any algebrai relation over k, i.e.,f(�1; : : : ; �d) 6= 0 for any 0 6= f 2 k[X1; : : : ;Xn℄. A subset of K is algebraially independent ifevery �nite olletion of elements in it are algebraially independent. IfK is a �eld then any twomaximal algebraially independent subsets have the same ardinality, alled the transendenedegree of K=k and denoted by tr:deg:kK; suh subsets are then alled transendene basesof K=k; note that an algebraially independent subset S is a transendene basis of K=k i�K is algebrai over k(S), the smallest sub�eld of K ontaining k and S. If B is a domainontaining k and K is its quotient �eld, then one sets tr:deg:kB = tr:deg:kK. Finally, note thatk[X1; : : : ;Xn℄ and its quotient �eld k(X1; : : : ;Xn) are learly of transendene degree n over k.A good referene for this material is [20, Ch. 2℄.20



2.4 Disriminant of a Number FieldIn this setion, we shall �rst disuss some basi properties of normal domains. A key resulthere is the so alled Finiteness Theorem. This will lead to the notion of an integral basis andthe notion of absolute disriminant of a number �eld.Proposition 2.22. Let A be a domain with K as its quotient �eld. Then we have the following.(i) If an element � (in some extension L of K) is algebrai over K, then there exists  2 Asuh that  6= 0 and � is integral over A. Consequently, if f�1; : : : ; �ng is a K{basis ofL, then there exists d 2 A suh that d 6= 0 and fd�1; : : : ; d�ng is a K{basis of L whoseelements are integral over A.(ii) If A is normal, and f(X); g(X) are moni polynomials in K[X℄ suh that f(X)g(X) 2A[X℄, then both f(X) and g(X) are in A[X℄.(iii) If A is normal, L=K is a �nite separable extension and � 2 L is integral over A, thenthe oeÆients of the minimal polynomial of � over K as well as the �eld polynomial of� w.r.t. L=K are in A. In partiular, TrL=K(�) 2 A and NL=K(�) 2 A, and moreover,if f�1; : : : ; ang is a K{basis of L onsisting of elements whih are integral over A, thenDL=K(�1; : : : ; �n) 2 A.Proof. (i) If � satis�es the moni polynomial Xn + a1Xn�1 + � � � + an 2 K[X℄, then we an�nd a ommon denominator  2 A suh that  6= 0 and ai = i for some i 2 A. Multiplyingthe above polynomial by n, we get a moni polynomial in A[X℄ satis�ed by �.(ii) The roots of f(X) as well as g(X) (in some extension of K) are integral over A beausethey satisfy the moni polynomial f(X)g(X) 2 A[X℄. Now the oeÆients of f(X) as well asg(X) are the elementary symmetri funtions of their roots (up to a sign), and therefore theseare also integral over A. But the oeÆients are in K. It follows that both f(X) and g(X) arein A[X℄.(iii) If � is integral over A, then learly so is every onjugate of � w.r.t. L=K. Now an argumentsimilar to that in (ii) above shows that the oeÆients of Irr(�;K) as well as the �eld polynomialof � w.r.t. L=K are in A.It may be observed that a proof of the FACT in Setion 1.2 follows from (ii) above. We arenow ready to prove the following important result.Theorem 2.23 (Finiteness Theorem). Let A be a normal domain with quotient �eld K.Assume that L=K is a �nite separable extension of degree n. Let B be the integral losure of Ain L. Then B is ontained in a free A{module generated by n elements. In partiular, if A isalso assumed to be noetherian, then B is a �nite A{module and a noetherian ring.Proof. In view of (i) in the Proposition above, we an �nd a K{basis f�1; : : : ; �ng of L, whihis ontained in B. Let f�1; : : : ; �ng be a dual basis, w.r.t. the nondegenerate bilinear formTrL=K(xy), orresponding to f�1; : : : ; �ng. Let x 2 B. Then x = Pj bj�j for some bj 2 K.Now Tr(�ix) =Pj bjTr(�i�j) = bi. Moreover, sine �ix is integral over A, it follows from theProposition above that bi 2 A. Thus B is ontained in the A{module generated by �1; : : : ; �n.This module is free sine �1; : : : ; �n are linearly independent over K.21



When A is a PID, or better still, when A = Z, the onlusion of Finiteness Theorem an besharpened using the following lemma.Lemma 2.24. Let A be a PID, M be an A{module generated by n elements x1; : : : ; xn, andlet N be a submodule of M .(i) N is generated by at most n elements. In fat, we an �nd aij 2 A for 1 � i � j � nsuh that N = Ay1 + � � �+Ayn where yi =Xj�i aijxj for 1 � i � n: (2.1)(ii) Assume that A = Z and M is a Z-submodule of K, where K is a number �eld with[K : Q ℄ = n. Further assume that N ontains a Q-basis of K. Then M=N is �nite andwe an hoose aij 2 A, for 1 � i � j � n, satisfying (2.1) and with the additional propertyaii > 0 for 1 � i � n and jM=N j = a11a22 � � � ann = det(aij) (2.2)where, by onvention, aij = 0 for j < i.Proof. (i) We have M = Ax1 + � � � +Axn. Let us use indution on n. LetI = fa 2 A : ax1 + a2x2 + � � � + anxn 2 N for some a2; : : : ; an 2 Ag:Then I is an ideal of A and thus I = (a11) for some a11 2 A. Also, there exist a12; : : : ; a1n 2 Asuh that y1 2 N where y1 = a11x1 + a12x2 + � � � + a1nxn. If n = 1, we have N = Ix1 = Ay1,where y1 = a11x1 and thus the result is proved in this ase. If n > 1, then letM1 = Ax2+: : : Axnand N1 = N \M1. By indution hypothesis, we an �nd aij 2 A for 2 � i � j � n suh thatN1 = Ay2 + � � �+Ayn where yi =Xj�i aijxj for 2 � i � n:Now if y 2 N , then y = a1x1+ a2x2+ � � �+ anxn for some a1; : : : ; an 2 A. Moreover a1 2 I andthus a1 = �1a11 for some �1 2 A. Hene y� �1y1 2 N1 and so y� �1y1 = �2y2+ � � �+ �nyn forsome �2; : : : ; �n 2 A. It follows that N = Ay1 + � � �+Ayn and yi =Pj�i aijxj, as desired.(ii) To begin with, let aij 2 A = Z and yi 2 N be suh that (2.1) holds. If N ontainsa Q-basis of K, then it is lear that K = Qy1 + � � � + Qyn and hene y1; : : : ; yn are linearlyindependent over Q . Now, if some aii = 0, then we see easily that yi is a Q-linear ombinationof yi+1; : : : ; yn, whih is a ontradition. Thus, aii 6= 0 for 1 � i � n and so replaing some yi'sby �yi's, if neessary, we an assume that aii > 0 for 1 � i � n.Given any x 2 M , write x = a1x1 + � � � + anxn, where a1; : : : ; an 2 Z. We an �nd uniqueintegers q1 and r1 suh that a1 = a11q1 + r1 and 0 � r1 < a11. Henex� q1y1 = r1x1 + b2x2 + � � � + bnxn for some b2; : : : ; bn 2 Z:Next, let q2; r2 2 Z be suh that b2 = a22q2 + r2 and 0 � r2 < a22. Henex� q1y1 � q2y2 = r1x1 + r2x2 + 3x3 + � � � + bnxn for some 3; : : : ; n 2 Z:22



Continuing in this way, we obtain q1; : : : ; qn 2 Z and r1; : : : ; rn 2 Z suh thatx� (q1y1 + � � � + qnyn) = r1x1 + � � �+ rnxn with 0 � ri < aii:Thus r1x1 + � � � + rnxn is a representative of x in M=N . Moreover, this representative isunique beause the di�erene of two suh representatives will be an element of N of the forms1x1+� � �+snxn, where si 2 Zwith jsij < aii, and from (2.1), one sees easily that if sj is the �rstnonzero integer among s1; : : : ; sn, then ajj divides sj, whih is a ontradition. It follows thatthe elements of M=N are in bijetion with n-tuples (r1; : : : ; rn) of integers with 0 � ri < aii.Consequently, jM=N j = a11a22 � � � ann.Corollary 2.25. Let A;K;L; n;B be as in the Finiteness Theorem. Assume that A is aPID. Then B is a free A{module of rank n, i.e., there exist n linearly independent elementsy1; : : : ; yn 2 B suh that B = Ay1 + � � � +Ayn.Proof. Follows from Finiteness Theorem 2.23 and Lemma 2.24 (i).The above Corollary applied in the partiular ase of A = Z, shows that the ring of integersof a number �eld always has a Z{basis. Suh a basis is alled an integral basis of that ring orof the orresponding number �eld.In general, suppose K is a number �eld with [K : Q ℄ = n, and N is a Z-submodule ofM = OK suh that N ontains a Q-basis of K. Then by Lemma 2.24 (ii), we see that N hasa Z-basis of n elements, and we all this an integral basis of N . Notie that if f�1; : : : ; �ng isan integral basis of N � OK , then by Proposition 2.22 (iii), DL=K(�1; : : : ; �n) is an integer.Further, if fu1; : : : ; ung is any Q{basis of K ontained in N , then ui = Pj aij�j for somen � n nonsingular matrix (aij) with entries in Z. If d = det(aij), then d 2 Z and we haveDL=K(u1; : : : ; un) = d2DL=K(�1; : : : ; �n). If fu1; : : : ; ung is also an integral basis of N , thenlearly d = �1. It follows that any two integral bases of N have the same disriminant, andamong all bases of K ontained in N , the disriminant of an integral basis has the least absolutevalue. We denote the disriminant of an integral basis of N by �(N) and all this the (absolute)disriminant of N . In ase N = OK , the disriminant �(OK) is denoted by dK and alled the(absolute) disriminant of K. The two disriminants �(N) and dK = �(OK) are related bythe formula �(N) = jOK=N j2dK (2.3)whih is an immediate onsequene of Lemmas 1.9 and 2.24 (ii) where in the latter we takex1; : : : ; xn to be an integral basis of K.There are two ases when the formula (2.3) is partiularly useful. One is when K = Q(�)is generated by a single element � whih is integral over Z and N = Z[�℄. In this ase, if weknow that �(Z[�℄) = DK=Q(1; �; : : : ; �n�1) is squarefree, then we an onlude from (2.3) thatOK = Z[�℄. Another ase is when N is a nonzero ideal I of OK . Note that I 6= 0 implies thatI \Z 6= 0 sine A is integral over Z; now, if m is a nonzero integer in I \Z and f�1; : : : ; �ng isa Q-basis of K ontained in OK , then fm�1; : : : ;m�ng is a Q-basis of K ontained in I. ThusI does satisfy the hypothesis for the existene of an integral basis and for the formula (2.3) tohold with N = I. This ase will be taken up again in Chapter 4.23



Remark 2.26. An alternative proof of the existene of an integral basis of K an be given bypiking a Q{basis of K ontained in OK whose disriminant has the least possible absolutevalue, and showing that this has to be an integral basis. Try this! Or see Appendix B for aproof along these lines.We now disuss two examples to illustrate the omputation of disriminant and determina-tion of integral bases.Example 1: Quadrati Fields.Let K be a quadrati �eld and O be its ring of integers. As noted before, we have K =Q(pm), where m is a squarefree integer. We now attempt to give a more onrete desriptionof O. First, note that Z[pm℄ = fr + spm : r; s 2 Zg � O. Let x = a + bpm 2 O for somea; b 2 Q . Then Tr(x) = 2a and N(x) = a2 �mb2 (verify!) and both of them must be in Z.Sine m is squarefree and a2 �mb2 2 Z, we see that a 2 Z if and only if b 2 Z. Thus if a =2 Z,then we an �nd an odd integer a1 suh that 2a = a1, and relatively prime integers b1 and 1with 1 > 1 suh that b = b11 . Now�a1 = 2a 2 Z and a2 �mb2 2 Z�) �4j21a21 and 21j4mb21�) 1 = 2:Hene b1 is odd and a21 �mb21 � 0(mod 4). Also a1 is odd, and therefore, m � 1(mod 4). Itfollows that if m 6� 1(mod 4), then a; b 2 Z, and so in this ase, O = fa+ bpm : a; b 2 Zg andf1;pmg is an integral basis. In the ase m � 1(mod 4), the preeding observations imply thatO � �a1 + b1pm2 : a1; b1 are integers having the same parity, i.e., a1 � b1(mod 2)�and, moreover, 1+pm2 2 O sine it is a root of X2 � X � m�14 ; therefore O = Z[1+pm2 ℄ andf1; 1+pm2 g is an integral basis. We an now ompute the disriminant of K as follows.dK = 8>><>>: det� 2 00 2m � = 4m if m � 2; 3(mod 4)det� 2 11 (1 +m)=2 � = m if m � 1(mod 4):It may be remarked that the integer d = dK determines the quadrati �eld K ompletely, andthe set f1; d+pd2 g is always an integral basis of K. (Verify!)Example 2: Cylotomi Fields.Let p be an odd prime and � = �p be a primitive pth root of unity. Consider the ylotomi�eld K = Q(�). We know that K=Q is a Galois extension and its Galois group is isomorphito (Z=pZ)�, whih is yli of order p� 1. The minimal polynomial of � over Q is given by�p(X) = Xp � 1X � 1 = Xp�1 +Xp�2 + � � �+X + 1 = p�1Yi=1 �X � �i� :We now try to determine OK , the ring of integers of K, and dK , the disriminant of K. Let us�rst note that sine � 2 OK , the ringZ[�℄, whih is generated as a Z{module by 1; �; �2; : : : ; �p�1,24



is learly ontained in OK . Moreover, we haveDK=Q(1; �; : : : ; �p�1) = (�1)(p�1)(p�2)=2NK=Q(�0p(�)) = (�1)(p�1)=2NK=Q � p�p�1(� � 1)� :Sine �p(X) is the minimal polynomial of K = Q(�) over Q , we learly see that NK=Q(�) =(�1)p�1 � 1 = 1. And sine the minimal polynomial of � � 1 is�p(X + 1) = (X + 1)p � 1X = pXi=1 �pi�Xi�1 = Xp�1 + pXp�2 + � � � +�p2�X + p;we see that N(� � 1) = (�1)p�1p = p. Thus N(�0p(�)) = pp�1�1p = pp�2. On the other hand,N(� � 1) is the produt of its onjugates, and so we obtain the identityp = (� � 1)(�2 � 1) : : : (�p�1 � 1);whih implies that the ideal (� � 1)OK \ Z ontains pZ. But (� � 1) is not a unit in OK (lestevery onjugate (�i � 1) would be a unit and hene p would be a unit in Z). So it followsthat (� � 1)OK \ Z = pZ. Now suppose x 2 OK . Then x = 0 + 1� + � � � + p�1�p�1for some i 2 Q . We shall now show that i are, in fat, in Z. To this e�et, onsider(� � 1)x = 0(� � 1) + 1(�2 � �) + � � � + p�1(�p � �p�1). We have Tr(� � 1) = �p andTr(�i+1��i) = 1�1 = 0 for 1 � i < p. Therefore 0p = �Tr((��1)x) 2 (��1)OK\Z= pZ, andso 0 2 Z. Next, ��1(x�0) = �p�10 is an element of OK whih equals 1+2�+ � � �+p�1�p�2.Using the previous argument, we �nd that 1 2 Z. Continuing in this way, we see that i 2 Zfor 0 � i � p� 1. It follows that OK = Z[�℄ and f1; �; �2; : : : ; �p�1g is an integral basis of OK .As a onsequene, we obtain thatdK = DK=Q(1; �; �2; : : : ; �p�1) = (�1)(p�1)=2pp�2:Exerise 2.27. Let n = pe where p is a prime and e is a positive integer. Show that the ringof integers of Q(�n) is Z[�n℄ and the disriminant of Q(�n) is equal to (�1)'(p)=2ppe�1(pe�e�1).Dedue that, in partiular, the only prime dividing this disriminant is p and that the sign ofthis disriminant is negative only if n = 4 or p � 3(mod 4).Remark 2.28. If n is any integer > 1 and � = �n is a primitive nth root of unity, then it an beshown that the ring of integers of Q(�n) is Z[�n℄ and the disriminant of Q(�n) equals(�1)'(n)=2 n'(n)Qpjn p'(n)=(p�1) :The proof is somewhat diÆult. Interested reader may see [19℄.Exerise 2.29 (Stikelberger's Theorem). If K is a number �eld, then dK � 0 or 1(mod 4).[Hint: Let fu1; : : : ; ung be an integral basis ofK so that dK = hdet�u(j)i �i2, where u(1)i ; : : : ; u(n)idenote the onjugates of ui w.r.t. K=Q . Write the above determinant as P �N , where P andN denote the ontribution from even and odd permutations, respetively. Show that P + Nand PN are integers and dK = (P + N)2 � 4PN .℄ Verify this ongruene from the formulaeabove when K is a quadrati �eld or a ylotomi �eld,Exerise 2.30. Let K = Q(�) where � is a root of X3 + 2X + 1. Show that �(Z[�℄) = �59.Dedue that f1; �; �2g is an integral basis of K.25



Chapter 3Dedekind Domains and Rami�ationTheoryIn the investigation of Fermat's Last Theorem and Higher Reiproity Laws, mathematiiansin the 19th entury were led to ask if the unique fatorization property enjoyed by the integersalso holds in the ring of integers in an algebrai number �eld, espeially in the ring of ylotomiintegers. In 1844, E. Kummer showed that this does not hold, in general. About three yearslater, he showed that the unique fatorization in suh rings, or at least in rings of ylotomiintegers, is possible if numbers are replaed by the so alled \ideal numbers". Kummer's workwas simpli�ed and furthered by R. Dedekind1. The onept of an ideal in a ring was thusborn. In e�et, Dedekind showed that the ring of integers of an algebrai number �eld has thefollowing property:Every nonzero ideal in this ring fators uniquely as a produt of prime ideals.Integral domains with this property are now known as Dedekind domains (or also Dedekindrings)2. In a famous paper3, Emmy Noether gave a set of abstrat axioms for rings whoseideal theory agrees with that of ring of integers of an algebrai number �eld. This leadsto a haraterization of Dedekind domains. In the next setion, we will take this abstratharaterization as the de�nition of a Dedekind domain, and then prove properties suh as1Dedekind published his ideas as a supplement to Dirihlet's letures on Number Theory, whih were �rstpublished in 1863. Dedekind's supplements our in the third and fourth editions, published in 1879 and 1894, ofDirihlet's Vorlesungen �uber Zahlentheorie. Another approah towards understanding and extending the ideas ofKummer was developed by L. Kroneker, whose work was apparently ompleted in 1859 but was not publisheduntil 1882. For more historial details, see the artile \The Genesis of Ideal Theory" by H. Edwards, publishedin Arhives for History of Exat Sienes, Vol. 23 (1980), and the artiles by P. Ribenboim and H. Edwards in\Number Theory Related to Fermat's Last Theorem", Birkh�auser, 1982.2The term Dedekind domains was oined by I.S. Cohen [Duke Math. J. 17 (1950), pp. 27{42℄. In fat, Cohende�nes a Dedekind domain to be an integral domain in whih every nonzero proper ideals fators as a produtof prime ideals, and he notes that the uniqueness of fatorization is automati, thanks to the work of Matusita[Japan J. Math. 19 (1944), pp. 97{110℄.3Abstrakter Aufbau der Idealtheorie in algebraishen Zahlund Funktionenk�orpern, Math. Ann. 96 (1927), pp.26{61. The Aufbau paper followed another famous paper Idealtheorie in Ringbereihen [Math. Ann. 83 (1921),pp. 24{66℄ in whih rings with asending hain ondition on ideals are studied; the term noetherian rings forsuh rings was apparently originated by Chevalley [Ann. Math. 44 (1943), pp. 690{708℄. Inidentally, EmmyNoether had a great appreiation of Dedekind's work and her favorite expression to her students was Alles stehtshon bei Dedekind! 26



the unique fatorization of ideals as a onsequene. In the subsequent setions, we study thephenomenon of rami�ation and disuss a number of basi results onerning it.3.1 Dedekind DomainsAn integral domain A is alled a Dedekind domain if A is noetherian, normal and every nonzeroprime ideal in A is maximal. Note that the last ondition is equivalent to saying that dimA � 1,or in other words, either A is a �eld or A is one dimensional.Example 3.1. Any PID is a Dedekind domain (hek!). In partiular, Z and the polynomialring k[X℄ over a �eld k are Dedekind domains.Example 3.2. The ring Z[p�5℄, whih is the ring of integers of the quadrati �eld Q(p�5) isa Dedekind domain. Indeed, this ring is noetherian being the quotient of a polynomial ringover Z, it is normal being the ring of integers of a number �eld, and it is one dimensional,being an integral extension of Z. However, Z[p�5℄ is not a PID beause, for instane, the idealP = (2; 1+p�5) is not prinipal. Indeed if P were generated by a single element a+bp�5, thena would have to be an even integer whih divides 1, and this is impossible. As it turns out, thefat that the Dedekind domain Z[p�5℄ is not a PID is related to failure of unique fatorizationin Z[p�5℄, whih is illustrated by the two distint fatorizations 2�3 and (1+p�5)(1�p�5)of the number 6. Note, however, that if we pass to ideals and onsider the prinipal ideal (6)generated by 6 in Z[p�5℄, then there is no problem beause(6) = (2; 1 +p�5)(2; 1 �p�5)(3; 1 +p�5)(3; 1 �p�5)and it an be seen that the ideals on the right are distint prime ideals and the above fator-ization is of (6) into prime ideals is unique up to rearrangement of fators.Many more examples of Dedekind domains an be generated from the following basi result.Theorem 3.3 (Extension Theorem). Let A be a Dedekind domain, K its quotient �eld, La �nite separable extension of K, and B the integral losure of A in L. Then B is a Dedekinddomain.Proof. By Finiteness Theorem 2.23, B is noetherian. It is obvious that A is normal. Lastly, byCorollary 2.19 we see that dimB = dimA � 1.Sine Z is a Dedekind domain, we obtain as an immediate onsequene the following orol-lary.Corollary 3.4. If K is a number �eld, then OK, the ring of integers of K, is a Dedekinddomain.Exerise 3.5. Let A be a Dedekind domain with quotient �eld K. If S is any multipliativelylosed subset of A suh that 0 =2 S, then show that the loalization S�1A of A at S is a Dedekinddomain with quotient �eld K. Moreover, if L is an algebrai extension of K, then show thatthe integral losure of S�1A in L is S�1B.We shall now proeed to prove a number of basi properties of a Dedekind domain. Inpartiular, we shall establish the fat about unique fatorization of ideals as produts of primeideals, whih was alluded to in the beginning of this setion.27



De�nition 3.6. Let A be a domain and K be its quotient �eld. By a frationary ideal of A wemean an A-submodule J of K suh that dJ � A for some d 2 A, d 6= 0.Note that a �nitely generated A{submodule of K is a frationary ideal of A. Conversely, ifA is noetherian, then every frationary ideal of A is �nitely generated.To distinguish from frationary ideals, the (usual) ideals of A are sometimes alled theintegral ideals of A. Produts of frationary ideals is de�ned in the same way as the produt ofintegral ideals, and w.r.t. this produt, the setFA = fJ : J a frationary ideal of A and J 6= (0)gnonzero frationary ideals is a ommutative monoid with A as its identity element. Note thatFA ontains the subset of nonzero prinipal frationary ideals, viz.,PA = fAx : x 2 K; and x 6= (0)gand this subset is, in fat, a group. In ase A is a PID, we see easily (from Corollary 2.25, forexample) that FA = PA, and in this ase FA is a group. We will soon show that more generally,if A is any Dedekind domain, then FA is a group.Lemma 3.7. Every nonzero ideal of a noetherian ring A ontains a �nite produt of nonzeroprime ideals of A.Proof. Assume the ontrary. Then the family of nonzero nonunit ideals of A not ontaininga �nite produt of nonzero prime ideals of A is nonempty. Let I be a maximal element ofthis family. Then I 6= A and I an not be prime. Hene there exist a; b 2 A n I suh thatab 2 I. Now I + Aa and I + Ab are ideals stritly larger than I, and I � (I + Aa)(I + Ab).In partiular, I + Aa and I + Ab are nonzero nonunit ideals. So by the maximality of I, bothI +Aa and I +Ab ontain a �nite produt of nonzero prime ideals, and hene so does I. Thisis a ontradition.Lemma 3.8. Let A be a noetherian normal domain and K be its quotient �eld. If x 2 K andI is a nonzero ideal of I suh that xI � I, then x 2 A.Proof. Sine xI � I, we have xnI � I for n � 1. Thus if we let J = A[x℄, then JI � I.In partiular, if d 2 I, d 6= 0, then dJ � A. So J is a frationary ideal of A and sine A isnoetherian, J = A[x℄ is a f.g. A-module. Therefore, x is integral over A and sine A is normal,x 2 A.Lemma 3.9. Let A be a Dedekind domain and K be its quotient �eld. If P is any nonzeroprime ideal of A, then P 0 = (A :K P ) = fx 2 K : xP � Agis a frationary ideal of A, whih stritly ontains A. Moreover, PP 0 = A = P 0P . In partiular,P is invertible and P�1 = P 0.Proof. Clearly, P 0 is an A-module. Also, dP 0 � A for any d 2 P , d 6= 0. Thus P 0 is afrational ideal of A. It is lear that P 0 � A. To show that P 0 6= A, hoose any d 2 P , d 6= 0.By Lemma 3.7, we an �nd nonzero prime ideals P1; : : : ; Pn of A suh that (d) � P1 � � �Pn.28



Suppose n is the least positive integer with this property. Now, P1 � � �Pn � P , and sine Pis prime, we have Pi � P for some i. But A is a 1-dimensional ring, and so Pi = P . De�neI = P1 � � �Pi�1Pi+1 � � �Pn (note that I = A if n = 1). Then by the minimality of n, I 6� (d). Let 2 I be suh that  62 (d). Then d�1 62 A. But PI � (d), and this implies that P () � (d), andso d�1 2 P 0. Thus P 0 6= A. Next, to show that PP 0 = A, observe that P = PA � PP 0 � A.Thus PP 0 is an (integral) ideal of A ontaining the maximal ideal P . Hene PP 0 = A orPP 0 = P . But if x 2 P 0 nA, then by Lemma 3.8, xP 6� P , and hene PP 0 6= P . It follows thatPP 0 = A.Theorem 3.10. If A is a Dedekind domain, then FA, the set of nonzero frationary ideals ofA, forms an abelian group (w.r.t produts of frationary ideals).Proof. It suÆes to show that every nonzero (integral) ideal of A is invertible, beause if J 2 FA,then dJ is a nonzero ideal of A for some d 2 A, d 6= 0, and (d)(dJ)�1 is then the inverse of J .Now if some nonzero ideal of A is not invertible, then we an �nd a nonzero ideal I ofA, whih is not invertible and whih is maximal with this property. Clearly I 6= A and sothere is a nonzero prime ideal P of A suh that I � P . By Lemma 3.9, P�1 exists andI = IA � IP�1 � PP�1 = A. Moreover, if I = IP�1, then by Lemma 3.8, P�1 � A, whihontradits Lemma 3.9. Thus IP�1 is an ideal of A whih is stritly larger than I. So bythe maximality of I, the ideal IP�1 is invertible. But then so is I = (IP�1)P . This is aontradition.Theorem 3.11. Let A be a Dedekind domain. Then every nonzero ideal I of A an be fatoredas a produt of prime ideals, and this fatorization is unique up to a rearrangement of thefators. More generally, every nonzero frational ideal J of A fators as J = pe11 � � � pehh , forsome nonnegative integer h, distint prime ideals p1; : : : ; ph and nonzero integers e1; : : : ; eh.4Furthermore, the prime ideals p1; : : : ; ph and the orresponding exponents e1; : : : ; eh are uniquelydetermined by J .Proof. Assume for a moment that the assertion for integral ideals is proved. Then for anyJ 2 FA, there exists d 2 A, d 6= 0 suh that dJ is a nonzero ideal of A. Now if dJ = p1 � � � pkand (d) = q1 � � � ql, where pi and qj are prime ideals then J = p1 � � � pkq�11 � � � q�1l . Moreover,if we also have J = P1 � � �PmQ�11 � � �Q�1n for some prime ideals Pi and Qj (neessarily nonzerobut not neessarily distint), then p1 � � � pkQ1 � � �Qn = q1 � � � qlP1 � � �Pm and the uniqueness forfatorization of integral ideals an be used. This yields the desired results for nonzero frationalideals.To prove the existene of fatorization of nonzero ideals of A into prime ideals, we anproeed as in the proof of Theorem 3.10. Thus, let I be a nonzero ideal of A whih an not befatored as a produt of prime ideals and whih is maximal with this property. Then I 6= A andif P is a nonzero prime ideal ontaining I, then IP�1 is an ideal of A whih is stritly largerthan I. So by the maximality of I, the ideal IP�1 is a produt of prime ideals. Multiplying onthe right by P , we �nd that I is also a produt of prime ideals. This is a ontradition.To prove the uniqueness, let I be any nonzero ideal of A and suppose I = p1 � � � pr for somer � 0 and prime ideals p1; : : : ; pr. We indut on r to show that any other fatorization of I as4As per usual onventions, p�m = �p�1�m, for any positive integer m. Also, when h = 0, a produt suh aspe11 � � � pehh is the empty produt and it equals (1) = A.29



a produt of prime ideals di�ers from p1 � � � pr by a rearrangement of fators. If r = 0, this isevident sine a nonempty produt of prime ideals will be ontained in any one of the fators,whih is a proper subset of A. Assume that r � 1 and the result holds for ideals whih areproduts of r � 1 prime ideals. Now if I = q1 � � � qs for some s � 0 and prime ideals q1; : : : ; qs,then it is lear that s > 0. Moreover, q1 � � � qs � p1 implies that qj � p1 for some j. But sineI 6= (0), eah qj is a nonzero prime ideal and hene maximal. Thus qj = p1. Multiplying I byp�11 we �nd that p2 � � � pr = q1 � � � qj�1qj+1 � � � qs. Thus by indution hypothesis r � 1 = s � 1and p2; : : : pr are the same as q1; : : : ; qj�1; qj+1; : : : ; qs after a rearrangement. This implies thatr = s and p1; : : : ; pr equal q1; : : : ; qs after a rearrangement.Remark 3.12. Either of the following four onditions an be taken as a de�nition for an integraldomain A to be a Dedekind domain.(1) A is noetherian, normal and every nonzero prime ideal of A is maximal.(2) Nonzero frational ideals of A form a group with respet to multipliation.(3) Every nonzero ideal of A fators uniquely as a produt of prime ideals.(4) Every nonzero ideal of A fators as a produt of prime ideals.Note that (3) ) (4) is obvious and from Theorems 3.10 and 3.11, we have (1) ) (2) and(1) ) (3). Moreover, if (2) holds, then A is noetherian beause if I is a nonzero ideal ofA, then II�1 = A implies that Pni=1 aibi = 1 for some ai 2 I; bi 2 I�1, and onsequently,I = (a1; : : : ; an). Further, if (2) holds, then as in the proof of Theorem 3.11, the existeneof a nonzero ideal of A whih an not be fatored as a produt of prime ideals leads to aontradition. This shows that (2) ) (4). Hene, to prove the equivalene of (1), (2), (3) and(4) it suÆe to show that (4) ) (1). This an be done but it needs a little bit of work; fordetails, we refer to [20, Ch. V, x6℄.Exerise 3.13. Use Theorem 3.11 to show that for every nonzero prime ideal p of A, we ande�ne a funtion np : FA ! Z suh that for any J 2 FA, we have np(J) = 0 for all exept�nitely many p, and J =Yp pnp(J)where the produt is over all nonzero prime ideals p of A. Further show that J is an integral idealof A if and only if np(J) � 0 for all nonzero prime ideals p of A. Dedue that for J1; J2 2 FA,J1 � J2 () np(J1) � np(J2) for all nonzero prime ideals p of A:Use this to show that if I1; I2 are integral ideals of A, then I1 � I2 if and only if I2 divides I1,i.e., I1 = I2I3 for some integral ideal I3 of A. Finally, for any J1; J2 2 FA and a nonzero primeideal p of A, prove the following.(i) np(J1J2) = np(J1) + np(J2) and np(J1J�12 ) = np(J1)� np(J2).(ii) np(J1 + J2) = min fnp(J1); np(J2)g and np(J1 \ J )2 = max fnp(J1); np(J2)g.30



We have seen in Example 3.2 that a Dedekind domain need not be a UFD. On the otherhand, if a Dedekind domain A is a UFD and P is any nonzero prime ideal of A, then P mustontain an irreduible element beause otherwise there will be an in�nite stritly asendinghain (a1) � (a2) � � � � of prinipal ideals ontained in P , ontraditing that A is noetherian.Now if p 2 P is irreduible, then (p) is a nonzero prime ideal, and hene maximal. Hene,P = (p). Next, by Theorem 3.11, every nonzero ideal of A is a produt of prime ideals andtherefore, it is prinipal. Thus A is a PID. Consequently, if a Dedekind domain A is a UFD,then FA = PA or in other words, the quotient group FA=PA is trivial.De�nition 3.14. Let A be a Dedekind domain and K be its quotient �eld. The ideal lassgroup of A, denoted by CA, is de�ned to be the quotient FA=PA. When K is a number �eldand A = OK is its ring of integers, CA is often denoted by CK and alled the ideal lass groupof K. The elements of CK are alled the ideal lasses of K.As remarked earlier, if A is a Dedekind domain, thenA is a UFD () A is a PID () CA is trivial:Thus the size of the ideal lass group CA is a measure of how far A is from being a UFD. In thease when K is a number �eld and A = OK , it turns out that CK is a �nite (abelian) group.The order of this group is denoted by hK and is alled the lass number of K. The �niteness oflass number will be proved in Chapter 4 using some general results of Minkowski. A shorterproof is outlined in Exerise 4.3.We end this setion with a result whih gives a suÆient ondition for a Dedekind domainto be a PID.Proposition 3.15. A loal Dedekind domain is a PID. More generally, if a Dedekind domainhas only �nitely many maximal ideals, then it is a PID.Proof. Let A be a Dedekind domain with only �nitely many maximal ideals, say, P1; : : : ; Pr.Note that the ideals P1; : : : ; Pr, and more generally, their powers Pm11 ; : : : ; Pmrr are pairwiseomaximal. Fix any i 2 f1; : : : ; rg. Note that Pi 6= P 2i (beause otherwise Pi = A). So we an�nd ai 2 Pi n P 2i . By Chinese Remainder Theorem [f. Prop. 2.3℄, there exists a 2 A suh thata � ai(mod P 2i ) and a � 1(mod Pj) for 1 � j � r; j 6= i:Now, (a) is a nonzero ideal of A with (a) � Pi, and the fatorization of (a) into prime idealsan neither ontain Pj for any j 6= i nor an it ontain a power of Pi with exponent 2 or more.Hene (a) = Pi. Sine every nonzero ideal of A is a produt of the Pi's, it must be prinipal.Thus A is a PID.Remark 3.16. A ring with only �nitely many maximal ideals is sometimes alled a semiloalring. Thus the above Proposition says that a semiloal Dedekind domain is a PID. In the aseof loal Dedekind domains, we an, in fat, say more. Namely, a loal Dedekind domain is whatis alled a disrete valuation ring or a DVR. An integral domain A with quotient �eld K is adisrete valuation ring if there exists a map v : K n f0g ! Z with the propertiesv(xy) = v(x) + v(y) and v(x+ y) � minfv(x); v(y)g for all x; y 2 K n f0g31



and A = fx 2 K : x = 0 or v(x) � 0g. The map v is alled a valuation of K and A is alledits valuation ring. In ase A is a loal Dedekind domain, A has only one nonzero prime ideal,i say P , and for any nonzero element x of the quotient �eld of A, we an write Ax = P n for aunique integer n, and the map given by x 7! n is a valuation of K whose valuation ring is A.Exerise 3.17. Let A be a Dedekind domain. If P is a nonzero prime ideal of A and e a positiveinteger, then show that A=P e is a prinipal ideal ring. Use this and the Chinese RemainderTheorem to show that if I is any nonzero ideal of A, then R=I is a prinipal ideal ring. Deduethat every ideal of A an be generated by two elements.3.2 Extensions of PrimesIn the ring OK of integers of a number �eld K, a prime p of Z may not remain a prime. Forinstane in the ring of integers of Q(p�1), namely, in the ring Z[i℄ 5, the rational primes 2 and5 are no longer primes but 3 is. However, by Theorem 3.11, the ideal generated by p in this ringan be uniquely fatored as a produt of prime ideals. Roughly speaking, the phenomenon ofa prime splitting into several primes in an extension, is known as rami�ation. In this ontext,there is a beautiful analogue of the formulaPgi=1 eifi = n, whih holds when a moni polynomialf(X) of degree n with oeÆients in a �eld F , fators as f(X) = p1(X)e1 � � � pg(X)eg , whereg � 0, ei > 0 and pi(X) are distint moni irreduible polynomials in F [X℄ of degree fi. We nowproeed to give some relevant de�nitions and prove the Pgi=1 eifi = n formula in the generalsetting of Dedekind domains.In this setion, we shall assume that A;K;L;B are as in the Extension Theorem 3.3. Wewill also let n denote the degree of L=K.De�nition 3.18. Let p be a prime ideal of A. A prime ideal P of B is said to lie over p ifP \A = p.Sine B is a Dedekind domain, for any nonzero prime ideal p of A, the extension pB of pto B is a nonzero ideal of B and hene it an be uniquely written aspB = gYi=1P eiiwhere P1; P2; : : : ; Pg are distint nonzero prime ideals of B and ei are positive integers.Exerise 3.19. With p and Pi as above, show that a prime ideal P of B lies over p i� P = Pifor some i. Also show that pB \ A = p = P eii \ A. Dedue that B=pB as well as B=P eii B anbe regarded as vetor spaes over the �eld A=p. Further show that B=Pi is a �eld extension ofA=p whose degree is at most n.De�nition 3.20. With p, Pi, et. as above, the positive integer ei is alled the rami�ationindex of Pi over p and is denoted by e(Pi=p); the �eld degree [B=Pi : A=p℄ is alled the residuedegree (or the residue lass degree) of Pi over p and is denoted by f(Pi=p). If ei > 1 for some5Elements of Z[i℄ are often alled the Gaussian integers. These were �rst studied by C. F. Gauss in his workon biquadrati reiproity. 32



i, then we say that p is rami�ed in B (or in L). Otherwise, it is said to be unrami�ed. 6 Theextension L=K is said to be unrami�ed if every nonzero prime ideal of A is unrami�ed in L.Exerise 3.21. Let A;K;L;B and p be as above. Suppose L0 is a �nite separable extension ofL and B0 is the integral losures of B in L0. Show that B0 is the integral losure of A in L0.Further, if P a prime of B lying over p and P 0 a prime of B0 lying over P , then show that P 0lies over p and the following transitivity relations hold:e(P 0=p) = e(P 0=P )e(P=p) and f(P 0=p) = f(P 0=P )f(P=p):We are now ready to prove the main result of this setion.Theorem 3.22. Let A;K;L;B be as above and n = [L : K℄. Suppose p is a nonzero primeideal of A and we have pB = gYi=1P eiiwhere P1; P2; : : : ; Pg are distint prime ideals of B and e1; : : : ; eg are positive integers. Then,upon letting fi = [B=Pi : A=p℄, we have gXi=1 eifi = n:Proof. Let S = A n p and A0 = S�1A be the loalization of A at p. Then B0 = S�1B is theintegral losure of A0 in L, and pB0 = P 01e1 : : : P 0geg , where P 0i = PiB0. Moreover, the primesP 01; : : : ; P 0g are distint, A0=pA0 ' A=p and B0=P 0i ' B=Pi. Thus we see that in order to provethe equality P eifi = n, we an replae A;B; p; Pi by A0; B0; p0; P 0i respetively.In view of the observations above, we shall assume without loss of generality that A is aloal Dedekind domain with p as its unique nonzero prime ideal. Then, by the Corollary 2.25,B is a free A{module of rank n = [L : K℄. Write B = Ay1 + � � � + Ayn, where y1; : : : ; yn aresome elements of B. Now for the vetor spae B=pB over A=p, we learly haveB=pB = nXi=1 (A=p) �yiwhere �yi denotes the residue lass of yi mod pB. Moreover,X �ai�yi = 0 =)X aiyi 2 pB =) ai 2 pwhere ai 2 A and �ai denotes its residue lass mod p, and the last impliation follows sinefy1; : : : ; yng is a free A{basis of B. It follows that �y1; : : : ; �yn are linearly independent over A=p,and hene dimA=pB=pB = n:6To be aurate, we should de�ne p to be rami�ed if ei > 1 for some i or B=Pi is inseparable over A=p for somei. However, in number theoreti appliations, A=p will usually be a �nite �eld and so the question of separabilityof residue �eld extensions doesn't arise. 33



Now we ount the same dimension by a di�erent method. First, note that sine P1; : : : ; Pgare distint maximal ideals, P e11 ; : : : ; P egg are pairwise omaximal. Sine pB = P e11 � � �P egg , byChinese Remainder Theorem, we get an isomorphism (of rings as well as of (A=p){vetor spaes)B=pB ' gMi=1 B=P eii :Now let us �nd the dimension of the A=p{vetor spae B=P e where P = Pi and e = ei for somei. First, we note that for any j � 1, pP j � P j+1, and hene P j=P j+1 an be onsidered as avetor spae over A=p. We laim that we have an isomorphismB=P e ' B=P � P=P 2 � � � � � P e�1=P e:To see this, use indution on e and the fat that for e > 1, we learly haveB=P e�1 ' B=P eP e�1=P e :Next, we note that B is a Dedekind domain having only �nitely many prime ideals (in fat, (0)and P1; : : : ; Pg are the only primes of B), and so B must be a PID. Let t be a generator of P ,and onsider the map B=P ! P j=P j+1indued by the multipliation map x 7! tjx of B ! P j . This map is an A=p{homomorphism,and it is learly bijetive. SodimA=p(P j=P j+1) = dimA=p(B=P ) = f(P=p)and onsequently, from the above diret sum representations, we getdimA=p(B=pB) = gXi=1 dimA=p(B=P eii ) = gXi=1 eifi;whih yields the desired identity. This ompletes the proof.Examples:1. Consider the quadrati �eld K = Q(i), where i denotes a square root of �1. We knowthat OK is the ring Z[i℄ of Gaussian integers. If p is a prime � 1(mod 4), then we know (bya lassial result of Fermat) that p an be written as a sum of two squares. Thus there exista; b 2 Z suh that p = a2 + b2 = (a+ bi)(a � bi). It an be seen that (a+ bi) and (a� bi) aredistint prime ideals in OK . Thus for the prime ideal pZ, we have g = 2, e1 = e2 = 1 and (sineP eifi = 2) f1 = f2 = 1. On the other hand, it is not diÆult to see that a prime � 3(mod 4)generates a prime ideal in Z[i℄ and so for suh a prime, we have g = 1 = e1 and f1 = 2. Thease of p = 2 is speial. We have 2 = (1+ i)(1� i). But (1 + i) and (1� i) di�er only by a unit(namely, �i) and thus they generate the same prime ideal. So 2 is a rami�ed prime and for it,we have g = 1 = f1 and e1 = 2. 34



2. In Example 2 of Setion 2.4, where we disussed the pth ylotomi �eld K = Q(�p), wehave proved the identity p = (� � 1)(�2 � 1) : : : (�p�1 � 1);and also the fat that (��1)OK \Z= pZ. We note that for any integer i not divisible by p, wean �nd an integer j suh that ij � 1(mod p), and thus (�i�1)=(��1) = 1+�+� � �+�i�1 2 Z[�℄and its inverse (� � 1)=(�i � 1) = (�ij � 1)=(�i � 1) is also in Z[�℄. Therefore, the fration(�i � 1)=(� � 1) is a unit in Z[�℄. Consequently, (�i � 1) and (� � 1) generate the same ideal,say P . Now the above identity together with the previous Theorem shows that pZ[�℄ = P p�1and P is a prime ideal. Thus we �nd that in this ase g = 1 = f1 and e1 = p� 1 = [K : Q ℄.The last example illustrates the following de�nition.De�nition 3.23. A nonzero prime ideal p of A is said to be totally rami�ed in L (or in B) ifpB = P n for some prime ideal P of B.3.3 Kummer's TheoremIn this setion we prove a theorem, due to Kummer, whih shows how the deomposition ofextended prime ideals an be \read o�" from the fatorization of a polynomial, for a ertainlass of rings. It may be observed that the hypothesis of this theorem is satis�ed in the ase ofquadrati and ylotomi extensions.We shall use the following notation. Given a domain A and a maximal ideal p in A, we let �A,denote the residue �eld A=p; for any polynomial p(X) 2 A[X℄, by �p(X) we denote its redutionmod p, i.e., the polynomial in �A[X℄ whose oeÆients are the p{residues of the orrespondingoeÆients of p(X).Theorem 3.24. Let A be a Dedekind domain, K its quotient �eld, L a �nite separable exten-sion of K, and B the integral losure of A in L. Let p be a nonzero prime ideal of A. Assumethat B = A[�℄ for some � 2 B. Let f(X) = Irr(�;K). Suppose�f(X) = gYi=1 �pi(X)eiis the fatorization of �f(X) into powers of distint moni irreduible polynomials in �A[X℄. Letpi(X) be the moni polynomial in A[X℄ whose redution mod p is �pi(X). Then the primes inB lying over p are preisely given by P1; : : : ; Pg where Pi = pB + pi(�)B. Moreover,pB = gYi=1P eiiis the fatorization of pB into powers of distint primes in B, the rami�ation index of Pi overp is the above exponent ei, and the residue degree fi of Pi over p is the degree of the irreduiblefator �pi(X).Proof. Fix some i with 1 � i � g. Let ��i be a root of �pi(X). Consider the mapsA[X℄! �A[X℄! �A[X℄=(�pi(X)) ' �A[��i℄35



where the �rst map sends a polynomial in A[X℄ to its redution mod p, and the seond one isthe natural quotient map. The omposite of these maps is a homomorphism from A[X℄ onto�A[��i℄, and its kernel is learly given by pA[X℄ + pi(X)A[X℄. This kernel ontains f(X), andthus we get the indued map of A[X℄=(f(X)) onto �A[��i℄. Sine B = A[�℄ ' A[X℄=(f(X)),we get a map 'i of B onto �A[��i℄. Note that ker'i is equal to pB + pi(�)B. Sine �pi(X) isirreduible in �A[X℄, ker'i is a prime ideal in B whih ontains p. It is therefore a maximalideal in B lying over p. Also �A is a �eld and[B=ker'i : A=p℄ = dim �A �A[��i℄ = deg �pi(X):Now suppose P is any maximal ideal of B lying over p. Sinef(X)� p1(X)e1 : : : pg(X)eg 2 pA[X℄and f(�) = 0, we see that p1(�)e1 : : : pg(�)eg 2 pB � Pand hene pi(�) 2 P for some i, and then it follows that P must be equal to pB+pi(�)B. Thisshows that the primes lying in B over p are preisely P1; : : : ; Pg where Pi = pB + pi(�)B, andthat the residue degree fi = f(Pi=p) equals deg �pi(X). To prove the remaining assertion, let e0idenote the rami�ation index of Pi over p, so thatpB = P e011 : : : P e0gg :Sine Pi = pB + pi(�)B, we have P eii � pB + pi(�)eiBand hene, in view of the above observation that p1(�)e1 : : : pg(�)eg 2 pB, we haveP e11 : : : P egg � pB + p1(�)e1 : : : pg(�)egB � pB = P e011 : : : P e0gg :Consequently ei � e0i for all i. But we know thatgXi=1 eifi = deg f(X) = [L : K℄ = gXi=1 e0ifi:Therefore ei = e0i for all i. This ompletes the proof.Remark 3.25. If K is a number �eld, then by Primitive Element Theorem, there exists � 2 Ksuh that K = Q(�). We an also hoose this � to be in OK . However, a hoie of � forwhih OK = Z[�℄ may not always be possible. In other words, the hypothesis of Kummer'sTheorem may not always be satis�ed. As indiated earlier, quadrati �elds and ylotomi�elds do satisfy the hypothesis of Kummer's Theorem. Exerise 2.30 gives another example ofa number �eld K = Q(�) for whih OK = Z[�℄. On the other hand, the following exerise givesan example, due to Dedekind, of a number �eld K for whih doesn't satisfy the hypothesis ofKummer's Theorem.Exerise 3.26. Let � 2 C be a root of X3 �X2 � 2X � 8 and K = Q(�). Prove the following:(i) [K : Q ℄ = 3; (ii) if � = (�2 + �)=2, then �3 � 3�2 � 10� � 9 = 0, and hene � 2 OK ; (iii)DK=Q(1; �; �2) = �4(503) and DK=Q(1; �; �) = �503, and hene f1; �; �g is an integral basisof OK ; (iv) for any � 2 OK , DK=Q(1; �; �2) is an even integer; (v) OK 6= Z[�℄ for any � 2 OK .36



3.4 Dedekind's Disriminant TheoremSuppose we have a number �eld K whose ring of integers OK is of the form Z[�℄. Let f(X) bethe minimal polynomial of � over Q and p be a rational prime7. Let �f(X) 2 Z=pZ[X℄ denotethe redution of f(X) mod pZ. Then, by Kummer's Theorem, p rami�es in K i� �f(X) has amultiple root. Now, the polynomial �f(X) has a multiple root i� its (lassial) disriminant iszero (as an element of Z=pZ). The last ondition means that DisXf(X) = �dK is divisible byp. Thus we �nd that in this situation we have:p rami�es in K i� p divides dK :In fat, this turns out to be true even in a more general situation. This setion is devoted to aproof of this fundamental result, whih is due to Dedekind.Theorem 3.27. Let A be a Dedekind domain and K be its quotient �eld. Let L be a �niteseparable extension of K of degree n, and B be the integral losure of A in L. Let p be anonzero prime ideal of A. Assume that the �eld A=p is perfet (whih means that every algebraiextension of this �eld is separable)8. Then we have:p rami�es in L() p � DB=A:In partiular, if the above assumption on the residue �eld is satis�ed by every nonzero primeideal of A, then there are only a �nitely many prime ideals in A whih ramify in L.Proof. If we onsider the loalizations A0 = S�1A and B0 = S�1B where S = A n p, then it isreadily seen that DB0=A0 = DB=AA0 and p rami�es in L i� p0 = pA0 rami�es in L. Thus to provethe �rst assertion, we an and will assume without loss of generality that A is a loal Dedekinddomain and p is its unique maximal ideal.Let pB = P e11 P e22 � � �P egg , where P1; P2; : : : ; Pg are distint prime ideals ofB and e1; e2; : : : ; egare their rami�ation indies. As noted in the proof of Theorem 3.22, we have pB \ A = p =P eii \A, and we have an isomorphism of A=p{vetor spaesB=pB ' gMi=1 B=P eii :Let us set �A = A=p and �B = B=pB. For x 2 B, let �x denote the image of x in �B. Note thatwe learly have Tr �B= �A(�x) = TrL=K(x) for all x 2 B:Now if f�1; : : : ; �ng is any K{basis of L ontained in B suh that f��1; : : : ; ��ng is an �A{basisof �B, then using the above identity for traes, we see thatD �B= �A(��1; : : : ; ��n) = DL=K(�1; : : : ; �n): (1)7It is a ommon pratie in Number Theory to all the usual primes as rational primes (and the usual integersas rational integers) so as to distinguish from primes (and integers) in the rings of integers of algebrai number�elds.8This assumption would always be satis�ed in number theoreti appliations sine A=p would usually be a�nite �eld. 37



Next, we show that if �B ' �B1 � � � � � �Bg, where the isomorphism is of �A{vetor spaes, thenwe have D �B= �A = gYi=1D �Bi= �A: (2)To see the above identity, it suÆes to onsider the ase when g = 2 sine the general asewould follow by indution on g. For onveniene of notation, let us denote the element of Borresponding to (u; 0) 2 �B1 � �B2 by u itself and, similarly, the element of B orresponding to(0; v) 2 �B1� �B2 by v itself. It is lear that we an hoose �A{bases fu1; : : : ; urg and fv1; : : : ; vsgof �B1 and �B2 respetively suh that fu1; : : : ; ur; v1; : : : ; vsg is an �A{basis of �B. In view of theabove onvention, we see that uivj = 0. Thus Tr �B= �A(uivj) = 0, and soD �B= �A(u1; : : : ; ur; v1; : : : ; vs) = ������ Tr(uiui0) j 0: : : : : : j : : : : : :0 j Tr(vjvj0) ������ = D �B1= �A(u1; : : : ; ur)D �B2= �A(v1; : : : ; vs):Sine �A is a �eld and the non-vanishing of any of the above disriminants is independent of thehoie of the orresponding �A{bases, the desired equality of disriminant ideals follows. Thuswe have proved (2).Now suppose p is a rami�ed prime. Then ei > 1 for some i and thus the ring B=P eii ontainsa nonzero nilpotent element (whih may be taken to be any element of P ei�1i nP eii ), and heneso does �B. Let � 2 B be suh that �� 2 �B is a nonzero nilpotent element. Extend f��g toan �A{basis f��1; : : : ; ��ng of �B with �1 = �. Sine ��1 is nilpotent, so is ��1 ��j for 1 � j � n.Hene Tr( ��1 ��j) = 0 for 1 � j � n [beause if u 2 �B is nilpotent, then 0 is learly the onlyeigenvalue of the linear transformation x 7! ux of �B ! �B and Tr(u) equals the sum of alleigenvalues of this linear transformation℄. Consequently, D �B= �A( ��1; : : : ; ��n) = 0, and so D �B= �A isthe zero ideal. Thus if f�1; : : : ; �ng is an A{basis of B (whih exists by Finiteness Theorem),then f��1; : : : ; ��ng is an �A{basis of �B and in view of (1), we see that DL=K(�1; : : : ; �n) 2 pB.It follows that DB=A � pB \A = p.To prove the onverse, assume that p � DB=A. Suppose, if possible, p is unrami�ed. Thenei = 1 for all i and thus �B is isomorphi (as an �A{vetor spae) to the diret sum of the �elds�Bi = B=Pi. Sine �A is perfet, the extension �Bi= �A is separable, and therefore D �Bi= �A 6= 0, for1 � i � g. Thus by (2), we have D �B= �A 6= 0. But, in view of (1), this ontradits the assumptionthat DB=A � p. It follows that p must be a rami�ed prime.The �nal assertion about the number of rami�ed prime is an immediate onsequene of theabove haraterization and the fat that DB=A is a nonzero ideal of the Dedekind domain A.Corollary 3.28. Let K be a number �eld. A rational prime p rami�es in K i� p divides dK .In partiular, only �nitely many primes of Z ramify in K.3.5 Rami�ation in Galois ExtensionsIn the ase of Galois extensions, the fundamental identity P eifi = n, whih was proved inSetion 3.2, takes a partiularly simple form. This short setion is devoted to a proof of thissimpler identity. The key idea in the proof is the \norm argument" in the Lemma below.38



Lemma 3.29. Let A be a normal domain, K its quotient �eld, L a Galois extension of K,B the integral losure of A, and p a prime ideal of A. Then the primes of B lying over p areonjugates of eah other, i.e., for any prime ideals P;Q of B suh that P \A = p = Q\A, wehave Q = �(P ) for some � 2 Gal(L=K). In partiular, the number of prime ideals of B lyingover p is �nite, and , in fat, � [L : K℄.Proof. We use a similar redution as in the proof of Theorem 3.22. Thus we note that ifS = A n p, then the integral losure of A0 = S�1A in L is B0 = S�1B, and PB0 and QB0 areprime ideals of B0 lying over pA0. Moreover if QB0 = �(PB0), for some � 2 Gal(L=K), thenwe learly haveQ = QB0 \B = �(PB0) \B = �(PB0) \ �(B) = �(PB0 \B) = �(P ):So we assume without loss of generality that p is a maximal ideal of A. Now sine B=A isintegral, Q and P are maximal ideals of B. Suppose Q 6= �(P ) for any � 2 Gal(L=K). ByChinese Remainder Theorem, we an �nd some x 2 B suh thatx � 0(modQ) and x � 1(mod�(P )) 8� 2 Gal(L=K):Consider the norm NL=K(x) = Y�2Gal(L=K)�(x):By Proposition 2.22, this lies in A and hene in Q \ A = p. Now P is a prime ideal of Bontaining p, and thus it follows that �(x) 2 P for some � 2 Gal(L=K). But this ontraditsthe hoie of x.Corollary 3.30. Let A be a normal domain, K its quotient �eld, L a �nite separable extensionof K, B the integral losure of A in L, and p a prime ideal in A. Then there exists only a �nitenumber of prime ideals in B lying over p.Proof. Let L0 be a least Galois extension of K ontaining L and B0 be the integral losure ofA in L0. Suppose P and Q are distint prime ideals in B lying over p. Sine B0 is integral overB, there exist prime ideals P 0 and Q0 in B0 lying over P and Q respetively. Clearly P 0 and Q0are distint and they both lie over p. Hene, by Lemma 3.29, we get the desired result.Theorem 3.31. Let A be a Dedekind domain, K its quotient �eld, L a Galois extension of K,B the integral losure of A, and p a nonzero prime ideal of A. Then for the primes of B lyingover p, the rami�ation indies are the same and the residue degrees are the same. In otherwords, we have pB = (P1P2 : : : Pg)ewhere P1; : : : ; Pg are distint prime ideals of B, and f(P1=p) = � � � = f(Pg=p) (= f say).Moreover, if we let n = [L : K℄, then we haveefg = n:39



Proof. Let pB = P e11 : : : P egg , where P1; : : : ; Pg are distint prime ideals of B, and let fi =f(Pi=p) for 1 � i � g. For any � 2 Gal(L=K), we learly have �(p) = p and �(B) = B, andhene �(pB) = pB. By Lemma 3.29, for any i with 1 � i � g, there exists � 2 Gal(L=K) suhthat �(Pi) = P1, and onsequently, B=Pi ' �(B)=�(Pi) = B=P1. Thus ei = e1 and fi = f1.Sine we have already shown that Pgi=1 eifi = n, the theorem follows.Remark 3.32. With the notation and assumptions as in Theorem 3.31, we see that the rami�-ation index e(P=p) of a prime P of B lying over p is independent of the hoie of P . Thus itis sometimes denoted by ep. Likewise, in the ase of Galois extensions, the notation fp and gpis sometimes used.3.6 Deomposition and Inertia GroupsThe identity efg = n, proved in the last setion, is a starting point of a beautiful theory oframi�ation of primes developed by Hilbert. Some basi aspets of this theory will be disussedin this setion. In order to avoid repetition, we state below the notations and assumptions thatwill be used throughout this setion.Notation and Assumption: Let A be a Dedekind domain and K be its quotient �eld.Let L be a Galois extension of K and B be the integral losure of A in L. Let G denote theGalois group of L=K. Let p be a nonzero prime ideal of A. Let �A = A=p. Assume that �A is aperfet �eld.9 Let e = ep; f = fp. and g = gp.Observe that jGj = [L : K℄ = efg. Also note that if P is any prime of B lying over p, thenthe set primes of B lying over p is preisely f�(P ) : � 2 Gal(L=K)g. Thus the Galois group Gats naturally on this set of g primes and the ation is transitive.De�nition 3.33. Given any prime ideal P of B lying over p, the deomposition group of P w.r.t.L=K is de�ned to be the subgroup of G onsisting of automorphisms � suh that �(P ) = P . Itis denoted by DP (L=K) or simply by DP or D if the referene to L=K and/or P is lear fromthe ontext. The �xed �eld of DP (L=K) is alled the deomposition �eld of P w.r.t. L=K, andis denoted by KD.Note that DP (L=K) is the stabilizer of P for the natural ation of G on the set of primesof B lying over p. Hene jDP (L=K)j = jGj=g = ef . Thus [L : KD℄ = ef and [KD : K℄ = g.Also note that if Q is any prime ideal of B lying over p, then Q = �(P ) for some � 2 G, andwe have � 2 DQ(L=K), �(�(P )) = �(P ), ��1�� 2 DP (L=K)and so DQ = �DP��1. Thus if DP is a normal subgroup of G (whih, for example, is the aseif L=K is abelian), then it depends only on p and it may be denoted by Dp.Lemma 3.34. Let P be a prime ideal of B lying over p, and D = DP (L=K) be its deomposi-tion group. Let AD = B \KD be the integral losure of A in KD and let PD = P \AD. ThenP is the only prime of B lying over PD, and we havePDB = P e and f(P=PD) = f:9In number theoreti appliations, �A will usually be a �nite �eld and thus this assumption is valid.40



If D is a normal subgroup of G, then KD=K is a Galois extension and pAD is a produt of gdistint and onjugate primes of KD with residue degree 1.Proof. Sine L=KD is Galois, the set of primes of B lying over PD is given by f�(P ) : � 2Gal(L=KD)g = fPg. Further, if e0 = e(P=PD) and f 0 = f(P=PD), then we know from Exerise3.21 that e0je and f 0jf . On the other hand, e0f 0 = [L : KD℄ = ef . Hene e0 = e and f 0 = f .This proves our �rst assertion, and also it shows that e(PD=p) = 1 and f(PD=p) = 1. If D isnormal, then learly KD=K is Galois and e(P 0=p) = 1 = f(P 0=p), for any prime P 0 of AD lyingover p. Sine [KD : K℄ = g, we obtain the desired result.For the remainder of this setion, let us �x a prime P of B lying over p and let D =DP (L=K). Let �B = B=P . Then �B is a �eld extension of �A of degree f . By our assumption,�B= �A is separable. Now if � 2 D, then � learly indues an �A{automorphism �� of �B. We thusobtain a homomorphism � : D ! Gal( �B= �A) de�ned by �(�) = ��:The kernel of � is alled the inertia group of P w.r.t. L=K and is denoted by TP (L=K) orsimply by TP or T . Clearly, T is a normal subgroup of D. Note that the inertia group an bealternatively de�ned as follows.TP (L=K) = f� 2 G : �(x) = x(mod P ) for all x 2 Bg:The �xed �eld of T is alled the inertia �eld of P w.r.t. L=K and is denoted by KT . Observethat K � KD � KT � L, and KT =KD is a Galois extension with Galois group D=T . A betterdesription of this group and its order is given by the following lemma.Lemma 3.35. The extension �B= �A of residue �elds is normal, and � : D ! Gal( �B= �A) de�nesan isomorphism of D=T onto Gal( �B= �A).Proof. Let �� 2 B be any element, and � 2 B be its representative. Let f(X) be the minimalpolynomial of � over K. Sine � 2 B, f(X) 2 A[X℄. Moreover, sine L=K is normal, L andhene B ontains all the roots of f(X). Now f(�) = 0 and thus Irr(��; �A) divides �f(X), theredution of f(X) mod p. It follows that �B ontains all the roots of Irr(��; �A). Thus �B= �A isnormal.Next, we an �nd �� 2 �B suh that �B = �A(��) beause �B= �A is a �nite separable extension.Let � 2 B be a representative of B. By Chinese Remainder Theorem, we an �nd some � 2 Bsuh that for any � 2 G we have� � �(mod �(P )) for � 2 D and � � 0(mod �(P )) for � =2 D:Clearly �� = �� and thus �B = �A( ��). Let  2 Gal( �B= �A) be any element. As in the previousparagraph, we see that ( ��) is the image of some onjugate of �. Thus ( ��) = �(�) for some� 2 G. If � =2 D, then by the hoie of � we have �(�) 2 P , i.e., (�) = �(�) = �0, whih isimpossible. It follows that  = �� = �(�). This proves the Theorem.41



Corollary 3.36. We have jT j = e = [L : KT ℄ and [KT : KD℄ = f . Further, if AT = B \KT isthe integral losure of A in KT and PT = P \AT , then we havePDAT = PT with f(PT =PD) = f and PTB = P e with f(P=PT ) = 1:In partiular, we see that p is unrami�ed in KT .Proof. Sine jDj = ef and [ �B : �A℄ = f , it follows from Lemma 3.35 that jT j = e = [L : KT ℄and [KT : KD℄ = f . Now if we onsider the extension L=KT and the prime P lying over PT(i.e., replae K;A; p by KT ; AT ; PT respetively), then we have DP (L=KT ) = TP (L=KT ) =Gal(L=KT ) = T and the above results show that e(P=PT ) = e and e(P=PT )f(P=PT ) = e.The desired result follows from this using the transitivity relations for rami�ation indies andresidue degrees.Exerise 3.37. Let E be a sub�eld of L ontaining K and AE = B \E be the integral losureof A in E. Let PE = P \ AE. Show that DP (L=E) = DP (L=K) \Gal(L=E) and TP (L=E) =TP (L=K) \Gal(L=E).Exerise 3.38. Let H be the subgroup of G generated by the subgroups TP (L=K) as P variesover all nonzero prime ideals of B. Let E be the �xed �eld of H. Show that E=K is anunrami�ed extension.Exerise 3.39. For n � 0, de�ne Gn = f� 2 G : �(x) � x(mod P n+1)g. Show that Gn aresubgroups of G with G0 = T . Prove that Gn = f1g for all suÆiently large n. Also show thatG0=G1 is isomorphi to a subgroup of the multipliative group of nonzero elements of �B = B=P ,and therefore it is yli. Further show that for n � 1, Gn=Gn+1 is isomorphi to a subgroupof the additive group �B. Dedue that the inertia group T is a solvable group.Remark 3.40. Let Kp be the ompletion of K w.r.t. the valuation of K orresponding top (whose valuation ring is Ap), and LP be the ompletion of L w.r.t. the valuation of Lorresponding to P . Then we know that LP an be regarded as a �eld extension ofKp. SineKpis omplete, there is only one prime of LP lying over the prime (or the orresponding valuation)of Kp. And sine the residue �elds of these primes in the ompletions oinide with the residue�elds �A and �B respetively, it follows that the residue degrees are the same. Hene using theTheorem proved in the last setion, we see that the rami�ation index orresponding to LP=Kp ispreisely e, and we have ef = [LP : Kp℄. Moreover, every element of the deomposition groupD = DP (L=K) extends by ontinuity to an Kp{automorphism of LP , and sine jDj = ef ,it follows that Gal(LP =Kp) ' DP (L=K). In partiular, if P is unrami�ed, then T = f1gand thus D is isomorphi to Gal( �B= �A). Furthermore, if �A is �nite (whih is the ase if Kis a number �eld), then Gal( �B= �A) is yli, and thus whenever P is unrami�ed, we haveGal(LP =Kp) ' Gal( �B= �A) ' Gal(�LP= �Kp), where �LP and �Kp denote the residue �elds of (thevaluation rings of) LP and Kp respetively, so that the loal Galois group Gal(LP =Kp) is yli.For more on these matters, see [17℄3.7 Quadrati and Cylotomi ExtensionsIn this setion we shall onsider the examples of quadrati and ylotomi �elds and try todetermine expliitly the splitting of rational primes when extended to these number �elds.42



Example 1: Quadrati FieldsLet K be a quadrati �eld. As noted earlier, we have K = Q(pm), for some uniquelydetermined squarefree integer m (with m 6= 0; 1). Let O be the ring of integers of K. We havealso seen that O = ( Z[pm℄ if m � 2; 3(mod 4)Z[1+pm2 ℄ if m � 1(mod 4):In partiular, we see that the hypothesis of Kummer's Theorem 3.24 is satis�ed.Now let p be a rational prime. We are interested in the deomposition of the extended idealpO. The formula Pgi=1 eifi = n shows that g as well as ei; fi an only be 1 or 2, and that thesituation has to be one of the following.(i) g = 2; e1 = f1 = e2 = f2 = 1 so that pO = P1P2 for some distint primes P1, P2 of Owith O=Pi ' Z=pZ. In this ase, we say that p is a deomposed (or split) prime, or that pdeomposes (or splits) in O.(ii) g = 1; e1 = 2; f1 = 1 so that pO = P 2 for some prime P of O with O=P ' Z=pZ. Inthis ase p is a rami�ed prime.(iii) g = 1; e1 = 1; f1 = 2 so that pO = P for some prime P of O with [O=P : Z=pZ℄ = 2. Inthis ase, we say that p is an inertial prime.Now let's �gure out whih one is whih. First we onsiderCase 1: m 6� 1(mod 4), i.e., m � 2; 3(mod 4).In this ase, O = Z[pm℄ and f(X) = X2�m is the minimal polynomial of pm over Q . ByKummer's Theorem 3.24, the fatorization of pO is determined by the fatorization of �f(X),the redution of f(X) modulo p. If pjm or p = 2, then �f(X) = X2 or (X � 1)2, and hene(p)O = P 2, with P = (p;pm) or P = (p; 1 �pm), and p is rami�ed. If p6 jm and p 6= 2, then�f(X) is either irreduible in (Z=pZ)[X℄ or has two distint roots in Z=pZ (why?). The latter isthe ase if and only if m is a square mod p, i.e., m � x2(mod p) for some integer x. So we knowwhih primes are deomposed and whih are inertial. The result an be onveniently expressedusing the Legendre symbol, whih is de�ned thus.10�mp � = 8<: 1 if p 6 jm and m is a square mod p�1 if p 6 jm and m is not a square mod p0 if pjm.What we have shown so far is that if m � 2; 3(mod 4), thenthe rational prime p is 8>>><>>>: deomposed if p 6= 2 and �mp � = 1rami�ed if p = 2 or �mp � = 0inertial if p 6= 2 and �mp � = �1:10It may be noted that the Legendre symbol an be e�etively omputed using its basi properties, viz., �abp � =�ap�� bp�, �ap� = � bp� if a � b(mod p), and the Gauss' Law of Quadrati Reiproity whih states that for anyodd prime p, we have ��1p � = (�1) p�12 , � 2p� = (�1) p2�18 , and last but not the least, � pq�� qp� = (�1) p�12 q�12 ,where q is any odd prime. 43



Now let's onsiderCase 2: m � 1(mod 4).In this ase, O = Z h1+pm2 i and f(X) = X2�X� m�14 is the minimal polynomial of 1+pm2over Q . If p = 2, then �f(X) has a root mod p i� m�14 � 0(mod 2), i.e., m � 1(mod 8) [beausex2�x = x(x�1) � 0(mod 2) for any x 2 Z℄, and in this ase, eah of the two distint elementsin Z=2Z is a root of �f(X), whih implies that 2 is a deomposed prime. If p = 2 andm 6� 1(mod8), then �f(X) has to be irreduible in (Z=2Z)[X℄, and so 2 is an inertial prime. Now assumethat p 6= 2. Then the \roots" 1�pm2 of X2 � X � m�14 will exist in Z=pZ if and only if pmexists in Z=pZ, or equivalently, m is a square mod p. Moreover, �f(X) has multiple roots inZ=pZ i� pjm. (Verify!) Thus, by Kummer's Theorem 3.24, we �nd that p is rami�ed i� pjm,and if p 6= 2 and p6 jm, then p is deomposed or inertial aording as m is or is not a squaremod p. So if m � 1(mod 4), thenp is 8>>><>>>: deomposed if p = 2 and m � 1(mod 8) or if p 6= 2 and �mp � = 1rami�ed if pjm, i.e., �mp � = 0inertial if p = 2 and m 6� 1(mod 8) or if p 6= 2 and �mp � = �1:Reall that the disriminant of the quadrati �eld K = Q(pm) is given bydK = � 4m if m � 2; 3(mod 4)m if m � 1(mod 4):Now the above observations onerning rami�ed primes in K an be expressed in a uni�edmanner as follows. p is a rami�ed prime in K , pjdK :This veri�es the theorem of Dedekind, whih was proved in Setion 3.4.Exerise 3.41. (Fermat's Two Square Theorem): Show that the ring of integers of the quadrati�eld Q(i), where i2 = �1, is the ring Z[i℄ of Gaussian integers. Show that the deomposedprimes are preisely the primes of the form 4k + 1. Use this and the fat that Z[i℄ is a PID toshow that any prime of the form 4k + 1 an be written as a sum of two squares. Further, usethe fat that primes of the form 4k + 3 are inertial in Z[i℄ to show that any positive integern, with n = pe11 : : : pehh where p1; : : : ; ph are distint primes and e1; : : : ; eh are positive integers,an be written as a sum of two squares if and only if ei is even whenever pi � 3(mod 4).Example 2: Cylotomi FieldsLet p be an odd prime number and � be a primitive p{th root of unity. Let O be the ringof integers of the ylotomi �eld K = Q(�). We have noted earlier that the prime p is totallyrami�ed in K. In fat, we have (p)O = P p�1 where P is the prime ideal of O generated by(� � 1). We also know that dK = (�1) p�12 pp�2. Hene p is the only rami�ed prime. (This fatan also be seen from Kummer's Theorem 3.24 whih is appliable sine O = Z[�℄). Let q be arational prime di�erent from p. Then qO is a produt of g distint prime ideals of O. Let Qbe a prime ideal of O lying over qZ, and let f = [O=Q : Fq ℄ = (p � 1)=g, where Fq = Z=qZ.44



Then f (and hene g) an be determined as follows. If �� denotes the image of � in the �eld�O = O=Q, then we have �O = Fq (��) and ��p = 1. Thus �� is a nonzero element of �O�, whih isa multipliative group of order qf � 1. So it follows that p divides qf � 1, i.e., qf � 1(mod p).Moreover, if for some l < f , ql � 1(mod p), then �� would be in a �eld of ql elements and henethis �eld have to ontain �O = Fq (��), whih is a ontradition. Therefore f is the least positiveinteger suh that qf � 1(mod p). In this way f and hene g is expliitly determined. The primeideals lying above qZ an be determined by onsidering the fatorization of Xp� 1 in Z=qZ[X℄by using Kummer's Theorem 3.24. For example, if p = 7 and q = 5, then we �nd that f = 6and g = 1; moreover, Q = (5; 1 + � + �2 + �3 + �4 + �5 + �6) = (5) is the only prime ideal of Olying over 5Z.Exerise 3.42. Let p; � andK be as above. LetH be the unique subgroup of index 2 in the yligroup Gal(Q(�)=Q ). The �xed �eld of H, say E, is a quadrati �eld. Show that E = Q(pp�)where p� = (�1) p�12 p. Let q be an odd prime di�erent from p, f be as above, and let g = p�1f .Show that q deomposes in E i� �p�q � = 1. Next, if q deomposes in E, then show that g iseven and � qp� = 1. [You may use the elementary fat that �ap� � a p�12 (mod p).℄ Conversely, ifg is even, then show that the deomposition �eld of q ontains E, and so q deomposes in E.Further, if g is odd, then use the minimality of f to show that � qp� = �1. Dedue from all thisthat �pq�� qp� = (�1) (p�1)2 (q�1)2 .
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Chapter 4Class Number and LattiesIn this hapter, we will onentrate on the ase of (algebrai) number �elds. We shall see hownumber �elds give rise to latties in Rn in a natural way. We will then prove some resultsof Minkowski onerning latties and dedue some of its number-theoreti onsequenes. Inpartiular, we will show that the lass number of any number �eld is always �nite, and alsothat in any number �eld other than Q , some prime (of Z) is always rami�ed.4.1 Norm of an idealLet K be a number �eld and let A = OK denote its ring of integers.To every nonzero frational ideal J of A, we assoiate a nonzero rational number, denotedN(J), and alled the norm of J , as follows. For a nonzero prime ideal p of A, we de�neN(p) = pf if p 2 Z is suh that p \Z= pZ and f = f(p=pZ) = [A=p : Z=pZ℄:This de�nition is extended to nonzero frational ideals by multipliativity. Thus, if J 2 FA andif J = pe11 � � � pehh is its fatorization as in Theorem 3.11, thenN(J) = pe1f11 � � � pehfhh ; if p1; : : : ; ph 2 Z are suh that pi \ Z= piZ and fi = f(pi=piZ):It is lear that N is multipliative, i.e., N(J1J2) = N(J1)N(J2) for any J1; J2 2 FA; moreover,J is an integral ideal of A =) N(J) 2 Z; for any J 2 FA.If p is a nonzero prime ideal of A lying over pZ and f = f(p=pZ), then as in the proof ofTheorem 3.22, we see that for any positive integer e, A=pe is isomorphi to e opies of A=p, asa vetor spae over Z=pZ. Thus, N(pe) = pef = jA=pej. Using this and the Chinese RemainderTheorem, we see thatN(I) = jA=Ij; for any nonzero integral ideal I of A:Thus, from (2.3), we obtain the following important relation between the ideal norm and thedisriminant: �(I) = N(I)2dK for any nonzero integral ideal I of A: (4.1)46



The ideal norm behaves just like the norm of an element w.r.t. K=Q when we pass from Kto a larger number �eld L. More preisely, if L=K is a �nite extension, J 2 FA and B = OL,then JB 2 FB and from the transitivity relations in Exerise 3.21, it is readily seen thatN(JB) = N(J)[L:K℄: (4.2)The following proposition shows that in the ase of prinipal frational ideals the ideal norm isessentially the same as the norm of a generator.Proposition 4.1. If xA the prinipal frationary ideal of A generated by x 2 K; x 6= 0, thenN(xA) = jNK=Q(x)j:Proof. Let L be a normal losure of K so that L is a �nite extension of K suh that L=Q isGalois. From (4.2) and elementary properties of the norm of an element, we haveN(xB) = N(xA)[L:K℄ and NL=Q(x) = NK=Q(x)[L:K℄where B = OL is the ring of integers of L. Hene it suÆes to show that N(xB) = jNL=Q(x)j.With this in view, we may assume without loss of generality that K=Q is a Galois extension.Now, suppose p is a nonzero prime ideal of A. Let p 2 Z be suh that p \ Z = pZ and lete = e(p=pZ) and f = f(p=pZ). If P1; : : : ; Pg are the prime ideals of A lying over pZ (with, say,P1 = p), then from Lemma 3.29 and Theorem 3.31, it is lear thatN(p)A = pfA = (pA)f = (P1 � � �Pg)ef = Y�2Gal(K=Q) �(p): (4.3)Note that sine A is integral over Z, we have mA\Z= mZ. for any m 2 Z. Thus, to prove theproposition, it suÆes to show that the integers N(xA) and NK=Q(x) generate the same idealin A. Let xA = pe11 � � � pehh be the fatorization of xA as a produt of powers of distint primeideals of A. Then, N(xA)A = (N(p1)A)e1 � � � (N(ph)A)eh , and so from (4.3), we see thatN(xA)A = hYi=1 Y�2G �(pi)!ei = Y�2G � hYi=1 peii ! = Y�2G � (xA) =  Y�2G �(x)!A = NK=Q(x)Awhere G = Gal(K=Q) denotes the Galois group of K over Q . This ompletes the proof.We shall use the notion of ideal norm to prove the �niteness of the lass number of K. Abasi observation is the following.Lemma 4.2. If every ideal lass of K ontains an integral ideal I with N(I) � C, where C isa positive real number independent of I (but may depend on K), then CK is �nite.Proof. It suÆes to show that that the number of nonzero ideals I of A with N(I) = m is �nite,for any positive integer m. Now, if N(I) = m, then the additive abelian group A=I has orderm and thus ma 2 I for all a 2 A. In partiular, I ontains mZ. But from Theorem 3.22, it islear that there are only �nitely many ideals of A ontaining mZ.47



In setion 4.4, we use some results of Minkowski to obtain an expliit value of C for whihLemma 4.2 holds. A rude bound an, however, be obtained by a less intriate argument asshown in the book of Marus [13, Ch. 5℄. We outline it here as an exerise.Exerise 4.3. Let fu1; : : : ; ung be an integral basis of A. Also, let u(1)i ; : : : ; u(n)i denote theonjugates of ui w.r.t. K=Q , for 1 � i � n.(i) Given any nonzero ideal I of A, let m = �N(I)1=n� be the integer part of N(I)1=n. Showthat there are (m+ 1)n elements of the form Pni=1miui where mi 2 Z with 0 � mi � m.Dedue that I ontains a nonzero element x suh that x =Pni=1miui where mi 2 Z withjmij � m.(ii) Show that if x is as in (i) above, thenjNK=Q(x)j � C N(I) where C = nYj=1 nXi=1 ju(j)i j:(iii) Show that every ideal lass of K ontains an ideal I 0 of A suh that N(I 0) � C, where Cis as in (ii) above. Dedue that CK is �nite.4.2 Embeddings and LattiesLet K be a number �eld and let n = [K : Q ℄. Sine K=Q is separable and a normal losure ofK an be found in C (in fat C also ontains an algebrai losure of K), it follows that thereare exatly n distint Q-homomorphisms of K ! C . These homomorphisms are alled theembeddings of K (in C ). If an embedding � : K ! C is suh that �(K) � R, then it is alleda real embedding; otherwise it is alled a omplex embedding. Note that the word `omplex' isused here in the sense of `non-real'. In partiular, if � : K ! C is a omplex embedding, then�� : K ! C de�ned by��(u) = �(u) = the omplex onjugate of �(u); for u 2 K;is an embedding of K di�erent from �. It follows that the number of omplex embeddings ofK is even. We usually denote the number of real embeddings of K by r (or by r1) and thenumber of omplex embeddings of K by 2s (or by 2r2). We have r+2s = n. In ase s = 0, the�eld K is said to be totally real.Example 4.4. For K = Q(p2), we have r = 2 and s = 0, sine any embedding is of the forma + bp2 7! a � bp2. Thus Q(p2) is a totally real �eld. On the other hand, for K = Q(i),we have r = 0 and s = 1. For the ubi �eld K = Q( 3p2), we have r = 1 and s = 1, and theembeddings of K are essentially given by 3p2 7! 3p2, 3p2 7! ! 3p2 and 3p2 7! !2 3p2, where !denotes a primitive ube root of unity.A subset L of Rn suh that L = Zv1+ � � �+ Zvnfor some R-basis fv1; : : : ; vng of Rn , is alled a lattie in the Eulidean spae Rn . We all theset P = f�1v1 + � � � + �nvn : 0 � �i < 1 for i = 1; : : : ; ng48



a fundamental parallelotope of L (w.r.t. the Z-basis fv1; : : : ; vng of L). Note that Rn is overedby the translates of P by elements of L, i.e.,Rn = ax2Lx+ P (4.4)where ` denotes disjoint union.It is lear that any lattie an be transformed to Zn by an invertible linear transformationof Rn , say T . If T 0 is another suh linear transformation, then T and T 0 di�er by an invertiblelinear transformation if Zn, or in other words, by an element of GLn(Z). In partiular, detT =�detT 0, and thus the absolute value jdet T j is independent of hoie of T . We all this absolutevalue the volume of L, and denote it by Vol(Rn=L). Note that the volume of L is a positivereal number. Moreover, from the Change of Variables formula for n-fold integrals, we readilysee that the notion of the volume of a lattie L is related to the lassial notion of volume ofsubsets of Rn by the formula Vol(Rn=L) = vol(P );where P is a fundamental parallelotope of L and vol(P ) denotes its volume as a subset of Rn .Reall that for any measurable subset E of Rn , the volume of E is de�ned byvol(E) = ZE d�where � denotes the Lebesgue measure on Rn . Note that if E is ompat or ontained in aompat set, then vol(E) < 1. Also note that if E0 = �E := f�x : x 2 Eg, then E0 ismeasurable and vol(E0) = �nvol(E).The following result shows how number �elds generate latties, and also how their volumean be omputed.Proposition 4.5. Let K be a number �eld of degree n over Q . Let �1; : : : ; �r be the realembeddings and �1; : : : ; �s; ��1; : : : ; ��s be the omplex embeddings of K. De�ne f : K ! Rn by,f(u) = (�1(u); : : : ; �r(u);Re�1(u); : : : ;Re�s(u); Im ��1(u); : : : ; Im ��s(u)) for u 2 K:Then f is injetive and the image of OK under f is a lattie LK in Rn . In partiular K embedsdensely in Rn . Moreover, if dK denotes the (absolute) disriminant of K, thenVol (Rn=LK) = pjdK j2s :More generally, if I is any nonzero ideal of OK , then f(I) is a lattie LI in Rn andVol (Rn=LI) = pjdK j2s N(I):Proof. Let fu1; : : : ; ung be an integral basis of OK . The onjugates of ui w.r.t. K=Q arepreisely given by �1(u); : : : ; �r(u); �1(u); : : : ; �s(u); ��1(u); : : : ; ��s(u). Thus from the expressionfor DL=K(u1; : : : ; un) in the proof of Theorem 1.11, we see thatdK = �1(u1) : : : �r(u1) �1(u1) : : : �s(u1) ��1(u1) : : : ��s(u1)... ...�1(un) : : : �r(un) �1(un) : : : �s(un) ��1(un) : : : ��s(un) 2:49



Now, in the n�n matrix above, let us make the following elementary olumn operations. First,we add the the (r+ s+ j)-th olumn to the (r+ j)-th olumn for 1 � j � s. Next, we multiplythe resulting (r + j)-th olumn by 1=2 and subtrat it from the (r + s + j)-th olumn for1 � j � s. As a onsequene, we see thatdK = (�1)s22s [det (fi(uj))℄2 and pjdK j = 2s jdet (fi(uj))jwhere f1; : : : ; fn denote the oordinate funtions of f . In partiular, the determinant on theright is nonzero, and thus the vetors f(u1); : : : ; f(un) in Rn are linearly independent. It followsthat f is injetive and LK = f(OK) is a lattie in Rn with Vol (Rn=LK) = 2�spjdK j. Theassertion about K being densely embedded in Rn follows sine f(K) ontains the Q-span off(u1); : : : ; f(un).In the more general ase when I is a nonzero ideal of OK and LI = f(I), we an proeed asbefore but with fu1; : : : ; ung replaed by an integral basis of I so that dK is replaed by �(I).The desired formula for Vol(Rn=LI) is then a onsequene of (4.1).Remark 4.6. 1. The above proof shows that the sign of the disriminant of a number �eld with2s omplex embeddings is given by (�1)s. This result is sometimes alled Brill's DisriminantTheorem.2. From Proposition 4.5, it is immediate that N(I) = Vol(Rn=LI)=Vol(Rn=LK). Sometimesthe norm of an ideal is de�ned this way as the quotient of the volumes of latties LI and LK .In this ase, proving the multipliativity of ideal norm requires some e�ort. For an approahalong these lines, see, for example, the reent book of Swinnerton-Dyer [16℄.De�nition 4.7. A subset S of Rn is alled symmetri if 0 2 S and moreover, �x 2 S wheneverx 2 S.Lemma 4.8. let L be a lattie in Rn and S be a onvex, measurable, symmetri subset of Rnsuh that vol(S) > 2nVol(Rn=L). Then S ontains a nonzero point of L. In ase S is alsoompat, then S ontains a nonzero point of L even when vol(S) = 2nVol(Rn=L).Proof. Let P be a fundamental parallelotope for L. Then from (4.4), we see that given anymeasurable subset E of Rn , we have E =`x2LE \ (x+ P ). Therefore,vol(E) =Xx2L vol (E \ (x+ P )) =Xx2L vol ((E � x) \ P ) : (4.5)Now, onsider E = 12S. We havevol(E) = 12n vol(S) > Vol(Rn=L) = vol(P ): (4.6)Hene, if the sets (E�x)\P were all disjoint, as x varies over L, then the rightmost expression in(4.5) would be � vol(P ), whih ontradits (4.6). Therefore, there exist a; b 2 S and p 2 P suhthat p = 12a�x = 12b�y for some x; y 2 L, x 6= y. It follows that 0 6= x�y = 12a+ 12(�b) 2 S\L.In ase S is ompat, we onsider Sn = S + 1nS, and obtain nonzero points xn 2 Sn \ Lfrom the previous ase. Note that Sn = �1 + 1n�S � 2S beause S is onvex and 0 2 S. Thus,xn 2 2S \L for all n � 1. But 2S \L is �nite sine S is ompat. Therefore, the sequene (xn)has a onstant subsequene, whose limit is in the losure of S, whih is S itself.50



Remark 4.9. The above lemma is sometimes referred to as Minkowski's Convex Body Theorem.It is a key result in Minkowski's geometri approah to the theory of numbers. A leisurelydisussion of this result along with several appliations as well as referenes to alternativeproofs and further developments, an be found in the reent book of Olds, Lax and Davido� [14℄.The exerise below gives two suh appliations. The �rst is an elementary theorem of Dirihlet,whih may be regarded as a starting point for the theory of Diophantine Approximation (and inpartiular, the study of ontinued frations). The seond result is the elebrated Four SquareTheorem, �rst proved by Lagrange in 1770. Classial proofs of Dirihlet's Theorem (usingPigeonhole priniple) and Lagrange's Theorem (using Fermat's method of in�nite desent) anbe found in the book of Baker [2℄. The appliations of Minkowski's Convex Body Theorem withwhih we shall be onerned, appear after the exerises and in the subsequent setions.Exerises 4.10. 1. Given any real number � and any integer Q > 1 show that there existintegers p; q with 0 < q < Q and jq�� pj � 1=Q. [Hint: Let L = Z2 and S be the parallelogrambounded by the lines x = �Q and y � �x = �1=Q, and use Lemma 4.8.℄2. Let p be an odd prime. First, show that there exist integers a; b suh that pja2 + b2 + 1.[Hint: The numbers a2 with 0 � a � (p�1)=2 are mutually inongruent (mod p), and the sameholds for the numbers �1� b2 with 0 � b � (p� 1)=2.℄ Next, show that p is a sum of squaresof four integers. [Hint: Let L � R4 be the lattie spanned by (m; 0; a; b); (0;m; b;�a); (0; 0; 1; 0)and (0; 0; 0; 1), and S be the open dis in R4 entered at origin and of radius p2m, and useLemma 4.8.℄ Finally, use the trivial representation 2 = 12 + 12 + 02 + 02 and Euler's identity(x2 + y2 + z2 + w2)(x02 + y02 + z02 + w02)= (xx0 + yy0 + zz0 + ww0)2 + (xy0 � yx0 + wz0 � zw0)2+(xz0 � zx0 + yw0 � wy0)2 + (xw0 � wx0 + zy0 � yz0)2to dedue that every positive integer is a sum of four squares.Let n be a positive integer and r; s be nonnegative integers suh that r+2s = n. We de�nethe (r; s)-norm of any x = (x1; : : : ; xn) 2 Rn byNr;s(x) = x1 � � � xr �x2r+1 + x2r+s+1� � � � �x2r+s + x2n� :Observe that if K is a number �eld of degree n and r; s have their usual meaning, then forany u 2 K we have NK=Q(u) = Nr;s(f(u)), where f denotes the injetion of K in Rn given byLemma 4.5.Corollary 4.11. Let n be a positive integer and r; s be nonnegative integers suh that r+2s = n.If 
 is a ompat, onvex, symmetri subset of Rn suh thatvol(
) > 0 and jNr;s(a)j � 1 for all a 2 
;then every lattie L in Rn ontains a nonzero vetor x suh thatjNr;s(x)j � 2nVol(Rn=L)vol(
) :Proof. Apply Lemma 4.8 with S = �
, where � = 2 npVol(Rn=L)=vol(
).51



4.3 Minkowski's TheoremWe will now use the mahinery developed in the previous setion to prove the following impor-tant result of Minkowski.Theorem 4.12 (Minkowski). Let n be a positive integer and r; s be nonnegative integers suhthat r + 2s = n. If L is any lattie in Rn , then L ontains a nonzero vetor x suh thatjNr;s(x)j � n!nn � 8��sVol(Rn=L):Proof. For any positive real number t, let 
t = 
t(r; s) denote the setf(x1; : : : ; xn) 2 Rn : rXi=1 jxij+ 2 r+sXj=r+1qx2j + x2j+s � tg:It is lear that 
t is a ompat and symmetri subset of Rn . Further, from the Cauhy-Shwartzinequality, we see thatp(a+ )2 + (b+ d)2 �pa2 + b2 +p2 + d2 for any a; b; ; d 2 Rand this, in turn, implies that if x; y 2 
t and � 2 R with 0 � � � 1, then �x+ (1� �)y 2 
t.Thus 
t is onvex. Now let t = n. By applying the AM-GM inequality to the n numbersjx1j; : : : ; jxrj; qx2r+1 + x2r+s+1 ;qx2r+2 + x2r+s+2 ; : : : ;qx2r+s + x2n, we see thatjNr;s(x)j � 1 for all x 2 
n:Now the desired result follows at one by applying Corollary 4.11 to 
 = 
n if we prove thefollowing. vol(
t) = tn2r ��2�s 1n! : (4.7)To prove (4.7), let Vr;s(t) = vol(
t(r; s)). Sine 
t = t
1, we have Vr;s(t) = tnVr;s(1) =tr+2sVr;s(1). We now alulate Vr;s(1) using double indution on r and s. First, if r > 0, thenfrom the de�nitions of 
t(r; s) and Vr;s(t), we see thatVr;s(1) = Z 1�1 Vr�1;s(1� jxj)dx= 2Z 10 Vr�1;s(1)(1 � x)r�1+2sdx= 2r + 2s Vr�1;s(1):Thus by indution on r, we obtainVr;s(1) = 2r(r + 2s)(r � 1 + 2s) � � � (1 + 2s)V0;s(1):52



Next, if s > 0, then V0;s(1) = ZZ x2+y2�1=2 V0;s�1(1� 2px2 + y2)dxdy= Z 2�0 Z 1=20 V0;s�1(1� 2�)� d� d�= Z 2�0 Z 1=20 V0;s�1(1)(1 � 2�)2s�2� d� d�= 2�V0;s�1(1) 14(2s)(2s � 1) :Thus using indution on s and by noting that V0;1(1) = RR x2+y2�1=2 dx dy = �2 12 , we see thatV0;s(1) = (�=2)s(1=(2s)!), and heneVr;s(1) = 2r(r + 2s)!V0;s(1)��2�s = �s 2r�sn!This implies (4.7), and thus the theorem is proved.4.4 Finiteness of Class Number and Rami�ationTheorem 4.13. Let K be a number �eld with [K : Q ℄ = n and let dK be its (absolute) dis-riminant. Suppose K has 2s omplex embeddings. Then every ideal lass of K ontains anideal of I of A suh that N(I) � n!nn � 4��spjdK j: (4.8)Consequently, the ideal lass group CK of K is �nite.Proof. Let I 0 be an integral ideal in a given ideal lass of K. If J 0 = (I 0)�1, then J 0 is afrational ideal but we an �nd d 2 A, d 6= 0 suh that J := 1dJ 0 is an integral ideal. Now,onsider the map f : K ! Rn de�ned in Proposition 4.5, and let LJ = f(J) be the lattie in Rnorresponding to I. Applying Minkowski's Theorem 4.12 to the lattie LJ , we see that thereexists u 2 J suh that u 6= 0 andN(Au) = jNK=Q(u)j = jNr;s(f(u))j � n!nn � 8��sVol(Rn=LJ) = n!nn � 4��spjdK jN(J):where the last equality follows from Proposition 4.5. Using the multipliativity of ideal norm,we see that if I := (u)J�1, then N(I) � n!nn � 4��spjdK j:Moreover, I = (ud)I 0 and thus I is an integral ideal in the given ideal lass. This proves thedesired inequality. The last assertion follows Lemma 4.2.53



In the examples below, we show how Minkowski's Theorem an be e�etively used to de-termine the lass number in several ases.Examples 4.14. 1. Let K = Q(p5). Then n = 2. s = 0 and dK = 5. Thus the Minkowski'sinequality (4.8) redues to N(I) � 2!22p5 = p52 < 2:Thus every ideal lass ontains an ideal I of A with N(I) = 1, i.e., I = A. It follows that CKis trivial and hK = 1. Notie that a similar argument will show that if K = Q(p2) or Q(p3),then hK = 1.2. Let K = Q(p�5). Then n = 2. s = 1 and dK = �20. Thus the Minkowski's inequality(4.8) redues to N(I) � 2!22 � 4��p20 = 2p20� = 2:84 : : : :Now if N(I) = 2, then I must be a prime ideal lying over 2Z and with residue degree 1. Sine2OK = (2; 1 +p�5)(2; 1 �p�5) = (2; 1 +p�5)2, it follows that there is only one possibilityfor I, namely I = (2; 1 +p�5). Thus there are at most two distint ideal lasses in K. HenehK � 2. But we know that OK is not a UFD and so hK > 1. Thus, hK = 2.3. Let K = Q(p17). Then n = 2. s = 0 and dK = 17. Thus the Minkowski's inequality(4.8) redues to N(I) � 2!22p17 = p172 = 2:06 : : : :Thus there are at most two ideal lasses and hK � 2. Moreover, if N(I) = 2, then I must be aprime ideal lying over 2Z and with residue degree 1. Now,2 = 17� 94 =  p17 + 32 ! p17� 32 !and both the fators are irreduible elements in OK (hek!). It follows that only ideals of OKwith norm 2 are the prinipal prime ideals �p17+32 � and �p17�32 �. Thus every ideal lass of Kontains a prinipal ideal and so hK = 1.Exerise 4.15. Show that the lass number of the quadrati �eld Q(pd) is 1 if d = �1;�2;�3;�7or if d = 2; 3; 5.Remark 4.16. It turns out, more generally, that the lass number of the imaginary quadrati�eld Q(pd) is 1, if d = �1;�2;�3;�7;�11;�19;�43;�67;�163. The onverse, that theseare the only imaginary quadrati �elds with lass number 1, was proved independently, byBaker and Stark in 1967. For a beautiful exposition of this problem, known as the Gauss ClassNumber One Problem, and related results, see the artile of D. Goldfeld in the Bull. Amer.Math. So. 13 (1985), pp. 22{37.We end with a beautiful result, usually asribed to Hermite and/or Minkowski, whih maybe viewed as an arithmeti analogue of the topologial fat that C is simply onneted1.1For more explanation, see the remarks at the end of Appendix B.54



Theorem 4.17. Let K be a number �eld and dK be the (absolute) disriminant of K. IfK 6= Q , then jdK j > 1 and onsequently, at least one rational prime must ramify in K.Proof. Let n = [K : Q ℄ and let r and 2s denote, respetively, the number of real and omplexembeddings of K. Then r � 0 and r + 2s = n, and so s � [n=2℄, where [n=2℄ denotes theintegral part of n=2. As a onsequene,nnn! =0�[n=2℄Yi=1 ni1A0� nYi=[n=2℄+1 ni1A � 0�[n=2℄Yi=1 n(n=2)1A0� nYi=[n=2℄+1 11A = 2[n=2℄ � 2s:Thus, from the Minkowski's inequality (4.8), we see thatpjdK j � nnn! ��4�s � 2[n=2℄ ��4�s � ��2�s :Sine K 6= Q , we have n > 1, and so pjdK j � 2[n=2℄ > 1 if s = 0 whereas pjdK j � (�=2)s > 1if s > 0. Thus in any ase, jdK j > 1. Therefore, by Dedekind's Disriminant Theorem [f.Corollary 3.28℄, it follows that some rational prime must ramify in K.Remarks 4.18. 1. If one analyzes the inequalities in the above proof a little more arefully, thenwe an see that jdK j � �3 �3�4 �n�1 :Consequently, n= log jdK j is bounded by a onstant independent of K, and, moreover, given anyd 2 Z, the degree of a number �eld with disriminant d is bounded. The last assertion has beenre�ned by Hermite to show that given any integer d, there are only �nitely many number �eldswith disriminant d. For details onerning these �ner results, we refer to the book of Samuel[15℄.2. Some of the tehniques in this hapter are useful to prove a elebrated result of Dirihlet,whih states that if K is a number �eld with r real embeddings and 2s omplex embeddings,then the group OK� of units of OK is isomorphi to �K � Zr+s�1, where �K is a �nite yligroup onsisting of the roots of unity in K. Dirihlet's Unit Theorem may be regarded as avast generalization of some lassial observations onerning the solutions of the Brahmagupta-Bhaskaraharya-Pell-Fermat equation2 X2�dY 2 = 1. For a proof of Dirihlet's Unit Theorem,we refer to the books of Samuel [15℄ or Lang [12℄.
2For a historial disussion of this famous equation, see the write up at the MaTutor History of Mathematisarhive: http://www-gap.ds.st-and.a.uk/ history/HistTopis/Pell.html, and the referenes therein.55
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Appendix ANotes on Galois Theory
A.1 PreambleThese notes attempt to give an introdution to some basi aspets of Field Theory and Galois Theory.Originally, a preliminary version of a part of these notes was prepared to supplement the letures of theauthor on Galois Theory and Rami�ation Theory at the All India Summer Shool in Number Theoryheld at Pune in June 1991. Subsequently, the �rst 6 setions of the Pune Notes were separated andslightly revised to form these \Notes on Galois Theory". These notes were, then, used for the pre-onferene distribution to the partiipants of the NBHM sponsored Instrutional Shool on AlgebraiNumber Theory (University of Bombay, Deember 1994) at the request of the organizers. A few minorrevisions have taken plae in the subsequent years.The main aim of these notes has always been to provide a geodesi, yet omplete, presentationstarting from the de�nition of �eld extensions and onluding with the Fundamental Theorem of GaloisTheory. Some additional material on separable extensions and a setion on Norms and Traes is alsoinluded, and some historial omments appear as footnotes. The prerequisite for these notes is basiknowledge of Abstrat Algebra and Linear Algebra not beyond the ontents of usual undergraduateourses in these subjets. No formal bakground in Galois Theory is assumed. While a omplete proofof the Fundamental Theorem of Galois Theory is given here, we do not disuss further results suhas Galois' theorem on solvability of equations by radials. An annotated list of referenes for GaloisTheory appears at the end of Setion 5. By way of referenes for the last setion, viz., Norms andTraes, we reommend Van der Waerden's \Algebra" (F. Ungar Pub. Co., 1949) and Zariski{Samuel's\Commutative Algebra, Vol. 1" (Springer-Verlag, 1975).It appears that over the years, these notes are often used by students primarily interested in NumberTheory. Thus it may be pertinent to remark at the outset that the topis disussed in these notesare very useful in the study of Algebrai Number Theory1. In order to derive maximum bene�t fromthese notes, the students are advised to attempt all the Exerises and �ll the missing steps, if any, inthe proofs given. The author would appreiate reeiving omments, suggestions and ritiism regardingthese notes.1In fat, questions onerning integers alone, an sometimes be answered only with the help of �eld extensionsand ertain algebrai objets assoiated to them. For instane, Kummer showed that the equation Xp+Y p = Zphas no integer solution for a lass of odd primes p, alled regular primes, whih inlude all odd primes less than100 exept 37, 59 and 67. Even a onvenient de�nition of regular primes, not to mention the proof of Kummer'sTheorem, involves many of the algebrai notions disussed in these letures. Indeed, an odd prime is regular ifit doesn't divide the lass number of the ylotomi �eld extension Q(�p ) of Q. For details, see H. Edwards'Springer monograph \Fermat's Last Theorem" (1977).57



A.2 Field ExtensionsLet K be a �eld 2. By a (�eld) extension of K we mean a �eld ontaining K as a sub�eld. Let a �eldL be an extension of K (we usually express this by saying that L=K [read: L over K℄ is an extension).Then L an be onsidered as a vetor spae over K. The degree of L over K, denoted by [L : K℄, isde�ned as [L : K℄ = dimK L = the vetor spae dimension of L over K:If [L : K℄ < 1, we say that L is a �nite extension of K or that L is �nite over K. A sub�eld K of Csuh that [K : Q℄ <1 is alled an algebrai number �eld or simply a number �eld.Lemma 1: Finite over �nite is �nite. More preisely, if L=E and E=K are �eld extensions, thenL is finite over K , L is finite over E and E is finite over Kand, in this ase, [L : K℄ = [L : E℄[E : K℄.Proof: The impliation \)" is obvious. The rest follows easily from the observation that if fuig isan E{basis of L and fvjg is a K{basis of E, then fuivjg is a K{basis of L. 2Let L=K be a �eld extension. An element � 2 L is said to be algebrai overK if it satis�es a nonzeropolynomial with oeÆients in K, i.e, 9 0 6= f(X) 2 K[X ℄ suh that f(�) = 0. Given � 2 L whih isalgebrai over K, we an �nd a moni polynomial in K[X ℄ of least possible degree, satis�ed by �. Thisis unique and is alled the minimal polynomial of � over K. It is easily seen to be irreduible and wewill denote it by Irr(�;K). Note that if f(X) is any moni irreduible polynomial satis�ed by �, thenwe must have f(X) =Irr(�;K) and that it generates the ideal fg(X) 2 K[X ℄ : g(�) = 0g in K[X ℄.3 Theextension L of K is said to be algebrai if every element of L is algebrai over K.Lemma 2: Finite ) algebrai. That is, if L=K is a �nite extension, then it is algebrai.Proof: For any � 2 L, there must exist a positive integer n suh that f1; �; �2; :::; �ng is linearlydependent over K, thus showing that � is algebrai over K. 2Exerise 1: Show, by an example, that the onverse of the above lemma is not true, in general.We now study extensions for whih the onverse is true.De�nition: Given elements �1; : : : ; �n in an extension L of a �eld K, we de�neK[�1; : : : ; �n℄ = the smallest subring of L ontaining K and �1; : : : ; �nK(�1; : : : ; �n) = the smallest sub�eld of L ontaining K and �1; : : : ; �n:Note thatK[�1; : : : ; �n℄ preisely onsists of elements of the form f(�1; : : : ; �n) where f(X1; : : : ; Xn)varies overK[X1; : : : ; Xn℄ (= the ring of polynomials in the n variablesX1; : : : ; Xn with oeÆients inK)whereasK(�1; : : : ; �n) preisely onsists of elements of the form f(�1;:::;�n)g(�1;:::;�n) where f(X1; : : : ; Xn); g(X1; : : : ; Xn)vary over K[X1; : : : ; Xn℄ with g(�1; : : : ; �n) 6= 0. Also note that K(�1; : : : ; �n) is the quotient �eld ofK[�1; : : : ; �n℄ in L.De�nition: An extension L of K is said to be �nitely generated over K if there exist �1; : : : ; �n inL suh that L = K(�1; : : : ; �n). We say that L is a simple extension of K if L = K(�) for some � 2 L.For simple extensions, the onverse to Lemma 2 is true. In fat, we an say muh more.Lemma 3: Let � be an element in an over�eld L of a �eld K. Then:K(�)=K is algebrai , � is algebrai over K , K[�℄ = K(�), [K(�) : K℄ <1:2Fields are usually denoted by K or k sine the German word for �eld is K�orper. Muh of Modern FieldTheory was reated by the German mathematiian E. Steinitz; see his paper \Algebraishe Theorie der K�orper",Crelle Journal (1910), pp. 167{308, for an original exposition.3It may be instrutive to verify the observations made in the last few statements. General Hint: Use theDivision Algorithm in K[X℄. 58



Moreover, if � is algebrai over K and f(X) =Irr(�;K), then there exists an isomorphism of K(�) ontoK[X ℄=(f(X)) whih maps � to X, the residue lass of X , and the elements of K to their residue lasses.Proof: Without loss of generality, we an and will assume that � 6= 0. The �rst assertion triviallyimplies the seond. Now, the map ' : K[X ℄! L de�ned by f(X) 7! f(�) is learly a ring homomorphismwhose image is K[�℄. If � is algebrai over K, then the kernel of ' is a nonzero prime ideal in K[X ℄and is hene a maximal ideal (prove!). So K[�℄ ' K[X ℄=ker' is a �eld ontaining K and �. ThereforeK[�℄ = K(�). Next, if K[�℄ = K(�), we an write ��1 = a0+ a1�+ � � �+ ar�r for some a0; : : : ; ar 2 Kwith ar 6= 0, whih shows that �r+1 lies in the K{linear span of 1; �; �2; : : : ; �r, and onsequently sodoes �r+j for any j � 1. And sine 1; �; �2; : : : learly span K[�℄ = K(�), it follows that [K(�) : K℄ �r + 1 < 1. If [K(�) : K℄ < 1, Lemma 2 shows that K(�) is algebrai over K. Moreover, if � isalgebrai over K and f(X) =Irr(�;K), then, as noted earlier, ker' is generated by f(X), from whihwe get the desired isomorphism between K(�) and K[X ℄=(f(X)). 2Exerise 2: If � is algebrai over K, then show that [K(�) : K℄ equals the degree of Irr(�;K).Exerise 3: Try to give a more onstrutive proof of the fat that if � is algebrai over K, thenK[�℄ = K(�) by showing that for any g(X) 2 K[X ℄ with g(�) 6= 0, we an �nd h(X) 2 K[X ℄ suh thatg(�)�1 = h(�).The following lemma gives neessary and suÆient onditions for the onverse to Lemma 2.Lemma 4: Let L be an extension of a �eld K. Then:L is finite over K , L is algebrai and finitely generated over K:Proof: If L is �nite over K, then it is algebrai, and if u1; : : : ; un is a K{basis of L, then learlyL = K(u1; : : : ; un). Conversely, if L = K(�1; : : : ; �n) for some �1; : : : ; �n 2 K, then using Lemmas 1and 3 and indution on n, it is seen that L is �nite over K. 2Let us obtain some useful onsequenes of the above lemma.Lemma 5: Algebrai over algebrai is algebrai. More preisely, if L=E and E=K are �eld exten-sions, then: L is algebrai over K , L is algebrai over E and E is algebrai over KProof: The impliation \)" is obvious. To prove the other one, take any � 2 L. Find b0; b1; : : : ; bn 2E, not all zero, suh that b0 + b1� + � � � + bn�n = 0. Then � is algebrai over K(b0; b1; : : : ; bn), andK(b0; b1; : : : ; bn) � E is algebrai over K. Hene, in view of Lemmas 1, 3 and 4, we see that[K(�) : K℄ � [K(b0; b1; : : : ; bn; �) : K℄= [K(b0; b1; : : : ; bn; �) : K(b0; b1; : : : ; bn)℄[K(b0; b1; : : : ; bn) : K℄< 1whih shows that � is algebrai over K. 2Lemma 6: Let L be an extension of a �eld K and letE = f� 2 L : � is algebrai over Kg:Then E is a sub�eld of L ontaining K.Proof: Clearly K � E � L. Given any �; � 2 E, by Lemma 3, we see that[K(�; �) : K℄ = [K(�; �) : K(�)℄[K(�) : K℄ <1and therefore every element of K(�; �) is algebrai over K. So �+ �; �� �; �� 2 E and if � 6= 0, then�� 2 E, and hene E is a sub�eld of L. 2Exerise 4: Given elements �; �, algebrai over a �eld K, an you expliitly �nd polynomials in K[X ℄satis�ed by �+ �, ��? Find, for instane, a polynomial, preferably irreduible, satis�ed by p2 +p3.59



A.3 Splitting Fields and Normal ExtensionsGalois Theory, at least in its original version, has to do with roots of polynomial equations. Thismotivates muh of what is done in this setion.Let K be a �eld. By a root of a polynomial f(X) 2 K[X ℄ we mean an element � in an over�eld ofK suh that f(�) = 0. It is easy to see that a nonzero polynomial in K[X ℄ of degree n has at most nroots (Verify!). The following lemma, usually attributed to Kroneker, shows, by a method not unlikewithraft, that roots an always be found.Lemma 7: Let f(X) 2 K[X ℄ be a nononstant polynomial of degree n. Then there exists anextension E of K suh that [E : K℄ � n and f(X) has a root in E.Proof: Let g(X) be a moni irreduible fator of f(X). Then (g(X)), the ideal generated by g(X)in K[X ℄, is a maximal ideal and hene E = K[X ℄=(g(X)) is a �eld. Let � : K[X ℄! E be the anonialhomomorphism whih maps an element in K[X ℄ to its residue lass modulo (g(X)). Note that �jK isinjetive and hene K may be regarded as a sub�eld of E. Let � = �(X). Then g(�) = g(�(X)) =�(g(X)) = 0. Hene, f(�) = 0. By Lemma 3 and Exerise 2, [E : K℄ = deg g(X) � n. 2Remark: The above proof, though ommon in many texts, is slightly impreise. To be pedanti,an atual extension E of K as in the statement of Lemma 6 an be onstruted by putting E =(�(K[X ℄)n�(K)) [ K, where � is as in the above proof, and by de�ning �eld operations on E in anobvious manner. Note that we then have E ' �(K[X ℄).To study the roots of a polynomial f(X) 2 K[X ℄, it seems natural to be in a nie set ontaining allthe roots of f(X) and whih, in some sense, is the smallest suh. This is a�orded by the following.De�nition: Let f(X) 2 K[X ℄ be a nononstant polynomial. By a splitting �eld of f(X) over K wemean an extension L of K suh that f(X) splits into linear fators in L and L is generated over K bythe roots of f(X) in L, i.e.,(i) f(X) = (X � �1) : : : (X � �n) for some  2 K and �1; : : : ; �n 2 L.(ii) L = K(�1; : : : ; �n).Lemma 8: Given any nononstant polynomial f(X) 2 K[X ℄ of degree n, there exists a splitting�eld L of f(X) over K suh that [L : K℄ � n!.Proof: Indut on n. If n = 1, then L = K does the job. For n > 1, by Lemma 7, we an �nd anextension E of K suh that [E : K℄ � n and f(X) = (X � �)g(X) for some � 2 E and g(X) 2 E[X ℄.Sine deg g(X) = n� 1 � 1, a splitting �eld, say L, of g(X) over E exists. Clearly, L is also a splitting�eld of f(X) over K; moreover, [L : K℄ = [L : E℄[E : K℄ � (n� 1)!n = n!. 2Notation: Given any �elds K and K 0, a homomorphism � : K ! K 0, and a polynomial f(X) 2K[X ℄, by f�(X) we denote the orresponding polynomial in K 0[X ℄, i.e., if f(X) =PaiX i then f�(X) =P�(ai)X i. Note that f(X) 7! f�(X) gives a homomorphism ofK[X ℄! K 0[X ℄ whih is an isomorphismif � is an isomorphism.The following lemma will help us prove that a splitting �eld is unique up to isomorphism.Lemma 9: Let K and K 0 be �elds and � : K ! K 0 be an isomorphism. Let g(X) 2 K[X ℄ be anirreduible polynomial and let � and �0 be roots of g(X) and g�(X) in some extensions of K and K 0respetively. Then there exists an isomorphism � : K(�)! K 0(�0) suh that �jK = � and �(�) = �0.Proof: Clearly � gives an isomorphism ofK[X ℄ ontoK 0[X ℄, whih, in turn, indues an isomorphism ofK[X ℄=(g(X)) onto K 0[X ℄=(g�(X)). By Lemma 3, we get an isomorphism of K(�) onto the former and ofK 0(�0) onto the latter. By suitably omposing these maps, we obtain an isomorphism � : K(�)! K 0(�0)suh that �jK = � and �(�) = �0. 2Note: A �eld has no proper ideals. This means that a homomorphism of a �eld (into a ring) iseither injetive or maps everything to 0. If L is an extension of K, by a K{homomorphism of L we meana homomorphism � : L ! L0, where L0 is some extension of K, whih is identity on K, i.e., �() = 8  2 K. Observe that a K{homomorphism is always injetive.4 Also observe that, a K{homomorphism4Indeed, 1 2 K and �(1) = 1 6= 0. 60



� : L! L0, where L0 is an extension of L, is an automorphism (= isomorphism onto itself) of L provided�(L) � L [sine �(L) and L have the same vetor spae dimension over K℄.Before proving the uniqueness of splitting �elds, let us dedue an important onsequene of the abovelemma.Corollary: Let � be algebrai overK and f(X) = Irr(�;K). Let L be any extension ofK ontaininga splitting �eld of f(X). Then the number of K{homomorphisms of K(�) to L is equal to the numberof distint roots of f(X); in partiular, this number is � [K(�) : K℄ with equality holding if and only ifall roots of f(X) are distint.Proof: Let �1; : : : ; �r 2 L be all possible distint roots of f(X). By Lemma 9, there exist K{isomorphisms �i : K(�) ! K(�i) suh that �i(�) = �i (1 � i � r). Moreover, if � : K ! L is anyK{homomorphism, then f�(X) = f(X), and hene �(�) = �i for some i, whih shows that � = �i. Theinequality r � [K(�) : K℄ follows from Exerise 2. 2Lemma 10: Let K and K 0 be �elds and � : K ! K 0 be an isomorphism. Let f(X) 2 K[X ℄ beany nononstant polynomial and let L and L0 be splitting �elds of f(X) and f�(X) over K and K 0respetively. Then there exists an isomorphism � : L! L0 suh that � jK = �. Moreover, the number ofsuh isomorphisms is � [L : K℄.Proof: Let n = deg f(X) = deg f�(X) � 1. We proeed by indution on n. If n = 1, we musthave L = K and L0 = K 0, so the assertion follows with � = �. Suppose n > 1. Let g(X) be a moniirreduible fator of f(X). Let � and �0 be roots of g(X) and g�(X) in L and L0 respetively. ByLemma 9, we an �nd a K{isomorphism � : K(�) ! K(�0) suh that �jK = � and �(�) = �0. Nowwrite f(X) = (X � �)h(X) for some h(X) 2 K(�)[X ℄ and note that L and L0 are splitting �elds ofh(X) and h�(X) over K(�) and K 0(�) respetively. Using the indution hypothesis, we get the desiredisomorphism, and, in view of the above Corollary, also the desired inequality. 2Taking K = K 0 and � to be the identity map in the above Lemma, we getCorollary: If f(X) 2 K[X ℄ is a nononstant polynomial, then any two splitting �elds of f(X) overK are K{isomorphi. 2A notion losely related to splitting �elds is de�ned below.De�nition: An extension L of K suh that whenever an irreduible polynomial in K[X ℄ has a rootin L it has all its roots in L, is alled a normal extension.And here is the onnetion.Lemma 11: Let L=K be a �nite extension. Then the following statements are equivalent.(1) L is a normal extension of K.(2) L is a splitting �eld of a polynomial in K[X ℄.(3) Any K{homomorphism � : L! L0, where L0 is any extension of L, is anautomorphism of L.Proof: (1)) (2): Sine L=K is �nite, we an write L = K(�1; : : : ; �n) for some �1; : : : ; �n 2 L.Let fi(X) = Irr(�i;K) and f(X) = Qni=1 fi(X). Then, by our hypothesis, all the roots of f(X) are inL. Also L is learly generated (over K) by these roots.(2)) (3): Let L = K(�1; : : : ; �n) be a splitting �eld of some f(X) 2 K[X ℄ where �1; : : : ; �n are theroots of f(X) in L. If � : L! L0 is any K{homomorphism, then f�(X) = f(X) and hene �(�i) mustbe a root of f(X). Sine � is injetive, it permutes the roots of f(X), and therefore �(L) = L.(3)) (1): Let f(X) be any irreduible polynomial having a root � 2 L. Let � be any other root of f(X).Let L0 be a splitting �eld of f(X) over L so that � 2 L0. By Lemma 9, there exists a K{isomorphism� : K(�)! K(�) suh that �(�) = �. By Lemma 10, � an be extended to aK{isomorphism � : L0 ! L0.Let � = � jL. Then, by our hypothesis, � = �(�) 2 L. 2Remark: The above lemma also holds for in�nite algebrai extensions provided in (2) we replae \apolynomial" by \a family of polynomials". Verify!Example: The usual formula for the roots of a quadrati equation shows that an extension of degree2 is always normal. Extensions of Q of degree 2 are alled quadrati �elds. If ! is a \primitive n{th root61



of unity" (i.e., !n = 1 and !m 6= 1 for 1 � m < n), then Q(!) is a normal extension of Q (prove!); it isalled the ylotomi �eld of the n{th roots of unity.Exerise 5: Prove that if an extension L=K is normal and E is a sub�eld of L ontaining K, thenL=E is also normal.Exerise 6: Show, by an example, that normal over normal need not be normal.Exerise 7: Show that if L=K is any �nite extension, then we an �nd a least normal extension of Kontaining L (as a sub�eld), i.e., an extension N of L suh that N=K is normal, and no proper sub�eldof N ontaining L is normal over K; note that any suh N is �nite over K. Show that any two leastnormal extensions of K ontaining L are K{isomorphi.A.4 Separable ExtensionsLet K be a �eld. An irreduible polynomial in K[X ℄ is said to be separable if all its roots (in itssplitting �eld) are distint. An element �, whih is algebrai over K, is said to be separable if Irr(�;K)is a separable polynomial. An algebrai extension L of K is alled separable if every element of L isseparable over K.Assuming an extension to be separable an lead to nie onsequenes suh as the followingLemma 12 (Primitive Element Theorem): Finite separable extensions are simple.Proof: Let L=K be a �nite separable extension. If K is �nite, then so is L, and using the well-knownfat that the multipliative group of the nonzero elements of a �nite �eld is yli,5 we an �nd � 2 Lwhih generates N = Lnf0g; learly L = K(�), and thus L=K is simple. Now assume that K is in�nite.Obviously L is �nitely generated over K and so it suÆes to show that if L = K(�; �), then we an �nda \primitive element" � 2 L so that L = K(�). Let f(X) = Irr(�;K) and g(X) = Irr(�;K). Suppose�1; : : : ; �m and �1; : : : ; �n are the roots of f(X) and g(X) respetively with �1 = � and �1 = �. Byhypothesis, �i 6= �j and �i 6= �j for all i 6= j. Sine K is in�nite, we an �nd an element  2 K suhthat  6= �i � �j�r � �s for all hoies of i; j; r; s suh that 1 � i; j � m; 1 � r; s � n and r 6= s:Let � = �+ � and h(X) = f(�� X). Clearly h(X) 2 K(�)[X ℄ and h(�) = 0. Also h(�j) 6= 0 for j � 2lest  = �i�����j for some i � 1. It follows that the GCD of g(X) and h(X) in K(�)[X ℄ must be X � �.Hene � 2 K(�), and onsequently, � 2 K(�). Thus K(�) = K(�; �) = L. 2Remark: Note that the above proof atually shows that if either one of � or � is separable over K,then K(�; �)=K is simple.To hek separability, the notion of derivatives omes in handy. In Algebra, derivatives an be de�nedin a purely formal manner (i.e., without involving limits) as follows. Given any f(X) 2 K[X ℄, let f(X) =Pni=0 aiX i, with ai 2 K, and de�ne the derivative of f(X), denoted by f 0(X), by f 0(X) =Pni=1 iaiX i�1.The usual properties suh as linearity [i.e., (af � bg)0 = af 0 � bg0℄, produt rule [i.e., (fg)0 = f 0g+ fg0℄,an be easily heked using this de�nition. Now reall that an element � in an extension L of K is alleda multiple root of f(X) 2 K[X ℄ if f(X) = (X � �)2g(X) for some g(X) 2 L[X ℄.Lemma 13: Let f(X) be an irreduible polynomial in K[X ℄. Thenf(X) has a multiple root , f 0(X) = 0:Proof: If � is a multiple root of f(X), then, by the produt rule, f 0(�) = 0. But f(X), beingirreduible, is a polynomial of the least degree satis�ed by �, whih ontradits the fat that deg f 0(X) <deg f(X) unless f 0(X) = 0. Conversely if f 0(X) = 0, then any root of f(X) is a multiple root. 25A proof of this fat may be taken as an exerise. A hint is to take the maximum order, say m, of the elementsof the multipliative group, and note that the order of every element divides m whereas the equation Xm = 1has at most m solutions in the �eld. 62



Exerise 8: Let Z=pZbe the �eld of residue lasses of integers modulo a prime number p. Let q = pnand Fq denote the splitting �eld of Xq�X over Z=pZ. Show that Fq is a �nite �eld ontaining q elementsand that it is a separable and normal extension of Z=pZ.6Exerise 9: Let F be a �nite �eld. Show that jF j, the ardinality of F , must equal pn for some primep, and that F is isomorphi to Fpn .De�nition: A �eld K is said to be perfet if either har(K), the harateristi of K, is 0, orhar(K) = p 6= 0 and K = Kp, i.e., for any � 2 K, there exists � 2 K suh that � = �p.Lemma 14: Any algebrai extension of a perfet �eld is separable.Proof: Let K be a perfet �eld and L be an extension of K. Let � 2 L and Irr(�;K) = f(X) =Pni=0 aiX i. If � is not separable, then f(X) has multiple roots and hene f 0(X) =Pni=1 iaiX i�1 = 0.In ase har(K) = 0, we get ai = 0 for all i � 1, whih is a ontradition. In ase har(K) = p 6= 0, wehave ai = 0 if p 6 ji. Sine K is perfet, we an �nd bi 2 K suh that ai = bpi , and thus f(X) = g(X)pwhere g(X) =Ppji biX i=p 2 K[X ℄, whih ontradits the irreduibility of f(X). 2Exerise 10: Prove that the onverse of Lemma 14 is also true. That is, if K is a �eld suh that everyalgebrai extension of K is separable, then K is perfet.Exerise 11: Prove that a �nite �eld is perfet.Exerise 12: Show that not everything is perfet! More preisely, let k be a �eld of harateristip 6= 0, and K = k(t) be the �eld of rational funtions in an indeterminate t over k. Let L be analgebrai extension of K ontaining a root of Xp�t. Show that L is not separable overK. In partiular,inseparable (= not separable) extensions and imperfet (= not perfet) �elds do exist.Exerise 13: Let L=K be a �nite extension of degree n. Show that L=K is separable if and only ifthere are n distint K{homomorphisms of L into N , for any normal extension N=K ontaining L as asub�eld. [Hint: Use Lemma 12 and the Corollary to Lemma 9℄. Further show that if L=K is separableand E is a sub�eld of L ontaining K, then eah K{homomorphism of E into N has exatly [L : E℄distint extensions to L.Exerise 14: Show that separable over separable is separable. More preisely, if L=E and E=K arealgebrai extensions, then show that L=K is separable i� both L=E and E=K are separable. [Hint: Forthe nontrivial impliation, redue to the ase of �nite extensions and use Exerise 13℄. Dedue that if�1; : : : ; �n are algebrai and separable over a �eld K, then K(�1; : : : ; �n) is a separable extension ofK. Further dedue that if L=K is a �nite separable extension and N is a least normal extension ofK ontaining L, then N=K is also a �nite separable extension [in this ase N is alled a least Galoisextension of K ontaining L℄.In Number Theory, the �elds ourring are algebrai extensions of Q or Z=pZ, and thus, in view ofLemma 14 and Exerise 11, we only have to deal with separable extensions.A.5 Galois TheoryLet K be a �eld. Given any polynomial f(X) 2 K[X ℄ having distint roots, the splitting �eld L of f(X)over K is a �nite, normal and separable extension. The essene of Galois theory lies in the assoiationof a group G, known as Galois group, to suh a polynomial or more generally, to an extension L=Kwith the above properties. Intrinsi properties of the polynomial f(X) (or the extension L=K) areniely aptured in this group. A main result of Galois Theory establishes a one{to{one orrespondenebetween the subgroups of G and the sub�elds of L ontaining K. This enabled Galois to obtain hiselebrated results in Theory of Equations.76Finite �elds are often alled Galois �elds, and Fq is sometimes denoted by GF (q); these �elds were �rststudied by E. Galois in a paper, published in 1830, entitled \Sur la theori�e des nomberes".7Galois showed that the equation f(X) = 0 is solvable by radials (like the quadrati equation) if and onlyif G, the Galois group of f(X), is a solvable group. The Galois group of a general equation of degree n turnsout to be Sn, whih is not solvable for n � 5, and thus general equations of degree 5 or more annot be solvedby radials. For details, see any of the referenes given at the end of this setion. It may be worth noting that63



To desribe the Galois group and the said orrespondene, let us begin with someDe�nitions: Let L=K be a �eld extension.(1) The Galois group of L=K, denoted by Gal(L=K), is de�ned byGal(L=K) = the group of all K{automorphisms of L(2) L=K is said to be a Galois extension if it is �nite, normal and separable.8(3) For a subgroup H of Gal(L=K), the �xed �eld of H , denoted by LH , is de�ned byLH = f� 2 L : �(�) = � for all � 2 Hg:Note that Gal(L=K) is indeed a group (with omposition of maps as the group operation) and thatLH is a sub�eld of L ontaining K. Also note that if L=K is a Galois extension, then for any sub�eldE of L ontaining K, L=E is also a Galois extension (f. Exerise 5) and Gal(L=E) is a subgroup ofGal(L=K).Theorem 1 (Fundamental Theorem of Galois Theory): Let L=K be a Galois extension.Then Gal(L=K) is a �nite group of order [L : K℄, and there is a bijetion between the sub�elds E of Lontaining K and the subgroups H of Gal(L=K), given byE 7! Gal(L=E) with the inverse given by H 7! LH :In partiular, K is the �xed �eld of Gal(L=K).Note that this bijetion is inlusion{reversing. It also has additional nie properties whih an bededued from the above Theorem.Corollary (Supplement to the Fundamental Theorem of Galois Theory): Let L=K be aGalois extension and E be a sub�eld of L ontaining K. Then E=K is a �nite separable extension, andE=K is a normal extension, Gal(L=E) is a normal subgroup of Gal(L=K)and, in this ase, Gal(E=K) is isomorphi to the quotient group Gal(L=K)Gal(L=E) :A proof of the above Theorem will be given by pieing together the following lemmas.Lemma 15: Let L=E be a Galois extension. Then Gal(L=E) is a �nite group of order [L : E℄ andE is its �xed �eld.Proof: By Primitive Element Theorem, L = E(�) for some � 2 L. Now Irr(�;E) is of degreen = [L : E℄ and, sine L=E is normal and separable, it has n distint roots in L. By Corollary to Lemma9, we see that there are exatly n distint E{automorphisms of L, i.e, jGal(L=E)j = n. If � is in the�xed �eld of Gal(L=E) and � 62 E, then we an �nd �0 2 L suh that �0 6= � and �0 is a root of Irr(�;E).By Lemma 9, there exists an E{isomorphism � : E(�) ! E(�0) with �(�) = �0, and, by Lemma 10,this an be extended to an E{automorphism � : L! L. Now � 2 Gal(L=E) and �(�) = �0 6= �, whihontradits the assumption on �. 2The following result is a key step in the proof of the above Theorem.Lemma 16: Let L=K be a �eld extension and H be a �nite subgroup of Gal(L=K). Then L=LH isa Galois extension and Gal(L=LH) = H .Evariste Galois, the inventor of Galois theory, did his work at a very early age. He was born in Otober 1811,and he died twenty years and seven months later in a duel.8It may be noted that by a Galois extension, some authors mean an extension whih is algebrai, normal, andseparable, i.e., they don't require it to be �nite. 64



Proof: Let � 2 L and H = f�1; : : : ; �ng where �1; : : : ; �n are distint elements so arranged thatf�(�) : � 2 Hg = f�1(�); : : : ; �m(�)g for some m � n. Notie that �1(�); : : : ; �m(�) are distint andfor any � 2 H , we havef��1(�); : : : ; ��m(�)g = f��(�) : � 2 Hg = f�1(�); : : : ; �m(�)g:Consider the polynomialf(X) = mYi=1(X � �i(�)) and note that f� (X) = mYi=1(X � ��i(�)) = mYi=1(X � �i(�)) = f(X):So every � 2 H �xes the oeÆients of f(X), and hene f(X) 2 LH [X ℄. Also f(�) = 0 and ifg(X) = Irr(�;LH), then g(�i(�)) = �i(g(�)) = 0 for all i = 1; : : : ;m. Thus deg g(X) � deg f(X), and,sine g(X) is the minimal polynomial of � over LH , we have g(X) = f(X). Therefore � is algebraiand separable over LH , and moreover, [LH(�) : LH ℄ = m � n = jH j. Now hoose � 2 L suh that[LH(�) : LH ℄ is maximal. Then we must have L = LH(�). To see this, assume the ontrary. Then we an�nd � 2 L suh that � 62 LH and we note that, by Lemma 1, [LH(�; �) : LH ℄ > [LH(�) : LH ℄ and that,by Lemma 12, LH(�; �) is a simple extension of LH . But this ontradits the maximality of [LH(�) : LH ℄.Hene L = LH(�) and thus L=LH is a Galois extension. Moreover, H � Gal(L=LH) and, in view ofLemma 15, we have Gal(L=LH) = [L : LH ℄ = deg Irr(�;LH) � jH j. Therefore H = Gal(L=LH). 2Remark: Note that the sub�eld K did not play any role in the above proof. In fat, we ould havetaken H to be any �nite group of automorphisms of L.Proof of the Fundamental Theorem of Galois Theory: Let L=K be a Galois extension. From Lemma15, it follows that the omposite of the maps given by E 7! Gal(L=E) and H 7! LH is identity,i.e., Gal(L=E) is a subgroup of Gal(L=K) and LGal(L=E) = E. From Lemma 16, it follows that theother omposite is identity, i.e., LH is a sub�eld of L ontaining K, L=LH is a Galois extension, andGal(L=LH) = H . Thus we have a bijetion as desired. 2Proof of the Supplement to FTGT: Let L=K be a Galois extension and E be a sub�eld of L ontainingK. The �niteness and separability of E=K is obvious. For any � 2 Gal(L=K); �(E) is a sub�eld of Lontaining K, and it is easy to see thatGal(L=�(E)) = �Gal(L=E)��1:From Lemma 11, it follows thatE=K is a normal extension , �(E) = E for all � 2 Gal(L=K):Consequently, if E=K is a normal extension, then Gal(L=E) is a normal subgroup of Gal(L=K). Toprove the onverse, note that for any � 2 Gal(L=K), by Lemma 15, we have thatthe �xed �eld of Gal(L=E) = E and the �xed �eld of �Gal(L=E)��1 = �(E):Therefore if Gal(L=E) is a normal subgroup of Gal(L=K), we have �(E) = E for any � 2Gal(L=K),and hene E=K is normal. In the ase E=K is normal, it is Galois, and the map � 7! �jE de�nes agroup homomorphism of Gal(L=K) into Gal(E=K). By Lemma 10, any K{automorphism of E an beextended to a K{automorphism of L, whih shows that this group homomorphism is surjetive. HeneGal(E=K) is isomorphi to the quotient group Gal(L=K)=Gal(L=E). 2Remark: Let f(X) 2 K[X ℄ be a nononstant polynomial of degree n having distint roots �1; : : : ; �n.Let L = K(�1; : : : ; �n) be the splitting �eld of f(X) over K. Then Gal(L=K) is alled the Galois groupof f(X) over K, and may be denoted by Gf . Note that a K{automorphism of L gives a permutationof the n roots �1; : : : ; �n, whih uniquely determines this automorphism. Thus Gf an be onsidered asa subgroup of Sn, the group of all permutations of n symbols. A more onrete de�nition of Gf , whihdoesn't involve automorphisms, is as follows.Gf = f� 2 Sn : �(��(1); : : : ; ��(n)) = 0 for all � 2 K[X1; : : : ; Xn℄ with �(�1; : : : ; �n) = 0g:65



Exerise 15: Let f(X) and Gf be as in the above Remark. Prove that f(X) is irreduible if and onlyif Gf is transitive. [A subgroup H of Sn is said to be transitive if for any i; j 2 f1; : : : ; ng, there exists� 2 H suh that �(i) = j.℄Exerise 16: Let F be a �nite �eld ontaining q elements and E be a �nite extension of F . Show thatE=F is a Galois extension and that Gal(E=F ) is yli; in fat, the \Frobenius map" � 7! �q de�nes anF{automorphism of E, whih generates Gal(E=F ).De�nition: A Galois extension L=K is said to be abelian (resp: yli) if its Galois group Gal(L=K)is abelian9 (resp: yli).Exerise 17: Let E and F be sub�elds of a �eld L and K be a sub�eld of E \ F . Let EF denotethe smallest sub�eld of L ontaining E and F (this looks like fP�i�i : �i 2 E; �i 2 Fg, and is alledthe ompositum of E and F ). Show that if E=K is Galois, then so is EF=F , and that � 7! �jE is aninjetive homomorphism of Gal(EF=F ) into Gal(E=K) whih is an isomorphism if K = E \ F . Alsoshow that if E=K and F=K are Galois and K = E \ F , then Gal(EF=K) ' Gal(E=K) � Gal(F=K).In partiular, if Gal(E=K) and Gal(F=K) are abelian, then so is Gal(EF=K), and thus one an talk ofthe maximal abelian extension of K in L.Exerise 18: Let L=K be a Galois extension and G = Gal(L=K). Let H be the ommutator subgroupof G, i.e, the subgroup generated by the elements ����1��1 as �; � vary over elements of G. Show thatH is a normal subgroup of G and the �xed �eld LH is an abelian extension of K with Gal(LH=K)isomorphi to the `abelianization' of G, viz., G=H . Further show that LH is, in fat, the maximalabelian extension of K ontained in L.There is more to Galois Theory than what has been disussed so far. Our objetives being limited, wehaven't said anything about omputing the Galois group of a given polynomial or a given extension. Nogeneral method is known. There are, however, various tehniques whih sometimes help in determiningthe Galois group. It may be mentioned that one of the major open problems in the area, alled theInverse Problem of Galois Theory or the Constrution Problem of Number Theory, is whether any �nitegroup G is the Galois group of some (normal) extension of Q.10 As an aid for further studies, we givebelow a list of relevant books with some (highly subjetive) remarks.Annotated List of Referenes for Galois TheoryBooks on Galois Theory, or Abstrat Algebra in general, seem quite abundant these days. We willmention only a few.[1℄ E. Artin, Galois Theory, 2nd Ed., Notre Dame Press, 1956.a lassi little text on whih most of the modern treatments of Galois theory are based.[2℄ M. Artin, Algebra, Prentie Hall In., 1991 (Ch. 14).a novel text on Algebra with a friendly introdution to the rudiments of Galois Theory.[3℄ H. Edwards, Galois Theory, Springer GTM 101, 1984.a historially guided treatment; ontains a translation of Galois' original memoirs.[4℄ I. Herstein, Topis in Algebra, 2nd Ed., John Wiley, 1975 (Ch. V).elementary and rather verbose; well{suited for an undergraduate ourse.9The term `abelian' is derived from the name of the Norwegian mathematiian N. H. Abel who proved, around1829, that a ertain lass of equations is always solvable by radials. In the modern terminology, this is preiselythe lass of equations whose Galois group is ommutative. The usage of `abelian' seems to have been initiatedby L. Kroneker who, in 1853, announed that the roots of every abelian equation with integer oeÆients anbe represented as rational funtions of roots of unity, a result whih is nowadays known as the Kroneker{WeberTheorem and is usually expressed as: every abelian extension of Q is ontained in a ylotomi �eld. In an 1870paper, Kroneker formally de�ned \abstrat abelian groups" and proved what is now known as the StrutureTheorem for Finite Abelian Groups. To get an idea of Abel's work on solvability by radials, see Van derWaerden's enhanting book \A History of Algebra", Springer (1985), or the artile `Niels Hendrik Abel and theequations of �fth degree' by M. Rosen in the Amerian Math. Monthly, Vol. 102 (1995), pp. 495{505.10It is not diÆult to see that the answer is Yes if G is an abelian group. For reent work on this problem, seethe artile by B. Matzat in the MSRI Proeedings on \Galois groups over Q" published by Springer (1988) orthe book \ Groups as Galois groups" by H. V�olklein (Cambridge University Press, 1996).66



[5℄ T. Hungerford, Algebra, Springer GTM 73, 1980 (Ch. V).a useful referene; ontains a treatment applying also to in�nite extensions.[6℄ N. Jaobson, Basi Algebra I, 2nd Ed., W. H. Freeman, 1985 (Ch. IV).the introdution to the hapter is highly readable and informative; the 2nd Ed. has a valuablesetion on mod p redution.[7℄ S. Lang, Algebra, 2nd Ed., Addison{Wesley, 1984 (Ch. VII, VIII).a neat exposition of the elements of Galois theory as well as more advaned material; ontains agood olletion of exerises.[8℄ TIFR Mathematial Pamphlet on Galois Theory, No. 3, 1965.short, self{ontained, neat, and thorough; seek elsewhere for motivation and history.A.6 Norms and TraesIn the study of �nite �eld extensions L=K, a useful passage from L to K is provided by the funtionsalled Norm and Trae. These notions an be used in de�ning the so alled disriminant, whih playsan important role in Number Theory.De�nition: Let L=K be a �nite extension of degree n and � be any element of L. Let (aij) be ann� n matrix, with entries in K, orresponding to the K{linear transformation x 7! �x of L into itself,i.e., for some K{basis fu1; : : : ; ung of L, we have�ui = nXj=1 aijuj i = 1; : : : ; n:The trae of � w.r.t. L=K, denoted by TrL=K(�) or simply Tr(�), is de�ned byTr(�) = nXi=1 aii:The norm of � w.r.t. L=K, denoted by NL=K(�) or simply N(�), is de�ned byN(�) = det(aij):We also de�ne the �eld polynomial of � w.r.t. L=K 11 to be the polynomial �(X) 2 K[X ℄ given by�(X) = det(XÆij � aij) [where Æij is the Kroneker delta℄.Note that TrL=K(�), NL=K(�), and �(X) are independent of the hoie of a K{basis of L, and dependonly upon the extension L=K and the element �.Lemma 17: Let L=K be a �nite extension of degree n and � 2 L. Then:(1) TrL=K is a K{linear map, i.e.,TrL=K(a�+ b�) = aTrL=K(�) + bTrL=K(�) 8 a; b 2 K; �; � 2 L:(2) NL=K is multipliative, i.e.,NL=K(��) = NL=K(�)NL=K(�) 8�; � 2 L:(3) For any a 2 K, we have TrL=K(a) = na and NL=K(a) = an:11this is sometimes alled the harateristi polynomial of � w.r.t. L=K; indeed, it is the harateristipolynomial of the matrix (aij) [or the orresponding linear transformation℄ in the sense of Linear Algebra.67



Proof: Assertions (1) and (2) follow from the fat that (aaij + bbij) and (Pnk=1 bikakj) are n � nmatries orresponding to the K{linear transformations x 7! (a�+b�)x and x 7! (��)x, where (aij) andb(ij) are n� n matries orresponding to the K{linear transformations x 7! �x and x 7! �x. Moreover,for any a 2 K, (aÆij) is a matrix orresponding to the K{linear transformation x 7! ax, and hene weget (3). 2Note that a �eld polynomial is moni of degree equal to the degree of the orresponding extension.Its relation to the trae and the norm is given in the followingLemma 18: Let L=K be a �nite extension of degree n and � 2 L. Let �(X) = Xn+a1Xn�1+� � �+anbe the �eld polynomial of � w.r.t. L=K. Then TrL=K(�) = �a1 and NL=K(�) = (�1)nan.Proof: Let aij be a matrix orresponding to the K{linear transformation x 7! �x of L into itself.Expanding det(XÆij � aij), it is easily seen that the oeÆient of Xn�1 is �(a11 + � � � + ann) and theonstant oeÆient is (�1)n det(aij). 2Lemma 19: Let L=K be a �nite extension, � 2 L, and �(X) be the �eld polynomial of � w.r.t.L=K. Suppose E is a sub�eld of L ontaining K suh that � 2 E and 	(X) is the �eld polynomial of� w.r.t. E=K. Then �(X) = 	(X)[L:E℄and, in partiular,TrL=K(�) = [L : E℄ �TrE=K(�)� and NL=K(�) = �NL=E(�)�[L:E℄ :Proof: Let fu1; : : : urg be an E{basis of L and fv1; : : : ; vsg be a K{basis of E. Then fuivj : 1 � i �r; 1 � j � sg, ordered lexiographially (say), is a K{basis of L. If (ajl) is the s� s matrix suh that�vj = sXl=1 ajlvl j = 1; : : : ; sthen, for 1 � i � r and 1 � j � s, we have�(uivj) = sXl=1 ajl(uivl) = X1�k�r1�l�s ajlÆik(ukvl):Now (ajlÆik) [where (i; j) and (k; l) vary, in a lexiographi order, over the set f1; : : : ; rg� f1; : : : ; sg℄ isthe rs � rs matrix orresponding to the K{linear transformation x 7! �x of L into itself. The rs � rsidentity matrix an be represented as (ÆikÆjl), and so�(X) = det (XÆikÆjl � ajlÆik) = det (Æik [XÆjl � ajl℄) = [det (XÆjl � ajl)℄r :Thus �(X) = 	(X)[L:E℄. The rest is evident. 2Corollary: Let L=K be a �nite extension and � 2 L. Then the �eld polynomial �(X) of � w.r.t.L=K is a power of the minimal polynomial of � over K. In fat, �(X) = [Irr(�;K)℄[L:K(�)℄.Proof: Let 	(X) be the �eld polynomial of � w.r.t. K(�)=K. Then 	(X) is a moni polynomialin K[X ℄ with 	(�) = 0 and deg	(X) = [K(�) : K℄ = deg Irr(�;K). Hene 	(X) = Irr(�;K). Ourassertion now follows from the previous Lemma. 2Remark: The �eld polynomial is usually easy to ompute and, in view of the above results, it oftenhelps in �nding the minimal polynomial.We now proeed to give an alternative expression for the trae and norm.De�nition: Two elements � and �0 in an extension of a �eld K are said to be onjugates of eahother if there exists a K{isomorphism of K(�) onto K(�0) whih maps � to �0.Note that, in view of Lemma 9, � and �0 are onjugates over K if and only if they have the sameminimal polynomial over K. Also note that � and �0 are onjugates over K if and only if �0 = �(�) forsome K{homomorphism � of K(�) into an extension of K ontaining �0.68



Let L=K be a �nite separable extension of degree n, � 2 L, and N be a normal extension of Kontaining L [suh N exists by Exerise 7; it an, for example, be the least Galois extension of Kontaining L℄. By Lemma 12 and the Corollary to Lemma 9, we see that there exist exatly n distintK{isomorphisms �1; : : : ; �n of L into N . Clearly, �i(�) and � are onjugates over K for eah i with1 � i � n. The n elements �1(�); : : : ; �n(�) will be alled the onjugates of � w.r.t. L=K; these areuniquely determined provided we �x our N . Note that these n elements need not be distint; in fat, thenumber of distint onjugates among these is [K(�) : K℄ and eah of these is repeated exatly [L : K(�)℄times. (This follows from Exerise 12. Verify!)Lemma 20: Let L=K be a �nite separable extension of degree n and � 2 L. Fix a normal extensionN of K ontaining L. Then:(1) TrL=K(�) is the sum of all onjugates of � w.r.t. L=K. In partiular, if L=K is Galois, thenTrL=K(�) = X�2Gal(L=K)�(�):(2) NL=K(�) is the produt of all onjugates of � w.r.t. L=K. In partiular, if L=K is Galois, thenNL=K(�) = Y�2Gal(L=K)�(�):Proof: Let r = [L : K(�)℄ and s = [K(�) : K℄. If �1; : : : ; �r are the distint K{homomorphismsof K(�) into N , then �1(�); : : : ; �s(�) are preisely the distint onjugates of � w.r.t. L=K and theminimal polynomial of � over K fators asIrr(�;K) = sYj=1 (X � �j(�))Now the onjugates �1(�); : : : ; �n(�) of � w.r.t. K are nothing but �1(�); : : : ; �s(�) eah repeated rtimes. Hene, by the Corollary to Lemma 19, we see that�(X) = nYi=1 (X � �i(�))where �(X) denotes the �eld polynomial of � w.r.t. L=K. In view of Lemma 18, the above identityreadily implies (1) and (2). 2Remark: In the above Lemma and the disussion preeding that, we ould have replaed N by analgebrai losure12 of K (assumed to ontain L). Fixing an algebrai losure K of K, one an de�neGal(L=K), for any separable extension L=K with L � K, to be the set of all K{homomorphisms of Linto K. With this onvention, the displayed identities for the trae and norm in Lemma 20 remain validfor any �nite separable extension L=K. Our de�nition of Gal(L=K) applies only to Galois extensions butit has the advantage that we don't have to talk about algebrai losures, and that we an legitimatelyall it the Galois group.Exerise 19: Let L=K be a �nite separable extension and E be a sub�eld of L ontaining K. Provethe following transitivity properties of the trae and norm.TrL=K = TrE=K ÆTrL=E and NL=K = NE=K ÆNL=E:12By an algebrai losure of a �eld K we mean an algebrai extension K of K suh that every nononstantpolynomial inK[X℄ has a root inK. It an be shown that every �eldK has an algebrai losure with the propertythat any algebrai extension of K is isomorphi to some sub�eld of it; further any two algebrai losures of Kare K{isomorphi. For details, see Lang's \Algebra". 69



Appendix BDisriminants in Algebra andArithmeti1We begin with the familiar notion of the disriminant of a quadrati and disuss how it an be extendedto more general situations. We also outline some important appliations of the notion of disriminantin Algebra and Arithmeti.B.1 Disriminant in High Shool AlgebraUsually, we �rst ome aross disriminants in High Shool when we study the quadrati equationaX2 + bX +  = 0: (B.1)The quantity � = b2 � 4a is alled the disriminant of (B.1) and it has the quintessential property:� = 0() the equation (B.1) has a repeated root. (B.2)Stritly speaking, (B.2) holds if (B.1) is a genuine quadrati, i.e., if a 6= 0. Indeed, if a 6= 0 and if �; �are the roots of (B.1), then we haveaX2 + bX +  = a(X � �)(X � �) (B.3)or equivalently �+ � = �ba and �� = a :Thus from the simple identity (�� �)2 = (�+ �)2 � 4��, it follows that� = a2(�� �)2: (B.4)Note that the above expression makes it obvious that the property (B.2) holds.We now onsider the problem of suitably de�ning the disriminant of a general equationf(X) = 0where f is a polynomial of degree n, i.e.,f(X) = a0Xn + a1Xn�1 + � � �+ an�1X + an; with a0 6= 0: (B.5)1This appendix is a verbatim reprodution of an artile with the same title published in Bona Mathematia,Vol. 11, No. 2-3 (2000), pp. 43{62. 70



Let us assume that f is a nononstant polynomial, i.e., n � 1. What should the disriminant of f be?Burnside and Panton (1892) answer this niely by saying that the disriminant ought to be the simplestfuntion of the oeÆients in a rational and integral form, whose vanishing expresses the ondition forequal roots. Let �1; : : : ; �n denote the roots2 of f so thatf(X) = a0(X � �1) : : : (X � �n): (B.6)As a �rst guess for the disriminant of f , it seems natural to onsider an expression suh asVf = Y1�i<j�n(�i � �j):This is ertainly a simple funtion whose vanishing expresses the ondition for repeated roots. But itisn't really a funtion of the oeÆients, even in the ase of a quadrati. So we take a ue from (B.4),and onsider V 2f = Y1�i<j�n(�i � �j)2:Now this is a symmetri polynomial funtion in �1; : : : ; �n, in the sense that it is unhanged if we permute�1; : : : ; �n. We have a fundamental result going bak to Newton whih says that every symmetripolynomial an be expressed as a polynomial in the `elementary symmetri funtions'. The elementarysymmetri funtions in �1; : : : ; �n are as follows.e1 = �1 + � � �+ �n = X1�i�n�ie2 = �1�2 + � � �+ �n�1�n = X1�i<j�n�i�i...en = �1 : : : �n:From (B.5) and (B.6), we see thate1 = �a1a0 ; e2 = a2a0 ; : : : ; en = (�1)nana0 : (B.7)Thus it follows from Newton's Theorem on symmetri funtions, that any symmetri polynomial in�1; : : : ; �n is a polynomial in e1; : : : ; en, and hene it equals a polynomial in the oeÆients a0; a1; : : : ; andivided by some power of a0. In the ase of V 2f , the degree in �1 is 2(n � 1), and sine eah ei is ofdegree 1 in �1, we see that the degree of V 2f in e1; : : : ; en is at most 2(n� 1). Thus a2n�20 V 2f would bea polynomial in a0; a1; : : : ; an with integral oeÆients. We are now ready to make a formal de�nition.De�nition B.1. The disriminant of f , denoted by Dis(f), is de�ned byDis(f) = a2n�20 Y1�i<j�n(�i � �j)2:2It may be worthwhile to digress here a bit to disuss the idea of roots of a polynomial. If our polynomial f(X)has omplex oeÆients (in partiular, integral, rational or real oeÆients), then the Fundamental Theorem ofAlgebra assures us that it has exatly n roots in C , when ounted with multipliities. Reall that � is said tobe a root of multipliity m if f(X) = (X � �)mg(X) for some polynomial g(X) with g(�) 6= 0. In ase m > 1,we say that � is a multiple root or a repeated root of f . In general, if A is an integral domain and f 2 A[X℄ (i.e.,f is a polynomial in X with oeÆients in A), then for any integral domain B ontaining A as a subring, f hasat most n roots in B. Moreover, there exists a �eld L ontaining A as a subring suh that f has exatly n rootsin L when ounted with multipliities. Thus abstratly speaking, by suitably enlarging the domain, if neessary,we an always onsider n elements �1; : : : ; �n whih are the roots of f . Here eah root is repeated as many timesas its multipliity. 71



From the de�nition of Dis(f), the following result is evident.Theorem B.2. Dis(f) = 0() f has a repeated root. 2Although our de�nition of Dis(f) meets all the basi requirements, the situation is still unsatisfa-tory beause for any pratial use of the above theorem, we should not have to �nd the Dis(f) by �rst�nding the roots of f . In other words, it is highly desirable to have a onrete expression for Dis(f)purely in terms of the oeÆients a0; a1; : : : ; an of f . This is not so easy (try the ase of n = 3)! But wean give a nie expression for Dis(f) if we know the lassial notion of resultant. Let us quikly reallsome basis onerning resultants. We refer to [21℄ for more on this topi.De�nition B.3. Given any two polynomialsf(X) = a0Xn + � � �+ an and g(X) = b0Xm + � � �+ bm; (B.8)the resultant of f(X) and g(X) is de�ned to be the (m+ n)� (m+ n) determinant����������������
a0 a1 : : : : : : : : : ana0 a1 : : : : : : : : : an�1 an: : : : : : : : : : : : : : : : : : : : : : : : : : :a0 a1 : : : : : : : : : anb0 b1 : : : : : : : : : : : : bmb0 b1 : : : : : : : : : : : : bm�1 bm: : : : : : : : : : : : : : : : : : : : : : : : : : :b0 b1 : : : : : : : : : : : : bm

����������������
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m rowsn rowswhere the blanks before a0; b0 and after an; bm are to be �lled with zeros. It is denoted by ResX(f; g;n;m)or simply by Res(f; g).An important fat about resultants is the following.Theorem B.4 (Produt Formula). Let f(X) and �1; : : : ; �n be as in (B.5) and (B.6). Also letg(X) = b0Xm + b1Xm�1 + � � �+ bm be a polynomial in X. ThenRes(f; g) = am0 nYi=1 g(�i):Moreover, if b0 6= 0 and if �1; : : : ; �n are the roots of g so that g(X) = b0Qmj=1(X � �j), thenRes(f; g) = (�1)mnbn0 mYj=1 f(�j) = am0 bn0 nYi=1 mYj=1(�i � �j):In partiular, Res(f; g) = 0 if and only if f and g have a ommon root.We are now ready to relate resultants to disriminants and thereby get a onrete formula for Dis(f)in terms of the oeÆients of f .Theorem B.5. Let f(X) = a0Xn+ a1Xn�1+ � � �+ an�1X + an be a nononstant polynomial of degreen. Let f 0(X) be the derivative of f(X), i.e., f 0(X) = na0Xn�1 + (n� 1)a1Xn�2 + � � �+ an�1. ThenRes(f; f 0) = (�1)n(n�1)2 a0Dis(f):72



Proof: Let �1; : : : ; �n be the roots of f . Then we havef(X) = a0 nYi=1(X � �i); and therefore f 0(X) = a0 nXi=1 nYj=1j 6=i(X � �j):Hene, using Theorem B.4, we see that Res(f; f 0) equalsan�10 nYi=1 f 0(�i) = an�10 nYi=1 a0 nYj=1j 6=i(�i � �j) = a2n�10 nYi=1 nYj=1j 6=i(�i � �j):Now if in the last produt, we ollate together the terms of the form (�i��j) and (�j ��i) so as to getthe orresponding term in the expression for Dis(f), then the number of sign hanges required wouldbe X1�i<j�n 1 = nXi=1 nXj=i+1 1 = nXi=1(n� i) = n(n� 1)2 :(Alternatively, the number of sign-hanges is the number of 2-element subsets f�i; �jgi<j of the n-element set f�1; : : : ; �ng, and so it is �n2� = n(n�1)2 .) Therefore, we onlude thatRes(f; f 0) = a2n�10 (�1)n(n�1)2 nYi=1 nYj=1i<j(�i � �j)2 = (�1)n(n�1)2 a0Dis(f): 2Remark. The sign fator (�1)n(n�1)2 in the above result has, uriously, been missed by several mathe-matiians. For example, this error ourred in the �rst edition of Lang's Algebra. In the seond edition[13, p. 211℄, Lang mentions that Serre has pointed out to him this error and also that it ours in vander Waerden, Samuel, and Hilbert but not in Weber. Indeed, the error ours in van der Waerden'sAlgebra [23, p. 82℄, the original Frenh edition of Samuel's Algebrai Theory of Numbers [17, p. 49℄although not in its English translation. In the ase of Hilbert, one might expet that the referene isto Hilbert's famous Zahlberiht (see [8, pp. 63{363℄ or the reent English translation [9℄), but we havenot been able to spot any error there. This may be beause Hilbert's olleted works were revised andorreted by Olga Taussky et al. On the other hand, Weber's Textbook of Algebra, written more than aentury ago, is quite areful about the sign during the disussion of the disriminant (f. [24, x50℄).Corollary B.6. Let f(X) and �1; : : : ; �n be as in (B.5) and (B.6). Assume that f 0(X) is of degreen� 1 3 and let �1; : : : ; �n�1 be the roots of f 0(X). ThenDis(f) = (�1)n(n�1)2 an�20 nYi=1 f 0(�i) = (�1)n(n�1)2 nnan�10 n�1Yj=1 f(�j):Proof: Follows easily from Theorem B.4 and Theorem B.5 by noting that (�1)n(n�1) = 1. 2Example: Consider a ubi polynomial of the form f(X) = X3 + pX + q. To �nd Dis(f), we notethat the roots of f 0(X) = 3X2 + p are �(�p=3)1=2. Therefore, by the seond formula in the Corollaryabove, Dis(f) equals(�1) 3(2)2 33 �(�p=3)3=2 + p(�p=3)1=2 + q� ��(�p=3)3=2 � p(�p=3)1=2 + q�= �27 hq2 � [(�p=3) + p℄2 (�p=3)i= �27 �q2 + (4p2=9)(p=3)�= �4p3 � 27q2:3This is always the ase if the oeÆients are omplex numbers or more generally, if n is not divisible by theharateristi. 73



More generally, if f(X) = X3 + aX2 + bX + , then using the above method or by diretly omputingthe resultant, it an be seen thatDis(f) = �4a3+ a2b2 + 18ab� 4b3 � 272:We leave it to the reader to verify this formula.Exerise: Let f(X) and �1; : : : ; �n be as in the de�nition of the Disriminant. Assume that f(X) ismoni, i.e., a0 = 1. Prove that Dis(f) equals the square of the Vandermonde determinant det��j�1i �orresponding to �1; : : : ; �n. Dedue that Dis(f) is also given by the determinant of the n� n matrixwhose (i; j)th entry is the power sum symmetri funtion pi+j�2. In other words, if for k � 0 , pk =�k1 + � � �+ �kn, then show thatDis(f) = ��������� 1 �1 : : : �n�111 �2 : : : �n�12... . . .1 �n : : : �n�1n ���������2 = ��������� p0 p1 : : : pn�1p1 p2 : : : pn... . . .pn�1 pn : : : p2n�2 ��������� :B.2 Disriminant in College AlgebraIn the B.S. and M.S. level ourses in Algebra, where one mainly studies groups, rings, �elds, et.,the notion of disriminant is enountered one again. Here, at least initially, it appears far removedfrom the lassial or the high shool algebra notion of disriminant. We will try to narrow this gapby �rst realling the relevant de�nitions and then desribing how the two seemingly di�erent notionsof disriminant are related to one another. In what follows, we will assume mild familiarity with theonepts suh as rings, �elds, vetor spaes, and basi fats onerning them. We begin with a briefdisussion of the notion of trae, and some of its properties, whih are needed later. For proofs of theseauxiliary results, one may refer to [6℄ or standard texts suh as [13℄.Let K be a �eld and L be a ring ontaining K as a subring. Then L is a vetor spae over K.We will assume that the vetor spae dimension of L over K is �nite and denote it by [L : K℄. A niepassage from L to K is provided by the trae mapTrL=K : L! Kwhih is de�ned as follows. Let n = [L : K℄. Given any � 2 L, let t� denote the linear transformationof L ! L de�ned by t�(x) = �x for x 2 L. Then we de�ne TrL=K(�), to be the trae of t�. In otherwords, if fu1; : : : ; ung is a K-basis of L, and if t�(uj) =Pni=1 aijui for some aij 2 K (1 � j � n), thenTrL=K(�) = Pni=1 aii. The latter is easily seen to be independent of the hoie of a basis. Some basiproperties of the trae map Tr (we often drop the subsript L=K when it is lear from the ontext) areas follows.(i) TrL=K is aK{linear map, i.e., Tr(au+bv) = aTr(u)+bTr(v) for all a; b 2 K and u; v 2 L. Moreover,the restrition of TrL=K toK equals [L : K℄ times the identity map, that is, Tr(a) = na. for a 2 K.(ii) Suppose L is a �eld suh that L = K(�) for some � 2 L.4 Let f(X) be the minimal polynomial 5of � over K. Assume that f(X) has distint roots, say �1; : : : ; �n. Then Tr(�) = �1 + � � �+ �n.4By K(�) one denotes the smallest sub�eld of L ontaining K and �; it onsists of all `rational funtions'p(�)=q(�), where p(X); q(X) 2 K[X℄ with q(�) 6= 0.5A moni polynomial (i.e., a polynomial whose leading oeÆient is 1) in K[X℄ satis�ed by � and of leastpossible degree is unique and is alled the minimal polynomial of � over K. Its degree equals [K(�) : K℄. See[6℄, [11℄, [13℄ or [26℄ for more on this. 74



Remarks. 1. Suppose L is a �eld. Then K is a sub�eld of L and the �niteness of [L : K℄ = dimK Limplies that for eah � 2 L, the minimal polynomial of � over K exists.6 The roots �1; : : : ; �d of thisminimal polynomial are alled the onjugates of � over K.2. Suppose L is a �eld. If every u 2 L has distint onjugates over K, then we say that L=K isseparable. It an be shown that if K is any �eld ontaining rationals, then L=K is always separable. IfL=K is separable (and dimK L is �nite), then the so alled Primitive Element Theorem assures us thatthere exists some � 2 L suh that L = K(�); suh an element � is alled a primitive element in L.3. Suppose L is a �eld suh that L=K is a separable and u is any element of L. If we let d denote thedegree of the minimal polynomial of u overK and u1; : : : ; ud denote the roots of the minimal polynomial,then n = de, where e = dimK(u) L, and the n elements u(1); : : : ; u(n) obtained by taking eah of u1; : : : ; udexatly e times, are alled the onjugates of u w.r.t. L=K. We have Tr(u) = u(1) + � � �+ u(n).Example. Consider L = Q(p2) = fa+ bp2 : a; b 2 Qg. This is a �eld and a 2-dimensional vetor spaeoverK = Q with f1;p2g as a basis. Given any u = a+bp2 2 L, the matrix of the linear transformationtu w.r.t. the above basis is easily seen to be � a b2b a �and therefore Tr(u) = 2a. Alternately, u satis�es the polynomialX2 � 2aX + (a2 � 2b2) = �X � (a+ bp2)��X � (a� bp2)�and this is the minimal polynomial of u if b 6= 0. Therefore a + bp2; a � bp2 are the onjugates of uw.r.t. L=K and the last equality in the Remark above is veri�ed.We are now ready to de�ne the notion of disriminant in the set-up of the ring L ontaining a �eldK as a subring and suh that dimK L = n is �nite.De�nition B.7. Given any n elements u1; : : : ; un 2 L, the disriminant DL=K(u1; : : : ; un) of u1; : : : ; unw.r.t. L=K is de�ned to be the determinant of the n� n matrix �TrL=K(uiuj)�.Note that DL=K(u1; : : : ; un) is an element of K.Lemma B.8. If u1; : : : ; un 2 L are suh that DL=K(u1; : : : ; un) 6= 0, then fu1; : : : ; ung is a K{basis ofL.Proof: It suÆes to show that u1; : : : ; un are linearly independent over K. Suppose Pni=1 iui = 0 forsome 1; : : : ; n 2 K. Multiplying the equation by uj and taking the trae, we �nd thatPni=1 iTr(uiuj) =0. By hypothesis, the matrix �TrL=K(uiuj)� is nonsingular. Hene it follows that j = 0 for j = 1; : : : ; n.2Lemma B.9. If fu1; : : : ; ung and fv1; : : : ; vng are two K{bases of L and ui = Pnj=1 aijvj , aij 2 K,then we have DL=K(u1; : : : ; un) = [det(aij)℄2DL=K(v1; : : : ; vn):In partiular, sine (aij) is nonsingular, we haveDL=K(u1; : : : ; un) = 0() DL=K(v1; : : : ; vn) = 0:6Indeed, sine n = dimK L, the set f1; �; : : : ; �ng of n+ 1 elements must be linearly dependent over K, andthus � satis�es a nonzero polynomial of degree � n over K. This, or any nonzero polynomial satis�ed by �, aneasily be made moni upon dividing by its leading oeÆient.75



Proof: For any i; j 2 f1; : : : ; ng, we haveuiuj =  nXk=1 aikvk!uj = nXk=1 aikvk  nXl=1 ajlvl! = nXk=1 nXl=1 aikajlvkvl:Taking trae of both sides, and letting A denote the matrix (aij), we see that(Tr(uiuj)) = At (Tr(vivj))Aand so the result follows. 2Remark: We shall say that the disriminant of L=K is zero (or nonzero) and write DL=K = 0 (orDL=K 6= 0) if for some K{basis fu1; : : : ; ung of L, the quantity DL=K(u1; : : : ; un) is zero (or nonzero).The last lemma justi�es this terminology.We are now ready to desribe the link between the two notions of disriminant onsidered in thisand the previous setion.Theorem B.10. Suppose L is a �eld and L=K is a separable. Then the disriminant of L=K is nonzero.In fat, if � is a primitive element (so that L = K(�) and f1; �; �2; : : : ; �n�1g is a K{basis of L) andf(X) is its minimal polynomial, then we haveDL=K(1; �; �2; : : : ; �n�1) = Yi>j (�i � �j)2 = Dis(f)where �1; �2; : : : ; �n denote the onjugates of �.Proof: Sine L=K is separable, the trae of any element of L equals the sum of its onjugates w.r.t.L=K. Thus if fu1; : : : ; ung is a K{basis of L and ui(1); ui(2); : : : ; ui(n) denote the onjugates of ui w.r.t.L=K, then we have Tr(uiuj) =Pnk=1 u(k)i u(k)j . In other words, the matrix (Tr(uiuj)) equals the produtof the matrix �u(j)i � with its transpose. ThereforeDL=K(u1; : : : ; un) = ���������� u(1)1 u(2)1 : : : u(n)1u(1)2 u(2)2 : : : u(n)2... ... . . . ...u(1)n u(2)n : : : u(n)n ����������2:In ase u1; u2; : : : ; un are 1; �; : : : ; �(n�1) respetively, then the determinant above is a Vandermondedeterminant and the RHS beomes��������� 1 1 : : : 1�1 �2 : : : �n... ... . . . ...�1n�1 �2n�1 : : : �nn�1 ���������2=Yi>j (�i � �j)2 = Yi<j (�i � �j)2 :Therefore, we obtain the desired formulae. Our �rst assertion follows from the fat that if L = K(�) isseparable over K, then the onjugates �(1); �(2); : : : ; �(n) of � w.r.t. L=K are distint. 2Remark: The onverse of the above Theorem, viz., if DL=K 6= 0 then L=K is separable, is also true.For a proof, see [26℄. 76



B.3 Disriminant in ArithmetiIn Arithmeti, whih we start learning even before entering high shool, we mainly deal with numbersand their divisibility properties. A basi result is theFundamental Theorem of Arithmeti Every nonzero integer an be fatored as �1 times a �niteprodut of prime numbers. Moreover, this deomposition is unique up to rearrangement of terms.In higher arithmeti, we are interested in knowing if suh a result holds in domains more generalthan Z, the ring of integers. An example of suh a domain isZ[i℄ = fa+ bi : a; b 2 ZgThis is a subring of C , and is alled the ring of Gaussian integers. Here i is the usual omplex numberwhose square is �1. The notion of divisibility is easily de�ned in Z[i℄ or for that matter, in any ring.Given a ring7 A and elements a; b 2 A, we say that b divides a, and write bja, if a = b for some 2 A.The analogue of a prime number is the so alled irreduible element.An element p in a ring A is said to be irreduible if p 6= 0, p is not a unit8, and whenever p = b forsome b;  2 A, either b is a unit or  is a unit.For example, 5 is irreduible in Z but not in Z[i℄ sine it deomposes as 5 = (2 + i)(2� i). Further,the fators 2+ i and 2� i an be shown to be irreduible elements whih are distint; in fat, they do noteven di�er by a unit. On the other hand, 3 remains prime in Z[i℄. Indeed, if u = a+ bi and v = + diare elements of Z[i℄ suh that 3 = uv, then by taking modulus (as omplex numbers) and squaring, wehave 9 = (a2 + b2)(2 + d2). But the square of an integer is always � 0 or 1 (mod 4), and so the sumof two squares is never � 3 (mod 4). Hene a2 + b2 = 1 or 2 + d2 = 1. This implies that either u or vis in f1;�1; i;�ig, i.e., either u is a unit or v is a unit. The prime 2 of Z is speial. It splits in Z[i℄ as2 = (1+ i)(1� i) and the fators 1� i are irreduible, but they aren't really distint beause they di�ersimply by a unit [indeed, 1 + i = i(1 � i) and so 2 = i(1 � i)2℄. In general, a prime number p, whenextended to Z[i℄ 8<: splits as a produt of two distint irreduibles if p � 1(mod 4)remains irreduible if p � 3(mod 4)equals unit times the square of an irreduible if p = 2:Inidentally, for p � 1(mod 4), the two irreduible fators in Z[i℄ must be (omplex) onjugates ofeah other (prove!), and thus the result about the deomposition of suh primes in Z[i℄ is equivalent toFermat's Two Squares Theorem (viz., primes � 1(mod 4) are sums of two squares).The ring Z[i℄ is an example of the ring of algebrai integers (in a number �eld). The latter arede�ned as follows. A sub�eld K of C , whih is �nite dimensional as a vetor spae over Q is alled analgebrai number �eld or simply a number �eld. We all dimQK the degree of K=Q and denote it by[K : Q℄. If K is a number �eld, then every element of K satis�es a nonzero polynomial with integeroeÆients (hek!). Those elements of K whih satisfy a moni polynomial with integer oeÆients arealled (algebrai) integers in K. The set of all algebrai integers in K form a subring of K, alled thering of integers of K and denoted by OK .Exerises. Let K be a number �eld of degree n and OK be its ring of integers.1. Show that given any u 2 K, there exists d 2 Z suh that d 6= 0 and du 2 OK . Dedue that thequotient �eld of OK is K and moreover, there exist a Q-basis fu1; : : : ; ung of K suh that ui 2 OK forall i = 1; : : : ; n.7By a ring we shall always mean a ommutative ring with identity.8Units in a ring A are de�ned to be the elements whih divide 1. For example, 1, �1 are the only units in Z.77



2. Show that OK \ Q = Z. In other words, if a rational number satis�es a moni polynomial withinteger oeÆients, then it must be an integer.If fu1; : : : ; ung is a Q-basis of K suh that fu1; : : : ; ung � OK , then from Exerise 2 above, we seethat DK=Q(u1; : : : ; un) is an integer. Moreover, by Theorem B.10, it is a nonzero integer.Lemma B.11. Let fu1; : : : ; ung � OK be a Q-basis of K with the property that jDK=Q(u1; : : : ; un)j isminimal. Then OK = Zu1 + � � � + Zun, i.e., u 2 OK if and only if u = 1u1 + � � � + nun for some1; : : : ; n 2 Z.Proof: It is lear that Zu1+ � � �+ Zun � OK . If u 2 OK , then we an write u = r1u1 + � � �+ rnun forsome r1; : : : ; rn 2 Q. If rk 62 Z for some k (1 � k � n), then rk = mk + �, where mk 2 Z and � is arational number with 0 < � < 1. De�ne v1; : : : ; vn by vj = uj if j 6= k and vk = u �mkuk. Then it islear that fv1; : : : ; vng � OK and fv1; : : : ; vng is a Q-basis of K. Moreover the matrix (aij) of rationalsfor whih vi =Pnj=1 aijuj for i = 1; : : : ; n, is the identity matrix exept for the k{th row, whih is givenby (r1; : : : ; rk�1; �; rk+1; : : : ; rn). Thus in view of Lemma B.9, we see thatDK=Q(v1; : : : ; vn) = [det (aij)℄2DK=Q(u1; : : : ; un) = �2DK=Q(u1; : : : ; un):Sine � < 1, the minimality of jDK=Q(u1; : : : ; un)j is ontradited. This proves the lemma. 2De�nition B.12. A Q-basis u1; : : : ; un of a number �eld K suh that OK = Zu1+ � � �+Zun is alled anintegral basis of K.The above Lemma shows that every number �eld has an integral basis. Also, it is lear that iffu1; : : : ; ung and fv1; : : : ; vng are any two integral bases of K, then vi =Pnj=1 aijuj for j = 1; : : : ; n, forsome n�n matrix (aij) with integral entries. Moreover the inverse of (aij) is also a matrix with integralentries. Therefore, det (aij) = �1. Hene from Lemma B.9, it follows that any two integral bases of Khave the same disriminant; it is alled the (absolute) disriminant of K and is denoted by dK .The following example illustrates the omputation of disriminant and determination of integralbases.Example: Let K be a quadrati �eld [that is, a sub�eld of C suh that [K : Q℄ = 2℄ and O be its ringof integers. If � is any element of K whih is not in Q, then 1 < [Q(�) : Q℄ � [K : Q℄ = 2, and heneK = Q(�). Moreover, � satis�es a quadrati polynomial with integer oeÆients, and thus � = a+ bp�for some a; b 2 Q and � 2 Z. Sine � 62 Q, we must have b 6= 0 and � not a square. It follows thatK = Q �p��. Removing the extraneous square fators from �, if any, we an write K = Q(pm),where m is a squarefree integer. We now attempt to give a more onrete desription of O. First, notethat Z[pm℄ = fr + spm : r; s 2 Zg � O. Let x = a + bpm 2 O for some a; b 2 Q. Then the otheronjugate a � bpm of x must also be in O. Therefore the sum of these two, i.e., Tr(x) = 2a and theprodut a2 �mb2 are both in OK \ Q = Z. Sine m is squarefree and a2 �mb2 2 Z, we see that a 2 Zif and only if b 2 Z. Thus if a =2 Z, then we an �nd an odd integer a1 suh that 2a = a1, and relativelyprime integers b1 and 1 with 1 > 1 suh that b = b11 . Now�a1 = 2a 2 Z and a2 �mb2 2 Z�) �4j21a21 and 21j4mb21�) 1 = 2:Hene b1 is odd and a21�mb21 � 0(mod 4). Also a1 is odd, and therefore, m � 1(mod 4). It follows thatif m 6� 1(mod 4), then a; b 2 Z, and so in this ase,O = Z[pm℄ = fa+ bpm : a; b 2 Zg and f1;pmg is an integral basis.In the ase m � 1(mod 4), the preeding observations imply thatO � �a1 + b1pm2 : a1; b1 2 Z with a1 � b1(mod 2)�78



and, moreover, 1+pm2 2 O sine it is a root of X2 �X � m�14 ; thereforeO = Z[ 1+pm2 ℄ = fa+ bpm2 : a; b 2 Z with a � b(mod 2)gand onsequently, f1; 1 +pm2 g is an integral basis.We an now ompute the disriminant of K as follows.dK = 8>><>>: det� 2 00 2m � = 4m if m � 2; 3(mod 4)det� 2 11 (1 +m)=2 � = m if m � 1(mod 4):It may be remarked that the integer d = dK determines the quadrati �eld K ompletely, and the setf1; d+pd2 g is always an integral basis of K. (Verify!)In general, the unique fatorization property is not true in the ring of integers of a number �eld; inother words, the Fundamental Theorem of Arithmeti may not hold there. For example, ifK = Q(p�5),then from the example above, we have OK = Z[p�5℄, and for the number 6, we have two di�erentfatorizations: 6 = 3 � 2 = (1 +p�5)(1�p�5):It is not diÆult to see that the fators 2; 3; 1+p�5 and 1�p�5 are irreduible and genuinely distint(i.e., no two di�er by a unit) in OK = Z[p�5℄. Around 1844, the German mathematiian E. Kummerwas studying arithmeti in the ring Z[�℄ of ylotomi integers9 while trying to prove Fermat's LastTheorem10. Kummer realized that the unique fatorization may not always hold in rings of ylotomiintegers. Instead of giving up the problem, he ontinued to delve deeper and made a remarkable disovery!He showed that the unique fatorization property an be salvaged if we replae numbers by what healled ideal numbers. Another German mathematiian R. Dedekind simpli�ed and extended Kummer'swork by using ideals in plae of ideal numbers.11 Dedekind's results were �rst published in 1871.12 Ine�et, Dedekind showed that if K is a number �eld, then every nonzero ideal of OK fators as a �niteprodut of prime ideals, and this fatorization is unique up to rearrangement of terms. Integral domainswith this property are now known as Dedekind domains.At any rate, if K is a number �eld and p is a prime number, then, thanks to the abovementionedresult of Kummer-Dedekind-Kroneker, the extended ideal pOK an be fatored uniquely aspOK = P e11 P e22 � � �P ehh9If � = �n is a primitive n{th root of unity (e.g., � = e2�i=n = os(2�=n)+ i sin(2�=n)), then Q(�) is a number�eld, alled a ylotomi �eld and its ring of integers is Z[�℄ = fa0 + a1� + � � �+ an�1�n�1 : a0; a1; : : : ; an 2 Zg,whih is alled the ring of ylotomi integers.10Fermat's Last Theorem (FLT) is the famous assertion of P. Fermat that the equation xn + yn = zn has nosolution in nonzero integers, if n � 3. It is natural to onsider the ring of ylotomi integers here beause theexistene of a solution (x; y; z) yields a fatorization xn = (y � z)(y � �z) : : : (y � �n�1z) in Z[�℄ and to proeedfurther, it would be useful to know if the unique fatorization property is valid in Z[�℄. In a sense, Kummerdidn't sueed in proving FLT (though he settled it for several values of n) beause of the failure of uniquefatorization in Z[�℄. Reently, in 1994 FLT has been proved by A. Wiles partly in ollaboration with R. Taylor.11In fat, the onept of an ideal of a ring was thus born in the work of Kummer and Dedekind. Note that thesehistorial origins justify the nomenlature \ideal", whih may otherwise seem obsure. Indeed, by onsideringideals, the ideal situation (of unique fatorization) is restored!12Inidentally, another approah towards understanding and extending Kummer's work was developed by hisstudent L. Kroneker, whose work was apparently ompleted in 1859 but was not published until 1882.79



where P1; : : : ; Ph are distint prime ideals of OK and e1; : : : ; eh are positive integers. The prime p issaid to be rami�ed in K if ei > 1 for some i.Example: If K = Q(i), then 2 is the only rami�ed prime.In general, to understand the phenomenon of rami�ation, the disriminant is an indispensable tool.This may be lear from the following basi result.Theorem B.13 (Dedekind's Disriminant Theorem). Let K be a number �eld and dK be its dis-riminant. Then for any prime number p, we havep is rami�ed in K () pjdK :Example: If K = Q(pm), where m is a squarefree integer, then we have alulated the disriminantdK of K. Thus, for any prime number p, we have:p is rami�ed in K () � pjm if m � 1(mod 4)pjm or p = 2 if m 6� 1(mod 4):In the ase of the ylotomi �eld K = Q(�n ), where n is any integer > 2 and �n is a primitive n{theroot of unity, the disriminant turns out13 to bedK = (�1)'(n)=2 n'(n)Qpjn p'(n)=(p�1)where the produt in the denominator is over all prime numbers dividing n, and '(n) denotes the numberof positive integers � n and relatively prime to n. Therefore,p is rami�ed in Q(�n )() pjn:Remarks. 1. For a proof of Dedekind's disriminant Theorem, see [7℄ or the books of Lang [14℄ or Serre[19℄.2. The notions of disriminant and resultant are no doubt lassial and date bak more than a entury.However, extensions and generalizations (to `higher dimensions') of these notions are of muh urrentinterest. For an introdution, see the expository artile [22℄ by Sturmfels and the referenes therein.At a more advaned level, there is a book [5℄ by Gelfand, Kapranov and Zelevinsky, and the reentlypublished review [3℄ by Catanese may be a good starting point for this.3. It may be remarked that the phenomenon of rami�ation or rather the absene of rami�ation, islosely related to ertain basi notions in Topology. Briey speaking, unrami�ed �eld extensions (i.e.,extensions for whih no prime `below' is rami�ed `above') orrespond to (topologial or unbranhed)overings. Thus, saying that a �eld has no unrami�ed extensions, is analogous to the ondition that theorresponding topologial spae is simply onneted. Unfortunately, in the ompartmentalized ourses atCollege and University level, suh analogies are rarely highlighted. Thus we might take this opportunityto mention the following brief and rough ditionary of some basi onepts from Algebra and Topology.Algebrai Field Extensions  ! Branhed Coverings;Galois extensions  ! Regular Coverings;Galois Groups  ! Groups of Dek transformations.For more on Coverings Spaes in partiular, and Topology, in general, we reommend the lassi text ofSeifert and Threlfall [18℄ or the more reent book of Massey [15℄. The �rst appendix in [16℄ also gives anie and quik summary of the basis of overing spaes.13For a proof of the disriminant formula for ylotomi �elds, one may refer to [25℄.80



4. It is a nontrivial result of Minkowski that for any number �eld K other than Q, we have jdK j > 1.This means that there exists at least one prime number p whih is rami�ed in K. Thus, we might saythat Q is simply onneted! Analogous result holds when Q is replaed by the �eld C (X) of rationalfuntions in one variable with omplex oeÆients. This time, the topologial analogue is the morefamiliar result that the Riemann sphere or the extended omplex plane is simply onneted.5. The study of rami�ation (and hene of disriminants) is of basi importane in some advaneddevelopments in Algebrai Number Theory, whih go under the name of Class Field Theory. This is afasinating topi, and to learn more about it, see [2℄ or [14℄. It may also be worthwhile and interesting tosee Hilbert's Zahlberiht, whih was meant as a report to the German Mathematial Soiety on the statusof Algebrai Number Theory in 1895. This report ontained several original ontributions by Hilbertand perhaps started the subjet of Class Field Theory. The Zahlberiht is now available in English [9℄.6. The relation with rami�ation is perhaps the most important appliation of disriminant inNumber Theory. However, the lassial disriminant � = b2 � 4a of a quadrati also omes up in thefollowing important and lassial question.Given an integer �, what are the possible binary quadrati forms ax2 + bxy + y2 with integeroeÆients a; b; , for whih � = b2 � 4a? Can we lassify them?This was studied by Legendre and Gauss, and the notions of lass number and genera were developedby Gauss for lassifying binary quadrati forms with a given disriminant. For an exposition of the basisof this theory, one may onsult the texts of Baker [1℄ or Flath [4℄. For a beautiful introdution to somemodern developments motivated by this problem, we refer to Serre's Singapore leture [20℄.7. The disriminant also makes an unexpeted appearane in questions related to the generalizationof the so alled Waring's problem. For example, it is shown in [12℄ that if K is a number �eld and n; kare integers with n � k � 2, then every n�n matrix over OK is a sum of k-th powers of matries overOK if and only if the disriminant dK of K is oprime to k. Moreover, when this ondition is met, sevenpowers always suÆe.AknowledgmentsThis artile is an expanded version of a leture delivered at S. P. College, Pune on February 19, 2000.This formed a sequel to a leture by Prof. Balwant Singh on Resultants (f. [21℄). The author wouldlike to thank the S. P. College for its invitation, and also thank Prof. S. A. Katre for a number of usefulsuggestions on a preliminary version of this artile.
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