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Prefa
eDuring De
ember 2000, I gave a 
ourse of ten le
tures on Algebrai
 Number Theory at the Universityof Kiel in Germany. These le
tures were aimed at giving a rapid introdu
tion to some basi
 aspe
ts ofAlgebrai
 Number Theory with as few prerequisites as possible. I had also hoped to 
over some parts ofAlgebrai
 Geometry based on the idea, whi
h goes ba
k to Dedekind, that algebrai
 number �elds andalgebrai
 
urves are analogous obje
ts. But in the end, I had no time to dis
uss any Algebrai
 Geometry.However, I tried to be thorough in regard to the material dis
ussed and most of the proofs were eitherexplained fully or at least sket
hed during the le
tures. These le
ture notes are a belated ful�llment ofthe promise made to the parti
ipants of my 
ourse and the Kieler Graduiertenkolleg. I hope that theywill still be of some use to the parti
ipants of my 
ourse and other students alike.The �rst 
hapter is a brisk review of a number of basi
 notions and results whi
h are usually
overed in the 
ourses on Field Theory or Galois Theory. A somewhat detailed dis
ussion of the notionof norm, tra
e and dis
riminant is in
luded here. The se
ond 
hapter begins with a dis
ussion ofbasi
 
onstru
tions 
on
erning rings, and goes on to dis
uss rudiments of noetherian rings and integralextensions. Although both these 
hapters seem to belong to Algebra, they are mostly written with aview towards Number Theory. Chapters 3 and 4 dis
uss topi
s su
h as Dedekind domains, rami�
ationof primes, 
lass group and 
lass number, whi
h belong more properly to Algebrai
 Number Theory.Some motivation and histori
al remarks 
an be found at the beginning of Chapter 3. Several exer
isesare s
attered throughout these notes. However, I have tried to avoid the temptation of relegating asexer
ises some messy steps in the proofs of the main theorems. A more extensive 
olle
tion of exer
isesis available in the books 
ited in the bibliography, espe
ially [4℄ and [13℄.In preparing these notes, I have borrowed heavily from my notes on Field Theory and Rami�
ationTheory for the Instru
tional S
hool on Algebrai
 Number Theory (ISANT) held at Bombay Universityin De
ember 1994 and to a lesser extent, from my notes on Commutative Algebra for the Instru
tionalConferen
e on Combinatorial Topology and Algebra (ICCTA) held at IIT Bombay in De
ember 1993.Nevertheless, these notes are neither a subset nor a superset of the ISANT Notes or the ICCTA notes. Inorder to make these notes self-
ontained, I have inserted two appendi
es in the end. The �rst appendix
ontains my Notes on Galois Theory, whi
h have been in private 
ir
ulation at least sin
e O
tober 1994.The se
ond appendix reprodu
es my re
ent arti
le in Bona Mathemati
a whi
h gives a leisurely a

ountof dis
riminants. There is a slight repetition of some of the material in earlier 
hapters but this arti
lemay be useful for a student who might like to see some 
onne
tion between the dis
riminant in the
ontext of �eld extensions and the 
lassi
al dis
riminant su
h as that of a quadrati
.It is a pleasure to re
ord my gratitude to the parti
ipants of my 
ourse, espe
ially, Andreas Baltz,Hauke Klein and Prof. Maxim Skriganov for their interest, and to the Kiel graduate s
hool \EÆ
ientAlgorithms and Multis
ale Methods" of the German Resear
h Foundation (\Deuts
he Fors
hungsge-meins
haft") for its support. I am parti
ularly grateful to Prof. Dr. Anand Srivastav for his keeninterest and en
ouragement. Comments or suggestions 
on
erning these notes are most wel
ome andmay be 
ommuni
ated to me by e-mail. Corre
tions or future revisions to these notes will be posted onmy web page at http://www.math.iitb.a
.in/�srg/Le
notes.html and the other notes mentionedin the above paragraph will also be available here.Mumbai, January 7, 2002 Sudhir Ghorpade3
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Chapter 1Field ExtensionsWe begin with a qui
k review of the basi
 fa
ts regarding �eld extensions. For more details,
onsult Appendix A or any of the standard texts su
h as Lang [11℄ or Ja
obson [9℄.1.1 Basi
 Fa
tsSuppose L=K is a �eld extension (whi
h means that L is a �eld andK is a sub�eld of L). We 
allL=K to be �nite if as a ve
tor spa
e over K, L is of �nite dimension; the degree of L=K, denotedby [L : K℄, is de�ned to be the ve
tor spa
e dimension of L over K. Given �1; : : : ; �n 2 L,we denote by K(�1; : : : ; �n) (resp: K[�1; : : : ; �n℄) the smallest sub�eld (resp: subring) of L
ontaining K and the elements �1; : : : ; �n. If there exist �nitely many elements �1; : : : ; �n 2 Lsu
h that L = K(�1; : : : ; �n), then L=K is said to be �nitely generated. An element � 2 L su
hthat L = K(�) is 
alled a primitive element, and if su
h an element exists, then L=K is said tobe a simple extension. If L0=K is another extension, then a homomorphism � : L! L0 su
h that�(
) = 
 for all 
 2 K is 
alled a K{homomorphism of L! L0. Note that a K{homomorphismis always inje
tive and if [L : K℄ = [L0 : K℄, then it is surje
tive. Thus if L = L0, then su
h mapsare 
alledK{automorphisms of L. The set of allK{automorphisms of L is 
learly a group wherethe group operation de�ned by 
omposition of maps. This is 
alled the Galois group of L=K andis denoted by Gal(L=K) or G(L=K). Given any subgroup H of the group of automorphisms ofL, we 
an asso
iate a sub�eld LH of L de�ned by LH = f� 2 L : �(�) = � for all � 2 Hg; thisis 
alled the �xed �eld of H.An element � 2 L is said to be algebrai
 over K if it satis�es a nonzero polynomial with
oeÆ
ients in K. Suppose � 2 L is algebrai
 over K. Then a nonzero polynomial of leastpossible degree satis�ed by � is 
learly irredu
ible and, moreover, it is unique if we require itto be moni
; this moni
 irredu
ible polynomial will be denoted by Irr(�;K), and 
alled theminimal polynomial of � over K. The extension L=K is said to be algebrai
 if every � 2 L isalgebrai
 over K. If L=K is algebrai
, then we 
all it separable if Irr(�;K) has distin
t roots(in some extension of K) for every � 2 L, and we 
all it normal if Irr(�;K) has all its roots inL for every � 2 L. It may be noted that if L=K is algebrai
, then it is normal if and only ifany K{homomorphism of L into some extension L0 of L maps L onto itself. We 
all L=K tobe a Galois extension if it is �nite, separable and normal.To 
he
k separability, one generally uses the fa
t that an irredu
ible polynomial inK[X℄ has6



distin
t roots i� (= if and only if) its derivative is a nonzero polynomial. This fa
t follows, inturn, from the elementary observation that a root � of a polynomial f(X) 2 K[X℄ is a multipleroot i� f 0(�) = 0. The above fa
t 
an be used to show that K is perfe
t (whi
h means eitherthe 
hara
teristi
 of K is 0 or the 
hara
teristi
 of K is p 6= 0 and K = Kp, i.e., for any x 2 K,there exists y 2 K su
h that x = yp) i� every algebrai
 extension of K is separable. On theother hand, normality 
an be 
he
ked using the fa
t a �nite extension of K is normal i� it isthe \splitting �eld" of some polynomial in K[X℄. Re
all that given a non
onstant polynomialf(X) 2 K[X℄, we 
an �nd an extension E of K su
h that f(X) splits into linear fa
tors inE[X℄, and E is generated over K by the roots of f(X) in E. Su
h an extension is unique upto a K{isomorphism, and is 
alled the splitting �eld of f(X) over K. If deg f(X) = n, thenthe degree of the splitting �eld of f(X) over K is at most n!. Thus if f(X) is a non
onstantpolynomial in K[X℄ having distin
t roots, and L is its splitting �eld over K, then L=K is anexample of a Galois extension. A K{automorphism of L permutes the roots of f(X), and thispermutation uniquely determines the automorphism. Thus Gal(L=K) may be thought of asa �nite group of permutations. In this 
ase, Gal(L=K) is also 
alled the Galois group of thepolynomial f(X) or of the equation f(X) = 0.Some basi
 results regarding �eld extensions are the following.(i) L=K is �nite () L=K is algebrai
 and �nitely generated.(ii) Given any � 2 L, we have:� is algebrai
 over K , K(�)=K is �nite , K(�) = K[�℄:Moreover, if � is algebrai
 over K and deg Irr(�;K) = n, then f1; �; �2; : : : ; �n�1g formsa K{basis of K(�).(iii) If �1; : : : ; �n 2 L are algebrai
, then K(�1; : : : ; �n) is an algebrai
 extension of K. Fur-ther, if �1; : : : ; �n are separable over K, then it is also a separable extension. In parti
ular,the elements of L whi
h are algebrai
 over K form a sub�eld of L and among these, thosewhi
h are separable form a smaller sub�eld.(iv) Finiteness, algebrai
ity and separability are \transitive" properties. That is, if E is asub�eld of L 
ontaining K, then L=K is �nite (resp: algebrai
, separable) i� both L=Eand E=K are �nite (resp: algebrai
, separable). Moreover, if L=K is �nite, then [L :K℄ = [L : E℄[E : K℄. In 
ase of normality, all we 
an say in general is that L=K is normalimplies that L=E is normal1. Thus, a fortiori, the same thing holds for Galois extensions.(v) (Primitive Element Theorem). If L=K is �nite and separable, then it is simple, i.e., thereexists � 2 L su
h that L = K(�).In Number Theory, one has to usually deal with algebrai
 extensions of Q , the �eld ofrationals, or of Fp = Z=pZ, the �nite �eld with p elements. Sin
e Q and Fp are 
learly perfe
t�elds, every su
h extension is separable and thus saying that it is Galois amounts to sayingthat it is �nite and normal.1Find examples to show that the other two possible impli
ations are not true.7



Now we 
ome to the 
entral result in Galois Theory. Suppose L=K is a Galois extension.Then Gal(L=K) is a �nite group of order [L : K℄ and its �xed �eld is K. In fa
t, we have anin
lusion{reversing one{to{one 
orresponden
e between the subgroups of the Galois group ofL=K and the intermediate �elds between K and L. This 
orresponden
e is given as follows.Given an intermediate �eld E (i.e., a sub�eld of L 
ontainingK), the 
orresponding subgroup ofGal(L=K) is Gal(L=E). And given a subgroup H of Gal(L=K), the 
orresponding intermediate�eld is the �xed �eld LH of H. Moreover, given a sub�eld E of L 
ontaining K, the \bottompart" E=K is Galois i� Gal(L=E) is a normal subgroup of Gal(L=K), and if this is the 
ase,then Gal(E=K) is isomorphi
 to the fa
tor group Gal(L=K)=Gal(L=E). The above result isusually 
alled the Fundamental Theorem of Galois Theory.Adje
tives appli
able to a group are generally inherited by a Galois extension. Thus a Galoisextension is said to be abelian if its Galois group is abelian, and it is said to be 
y
li
 if itsGalois group is 
y
li
.Before ending this se
tion, we make some remarks about the important notion of 
omposi-tum (or 
omposite) of �elds, whi
h is very useful in Algebrai
 Number Theory. Let E and Fbe sub�elds of the �eld L. The 
ompositum (or the 
omposite) of E and F (in L), denoted byEF , is de�ned to be the smallest sub�eld of L 
ontaining both E and F . The 
ompositum ofan arbitrary family of sub�elds of L is de�ned in a similar fashion; we use an obvious analogueof the above notation in 
ase of a �nite family of sub�elds. Now suppose K is a sub�eld of bothE and F , i.e., a sub�eld of the �eld E \ F . We list below some elementary fa
ts 
on
erning
ompositum of �elds, whi
h the reader may prove as exer
ises.(i) If E=K is �nitely generated (resp: �nite, algebrai
, separable, normal, Galois, abelian),then so is EF=F .(ii) If both E=K and F=K are �nitely generated (resp: �nite, algebrai
, separable, normal,Galois, abelian), then so is EF=K.(iii) If E=K is Galois, then the map � ! �jE de�nes an isomorphism of Gal(EF=F ) with thesubgroup Gal(E=E \ F ) of Gal(E=K). If both E=K and F=K are Galois, then the map� ! (�jE ; �jF ) de�nes an isomorphism of Gal(EF=K) with the subgroup Gal(E=E\F )�Gal(F=E\F ) of Gal(E=K)�Gal(F=K). In parti
ular, if E\F = K, then we have naturalisomorphisms Gal(EF=F ) ' Gal(E=K) and Gal(EF=K) ' Gal(E=K) �Gal(F=K).Observe that in view of the above properties, we 
an de�ne the maximal abelian extensionof K in L (as the 
ompositum of all abelian extensions of K 
ontained in L).Exer
ise 1.1. Suppose L=K is a Galois extension. Let H1 and H2 be subgroups of Gal(L=K),and E1 and E2 be their �xed �elds respe
tively. Show that the �xed �eld of H1 \ H2 is the
ompositum E1E2 whereas the �xed �eld of the smallest subgroup H of Gal(L=K) 
ontainingH1 and H2 (note that if either H1 or H2 is normal, then H = H1H2) is E1 \E2.Exer
ise 1.2. Let L1; : : : ; Lr be Galois extensions of K with Galois groups G1; : : : ; Gr respe
-tively. Suppose for 1 � i < r we have Li+1 \ (L1L2 : : : Li) = K. Then show that the Galoisgroup of L1L2 : : : Lr is isomorphi
 to G1 �G2 � � � � �Gr.Exer
ise 1.3. Suppose L=K is Galois and Gal(L=K) 
an be written as a dire
t produ
t G1 �� � � � Gr. Let Li be the �xed �eld of the subgroup G1 � : : : Gi�1 � f1g � Gi+1 � � � � � Gr8



of G. Show that Li=K is Galois with Gal(Li=K) ' Gi, and Li+1 \ (L1L2 : : : Li) = K, andL1L2 : : : Lr = L.1.2 Basi
 ExamplesIn this se
tion, we will dis
uss some examples of Galois extensions, whi
h are quite importantin Number Theory and Algebra.Example 1: Quadrati
 Extensions.An extension of degree 2 is 
alled a quadrati
 extension. Let L=K be a quadrati
 extension.Suppose � 2 L is any element su
h that � =2 K. Then [K(�) : K℄ must be > 1 and itmust divide [L : K℄ = 2. Therefore L = K(�) and � satis�es an irredu
ible quadrati
, sayX2 + bX + 
, with 
oeÆ
ients in K. The other root, say �, of this quadrati
 must satisfy� + � = �b, and hen
e it is also in L. So L=K is normal. Also if 
harK 6= 2, then 
learly� 6= � and so L=K is separable as well. Thus a quadrati
 extension is always a Galois extensionex
ept possibly in 
hara
teristi
 two. Now assume that 
harK 6= 2. Then Gal(L=K) is a groupof order 2, and the nonidentity element in it is the automorphism of L whi
h maps � to �.Using the (Shreedhara
harya's) formula for roots of quadrati
 polynomial, we 
an repla
e �by pa so that L = K(pa), where a is some element of K and pa denotes an element of Lwhose square is a. With this, we 
an write L = fr + spa : r; s 2 Kg and Gal(L=K) = fid; �g,where id denotes the identity automorphism of L and � is the K{automorphism de�ned by�(r + spa) = r � spa.If K = Q and L is a sub�eld of C su
h that [L : Q ℄ = 2, then it is 
alled a quadrati
 �eld.In general, a sub�eld of C whi
h is of �nite degree over Q is known as an algebrai
 number �eldor simply, a number �eld. In view of the above dis
ussion, we easily see that if L is a quadrati
�eld, then there exists a unique squarefree integer m, withm 6= 0; 1, su
h that L = Q(pm). Wesay that L is a real quadrati
 �eld or imaginary quadrati
 �eld a

ording as m > 0 or m < 0.Exer
ise 1.4. Suppose L=K is a biquadrati
 extension, i.e., L = K(�; �) where �; � are elementsof L whi
h are not inK but whose squares are distin
t elements of K. Assume that 
harK 6= 2.Show that L=K is a Galois extension and 
ompute its Galois group.Example 2: Cy
lotomi
 Extensions.Let k be a �eld and n be a positive integer. An element ! 2 k su
h that !n = 1 is 
alledan nth root of unity (in k). Let �n = �n(k) denote the set of all nth roots of unity in k. Then�n is a �nite subgroup of the multipli
ative group k� of nonzero elements of k, and thereforeit is 
y
li
. Any generator of �n is 
alled a primitive nth root of unity in k. For example,if k = C , then � = �n = e2�i=n is a primitive nth root of unity, and �n(C ) 
onsists of then elements 1; �; �2; : : : ; �n�1; among these the elements �j where (j; n) = 1, are pre
isely theprimitive nth roots of unity (verify!). The sub�eld Q(�) of C generated by � over Q is 
alledthe nth 
y
lotomi
 �eld, and the extension Q(�)=Q is 
alled a 
y
lotomi
 extension. Sin
e thepolynomial Xn � 1 splits into distin
t linear fa
tors in Q(�)[X℄ asXn � 1 = n�1Yi=0(X � �i)9



we see that Q(�)=Q is a Galois extension whose degree is at most n. Suppose G = Gal(Q(�)=Q )and � 2 G. Then �(�) must also be a root of Xn � 1, and therefore �(�) = �j for some integerj = j(�). It is 
lear that � uniquely determines j(�) modulo n. Hen
e the map � ! j(�) isinje
tive. Moreover, if �; � 2 G, then we have j(��) = j(�)j(�)(mod n). Sin
e G is a group,we see that j(�)(mod n) is a unit in Z=nZ, and � ! j(�) de�nes an inje
tive homomorphismof G into (Z=nZ)�, the multipli
ative group of units2 in Z=nZ. It follows that G is abelian andits order is at most '(n), where ' is the Euler totient fun
tion de�ned by'(n) = the number of positive integers � n and relatively prime to n:We will now show that the order of G, i.e., [Q(�) : Q ℄, is exa
tly equal to '(n), whi
h will implythat the Galois group of Q(�)=Q is naturally isomorphi
 to (Z=nZ)�. For this, we need thefollowing elementary fa
t whi
h will be proved later in Se
tion 2.4.FACT: If a moni
 polynomial with integer 
oeÆ
ients fa
tors as f(X)g(X), where f(X) andg(X) are moni
 polynomials with rational 
oeÆ
ients, then the 
oeÆ
ients of f(X) and g(X)must be integers.To prove the earlier assertion, let �n(X) denote the minimal polynomial of � = �n over Q .Then it must divide Xn � 1 in Q [X℄. Hen
e by the FACT above, �n(X) must have integer
oeÆ
ients and Xn � 1 = �n(X)g(X), for some moni
 polynomial g(X) 2 Z[X℄. Now let p bea prime number whi
h doesn't divide n and � be a root of �n(X). We 
laim that �p must alsobe a root of �n(X). To prove the 
laim, assume the 
ontrary. Then �p is a root of g(X) andhen
e � is a root of g(Xp). Thus g(Xp) = �n(X)h(X) for some h(X) 2 Z[X℄ (using the FACTon
e again!). Now redu
e (mod p), i.e., 
onsider the polynomials �g(X); �h(X), et
 obtained byredu
ing the 
oeÆ
ients of g(X); h(X), et
., (mod p). Then (by Fermat's little theorem!), we�nd that (�g(X))p = �g(Xp) = ��n(X)�h(X). This implies that �g(X) and ��n(X) have a 
ommonroot, and therefore the polynomial Xn � �1 in Z=pZ[X℄ has a multiple root. But the latter isimpossible sin
e the derivative of Xn � �1 is �nXn�1, whi
h has zero as its only root sin
e n isnot divisible by p. This proves our 
laim, and, as a 
onsequen
e, it follows that �j is a root of�n(X) for all integers j su
h that (j; n) = 1. Hen
e we �nd that jGj = [Q(�) : Q ℄ = deg �n(X)is � '(n). This together with the previous argument proves the equality. We also �nd thatIrr(�;Q) = �n(X) = Y0�j�n�1(j;n)=1 (X � �j):The above polynomial is 
alled the nth 
y
lotomi
 polynomial. As noted above, it has integer
oeÆ
ients and its degree is '(n). Collating the terms suitably in the produ
t representationof Xn � 1, we readily see that Xn � 1 =Ydjn �d(X)2The stru
ture of this group is well{known from Elementary Number Theory. To begin with, if n = pe11 : : : peggis the fa
torization of n as a produ
t of powers of distin
t primes, then by Chinese Remainder Theorem [see, forexample. Prop. 2.3 in the next 
hapter℄, we have (Z=nZ)� ' (Z=pe11 Z)�� � � � � (Z=pegg Z)�. If p is a prime ande a positive integer, then (Z=peZ)� is 
y
li
 if p is odd or p = 2 and e � 2. If e > 2, then (Z=2eZ)� is the dire
tprodu
t of Z=2Zand Z=2e�2Z. In parti
ular, (Z=nZ)� is 
y
li
, i.e., primitive roots (mod n) exist i� n = 2; 4; peor 2pe where p is an odd prime. See, for example, [2℄ or [8℄ for details.10



and so, in parti
ular n = Pdjn '(d). The above formula, in fa
t, gives an eÆ
ient way to
ompute �n(X) in a re
ursive manner.Let m and n be relatively prime positive integers. We know from Elementary NumberTheory, that ' is a multipli
ative fun
tion, and thus '(mn) = '(m)'(n). This implies that[Q(�mn) : Q ℄ = [Q(�m ) : Q ℄[Q (�n) : Q ℄. Moreover, we 
learly have that �mmn is a primitive nthroot of unity, �nmn is a primitive mth root of unity, and �m�n is a primitive mnth root of unity.Therefore Q(�mn) must equal the 
ompositum Q(�m )Q(�n). This together with the previousequality shows that Q(�m) \ Q(�n) = Q .Exer
ise 1.5. If p is a prime number, then show that�p(X) = Xp � 1X � 1 = Xp�1 +Xp�2 + � � �+X + 1and for any e � 1, �pe(X) = �p(Xpe�1). Use this and the Eisenstein Criterion for �pe(X + 1)to show dire
tly that �pe(X) is irredu
ible in Q [X ℄.Exer
ise 1.6. [This exer
ise assumes some familiarity with Elementary Number Theory.3℄ Letp be an odd prime, and � be a primitive pth root of unity. Consider the Gauss sum g =Pp�1t=1 � tp� �t. Show that g2 = (�1)(p�1)=2p. Dedu
e that the quadrati
 extension Q(pp) is
ontained in pth or (2p)th 
y
lotomi
 extension. Con
lude that any quadrati
 extension is
ontained in some 
y
lotomi
 extension.Example 3: Finite �eldsLet F be a �nite �eld. Its 
hara
teristi
 must be a prime number, say p. Thus we mayassume that it 
ontains Fp = Z=pZ as a sub�eld. The extension F=Fp has to be �nite and if itsdegree is m, then, evidently, F 
ontains pre
isely q = pm elements. Now sin
e F � = F n f0gis a group of order q � 1, ea
h of the q elements of F satis�es the polynomial Xq �X. ThusF is a splitting �eld of Xq � X over Fp . It follows that for any prime power q, there is, upto isomorphism, a unique �eld of order q. Expli
itly, it is the splitting �eld of Xq � X overZ=pZ. For this reason, one uses the notation Fq or GF (q) to denote a �eld of order q. Nowsuppose L is a �nite extension of F of degree n. Then L is a �nite �eld and jLj = qn. Also, Lis a splitting �eld over Fp (and hen
e over F ) of the polynomial Xqn � X whi
h has distin
troots (sin
e its derivative is �1, whi
h is never zero). It follows that L=F is a Galois extension.The map � : L ! L de�ned by �(�) = �q is an F{automorphism of L (Verify!). Its powersid; �; �2; : : : ; �n�1 are distin
t be
ause otherwise �i = id for some i with 0 < i < n and thusevery x 2 L satis�es xqi = x, whi
h is a 
ontradi
tion sin
e jLj = qn > qi. Moreover, �n = id.Sin
e Gal(L=F ) must have order n = [L : F ℄, it follows that the Galois group of L=F is the
y
li
 group of order n generated by �. The map � whi
h is a 
anoni
al generator of the Galoisgroup of L=F is 
alled the Frobenius automorphism.3All you need to know really is that if p is prime and a is an integer not divisible by p, then the Legendresymbol �ap� is, by de�nition, equal to 1 if a � x2(mod p) for some integer x, and is equal to �1 otherwise. Itis multipli
ative, i.e., �abp � = �ap�� bp�, and Euler's Criterion, viz., �ap� � a(p�1)=2(mod p) holds for any oddprime p. 11



1.3 Norm, Tra
e and Dis
riminantIn this se
tion we brie
y re
all the notions of norm, tra
e and the dis
riminant in the 
ontextof �eld extensions.Suppose L=K is a �nite extension of degree n. Given any � 2 L, we de�ne its tra
e w.r.t.L=K, denoted by TrL=K(�), to be the tra
e of the K{linear transformation x 7! �x of L! L.The determinant of this linear transformation is 
alled the norm of � w.r.t L=K and is denotedby NL=K(�). Equivalently, if �(X) = Xn + a1Xn�1 + � � �+ an is the 
hara
teristi
 polynomialof the above linear transformation (whi
h is 
alled the �eld polynomial of � w.r.t. L=K), thenTr(�) = �a1 and N(�) = (�1)nan. As done here, the subs
ript L=K is usually dropped if it is
lear from the 
ontext.Basi
 properties of norm and tra
e are as follows.(i) TrL=K is a K{linear map of L! K. For a 2 K, Tr(a) = na.(ii) NL=K is a multipli
ative map of L ! K (i.e., N(��) = N(�)N(�) for �; � 2 L). Fora 2 K, N(a) = an.(iii) If L=K is a Galois extension, then tra
e is the sum of the 
onjugates whereas the normis the produ
t of the 
onjugates. More pre
isely, for any � 2 L, we haveTrL=K(�) = X�2Gal(L=K) �(�) and NL=K(�) = Y�2Gal(L=K) �(�):(iv) Norm and tra
e are transitive. That is, if E is a sub�eld of L 
ontaining K, then for any� 2 L, we haveTrL=K(�) = TrE=K(TrL=E(�)) and NL=K(�) = NE=K(NL=E(�)):In fa
t, Property (iii) holds in a more general 
ontext. Indeed, if L=K is separable and N issome (�xed) normal extension of K 
ontaining L, then every � 2 L has exa
tly n = [L : K℄
onjugates (w.r.t. L=K) in N [these are, by de�nition, the elements �(�) as � varies over allK{homomorphisms of L! N ℄. In the 
ase L = K(�), these n 
onjugates are distin
t and theyare pre
isely the roots (in N) of the minimal polynomial Irr(�;K) of � over K. In any 
ase, ifL=K is separable and �(1); �(2); : : : ; �(n) denote the 
onjugates of � w.r.t. L=K, then we haveTrL=K(�) = �(1) + �(2) + � � �+ �(n) and NL=K(�) = �(1)�(2) : : : �(n):It may also be noted that in the above set-up, the �eld polynomial of � w.r.t. L=K is givenby Qni=1 �X � �(i)�, and moreover, it equals Irr(�;K)[L:K(�)℄. For a more detailed dis
ussionof the notions of norm and tra
e and proofs of the above results, one may refer to Appendix Aor the books [18℄ or [20℄.Remark 1.7. It should be noted that the de�nitions of tra
e and norm make sense even whenL is a ring 
ontaining the �eld K as a subring su
h that L is of �nite dimension n as a ve
torspa
e over K. In this generality, the properties 1 and 2 above 
ontinue to hold. We shall havean o

asion to use tra
e in this general 
ontext in some later se
tions.12



We shall now review the notion of dis
riminant as it appears in the theory of �eld extensions.For 
onne
tion of this to the 
lassi
al notions of dis
riminant (su
h as that of a quadrati
 or a
ubi
), see Appendix B.Let K be �eld and L be a ring whi
h 
ontainsK as a sub�eld and whi
h has �nite dimensionn as a ve
tor spa
e overK. [In most of the appli
ations, L will be a �eld extension ofK of degreen.℄ As remarked above, the notions of tra
e and norm of elements of L w.r.t K make sense inthis general set-up. Given any n elements �1; : : : ; �n 2 L, the dis
riminant DL=K(�1; : : : ; �n)of �1; : : : ; �n w.r.t. L=K is de�ned to be the determinant of the n� n matrix �TrL=K(�i�j)� [1 � i; j � n℄. Note that DL=K(�1; : : : ; �n) is an element of K.Lemma 1.8. If �1; : : : ; �n 2 L satisfy DL=K(�1; : : : ; �n) 6= 0, then f�1; : : : ; �ng is a K{basisof L.Proof. It suÆ
es to show that �1; : : : ; �n are linearly independent over K. SupposePni=1 
i�i =0 for some 
1; : : : ; 
n 2 K. Multiplying the equation by �j and taking the tra
e, we �nd thatPni=1 
iTr(�i�j) = 0. By hypothesis, the matrix �TrL=K(�i�j)� is nonsingular. Hen
e it followsthat 
j = 0 for j = 1; : : : ; n.Lemma 1.9. If f�1; : : : ; �ng and f�1; : : : ; �ng are two K{bases of L and �i = Pnj=1 aij�j,aij 2 K, then we have DL=K(�1; : : : ; �n) = [det(aij)℄2DL=K(�1; : : : ; �n):In parti
ular, sin
e (aij) is nonsingular, DL=K(�1; : : : ; �n) = 0 i� DL=K(�1; : : : ; �n) = 0.Proof. For any i; j 2 f1; : : : ; ng, we have�i�j =  nXk=1 aik�k!�j = nXk=1 aik�k nXl=1 ajl�l! = nXk=1 nXl=1 aikajl�k�l:Taking tra
e of both sides, and letting A denote the matrix (aij), we see that(Tr(�i�j)) = At (Tr(�i�j))Aand so the result follows.Remarks 1.10. 1. We shall say that the dis
riminant of L=K is zero (or nonzero) and writeDL=K = 0 (or DL=K 6= 0) if for some K{basis f�1; : : : ; �ng of L, DL=K(�1; : : : ; �n) is zero (ornonzero). The last lemma justi�es this terminology.2. Observe that TrL=K(xy) is 
learly a symmetri
 K{bilinear form [whi
h means that themap (x; y) 7! TrL=K(xy) of L � L ! K is a symmetri
 K{bilinear map℄. The 
ondition thatDL=K 6= 0 is equivalent to saying that this form is non-degenerate. From Linear Algebra, oneknows that if the non-degenera
y 
ondition is satis�ed, then for any K{basis f�1; : : : ; �ng ofL, we 
an �nd a \dual basis" f�1; : : : ; �ng of L over K su
h that TrL=K(�i�j) = Æij , where Æijis the usual Krone
ker delta whi
h is 1 if i = j and 0 otherwise.We now prove an important result whi
h is very useful in expli
it 
omputations of thedis
riminant. Here, and hen
eforth in this se
tion, we shall require L to be a �eld.13



Theorem 1.11. If L=K is a �nite separable �eld extension, then its dis
riminant is nonzero.In fa
t, if � is a primitive element (so that L = K(�) and f1; �; �2; : : : ; �n�1g is a K{basis ofL) and f(X) is its minimal polynomial, then we haveDL=K(1; �; �2; : : : ; �n�1) = Yi>j ��(i) � �(j)�2 = (�1)n(n�1)=2 NL=K(f 0(�))where �(1); �(2); : : : ; �(n) denote the 
onjugates of � w.r.t. L=K and f 0(�) denotes the derivativeof f(X) evaluated at �.Proof. Sin
e L=K is separable, the tra
e of any element of L equals the sum of its 
onjugatesw.r.t. L=K (in some �xed normal extension N of K 
ontaining L). Thus if fu1; : : : ; ung is aK{basis of L and ui(1); ui(2); : : : ; ui(n) denote the 
onjugates of ui w.r.t. L=K, then we haveTr(uiuj) = Pnk=1 u(k)i u(k)j . In other words, the matrix (Tr(uiuj)) equals the produ
t of thematrix �u(j)i � with its transpose. ThereforeDL=K(u1; : : : ; un) = ���������� u(1)1 u(2)1 : : : u(n)1u(1)2 u(2)2 : : : u(n)2... ... . . . ...u(1)n u(2)n : : : u(n)n
����������2:In 
ase u1; u2; : : : ; un are 1; �; : : : ; �(n�1) respe
tively, then the determinant above is a Vander-monde determinant and the RHS be
omes��������� 1 1 : : : 1�(1) �(2) : : : �(n)... ... . . . ...��n�1�(1) ��n�1�(2) : : : ��n�1�(n) ���������2 = Yi>j ��(i) � �(j)�2 = (�1)n(n�1)=2Yi6=j ��(i) � �(j)� :Moreover, we 
learly havef(X) = nYi=1 �X � �(i)� ; f 0(X) = nXi=1 Yj 6=i �X � �(j)� ; and NL=K(f 0(�)) = nYi=1 f 0 ��(i)� :Therefore, we obtain the desired formulae. Our �rst assertion follows from the fa
t that ifL = K(�) is separable over K, then the 
onjugates �(1); �(2); : : : ; �(n) of � w.r.t L=K aredistin
t.Corollary 1.12. If L=K is a �nite separable extension, then the symmetri
 bilinear formTrL=K(xy) is nondegenerate.Remark 1.13. The 
onverse of the above Theorem, viz., if DL=K 6= 0 then L=K is separable, isalso true. For a proof, see [20℄. 14



Chapter 2Ring ExtensionsIn this 
hapter, we review some basi
 fa
ts from Ring Theory.2.1 Basi
 Pro
esses in Ring TheoryThere are three basi
 pro
esses in Algebra using whi
h we 
an obtain a new ring from a givenring1. Let us dis
uss them brie
y.Polynomial Ring: Given a ring A, we 
an form the ring of all polynomials in n variables(say, X1; : : : ;Xn) with 
oeÆ
ients in A. This ring is denoted by A[X1; : : : ;Xn℄. Elements ofA[X1; : : : ;Xn℄ look like f =X ai1:::inXi11 : : : Xinn ; ai1:::in 2 A;where (i1; : : : ; in) vary over a �nite set of nonnegative integral n{tuples. A typi
al term (ex-
luding the 
oeÆ
ient), viz., Xi11 : : : Xinn , is 
alled a monomial; its (usual) degree is i1+ � � �+ in.If f 6= 0, then the (total) degree of f is de�ned by deg f = maxfi1 + � � � + in : ai1:::in 6= 0g.Usual 
onvention is that deg 0 = �1. A homogeneous polynomial of degree d in A[X1; : : : ;Xn℄is simply a �nite A{linear 
ombination of monomials of degree d. The set of all homogeneouspolynomials of degree d is denoted by A[X1; : : : ;Xn℄d. Note that any f 2 A[X1; : : : ;Xn℄ 
anbe uniquely written as f = f0 + f1 + : : : , where fi 2 A[X1; : : : ;Xn℄i and fi = 0 for i > deg f ;we may 
all fi's to be the homogeneous 
omponents of f . If f 6= 0 and d = deg f , then 
learlyfd 6= 0 and f = f0 + f1 + � � � + fd.Quotient Ring: That is, the residue 
lass ring A=I obtained by `moding out' an ideal Ifrom a ring A. This is same as taking a homomorphi
 image. Passing to A=I from A has thee�e
t of making I the null element. We have a natural surje
tive homomorphism q : A! A=Igiven by q(x) = x+ I for x 2 A. There is a one-to-one 
orresponden
e between the ideals of A
ontaining I and the ideals of A=I given by J 7! q(J) = J=I and J 0 7! q�1(J 0).Lo
alization: That is, the ring of fra
tions S�1A of a ring A w.r.t. a multipli
atively
losed (m: 
:) subset S of A [i.e., a subset S of A su
h that 1 2 S and a; b 2 S ) ab 2 S℄.Elements of S�1A are, essentially, fra
tions of the type as , where a 2 A and s 2 S; the notionof equality in S�1A is understood as follows. as = bt , u(at � bs) = 0, for some u 2 S.1here, and hereafter, by a ring we mean a 
ommutative ring with identity.15



Quite often, we 
onsider S�1A when A is a domain and 0 =2 S; in this 
ase, the notion ofequality (or, if you like, equivalen
e) is simpler and more natural. Note that if A is a domainand S = A n f0g, then S�1A is nothing but the quotient �eld of A. Important instan
e oflo
alization is when S = A n p, where p is a prime ideal of A; in this 
ase S�1A is 
ustomarilydenoted by Ap. Passing from A to Ap has the e�e
t of making p into a maximal ideal that
onsists of all nonunits; indeed, Ap is a lo
al ring [whi
h means, a ring with a unique maximalideal℄ with pAp as its unique maximal ideal. In general, we have a natural homomorphism� : A ! S�1A de�ned by �(x) = x1 . This is inje
tive if S 
onsists of nonzerodivisors, and inthis 
ase A may be regarded as a subring of S�1A. Given an ideal I of A, the ideal of S�1Agenerated by �(I) is 
alled the extension of I, and is denoted by IS�1A or by S�1I. For anideal J of S�1A, the inverse image ��1(J) is an ideal of A and is 
alled the 
ontra
tion of Jto A. By abuse of language, the 
ontra
tion of J is sometimes denoted by J \ A. We haveS�1(J \A) = J and S�1I \A � I, and the last in
lusion 
an be stri
t. This implies that thereis a one-to-one 
orresponden
e between the ideals J of S�1A and the ideals I of A su
h thatfa 2 A : as 2 I for some s 2 Sg = I. This, in parti
ular, gives a one-to-one 
orresponden
ebetween the prime ideals of S�1A and the prime ideals P of A su
h that P \ S = ;.Exer
ise 2.1. Show that lo
alization 
ommutes with taking homomorphi
 images. More pre-
isely, if I is an ideal of a ring A and S is a m: 
: subset of A, then show that S�1A=S�1I isisomorphi
 to �S�1(A=I), where �S denotes the image of S in A=I.Given ideals I1 and I2 in a ring A, their sum I1 + I2 = fa1 + a2 : a1 2 I1; a2 2 I2g, theirprodu
t I1I2 = fP aibi : ai 2 I1; bi 2 I2g, and interse
tion I1 \ I2 are all ideals. Analogue ofdivision is given by the 
olon ideal (I1 : I2), whi
h is de�ned to be the ideal fa 2 A : aI2 � I1g.If I2 equals a prin
ipal ideal (x), then (I1 : I2) is often denoted simply by (I1 : x). The idealsI1 and I2 are said to be 
omaximal if I1 + I2 = A. We 
an also 
onsider the radi
al of an idealI, whi
h is de�ned by pI = fa 2 A : an 2 I for some n � 1g, and whi
h is readily seen to bean ideal (by Binomial Theorem!). One says that I is a radi
al ideal if pI = I. Note that thenotions of sum and interse
tions of ideals extend easily to arbitrary families of ideals.Exer
ise 2.2. Show that 
olon 
ommutes with interse
tions. That is, if fIig is a family of idealsof a ring A, then for any ideal J of A, we have \(Ii : J) = (\Ii : J). Further, if fIig is a �nitefamily, then show that p\Ii = \pIi. Give examples to show that these results do not hold(for �nite families) if interse
tions are repla
ed by produ
ts.A useful fa
t about ideals is the following. The 
ase when the ring in question is Z is
onsidered, for example, in Ch'in Chiu-Shao's Mathemati
al Treatise in the year 1247.Proposition 2.3 (Chinese Remainder Theorem). Let I1; I2; : : : ; In are pairwise 
omaxi-mal ideals in a ring A (i.e., Ii + Ij = A for all i 6= j). Then:(i) I1I2 : : : In = I1 \ I2 \ � � � \ In.(ii) Given any x1; : : : ; xn 2 A, there exists x 2 A su
h that x � xj(mod Ij) for 1 � j � n.(iii) The map x(mod I1I2 � � � In) 7! (x(mod I1); : : : ; x(mod In)) de�nes an isomorphism ofA=I1I2 : : : In onto the dire
t sum A=I1 �A=I2 � � � � �A=In.Proof. (i) Given any i 2 f1; : : : ; ng, let Ji = I1 � � � Ii�1Ii+1 � � � In. Sin
e Ii+ Ij = A, we 
an �ndaij 2 Ij su
h that aij � 1(mod Ii), for all j 6= i. Let ai = Qj 6=i aij . Then ai � 1(mod Ii) andai 2 Ji. Thus Ii + Ji = A. Now, x = x1a1 + � � � + xnan satis�es x � xj(mod Ij) for 1 � j � n.16



(ii) Clearly, I1I2 : : : In � I1 \ I2 \ � � � \ In. To prove the other in
lusion, we indu
t on n.The 
ase of n = 1 is trivial. Next, if n = 2, then we 
an �nd a1 2 I1 and a2 2 I2 su
h thata1 + a2 = 1. Now, a 2 I1 \ I2 implies that a = aa1 + aa2, and thus a 2 I1I2. Finally, if n > 2,then as in (i), let J1 = I2 � � � In and note that I1 + J1 = A. Hen
e by indu
tion hypothesis andthe 
ase of two ideals, I1 \ I2 \ � � � \ In = I1 \ J1 = I1J1 = I1I2 � � � In.(iii) The map x(mod I1I2 � � � In) 7! (x(mod I1); : : : ; x(mod In)) is 
learly well-de�ned anda homomorphism. By (i), it is surje
tive and by (ii), it is inje
tive.Exer
ise 2.4. With I1; : : : ; In and A as in Proposition 2.3, show that the map in (iii) indu
esan isomorphism of (A=I1I2 : : : In)� onto the dire
t sum (A=I1)� � (A=I2)� � � � � � (A=In)�.Dedu
e that the Euler �-fun
tion is multipli
ative.2.2 Noetherian Rings and ModulesA ring A is said to be noetherian if every ideal of A is �nitely generated. It is easy to see thatthis 
ondition equivalent to either of the two 
onditions below.(i) (As
ending Chain Condition or a.
.
.) If I1; I2; : : : are ideals of A su
h that I1 � I2 � : : : ,then there exists m � 1 su
h that In = Im for n � m.(ii) (Maximality Condition) Every nonempty set of ideals of A has a maximal element.The 
lass of noetherian rings has a spe
ial property that it is 
losed w.r.t. ea
h of the threefundamental pro
esses. Indeed, if A is a noetherian ring, then it is trivial to 
he
k that bothA=I and S�1A are noetherian, for any ideal I of A and any m: 
: subset S of A; moreover, thefollowing basi
 result implies, using indu
tion, that A[X1; : : : ;Xn℄ is also noetherian.Theorem 2.5 (Hilbert Basis Theorem). If A is a noetherian ring, then so is A[X℄.Proof. Let I be any ideal of A[X℄. For 0 6= f 2 I, let LC(f) denote the leading 
oeÆ
ientof f , and J = f0g [ fLC(f) : f 2 I; f 6= 0g. Then J is an ideal of A and so we 
an �ndf1; : : : ; fr 2 I n f0g su
h that J = (LC(f1); : : : ;LC(fr)). Let d = maxfdeg fi : 1 � i � rg. For0 � i < d, let Ji = f0g[fLC(f) : f 2 I; deg f = ig; then Ji is an ideal of A and so we 
an �ndfi1; : : : ; firi 2 I su
h that Ji = (LC(fi1); : : : ;LC(firi)). Now if I 0 is the ideal of A[X℄ generatedby ff1; : : : ; frg [ ffij : 0 � i < d; 1 � j � rig, then I 0 � I and for any 0 6= f 2 I, there isf 0 2 I 0 su
h that deg(f � f 0) < deg f . Thus an indu
tive argument yields I = I 0.A �eld as well as a PID (e.g., Z, the ring of integers) is 
learly noetherian, and 
onstru
tingfrom these, using 
ombinations of the three fundamental pro
esses, we obtain a rather inex-haustible sour
e of examples of noetherian rings. Espe
ially important among these are �nitelygenerated algebras over a �eld or, more generally, over a noetherian ring. Let us re
all therelevant de�nitions.De�nition 2.6. Let B be a ring and A be a subring of B. Given any b1; : : : ; bn 2 B, we denoteby A[b1; : : : ; bn℄ the smallest subring of B 
ontaining A and the elements b1; : : : ; bn. Thissubring 
onsists of all polynomial expressions f(b1; : : : ; bn) as f varies over A[X1; : : : ;Xn℄. Wesay that B is a �nitely generated (f: g:) A{algebra or an A{algebra of �nite type if there existb1; : : : ; bn 2 B su
h that B = A[b1; : : : ; bn℄. Finitely generated k{algebras, where k is a �eld,are sometimes 
alled aÆne rings. 17



A module over a ring A or an A{module is simply a ve
tor spa
e ex
ept that the s
alars 
omefrom the ring A instead of a �eld. Some examples of A{modules are: ideals I of A, quotientrings A=I, lo
alizations S�1A, and f: g: A{algebras A[x1; : : : ; xn℄. The notions of submodules,quotient modules, dire
t sums of modules and isomorphism of modules are de�ned in an obviousfashion. The 
on
ept of lo
alization (w.r.t. m: 
: subsets of A) also 
arries to A{modules, andan analogue of the property in Exer
ise 2.1 
an be veri�ed easily. Dire
t sum of (isomorphi
)
opies of A is 
alled a free A{module; An = A� � � � �A| {z }n times is referred to as the free A{module ofrank n.Let M be an A{module. Given submodules fMig of M , their sumXMi = fX xi : xi 2Mi and all ex
ept �nitely many xi's are 0gand their interse
tion \Mi are also submodules of M . Produ
ts of submodules doesn't makesense but the 
olon operation has an interesting and important 
ounterpart. If M1;M2 aresubmodules of M , we de�ne (M1 : M2) to be the ideal fa 2 A : aM2 � M1g of A. The ideal(0 : M) is 
alled the annihilator of M and is denoted by Ann(M); for x 2 M , we may writeAnn(x) for the ideal (0 : x), i.e., for Ann(Ax). Note that if I is an ideal of A, then Ann(A=I) = Iand if Ann(M) � I, then M may be regarded as an A=I{module. Let us also note that for anysubmodulesM1;M2 of M , we always have the isomorphisms (M1+M2)=M2 'M1=(M1 \M2),and, if M2 �M1 and N is a submodule of M2, (M1=N)=(M2=N) 'M1=M2.We say that M is �nitely generated (f: g:) or that M is a �nite A{module if there existx1; : : : ; xn 2 M su
h that M = Ax1 + � � � + Axn. Note that in this 
ase M is isomorphi
 to aquotient of An. We 
an, analogously, 
onsider the a.
.
. for submodules of M , and in the 
aseit is satis�ed, we 
allM to be noetherian. Artinian modules are de�ned similarly. Observe thatM is noetherian i� every submodule of M is �nitely generated. In general, if M is f: g:, then asubmodule of M needn't be f: g:, i.e., M needn't be noetherian. However, the following basi
result assures that `most' f: g: modules are noetherian.Lemma 2.7. Finitely generated modules over noetherian rings are noetherian.Proof (Sket
h). First note that given a submodule N of M , we have that M is noetherian i�both N and M=N are noetherian. Use this and indu
tion to show that if A is noetherian, thenso is An, and, hen
e, any of its quotient modules.Another basi
 fa
t about modules is the following.Lemma 2.8 (Nakayama's Lemma). Let M be a f: g: A{module and I be an ideal of A su
hthat IM = M . Then there exists a 2 I su
h that (1� a)M = 0. In parti
ular, if I 6= A and Ais a domain or a lo
al ring, then M = 0.Proof. Write M = Ax1 + � � � + Axn. Then xi = Pnj=1 aijxj, for some aij 2 I. Let d =det(Æij � aij). Then d = 1� a, for some a 2 I, and, by Cramer's rule, dxj = 0 for all j.Remark 2.9. The `determinant tri
k' in the above proof shows more generally that if M and Iare as in (3.2) above and � : M ! M is an A{linear map su
h that �(M) � IM , then thereexist a1; : : : ; an 2 I su
h that �n + a1�n�1 + � � � + an = 0. Thus Nakayama's Lemma may be
onsidered as an analogue of Cayley{Hamilton Theorem of Linear Algebra.18



2.3 Integral ExtensionsThe theory of algebrai
 �eld extensions has a useful analogue to ring extensions, whi
h isdis
ussed in this se
tion.Let B be a ring and A be a subring of B. We may express this by saying that B is a (ring)extension of A or that B is an overring of A.De�nition 2.10. An element x 2 B is said to be integral over A if it satis�es a moni
 polynomialwith 
oeÆ
ients in A, i.e., xn+ a1xn�1+ � � �+ an = 0 for some a1; : : : ; an 2 A. If every elementof B is integral over A, then we say that B is an integral extension of A or that B is integralover A.Evidently, if x 2 B satis�es an integral equation su
h as above, then 1; x; x2; : : : ; xn�1generate A[x℄ as an A{module. And if B0 is a subring of B 
ontaining A[x℄ su
h that B0 =Ax1 + � � � + Axn, then for any b 2 B0, bxi = P aijxj for some aij 2 A so that b satis�es themoni
 polynomial det(XÆij � aij) 2 A[X℄. Thus we obtain the following 
riteria.x 2 B is integral over A , A[x℄ is a �nite A{module, a subring B0 of B 
ontaining A[x℄ is a �nite A{module.In parti
ular, if B is a �nite A{module, then B is integral over A. The 
onverse is true if wefurther assume (the ne
essary 
ondition) that B is a f: g: A{algebra. This follows by observingthat the above 
riteria implies, using indu
tion, that if x1; : : : ; xn 2 B are integral over A, thenA[x1; : : : ; xn℄ is a �nite A{module. This observation also shows that the elements of B whi
hare integral over A form a subring, say C, of B. If C = B, we say that A is integrally 
losed inB. A domain is 
alled integrally 
losed or normal if it is integrally 
losed in its quotient �eld.Note that if S is a m: 
: subset of A, B is integral over A, and J is an ideal of B, then S�1B(resp: B=J) is integral over S�1A (resp: A=J \ A); moreover, if A is a normal domain and0 =2 S, then S�1A is also a normal domain.Exer
ise 2.11. Show that a UFD is normal. Also show that if A is a domain, then A is normali� A[X℄ is normal. Further, show that if A is a normal domain, K is its quotient �eld, and xis an element of a �eld extension L of K, then x is integral over A implies that the minimalpolynomial of x over K has its 
oeÆ
ients in A.Example 2.12. Let B = k[X;Y ℄=(Y �X2), and let x; y denote the images of X;Y in B so thatB = k[x; y℄. Let A = k[y℄. Then x is integral over A, and hen
e B is integral over A. On theother hand, if B = k[X;Y ℄=(XY � 1) = k[x; y℄, then x is not integral over A = k[y℄. It may beinstru
tive to note, indire
tly, that B ' k[Y; 1=Y ℄ is not a �nite k[Y ℄{module. These examples
orrespond, roughly, to the fa
t that the proje
tion of parabola along the x{axis onto the y{axis is a `�nite' map in the sense that the inverse image of every point is at `�nite distan
e',whereas in the 
ase of hyperbola, this isn't so. Similar examples in \higher dimensions" 
an be
onstru
ted by 
onsidering proje
tions of surfa
es onto planes, solids onto 3{spa
e, and so on.Examples of integral (resp: non{integral) extensions of Z are given by subrings B of number�elds (viz., sub�elds of C of �nite degree over Q) su
h that B � OK (resp: B 6� OK), whereOK denotes the ring of integers in K. Indeed, OK is nothing but the integral 
losure of Z inK. A pre
ise de�nition of dimension for arbitrary rings 
an be given as follows.19



De�nition 2.13. The (Krull) dimension of a ring A is de�ned asdimA = maxfn : 9 distin
t primes p0; p1; : : : ; pn of A su
h that p0 � p1 � � � � � png:Remark 2.14. Observe that a �eld has dimension 0. A PID whi
h is not a �eld, in parti
ularZ as well as k[X℄, is 
learly of dimension 1. It 
an be proved that dimk[X1; : : : ;Xn℄ = n. Formore on this topi
, see [1℄.Some of the basi
 results about integral extensions are as follows. In the �ve results givenbelow, B denotes an integral extension of A and p denotes a prime ideal of A.Theorem 2.15. A is a �eld if and only if B is a �eld. Also, if q is a prime ideal of B su
hthat q\A = p, then p is maximal i� q is maximal. Moreover, if q0 is any prime ideal of B su
hthat q � q0 and q0 \A = p, then q = q0.Corollary 2.16. dimB � dimA. In parti
ular, if B is a domain and dimA � 1, then dimA =dimB.Theorem 2.17 (Lying Over Theorem). There exists a prime ideal q of B su
h that q\A =p. In parti
ular, pB \A = p.Theorem 2.18 (Going Up Theorem). If q is a prime ideal of B su
h that q \ A = p, andp0 is a prime ideal of A su
h that p � p0, then there exists a prime ideal q0 of B su
h that q � q0and q0 \A = p.Corollary 2.19. dimA = dimB.Proofs (Sket
h). Easy manipulations with integral equations of relevant elements proves the�rst assertion of Theorem 2.15; the se
ond and third assertions follow from the �rst one bypassing to quotient rings and lo
alizations respe
tively. To prove Theorem 2.17, 
onsider A0 =Ap and B0 = S�1B where S = A n p. Then B0 is an integral extension of A0 and if q0 is anymaximal ideal of B0, then q0\A0 is ne
essarily maximal and thus q0\A0 = pA0. Now q = q0 \Blies over p, and thus Theorem 2.17 is proved. Theorem 2.18 follows by applying Theorem 2.17to appropriate quotient rings.Exer
ise 2.20. Prove the two 
orollaries above using the results pre
eding them.Remark 2.21. It may be noted that Corollary 2.19 is an analogue of the simple fa
t that ifL=K is an algebrai
 extension of �elds 
ontaining a 
ommon sub�eld k, then tr:deg:kL =tr:deg:kK. Re
all that if K is a ring 
ontaining a �eld k, then elements �1; : : : ; �d of K are saidto be algebrai
ally independent over k if they do not satisfy any algebrai
 relation over k, i.e.,f(�1; : : : ; �d) 6= 0 for any 0 6= f 2 k[X1; : : : ;Xn℄. A subset of K is algebrai
ally independent ifevery �nite 
olle
tion of elements in it are algebrai
ally independent. IfK is a �eld then any twomaximal algebrai
ally independent subsets have the same 
ardinality, 
alled the trans
enden
edegree of K=k and denoted by tr:deg:kK; su
h subsets are then 
alled trans
enden
e basesof K=k; note that an algebrai
ally independent subset S is a trans
enden
e basis of K=k i�K is algebrai
 over k(S), the smallest sub�eld of K 
ontaining k and S. If B is a domain
ontaining k and K is its quotient �eld, then one sets tr:deg:kB = tr:deg:kK. Finally, note thatk[X1; : : : ;Xn℄ and its quotient �eld k(X1; : : : ;Xn) are 
learly of trans
enden
e degree n over k.A good referen
e for this material is [20, Ch. 2℄.20



2.4 Dis
riminant of a Number FieldIn this se
tion, we shall �rst dis
uss some basi
 properties of normal domains. A key resulthere is the so 
alled Finiteness Theorem. This will lead to the notion of an integral basis andthe notion of absolute dis
riminant of a number �eld.Proposition 2.22. Let A be a domain with K as its quotient �eld. Then we have the following.(i) If an element � (in some extension L of K) is algebrai
 over K, then there exists 
 2 Asu
h that 
 6= 0 and 
� is integral over A. Consequently, if f�1; : : : ; �ng is a K{basis ofL, then there exists d 2 A su
h that d 6= 0 and fd�1; : : : ; d�ng is a K{basis of L whoseelements are integral over A.(ii) If A is normal, and f(X); g(X) are moni
 polynomials in K[X℄ su
h that f(X)g(X) 2A[X℄, then both f(X) and g(X) are in A[X℄.(iii) If A is normal, L=K is a �nite separable extension and � 2 L is integral over A, thenthe 
oeÆ
ients of the minimal polynomial of � over K as well as the �eld polynomial of� w.r.t. L=K are in A. In parti
ular, TrL=K(�) 2 A and NL=K(�) 2 A, and moreover,if f�1; : : : ; ang is a K{basis of L 
onsisting of elements whi
h are integral over A, thenDL=K(�1; : : : ; �n) 2 A.Proof. (i) If � satis�es the moni
 polynomial Xn + a1Xn�1 + � � � + an 2 K[X℄, then we 
an�nd a 
ommon denominator 
 2 A su
h that 
 6= 0 and ai = 
i
 for some 
i 2 A. Multiplyingthe above polynomial by 
n, we get a moni
 polynomial in A[X℄ satis�ed by 
�.(ii) The roots of f(X) as well as g(X) (in some extension of K) are integral over A be
ausethey satisfy the moni
 polynomial f(X)g(X) 2 A[X℄. Now the 
oeÆ
ients of f(X) as well asg(X) are the elementary symmetri
 fun
tions of their roots (up to a sign), and therefore theseare also integral over A. But the 
oeÆ
ients are in K. It follows that both f(X) and g(X) arein A[X℄.(iii) If � is integral over A, then 
learly so is every 
onjugate of � w.r.t. L=K. Now an argumentsimilar to that in (ii) above shows that the 
oeÆ
ients of Irr(�;K) as well as the �eld polynomialof � w.r.t. L=K are in A.It may be observed that a proof of the FACT in Se
tion 1.2 follows from (ii) above. We arenow ready to prove the following important result.Theorem 2.23 (Finiteness Theorem). Let A be a normal domain with quotient �eld K.Assume that L=K is a �nite separable extension of degree n. Let B be the integral 
losure of Ain L. Then B is 
ontained in a free A{module generated by n elements. In parti
ular, if A isalso assumed to be noetherian, then B is a �nite A{module and a noetherian ring.Proof. In view of (i) in the Proposition above, we 
an �nd a K{basis f�1; : : : ; �ng of L, whi
his 
ontained in B. Let f�1; : : : ; �ng be a dual basis, w.r.t. the nondegenerate bilinear formTrL=K(xy), 
orresponding to f�1; : : : ; �ng. Let x 2 B. Then x = Pj bj�j for some bj 2 K.Now Tr(�ix) =Pj bjTr(�i�j) = bi. Moreover, sin
e �ix is integral over A, it follows from theProposition above that bi 2 A. Thus B is 
ontained in the A{module generated by �1; : : : ; �n.This module is free sin
e �1; : : : ; �n are linearly independent over K.21



When A is a PID, or better still, when A = Z, the 
on
lusion of Finiteness Theorem 
an besharpened using the following lemma.Lemma 2.24. Let A be a PID, M be an A{module generated by n elements x1; : : : ; xn, andlet N be a submodule of M .(i) N is generated by at most n elements. In fa
t, we 
an �nd aij 2 A for 1 � i � j � nsu
h that N = Ay1 + � � �+Ayn where yi =Xj�i aijxj for 1 � i � n: (2.1)(ii) Assume that A = Z and M is a Z-submodule of K, where K is a number �eld with[K : Q ℄ = n. Further assume that N 
ontains a Q-basis of K. Then M=N is �nite andwe 
an 
hoose aij 2 A, for 1 � i � j � n, satisfying (2.1) and with the additional propertyaii > 0 for 1 � i � n and jM=N j = a11a22 � � � ann = det(aij) (2.2)where, by 
onvention, aij = 0 for j < i.Proof. (i) We have M = Ax1 + � � � +Axn. Let us use indu
tion on n. LetI = fa 2 A : ax1 + a2x2 + � � � + anxn 2 N for some a2; : : : ; an 2 Ag:Then I is an ideal of A and thus I = (a11) for some a11 2 A. Also, there exist a12; : : : ; a1n 2 Asu
h that y1 2 N where y1 = a11x1 + a12x2 + � � � + a1nxn. If n = 1, we have N = Ix1 = Ay1,where y1 = a11x1 and thus the result is proved in this 
ase. If n > 1, then letM1 = Ax2+: : : Axnand N1 = N \M1. By indu
tion hypothesis, we 
an �nd aij 2 A for 2 � i � j � n su
h thatN1 = Ay2 + � � �+Ayn where yi =Xj�i aijxj for 2 � i � n:Now if y 2 N , then y = a1x1+ a2x2+ � � �+ anxn for some a1; : : : ; an 2 A. Moreover a1 2 I andthus a1 = �1a11 for some �1 2 A. Hen
e y� �1y1 2 N1 and so y� �1y1 = �2y2+ � � �+ �nyn forsome �2; : : : ; �n 2 A. It follows that N = Ay1 + � � �+Ayn and yi =Pj�i aijxj, as desired.(ii) To begin with, let aij 2 A = Z and yi 2 N be su
h that (2.1) holds. If N 
ontainsa Q-basis of K, then it is 
lear that K = Qy1 + � � � + Qyn and hen
e y1; : : : ; yn are linearlyindependent over Q . Now, if some aii = 0, then we see easily that yi is a Q-linear 
ombinationof yi+1; : : : ; yn, whi
h is a 
ontradi
tion. Thus, aii 6= 0 for 1 � i � n and so repla
ing some yi'sby �yi's, if ne
essary, we 
an assume that aii > 0 for 1 � i � n.Given any x 2 M , write x = a1x1 + � � � + anxn, where a1; : : : ; an 2 Z. We 
an �nd uniqueintegers q1 and r1 su
h that a1 = a11q1 + r1 and 0 � r1 < a11. Hen
ex� q1y1 = r1x1 + b2x2 + � � � + bnxn for some b2; : : : ; bn 2 Z:Next, let q2; r2 2 Z be su
h that b2 = a22q2 + r2 and 0 � r2 < a22. Hen
ex� q1y1 � q2y2 = r1x1 + r2x2 + 
3x3 + � � � + bnxn for some 
3; : : : ; 
n 2 Z:22



Continuing in this way, we obtain q1; : : : ; qn 2 Z and r1; : : : ; rn 2 Z su
h thatx� (q1y1 + � � � + qnyn) = r1x1 + � � �+ rnxn with 0 � ri < aii:Thus r1x1 + � � � + rnxn is a representative of x in M=N . Moreover, this representative isunique be
ause the di�eren
e of two su
h representatives will be an element of N of the forms1x1+� � �+snxn, where si 2 Zwith jsij < aii, and from (2.1), one sees easily that if sj is the �rstnonzero integer among s1; : : : ; sn, then ajj divides sj, whi
h is a 
ontradi
tion. It follows thatthe elements of M=N are in bije
tion with n-tuples (r1; : : : ; rn) of integers with 0 � ri < aii.Consequently, jM=N j = a11a22 � � � ann.Corollary 2.25. Let A;K;L; n;B be as in the Finiteness Theorem. Assume that A is aPID. Then B is a free A{module of rank n, i.e., there exist n linearly independent elementsy1; : : : ; yn 2 B su
h that B = Ay1 + � � � +Ayn.Proof. Follows from Finiteness Theorem 2.23 and Lemma 2.24 (i).The above Corollary applied in the parti
ular 
ase of A = Z, shows that the ring of integersof a number �eld always has a Z{basis. Su
h a basis is 
alled an integral basis of that ring orof the 
orresponding number �eld.In general, suppose K is a number �eld with [K : Q ℄ = n, and N is a Z-submodule ofM = OK su
h that N 
ontains a Q-basis of K. Then by Lemma 2.24 (ii), we see that N hasa Z-basis of n elements, and we 
all this an integral basis of N . Noti
e that if f�1; : : : ; �ng isan integral basis of N � OK , then by Proposition 2.22 (iii), DL=K(�1; : : : ; �n) is an integer.Further, if fu1; : : : ; ung is any Q{basis of K 
ontained in N , then ui = Pj aij�j for somen � n nonsingular matrix (aij) with entries in Z. If d = det(aij), then d 2 Z and we haveDL=K(u1; : : : ; un) = d2DL=K(�1; : : : ; �n). If fu1; : : : ; ung is also an integral basis of N , then
learly d = �1. It follows that any two integral bases of N have the same dis
riminant, andamong all bases of K 
ontained in N , the dis
riminant of an integral basis has the least absolutevalue. We denote the dis
riminant of an integral basis of N by �(N) and 
all this the (absolute)dis
riminant of N . In 
ase N = OK , the dis
riminant �(OK) is denoted by dK and 
alled the(absolute) dis
riminant of K. The two dis
riminants �(N) and dK = �(OK) are related bythe formula �(N) = jOK=N j2dK (2.3)whi
h is an immediate 
onsequen
e of Lemmas 1.9 and 2.24 (ii) where in the latter we takex1; : : : ; xn to be an integral basis of K.There are two 
ases when the formula (2.3) is parti
ularly useful. One is when K = Q(�)is generated by a single element � whi
h is integral over Z and N = Z[�℄. In this 
ase, if weknow that �(Z[�℄) = DK=Q(1; �; : : : ; �n�1) is squarefree, then we 
an 
on
lude from (2.3) thatOK = Z[�℄. Another 
ase is when N is a nonzero ideal I of OK . Note that I 6= 0 implies thatI \Z 6= 0 sin
e A is integral over Z; now, if m is a nonzero integer in I \Z and f�1; : : : ; �ng isa Q-basis of K 
ontained in OK , then fm�1; : : : ;m�ng is a Q-basis of K 
ontained in I. ThusI does satisfy the hypothesis for the existen
e of an integral basis and for the formula (2.3) tohold with N = I. This 
ase will be taken up again in Chapter 4.23



Remark 2.26. An alternative proof of the existen
e of an integral basis of K 
an be given bypi
king a Q{basis of K 
ontained in OK whose dis
riminant has the least possible absolutevalue, and showing that this has to be an integral basis. Try this! Or see Appendix B for aproof along these lines.We now dis
uss two examples to illustrate the 
omputation of dis
riminant and determina-tion of integral bases.Example 1: Quadrati
 Fields.Let K be a quadrati
 �eld and O be its ring of integers. As noted before, we have K =Q(pm), where m is a squarefree integer. We now attempt to give a more 
on
rete des
riptionof O. First, note that Z[pm℄ = fr + spm : r; s 2 Zg � O. Let x = a + bpm 2 O for somea; b 2 Q . Then Tr(x) = 2a and N(x) = a2 �mb2 (verify!) and both of them must be in Z.Sin
e m is squarefree and a2 �mb2 2 Z, we see that a 2 Z if and only if b 2 Z. Thus if a =2 Z,then we 
an �nd an odd integer a1 su
h that 2a = a1, and relatively prime integers b1 and 
1with 
1 > 1 su
h that b = b1
1 . Now�a1 = 2a 2 Z and a2 �mb2 2 Z�) �4j
21a21 and 
21j4mb21�) 
1 = 2:Hen
e b1 is odd and a21 �mb21 � 0(mod 4). Also a1 is odd, and therefore, m � 1(mod 4). Itfollows that if m 6� 1(mod 4), then a; b 2 Z, and so in this 
ase, O = fa+ bpm : a; b 2 Zg andf1;pmg is an integral basis. In the 
ase m � 1(mod 4), the pre
eding observations imply thatO � �a1 + b1pm2 : a1; b1 are integers having the same parity, i.e., a1 � b1(mod 2)�and, moreover, 1+pm2 2 O sin
e it is a root of X2 � X � m�14 ; therefore O = Z[1+pm2 ℄ andf1; 1+pm2 g is an integral basis. We 
an now 
ompute the dis
riminant of K as follows.dK = 8>><>>: det� 2 00 2m � = 4m if m � 2; 3(mod 4)det� 2 11 (1 +m)=2 � = m if m � 1(mod 4):It may be remarked that the integer d = dK determines the quadrati
 �eld K 
ompletely, andthe set f1; d+pd2 g is always an integral basis of K. (Verify!)Example 2: Cy
lotomi
 Fields.Let p be an odd prime and � = �p be a primitive pth root of unity. Consider the 
y
lotomi
�eld K = Q(�). We know that K=Q is a Galois extension and its Galois group is isomorphi
to (Z=pZ)�, whi
h is 
y
li
 of order p� 1. The minimal polynomial of � over Q is given by�p(X) = Xp � 1X � 1 = Xp�1 +Xp�2 + � � �+X + 1 = p�1Yi=1 �X � �i� :We now try to determine OK , the ring of integers of K, and dK , the dis
riminant of K. Let us�rst note that sin
e � 2 OK , the ringZ[�℄, whi
h is generated as a Z{module by 1; �; �2; : : : ; �p�1,24



is 
learly 
ontained in OK . Moreover, we haveDK=Q(1; �; : : : ; �p�1) = (�1)(p�1)(p�2)=2NK=Q(�0p(�)) = (�1)(p�1)=2NK=Q � p�p�1(� � 1)� :Sin
e �p(X) is the minimal polynomial of K = Q(�) over Q , we 
learly see that NK=Q(�) =(�1)p�1 � 1 = 1. And sin
e the minimal polynomial of � � 1 is�p(X + 1) = (X + 1)p � 1X = pXi=1 �pi�Xi�1 = Xp�1 + pXp�2 + � � � +�p2�X + p;we see that N(� � 1) = (�1)p�1p = p. Thus N(�0p(�)) = pp�1�1p = pp�2. On the other hand,N(� � 1) is the produ
t of its 
onjugates, and so we obtain the identityp = (� � 1)(�2 � 1) : : : (�p�1 � 1);whi
h implies that the ideal (� � 1)OK \ Z 
ontains pZ. But (� � 1) is not a unit in OK (lestevery 
onjugate (�i � 1) would be a unit and hen
e p would be a unit in Z). So it followsthat (� � 1)OK \ Z = pZ. Now suppose x 2 OK . Then x = 
0 + 
1� + � � � + 
p�1�p�1for some 
i 2 Q . We shall now show that 
i are, in fa
t, in Z. To this e�e
t, 
onsider(� � 1)x = 
0(� � 1) + 
1(�2 � �) + � � � + 
p�1(�p � �p�1). We have Tr(� � 1) = �p andTr(�i+1��i) = 1�1 = 0 for 1 � i < p. Therefore 
0p = �Tr((��1)x) 2 (��1)OK\Z= pZ, andso 
0 2 Z. Next, ��1(x�
0) = �p�1
0 is an element of OK whi
h equals 
1+
2�+ � � �+
p�1�p�2.Using the previous argument, we �nd that 
1 2 Z. Continuing in this way, we see that 
i 2 Zfor 0 � i � p� 1. It follows that OK = Z[�℄ and f1; �; �2; : : : ; �p�1g is an integral basis of OK .As a 
onsequen
e, we obtain thatdK = DK=Q(1; �; �2; : : : ; �p�1) = (�1)(p�1)=2pp�2:Exer
ise 2.27. Let n = pe where p is a prime and e is a positive integer. Show that the ringof integers of Q(�n) is Z[�n℄ and the dis
riminant of Q(�n) is equal to (�1)'(p)=2ppe�1(pe�e�1).Dedu
e that, in parti
ular, the only prime dividing this dis
riminant is p and that the sign ofthis dis
riminant is negative only if n = 4 or p � 3(mod 4).Remark 2.28. If n is any integer > 1 and � = �n is a primitive nth root of unity, then it 
an beshown that the ring of integers of Q(�n) is Z[�n℄ and the dis
riminant of Q(�n) equals(�1)'(n)=2 n'(n)Qpjn p'(n)=(p�1) :The proof is somewhat diÆ
ult. Interested reader may see [19℄.Exer
ise 2.29 (Sti
kelberger's Theorem). If K is a number �eld, then dK � 0 or 1(mod 4).[Hint: Let fu1; : : : ; ung be an integral basis ofK so that dK = hdet�u(j)i �i2, where u(1)i ; : : : ; u(n)idenote the 
onjugates of ui w.r.t. K=Q . Write the above determinant as P �N , where P andN denote the 
ontribution from even and odd permutations, respe
tively. Show that P + Nand PN are integers and dK = (P + N)2 � 4PN .℄ Verify this 
ongruen
e from the formulaeabove when K is a quadrati
 �eld or a 
y
lotomi
 �eld,Exer
ise 2.30. Let K = Q(�) where � is a root of X3 + 2X + 1. Show that �(Z[�℄) = �59.Dedu
e that f1; �; �2g is an integral basis of K.25



Chapter 3Dedekind Domains and Rami�
ationTheoryIn the investigation of Fermat's Last Theorem and Higher Re
ipro
ity Laws, mathemati
iansin the 19th 
entury were led to ask if the unique fa
torization property enjoyed by the integersalso holds in the ring of integers in an algebrai
 number �eld, espe
ially in the ring of 
y
lotomi
integers. In 1844, E. Kummer showed that this does not hold, in general. About three yearslater, he showed that the unique fa
torization in su
h rings, or at least in rings of 
y
lotomi
integers, is possible if numbers are repla
ed by the so 
alled \ideal numbers". Kummer's workwas simpli�ed and furthered by R. Dedekind1. The 
on
ept of an ideal in a ring was thusborn. In e�e
t, Dedekind showed that the ring of integers of an algebrai
 number �eld has thefollowing property:Every nonzero ideal in this ring fa
tors uniquely as a produ
t of prime ideals.Integral domains with this property are now known as Dedekind domains (or also Dedekindrings)2. In a famous paper3, Emmy Noether gave a set of abstra
t axioms for rings whoseideal theory agrees with that of ring of integers of an algebrai
 number �eld. This leadsto a 
hara
terization of Dedekind domains. In the next se
tion, we will take this abstra
t
hara
terization as the de�nition of a Dedekind domain, and then prove properties su
h as1Dedekind published his ideas as a supplement to Diri
hlet's le
tures on Number Theory, whi
h were �rstpublished in 1863. Dedekind's supplements o

ur in the third and fourth editions, published in 1879 and 1894, ofDiri
hlet's Vorlesungen �uber Zahlentheorie. Another approa
h towards understanding and extending the ideas ofKummer was developed by L. Krone
ker, whose work was apparently 
ompleted in 1859 but was not publisheduntil 1882. For more histori
al details, see the arti
le \The Genesis of Ideal Theory" by H. Edwards, publishedin Ar
hives for History of Exa
t S
ien
es, Vol. 23 (1980), and the arti
les by P. Ribenboim and H. Edwards in\Number Theory Related to Fermat's Last Theorem", Birkh�auser, 1982.2The term Dedekind domains was 
oined by I.S. Cohen [Duke Math. J. 17 (1950), pp. 27{42℄. In fa
t, Cohende�nes a Dedekind domain to be an integral domain in whi
h every nonzero proper ideals fa
tors as a produ
tof prime ideals, and he notes that the uniqueness of fa
torization is automati
, thanks to the work of Matusita[Japan J. Math. 19 (1944), pp. 97{110℄.3Abstrakter Aufbau der Idealtheorie in algebrais
hen Zahlund Funktionenk�orpern, Math. Ann. 96 (1927), pp.26{61. The Aufbau paper followed another famous paper Idealtheorie in Ringberei
hen [Math. Ann. 83 (1921),pp. 24{66℄ in whi
h rings with as
ending 
hain 
ondition on ideals are studied; the term noetherian rings forsu
h rings was apparently originated by Chevalley [Ann. Math. 44 (1943), pp. 690{708℄. In
identally, EmmyNoether had a great appre
iation of Dedekind's work and her favorite expression to her students was Alles stehts
hon bei Dedekind! 26



the unique fa
torization of ideals as a 
onsequen
e. In the subsequent se
tions, we study thephenomenon of rami�
ation and dis
uss a number of basi
 results 
on
erning it.3.1 Dedekind DomainsAn integral domain A is 
alled a Dedekind domain if A is noetherian, normal and every nonzeroprime ideal in A is maximal. Note that the last 
ondition is equivalent to saying that dimA � 1,or in other words, either A is a �eld or A is one dimensional.Example 3.1. Any PID is a Dedekind domain (
he
k!). In parti
ular, Z and the polynomialring k[X℄ over a �eld k are Dedekind domains.Example 3.2. The ring Z[p�5℄, whi
h is the ring of integers of the quadrati
 �eld Q(p�5) isa Dedekind domain. Indeed, this ring is noetherian being the quotient of a polynomial ringover Z, it is normal being the ring of integers of a number �eld, and it is one dimensional,being an integral extension of Z. However, Z[p�5℄ is not a PID be
ause, for instan
e, the idealP = (2; 1+p�5) is not prin
ipal. Indeed if P were generated by a single element a+bp�5, thena would have to be an even integer whi
h divides 1, and this is impossible. As it turns out, thefa
t that the Dedekind domain Z[p�5℄ is not a PID is related to failure of unique fa
torizationin Z[p�5℄, whi
h is illustrated by the two distin
t fa
torizations 2�3 and (1+p�5)(1�p�5)of the number 6. Note, however, that if we pass to ideals and 
onsider the prin
ipal ideal (6)generated by 6 in Z[p�5℄, then there is no problem be
ause(6) = (2; 1 +p�5)(2; 1 �p�5)(3; 1 +p�5)(3; 1 �p�5)and it 
an be seen that the ideals on the right are distin
t prime ideals and the above fa
tor-ization is of (6) into prime ideals is unique up to rearrangement of fa
tors.Many more examples of Dedekind domains 
an be generated from the following basi
 result.Theorem 3.3 (Extension Theorem). Let A be a Dedekind domain, K its quotient �eld, La �nite separable extension of K, and B the integral 
losure of A in L. Then B is a Dedekinddomain.Proof. By Finiteness Theorem 2.23, B is noetherian. It is obvious that A is normal. Lastly, byCorollary 2.19 we see that dimB = dimA � 1.Sin
e Z is a Dedekind domain, we obtain as an immediate 
onsequen
e the following 
orol-lary.Corollary 3.4. If K is a number �eld, then OK, the ring of integers of K, is a Dedekinddomain.Exer
ise 3.5. Let A be a Dedekind domain with quotient �eld K. If S is any multipli
atively
losed subset of A su
h that 0 =2 S, then show that the lo
alization S�1A of A at S is a Dedekinddomain with quotient �eld K. Moreover, if L is an algebrai
 extension of K, then show thatthe integral 
losure of S�1A in L is S�1B.We shall now pro
eed to prove a number of basi
 properties of a Dedekind domain. Inparti
ular, we shall establish the fa
t about unique fa
torization of ideals as produ
ts of primeideals, whi
h was alluded to in the beginning of this se
tion.27



De�nition 3.6. Let A be a domain and K be its quotient �eld. By a fra
tionary ideal of A wemean an A-submodule J of K su
h that dJ � A for some d 2 A, d 6= 0.Note that a �nitely generated A{submodule of K is a fra
tionary ideal of A. Conversely, ifA is noetherian, then every fra
tionary ideal of A is �nitely generated.To distinguish from fra
tionary ideals, the (usual) ideals of A are sometimes 
alled theintegral ideals of A. Produ
ts of fra
tionary ideals is de�ned in the same way as the produ
t ofintegral ideals, and w.r.t. this produ
t, the setFA = fJ : J a fra
tionary ideal of A and J 6= (0)gnonzero fra
tionary ideals is a 
ommutative monoid with A as its identity element. Note thatFA 
ontains the subset of nonzero prin
ipal fra
tionary ideals, viz.,PA = fAx : x 2 K; and x 6= (0)gand this subset is, in fa
t, a group. In 
ase A is a PID, we see easily (from Corollary 2.25, forexample) that FA = PA, and in this 
ase FA is a group. We will soon show that more generally,if A is any Dedekind domain, then FA is a group.Lemma 3.7. Every nonzero ideal of a noetherian ring A 
ontains a �nite produ
t of nonzeroprime ideals of A.Proof. Assume the 
ontrary. Then the family of nonzero nonunit ideals of A not 
ontaininga �nite produ
t of nonzero prime ideals of A is nonempty. Let I be a maximal element ofthis family. Then I 6= A and I 
an not be prime. Hen
e there exist a; b 2 A n I su
h thatab 2 I. Now I + Aa and I + Ab are ideals stri
tly larger than I, and I � (I + Aa)(I + Ab).In parti
ular, I + Aa and I + Ab are nonzero nonunit ideals. So by the maximality of I, bothI +Aa and I +Ab 
ontain a �nite produ
t of nonzero prime ideals, and hen
e so does I. Thisis a 
ontradi
tion.Lemma 3.8. Let A be a noetherian normal domain and K be its quotient �eld. If x 2 K andI is a nonzero ideal of I su
h that xI � I, then x 2 A.Proof. Sin
e xI � I, we have xnI � I for n � 1. Thus if we let J = A[x℄, then JI � I.In parti
ular, if d 2 I, d 6= 0, then dJ � A. So J is a fra
tionary ideal of A and sin
e A isnoetherian, J = A[x℄ is a f.g. A-module. Therefore, x is integral over A and sin
e A is normal,x 2 A.Lemma 3.9. Let A be a Dedekind domain and K be its quotient �eld. If P is any nonzeroprime ideal of A, then P 0 = (A :K P ) = fx 2 K : xP � Agis a fra
tionary ideal of A, whi
h stri
tly 
ontains A. Moreover, PP 0 = A = P 0P . In parti
ular,P is invertible and P�1 = P 0.Proof. Clearly, P 0 is an A-module. Also, dP 0 � A for any d 2 P , d 6= 0. Thus P 0 is afra
tional ideal of A. It is 
lear that P 0 � A. To show that P 0 6= A, 
hoose any d 2 P , d 6= 0.By Lemma 3.7, we 
an �nd nonzero prime ideals P1; : : : ; Pn of A su
h that (d) � P1 � � �Pn.28



Suppose n is the least positive integer with this property. Now, P1 � � �Pn � P , and sin
e Pis prime, we have Pi � P for some i. But A is a 1-dimensional ring, and so Pi = P . De�neI = P1 � � �Pi�1Pi+1 � � �Pn (note that I = A if n = 1). Then by the minimality of n, I 6� (d). Let
 2 I be su
h that 
 62 (d). Then 
d�1 62 A. But PI � (d), and this implies that P (
) � (d), andso 
d�1 2 P 0. Thus P 0 6= A. Next, to show that PP 0 = A, observe that P = PA � PP 0 � A.Thus PP 0 is an (integral) ideal of A 
ontaining the maximal ideal P . Hen
e PP 0 = A orPP 0 = P . But if x 2 P 0 nA, then by Lemma 3.8, xP 6� P , and hen
e PP 0 6= P . It follows thatPP 0 = A.Theorem 3.10. If A is a Dedekind domain, then FA, the set of nonzero fra
tionary ideals ofA, forms an abelian group (w.r.t produ
ts of fra
tionary ideals).Proof. It suÆ
es to show that every nonzero (integral) ideal of A is invertible, be
ause if J 2 FA,then dJ is a nonzero ideal of A for some d 2 A, d 6= 0, and (d)(dJ)�1 is then the inverse of J .Now if some nonzero ideal of A is not invertible, then we 
an �nd a nonzero ideal I ofA, whi
h is not invertible and whi
h is maximal with this property. Clearly I 6= A and sothere is a nonzero prime ideal P of A su
h that I � P . By Lemma 3.9, P�1 exists andI = IA � IP�1 � PP�1 = A. Moreover, if I = IP�1, then by Lemma 3.8, P�1 � A, whi
h
ontradi
ts Lemma 3.9. Thus IP�1 is an ideal of A whi
h is stri
tly larger than I. So bythe maximality of I, the ideal IP�1 is invertible. But then so is I = (IP�1)P . This is a
ontradi
tion.Theorem 3.11. Let A be a Dedekind domain. Then every nonzero ideal I of A 
an be fa
toredas a produ
t of prime ideals, and this fa
torization is unique up to a rearrangement of thefa
tors. More generally, every nonzero fra
tional ideal J of A fa
tors as J = pe11 � � � pehh , forsome nonnegative integer h, distin
t prime ideals p1; : : : ; ph and nonzero integers e1; : : : ; eh.4Furthermore, the prime ideals p1; : : : ; ph and the 
orresponding exponents e1; : : : ; eh are uniquelydetermined by J .Proof. Assume for a moment that the assertion for integral ideals is proved. Then for anyJ 2 FA, there exists d 2 A, d 6= 0 su
h that dJ is a nonzero ideal of A. Now if dJ = p1 � � � pkand (d) = q1 � � � ql, where pi and qj are prime ideals then J = p1 � � � pkq�11 � � � q�1l . Moreover,if we also have J = P1 � � �PmQ�11 � � �Q�1n for some prime ideals Pi and Qj (ne
essarily nonzerobut not ne
essarily distin
t), then p1 � � � pkQ1 � � �Qn = q1 � � � qlP1 � � �Pm and the uniqueness forfa
torization of integral ideals 
an be used. This yields the desired results for nonzero fra
tionalideals.To prove the existen
e of fa
torization of nonzero ideals of A into prime ideals, we 
anpro
eed as in the proof of Theorem 3.10. Thus, let I be a nonzero ideal of A whi
h 
an not befa
tored as a produ
t of prime ideals and whi
h is maximal with this property. Then I 6= A andif P is a nonzero prime ideal 
ontaining I, then IP�1 is an ideal of A whi
h is stri
tly largerthan I. So by the maximality of I, the ideal IP�1 is a produ
t of prime ideals. Multiplying onthe right by P , we �nd that I is also a produ
t of prime ideals. This is a 
ontradi
tion.To prove the uniqueness, let I be any nonzero ideal of A and suppose I = p1 � � � pr for somer � 0 and prime ideals p1; : : : ; pr. We indu
t on r to show that any other fa
torization of I as4As per usual 
onventions, p�m = �p�1�m, for any positive integer m. Also, when h = 0, a produ
t su
h aspe11 � � � pehh is the empty produ
t and it equals (1) = A.29



a produ
t of prime ideals di�ers from p1 � � � pr by a rearrangement of fa
tors. If r = 0, this isevident sin
e a nonempty produ
t of prime ideals will be 
ontained in any one of the fa
tors,whi
h is a proper subset of A. Assume that r � 1 and the result holds for ideals whi
h areprodu
ts of r � 1 prime ideals. Now if I = q1 � � � qs for some s � 0 and prime ideals q1; : : : ; qs,then it is 
lear that s > 0. Moreover, q1 � � � qs � p1 implies that qj � p1 for some j. But sin
eI 6= (0), ea
h qj is a nonzero prime ideal and hen
e maximal. Thus qj = p1. Multiplying I byp�11 we �nd that p2 � � � pr = q1 � � � qj�1qj+1 � � � qs. Thus by indu
tion hypothesis r � 1 = s � 1and p2; : : : pr are the same as q1; : : : ; qj�1; qj+1; : : : ; qs after a rearrangement. This implies thatr = s and p1; : : : ; pr equal q1; : : : ; qs after a rearrangement.Remark 3.12. Either of the following four 
onditions 
an be taken as a de�nition for an integraldomain A to be a Dedekind domain.(1) A is noetherian, normal and every nonzero prime ideal of A is maximal.(2) Nonzero fra
tional ideals of A form a group with respe
t to multipli
ation.(3) Every nonzero ideal of A fa
tors uniquely as a produ
t of prime ideals.(4) Every nonzero ideal of A fa
tors as a produ
t of prime ideals.Note that (3) ) (4) is obvious and from Theorems 3.10 and 3.11, we have (1) ) (2) and(1) ) (3). Moreover, if (2) holds, then A is noetherian be
ause if I is a nonzero ideal ofA, then II�1 = A implies that Pni=1 aibi = 1 for some ai 2 I; bi 2 I�1, and 
onsequently,I = (a1; : : : ; an). Further, if (2) holds, then as in the proof of Theorem 3.11, the existen
eof a nonzero ideal of A whi
h 
an not be fa
tored as a produ
t of prime ideals leads to a
ontradi
tion. This shows that (2) ) (4). Hen
e, to prove the equivalen
e of (1), (2), (3) and(4) it suÆ
e to show that (4) ) (1). This 
an be done but it needs a little bit of work; fordetails, we refer to [20, Ch. V, x6℄.Exer
ise 3.13. Use Theorem 3.11 to show that for every nonzero prime ideal p of A, we 
ande�ne a fun
tion np : FA ! Z su
h that for any J 2 FA, we have np(J) = 0 for all ex
ept�nitely many p, and J =Yp pnp(J)where the produ
t is over all nonzero prime ideals p of A. Further show that J is an integral idealof A if and only if np(J) � 0 for all nonzero prime ideals p of A. Dedu
e that for J1; J2 2 FA,J1 � J2 () np(J1) � np(J2) for all nonzero prime ideals p of A:Use this to show that if I1; I2 are integral ideals of A, then I1 � I2 if and only if I2 divides I1,i.e., I1 = I2I3 for some integral ideal I3 of A. Finally, for any J1; J2 2 FA and a nonzero primeideal p of A, prove the following.(i) np(J1J2) = np(J1) + np(J2) and np(J1J�12 ) = np(J1)� np(J2).(ii) np(J1 + J2) = min fnp(J1); np(J2)g and np(J1 \ J )2 = max fnp(J1); np(J2)g.30



We have seen in Example 3.2 that a Dedekind domain need not be a UFD. On the otherhand, if a Dedekind domain A is a UFD and P is any nonzero prime ideal of A, then P must
ontain an irredu
ible element be
ause otherwise there will be an in�nite stri
tly as
ending
hain (a1) � (a2) � � � � of prin
ipal ideals 
ontained in P , 
ontradi
ting that A is noetherian.Now if p 2 P is irredu
ible, then (p) is a nonzero prime ideal, and hen
e maximal. Hen
e,P = (p). Next, by Theorem 3.11, every nonzero ideal of A is a produ
t of prime ideals andtherefore, it is prin
ipal. Thus A is a PID. Consequently, if a Dedekind domain A is a UFD,then FA = PA or in other words, the quotient group FA=PA is trivial.De�nition 3.14. Let A be a Dedekind domain and K be its quotient �eld. The ideal 
lassgroup of A, denoted by CA, is de�ned to be the quotient FA=PA. When K is a number �eldand A = OK is its ring of integers, CA is often denoted by CK and 
alled the ideal 
lass groupof K. The elements of CK are 
alled the ideal 
lasses of K.As remarked earlier, if A is a Dedekind domain, thenA is a UFD () A is a PID () CA is trivial:Thus the size of the ideal 
lass group CA is a measure of how far A is from being a UFD. In the
ase when K is a number �eld and A = OK , it turns out that CK is a �nite (abelian) group.The order of this group is denoted by hK and is 
alled the 
lass number of K. The �niteness of
lass number will be proved in Chapter 4 using some general results of Minkowski. A shorterproof is outlined in Exer
ise 4.3.We end this se
tion with a result whi
h gives a suÆ
ient 
ondition for a Dedekind domainto be a PID.Proposition 3.15. A lo
al Dedekind domain is a PID. More generally, if a Dedekind domainhas only �nitely many maximal ideals, then it is a PID.Proof. Let A be a Dedekind domain with only �nitely many maximal ideals, say, P1; : : : ; Pr.Note that the ideals P1; : : : ; Pr, and more generally, their powers Pm11 ; : : : ; Pmrr are pairwise
omaximal. Fix any i 2 f1; : : : ; rg. Note that Pi 6= P 2i (be
ause otherwise Pi = A). So we 
an�nd ai 2 Pi n P 2i . By Chinese Remainder Theorem [
f. Prop. 2.3℄, there exists a 2 A su
h thata � ai(mod P 2i ) and a � 1(mod Pj) for 1 � j � r; j 6= i:Now, (a) is a nonzero ideal of A with (a) � Pi, and the fa
torization of (a) into prime ideals
an neither 
ontain Pj for any j 6= i nor 
an it 
ontain a power of Pi with exponent 2 or more.Hen
e (a) = Pi. Sin
e every nonzero ideal of A is a produ
t of the Pi's, it must be prin
ipal.Thus A is a PID.Remark 3.16. A ring with only �nitely many maximal ideals is sometimes 
alled a semilo
alring. Thus the above Proposition says that a semilo
al Dedekind domain is a PID. In the 
aseof lo
al Dedekind domains, we 
an, in fa
t, say more. Namely, a lo
al Dedekind domain is whatis 
alled a dis
rete valuation ring or a DVR. An integral domain A with quotient �eld K is adis
rete valuation ring if there exists a map v : K n f0g ! Z with the propertiesv(xy) = v(x) + v(y) and v(x+ y) � minfv(x); v(y)g for all x; y 2 K n f0g31



and A = fx 2 K : x = 0 or v(x) � 0g. The map v is 
alled a valuation of K and A is 
alledits valuation ring. In 
ase A is a lo
al Dedekind domain, A has only one nonzero prime ideal,i say P , and for any nonzero element x of the quotient �eld of A, we 
an write Ax = P n for aunique integer n, and the map given by x 7! n is a valuation of K whose valuation ring is A.Exer
ise 3.17. Let A be a Dedekind domain. If P is a nonzero prime ideal of A and e a positiveinteger, then show that A=P e is a prin
ipal ideal ring. Use this and the Chinese RemainderTheorem to show that if I is any nonzero ideal of A, then R=I is a prin
ipal ideal ring. Dedu
ethat every ideal of A 
an be generated by two elements.3.2 Extensions of PrimesIn the ring OK of integers of a number �eld K, a prime p of Z may not remain a prime. Forinstan
e in the ring of integers of Q(p�1), namely, in the ring Z[i℄ 5, the rational primes 2 and5 are no longer primes but 3 is. However, by Theorem 3.11, the ideal generated by p in this ring
an be uniquely fa
tored as a produ
t of prime ideals. Roughly speaking, the phenomenon ofa prime splitting into several primes in an extension, is known as rami�
ation. In this 
ontext,there is a beautiful analogue of the formulaPgi=1 eifi = n, whi
h holds when a moni
 polynomialf(X) of degree n with 
oeÆ
ients in a �eld F , fa
tors as f(X) = p1(X)e1 � � � pg(X)eg , whereg � 0, ei > 0 and pi(X) are distin
t moni
 irredu
ible polynomials in F [X℄ of degree fi. We nowpro
eed to give some relevant de�nitions and prove the Pgi=1 eifi = n formula in the generalsetting of Dedekind domains.In this se
tion, we shall assume that A;K;L;B are as in the Extension Theorem 3.3. Wewill also let n denote the degree of L=K.De�nition 3.18. Let p be a prime ideal of A. A prime ideal P of B is said to lie over p ifP \A = p.Sin
e B is a Dedekind domain, for any nonzero prime ideal p of A, the extension pB of pto B is a nonzero ideal of B and hen
e it 
an be uniquely written aspB = gYi=1P eiiwhere P1; P2; : : : ; Pg are distin
t nonzero prime ideals of B and ei are positive integers.Exer
ise 3.19. With p and Pi as above, show that a prime ideal P of B lies over p i� P = Pifor some i. Also show that pB \ A = p = P eii \ A. Dedu
e that B=pB as well as B=P eii B 
anbe regarded as ve
tor spa
es over the �eld A=p. Further show that B=Pi is a �eld extension ofA=p whose degree is at most n.De�nition 3.20. With p, Pi, et
. as above, the positive integer ei is 
alled the rami�
ationindex of Pi over p and is denoted by e(Pi=p); the �eld degree [B=Pi : A=p℄ is 
alled the residuedegree (or the residue 
lass degree) of Pi over p and is denoted by f(Pi=p). If ei > 1 for some5Elements of Z[i℄ are often 
alled the Gaussian integers. These were �rst studied by C. F. Gauss in his workon biquadrati
 re
ipro
ity. 32



i, then we say that p is rami�ed in B (or in L). Otherwise, it is said to be unrami�ed. 6 Theextension L=K is said to be unrami�ed if every nonzero prime ideal of A is unrami�ed in L.Exer
ise 3.21. Let A;K;L;B and p be as above. Suppose L0 is a �nite separable extension ofL and B0 is the integral 
losures of B in L0. Show that B0 is the integral 
losure of A in L0.Further, if P a prime of B lying over p and P 0 a prime of B0 lying over P , then show that P 0lies over p and the following transitivity relations hold:e(P 0=p) = e(P 0=P )e(P=p) and f(P 0=p) = f(P 0=P )f(P=p):We are now ready to prove the main result of this se
tion.Theorem 3.22. Let A;K;L;B be as above and n = [L : K℄. Suppose p is a nonzero primeideal of A and we have pB = gYi=1P eiiwhere P1; P2; : : : ; Pg are distin
t prime ideals of B and e1; : : : ; eg are positive integers. Then,upon letting fi = [B=Pi : A=p℄, we have gXi=1 eifi = n:Proof. Let S = A n p and A0 = S�1A be the lo
alization of A at p. Then B0 = S�1B is theintegral 
losure of A0 in L, and pB0 = P 01e1 : : : P 0geg , where P 0i = PiB0. Moreover, the primesP 01; : : : ; P 0g are distin
t, A0=pA0 ' A=p and B0=P 0i ' B=Pi. Thus we see that in order to provethe equality P eifi = n, we 
an repla
e A;B; p; Pi by A0; B0; p0; P 0i respe
tively.In view of the observations above, we shall assume without loss of generality that A is alo
al Dedekind domain with p as its unique nonzero prime ideal. Then, by the Corollary 2.25,B is a free A{module of rank n = [L : K℄. Write B = Ay1 + � � � + Ayn, where y1; : : : ; yn aresome elements of B. Now for the ve
tor spa
e B=pB over A=p, we 
learly haveB=pB = nXi=1 (A=p) �yiwhere �yi denotes the residue 
lass of yi mod pB. Moreover,X �ai�yi = 0 =)X aiyi 2 pB =) ai 2 pwhere ai 2 A and �ai denotes its residue 
lass mod p, and the last impli
ation follows sin
efy1; : : : ; yng is a free A{basis of B. It follows that �y1; : : : ; �yn are linearly independent over A=p,and hen
e dimA=pB=pB = n:6To be a

urate, we should de�ne p to be rami�ed if ei > 1 for some i or B=Pi is inseparable over A=p for somei. However, in number theoreti
 appli
ations, A=p will usually be a �nite �eld and so the question of separabilityof residue �eld extensions doesn't arise. 33



Now we 
ount the same dimension by a di�erent method. First, note that sin
e P1; : : : ; Pgare distin
t maximal ideals, P e11 ; : : : ; P egg are pairwise 
omaximal. Sin
e pB = P e11 � � �P egg , byChinese Remainder Theorem, we get an isomorphism (of rings as well as of (A=p){ve
tor spa
es)B=pB ' gMi=1 B=P eii :Now let us �nd the dimension of the A=p{ve
tor spa
e B=P e where P = Pi and e = ei for somei. First, we note that for any j � 1, pP j � P j+1, and hen
e P j=P j+1 
an be 
onsidered as ave
tor spa
e over A=p. We 
laim that we have an isomorphismB=P e ' B=P � P=P 2 � � � � � P e�1=P e:To see this, use indu
tion on e and the fa
t that for e > 1, we 
learly haveB=P e�1 ' B=P eP e�1=P e :Next, we note that B is a Dedekind domain having only �nitely many prime ideals (in fa
t, (0)and P1; : : : ; Pg are the only primes of B), and so B must be a PID. Let t be a generator of P ,and 
onsider the map B=P ! P j=P j+1indu
ed by the multipli
ation map x 7! tjx of B ! P j . This map is an A=p{homomorphism,and it is 
learly bije
tive. SodimA=p(P j=P j+1) = dimA=p(B=P ) = f(P=p)and 
onsequently, from the above dire
t sum representations, we getdimA=p(B=pB) = gXi=1 dimA=p(B=P eii ) = gXi=1 eifi;whi
h yields the desired identity. This 
ompletes the proof.Examples:1. Consider the quadrati
 �eld K = Q(i), where i denotes a square root of �1. We knowthat OK is the ring Z[i℄ of Gaussian integers. If p is a prime � 1(mod 4), then we know (bya 
lassi
al result of Fermat) that p 
an be written as a sum of two squares. Thus there exista; b 2 Z su
h that p = a2 + b2 = (a+ bi)(a � bi). It 
an be seen that (a+ bi) and (a� bi) aredistin
t prime ideals in OK . Thus for the prime ideal pZ, we have g = 2, e1 = e2 = 1 and (sin
eP eifi = 2) f1 = f2 = 1. On the other hand, it is not diÆ
ult to see that a prime � 3(mod 4)generates a prime ideal in Z[i℄ and so for su
h a prime, we have g = 1 = e1 and f1 = 2. The
ase of p = 2 is spe
ial. We have 2 = (1+ i)(1� i). But (1 + i) and (1� i) di�er only by a unit(namely, �i) and thus they generate the same prime ideal. So 2 is a rami�ed prime and for it,we have g = 1 = f1 and e1 = 2. 34



2. In Example 2 of Se
tion 2.4, where we dis
ussed the pth 
y
lotomi
 �eld K = Q(�p), wehave proved the identity p = (� � 1)(�2 � 1) : : : (�p�1 � 1);and also the fa
t that (��1)OK \Z= pZ. We note that for any integer i not divisible by p, we
an �nd an integer j su
h that ij � 1(mod p), and thus (�i�1)=(��1) = 1+�+� � �+�i�1 2 Z[�℄and its inverse (� � 1)=(�i � 1) = (�ij � 1)=(�i � 1) is also in Z[�℄. Therefore, the fra
tion(�i � 1)=(� � 1) is a unit in Z[�℄. Consequently, (�i � 1) and (� � 1) generate the same ideal,say P . Now the above identity together with the previous Theorem shows that pZ[�℄ = P p�1and P is a prime ideal. Thus we �nd that in this 
ase g = 1 = f1 and e1 = p� 1 = [K : Q ℄.The last example illustrates the following de�nition.De�nition 3.23. A nonzero prime ideal p of A is said to be totally rami�ed in L (or in B) ifpB = P n for some prime ideal P of B.3.3 Kummer's TheoremIn this se
tion we prove a theorem, due to Kummer, whi
h shows how the de
omposition ofextended prime ideals 
an be \read o�" from the fa
torization of a polynomial, for a 
ertain
lass of rings. It may be observed that the hypothesis of this theorem is satis�ed in the 
ase ofquadrati
 and 
y
lotomi
 extensions.We shall use the following notation. Given a domain A and a maximal ideal p in A, we let �A,denote the residue �eld A=p; for any polynomial p(X) 2 A[X℄, by �p(X) we denote its redu
tionmod p, i.e., the polynomial in �A[X℄ whose 
oeÆ
ients are the p{residues of the 
orresponding
oeÆ
ients of p(X).Theorem 3.24. Let A be a Dedekind domain, K its quotient �eld, L a �nite separable exten-sion of K, and B the integral 
losure of A in L. Let p be a nonzero prime ideal of A. Assumethat B = A[�℄ for some � 2 B. Let f(X) = Irr(�;K). Suppose�f(X) = gYi=1 �pi(X)eiis the fa
torization of �f(X) into powers of distin
t moni
 irredu
ible polynomials in �A[X℄. Letpi(X) be the moni
 polynomial in A[X℄ whose redu
tion mod p is �pi(X). Then the primes inB lying over p are pre
isely given by P1; : : : ; Pg where Pi = pB + pi(�)B. Moreover,pB = gYi=1P eiiis the fa
torization of pB into powers of distin
t primes in B, the rami�
ation index of Pi overp is the above exponent ei, and the residue degree fi of Pi over p is the degree of the irredu
iblefa
tor �pi(X).Proof. Fix some i with 1 � i � g. Let ��i be a root of �pi(X). Consider the mapsA[X℄! �A[X℄! �A[X℄=(�pi(X)) ' �A[��i℄35



where the �rst map sends a polynomial in A[X℄ to its redu
tion mod p, and the se
ond one isthe natural quotient map. The 
omposite of these maps is a homomorphism from A[X℄ onto�A[��i℄, and its kernel is 
learly given by pA[X℄ + pi(X)A[X℄. This kernel 
ontains f(X), andthus we get the indu
ed map of A[X℄=(f(X)) onto �A[��i℄. Sin
e B = A[�℄ ' A[X℄=(f(X)),we get a map 'i of B onto �A[��i℄. Note that ker'i is equal to pB + pi(�)B. Sin
e �pi(X) isirredu
ible in �A[X℄, ker'i is a prime ideal in B whi
h 
ontains p. It is therefore a maximalideal in B lying over p. Also �A is a �eld and[B=ker'i : A=p℄ = dim �A �A[��i℄ = deg �pi(X):Now suppose P is any maximal ideal of B lying over p. Sin
ef(X)� p1(X)e1 : : : pg(X)eg 2 pA[X℄and f(�) = 0, we see that p1(�)e1 : : : pg(�)eg 2 pB � Pand hen
e pi(�) 2 P for some i, and then it follows that P must be equal to pB+pi(�)B. Thisshows that the primes lying in B over p are pre
isely P1; : : : ; Pg where Pi = pB + pi(�)B, andthat the residue degree fi = f(Pi=p) equals deg �pi(X). To prove the remaining assertion, let e0idenote the rami�
ation index of Pi over p, so thatpB = P e011 : : : P e0gg :Sin
e Pi = pB + pi(�)B, we have P eii � pB + pi(�)eiBand hen
e, in view of the above observation that p1(�)e1 : : : pg(�)eg 2 pB, we haveP e11 : : : P egg � pB + p1(�)e1 : : : pg(�)egB � pB = P e011 : : : P e0gg :Consequently ei � e0i for all i. But we know thatgXi=1 eifi = deg f(X) = [L : K℄ = gXi=1 e0ifi:Therefore ei = e0i for all i. This 
ompletes the proof.Remark 3.25. If K is a number �eld, then by Primitive Element Theorem, there exists � 2 Ksu
h that K = Q(�). We 
an also 
hoose this � to be in OK . However, a 
hoi
e of � forwhi
h OK = Z[�℄ may not always be possible. In other words, the hypothesis of Kummer'sTheorem may not always be satis�ed. As indi
ated earlier, quadrati
 �elds and 
y
lotomi
�elds do satisfy the hypothesis of Kummer's Theorem. Exer
ise 2.30 gives another example ofa number �eld K = Q(�) for whi
h OK = Z[�℄. On the other hand, the following exer
ise givesan example, due to Dedekind, of a number �eld K for whi
h doesn't satisfy the hypothesis ofKummer's Theorem.Exer
ise 3.26. Let � 2 C be a root of X3 �X2 � 2X � 8 and K = Q(�). Prove the following:(i) [K : Q ℄ = 3; (ii) if � = (�2 + �)=2, then �3 � 3�2 � 10� � 9 = 0, and hen
e � 2 OK ; (iii)DK=Q(1; �; �2) = �4(503) and DK=Q(1; �; �) = �503, and hen
e f1; �; �g is an integral basisof OK ; (iv) for any � 2 OK , DK=Q(1; �; �2) is an even integer; (v) OK 6= Z[�℄ for any � 2 OK .36



3.4 Dedekind's Dis
riminant TheoremSuppose we have a number �eld K whose ring of integers OK is of the form Z[�℄. Let f(X) bethe minimal polynomial of � over Q and p be a rational prime7. Let �f(X) 2 Z=pZ[X℄ denotethe redu
tion of f(X) mod pZ. Then, by Kummer's Theorem, p rami�es in K i� �f(X) has amultiple root. Now, the polynomial �f(X) has a multiple root i� its (
lassi
al) dis
riminant iszero (as an element of Z=pZ). The last 
ondition means that Dis
Xf(X) = �dK is divisible byp. Thus we �nd that in this situation we have:p rami�es in K i� p divides dK :In fa
t, this turns out to be true even in a more general situation. This se
tion is devoted to aproof of this fundamental result, whi
h is due to Dedekind.Theorem 3.27. Let A be a Dedekind domain and K be its quotient �eld. Let L be a �niteseparable extension of K of degree n, and B be the integral 
losure of A in L. Let p be anonzero prime ideal of A. Assume that the �eld A=p is perfe
t (whi
h means that every algebrai
extension of this �eld is separable)8. Then we have:p rami�es in L() p � DB=A:In parti
ular, if the above assumption on the residue �eld is satis�ed by every nonzero primeideal of A, then there are only a �nitely many prime ideals in A whi
h ramify in L.Proof. If we 
onsider the lo
alizations A0 = S�1A and B0 = S�1B where S = A n p, then it isreadily seen that DB0=A0 = DB=AA0 and p rami�es in L i� p0 = pA0 rami�es in L. Thus to provethe �rst assertion, we 
an and will assume without loss of generality that A is a lo
al Dedekinddomain and p is its unique maximal ideal.Let pB = P e11 P e22 � � �P egg , where P1; P2; : : : ; Pg are distin
t prime ideals ofB and e1; e2; : : : ; egare their rami�
ation indi
es. As noted in the proof of Theorem 3.22, we have pB \ A = p =P eii \A, and we have an isomorphism of A=p{ve
tor spa
esB=pB ' gMi=1 B=P eii :Let us set �A = A=p and �B = B=pB. For x 2 B, let �x denote the image of x in �B. Note thatwe 
learly have Tr �B= �A(�x) = TrL=K(x) for all x 2 B:Now if f�1; : : : ; �ng is any K{basis of L 
ontained in B su
h that f��1; : : : ; ��ng is an �A{basisof �B, then using the above identity for tra
es, we see thatD �B= �A(��1; : : : ; ��n) = DL=K(�1; : : : ; �n): (1)7It is a 
ommon pra
ti
e in Number Theory to 
all the usual primes as rational primes (and the usual integersas rational integers) so as to distinguish from primes (and integers) in the rings of integers of algebrai
 number�elds.8This assumption would always be satis�ed in number theoreti
 appli
ations sin
e A=p would usually be a�nite �eld. 37



Next, we show that if �B ' �B1 � � � � � �Bg, where the isomorphism is of �A{ve
tor spa
es, thenwe have D �B= �A = gYi=1D �Bi= �A: (2)To see the above identity, it suÆ
es to 
onsider the 
ase when g = 2 sin
e the general 
asewould follow by indu
tion on g. For 
onvenien
e of notation, let us denote the element of B
orresponding to (u; 0) 2 �B1 � �B2 by u itself and, similarly, the element of B 
orresponding to(0; v) 2 �B1� �B2 by v itself. It is 
lear that we 
an 
hoose �A{bases fu1; : : : ; urg and fv1; : : : ; vsgof �B1 and �B2 respe
tively su
h that fu1; : : : ; ur; v1; : : : ; vsg is an �A{basis of �B. In view of theabove 
onvention, we see that uivj = 0. Thus Tr �B= �A(uivj) = 0, and soD �B= �A(u1; : : : ; ur; v1; : : : ; vs) = ������ Tr(uiui0) j 0: : : : : : j : : : : : :0 j Tr(vjvj0) ������ = D �B1= �A(u1; : : : ; ur)D �B2= �A(v1; : : : ; vs):Sin
e �A is a �eld and the non-vanishing of any of the above dis
riminants is independent of the
hoi
e of the 
orresponding �A{bases, the desired equality of dis
riminant ideals follows. Thuswe have proved (2).Now suppose p is a rami�ed prime. Then ei > 1 for some i and thus the ring B=P eii 
ontainsa nonzero nilpotent element (whi
h may be taken to be any element of P ei�1i nP eii ), and hen
eso does �B. Let � 2 B be su
h that �� 2 �B is a nonzero nilpotent element. Extend f��g toan �A{basis f��1; : : : ; ��ng of �B with �1 = �. Sin
e ��1 is nilpotent, so is ��1 ��j for 1 � j � n.Hen
e Tr( ��1 ��j) = 0 for 1 � j � n [be
ause if u 2 �B is nilpotent, then 0 is 
learly the onlyeigenvalue of the linear transformation x 7! ux of �B ! �B and Tr(u) equals the sum of alleigenvalues of this linear transformation℄. Consequently, D �B= �A( ��1; : : : ; ��n) = 0, and so D �B= �A isthe zero ideal. Thus if f�1; : : : ; �ng is an A{basis of B (whi
h exists by Finiteness Theorem),then f��1; : : : ; ��ng is an �A{basis of �B and in view of (1), we see that DL=K(�1; : : : ; �n) 2 pB.It follows that DB=A � pB \A = p.To prove the 
onverse, assume that p � DB=A. Suppose, if possible, p is unrami�ed. Thenei = 1 for all i and thus �B is isomorphi
 (as an �A{ve
tor spa
e) to the dire
t sum of the �elds�Bi = B=Pi. Sin
e �A is perfe
t, the extension �Bi= �A is separable, and therefore D �Bi= �A 6= 0, for1 � i � g. Thus by (2), we have D �B= �A 6= 0. But, in view of (1), this 
ontradi
ts the assumptionthat DB=A � p. It follows that p must be a rami�ed prime.The �nal assertion about the number of rami�ed prime is an immediate 
onsequen
e of theabove 
hara
terization and the fa
t that DB=A is a nonzero ideal of the Dedekind domain A.Corollary 3.28. Let K be a number �eld. A rational prime p rami�es in K i� p divides dK .In parti
ular, only �nitely many primes of Z ramify in K.3.5 Rami�
ation in Galois ExtensionsIn the 
ase of Galois extensions, the fundamental identity P eifi = n, whi
h was proved inSe
tion 3.2, takes a parti
ularly simple form. This short se
tion is devoted to a proof of thissimpler identity. The key idea in the proof is the \norm argument" in the Lemma below.38



Lemma 3.29. Let A be a normal domain, K its quotient �eld, L a Galois extension of K,B the integral 
losure of A, and p a prime ideal of A. Then the primes of B lying over p are
onjugates of ea
h other, i.e., for any prime ideals P;Q of B su
h that P \A = p = Q\A, wehave Q = �(P ) for some � 2 Gal(L=K). In parti
ular, the number of prime ideals of B lyingover p is �nite, and , in fa
t, � [L : K℄.Proof. We use a similar redu
tion as in the proof of Theorem 3.22. Thus we note that ifS = A n p, then the integral 
losure of A0 = S�1A in L is B0 = S�1B, and PB0 and QB0 areprime ideals of B0 lying over pA0. Moreover if QB0 = �(PB0), for some � 2 Gal(L=K), thenwe 
learly haveQ = QB0 \B = �(PB0) \B = �(PB0) \ �(B) = �(PB0 \B) = �(P ):So we assume without loss of generality that p is a maximal ideal of A. Now sin
e B=A isintegral, Q and P are maximal ideals of B. Suppose Q 6= �(P ) for any � 2 Gal(L=K). ByChinese Remainder Theorem, we 
an �nd some x 2 B su
h thatx � 0(modQ) and x � 1(mod�(P )) 8� 2 Gal(L=K):Consider the norm NL=K(x) = Y�2Gal(L=K)�(x):By Proposition 2.22, this lies in A and hen
e in Q \ A = p. Now P is a prime ideal of B
ontaining p, and thus it follows that �(x) 2 P for some � 2 Gal(L=K). But this 
ontradi
tsthe 
hoi
e of x.Corollary 3.30. Let A be a normal domain, K its quotient �eld, L a �nite separable extensionof K, B the integral 
losure of A in L, and p a prime ideal in A. Then there exists only a �nitenumber of prime ideals in B lying over p.Proof. Let L0 be a least Galois extension of K 
ontaining L and B0 be the integral 
losure ofA in L0. Suppose P and Q are distin
t prime ideals in B lying over p. Sin
e B0 is integral overB, there exist prime ideals P 0 and Q0 in B0 lying over P and Q respe
tively. Clearly P 0 and Q0are distin
t and they both lie over p. Hen
e, by Lemma 3.29, we get the desired result.Theorem 3.31. Let A be a Dedekind domain, K its quotient �eld, L a Galois extension of K,B the integral 
losure of A, and p a nonzero prime ideal of A. Then for the primes of B lyingover p, the rami�
ation indi
es are the same and the residue degrees are the same. In otherwords, we have pB = (P1P2 : : : Pg)ewhere P1; : : : ; Pg are distin
t prime ideals of B, and f(P1=p) = � � � = f(Pg=p) (= f say).Moreover, if we let n = [L : K℄, then we haveefg = n:39



Proof. Let pB = P e11 : : : P egg , where P1; : : : ; Pg are distin
t prime ideals of B, and let fi =f(Pi=p) for 1 � i � g. For any � 2 Gal(L=K), we 
learly have �(p) = p and �(B) = B, andhen
e �(pB) = pB. By Lemma 3.29, for any i with 1 � i � g, there exists � 2 Gal(L=K) su
hthat �(Pi) = P1, and 
onsequently, B=Pi ' �(B)=�(Pi) = B=P1. Thus ei = e1 and fi = f1.Sin
e we have already shown that Pgi=1 eifi = n, the theorem follows.Remark 3.32. With the notation and assumptions as in Theorem 3.31, we see that the rami�-
ation index e(P=p) of a prime P of B lying over p is independent of the 
hoi
e of P . Thus itis sometimes denoted by ep. Likewise, in the 
ase of Galois extensions, the notation fp and gpis sometimes used.3.6 De
omposition and Inertia GroupsThe identity efg = n, proved in the last se
tion, is a starting point of a beautiful theory oframi�
ation of primes developed by Hilbert. Some basi
 aspe
ts of this theory will be dis
ussedin this se
tion. In order to avoid repetition, we state below the notations and assumptions thatwill be used throughout this se
tion.Notation and Assumption: Let A be a Dedekind domain and K be its quotient �eld.Let L be a Galois extension of K and B be the integral 
losure of A in L. Let G denote theGalois group of L=K. Let p be a nonzero prime ideal of A. Let �A = A=p. Assume that �A is aperfe
t �eld.9 Let e = ep; f = fp. and g = gp.Observe that jGj = [L : K℄ = efg. Also note that if P is any prime of B lying over p, thenthe set primes of B lying over p is pre
isely f�(P ) : � 2 Gal(L=K)g. Thus the Galois group Ga
ts naturally on this set of g primes and the a
tion is transitive.De�nition 3.33. Given any prime ideal P of B lying over p, the de
omposition group of P w.r.t.L=K is de�ned to be the subgroup of G 
onsisting of automorphisms � su
h that �(P ) = P . Itis denoted by DP (L=K) or simply by DP or D if the referen
e to L=K and/or P is 
lear fromthe 
ontext. The �xed �eld of DP (L=K) is 
alled the de
omposition �eld of P w.r.t. L=K, andis denoted by KD.Note that DP (L=K) is the stabilizer of P for the natural a
tion of G on the set of primesof B lying over p. Hen
e jDP (L=K)j = jGj=g = ef . Thus [L : KD℄ = ef and [KD : K℄ = g.Also note that if Q is any prime ideal of B lying over p, then Q = �(P ) for some � 2 G, andwe have � 2 DQ(L=K), �(�(P )) = �(P ), ��1�� 2 DP (L=K)and so DQ = �DP��1. Thus if DP is a normal subgroup of G (whi
h, for example, is the 
aseif L=K is abelian), then it depends only on p and it may be denoted by Dp.Lemma 3.34. Let P be a prime ideal of B lying over p, and D = DP (L=K) be its de
omposi-tion group. Let AD = B \KD be the integral 
losure of A in KD and let PD = P \AD. ThenP is the only prime of B lying over PD, and we havePDB = P e and f(P=PD) = f:9In number theoreti
 appli
ations, �A will usually be a �nite �eld and thus this assumption is valid.40



If D is a normal subgroup of G, then KD=K is a Galois extension and pAD is a produ
t of gdistin
t and 
onjugate primes of KD with residue degree 1.Proof. Sin
e L=KD is Galois, the set of primes of B lying over PD is given by f�(P ) : � 2Gal(L=KD)g = fPg. Further, if e0 = e(P=PD) and f 0 = f(P=PD), then we know from Exer
ise3.21 that e0je and f 0jf . On the other hand, e0f 0 = [L : KD℄ = ef . Hen
e e0 = e and f 0 = f .This proves our �rst assertion, and also it shows that e(PD=p) = 1 and f(PD=p) = 1. If D isnormal, then 
learly KD=K is Galois and e(P 0=p) = 1 = f(P 0=p), for any prime P 0 of AD lyingover p. Sin
e [KD : K℄ = g, we obtain the desired result.For the remainder of this se
tion, let us �x a prime P of B lying over p and let D =DP (L=K). Let �B = B=P . Then �B is a �eld extension of �A of degree f . By our assumption,�B= �A is separable. Now if � 2 D, then � 
learly indu
es an �A{automorphism �� of �B. We thusobtain a homomorphism � : D ! Gal( �B= �A) de�ned by �(�) = ��:The kernel of � is 
alled the inertia group of P w.r.t. L=K and is denoted by TP (L=K) orsimply by TP or T . Clearly, T is a normal subgroup of D. Note that the inertia group 
an bealternatively de�ned as follows.TP (L=K) = f� 2 G : �(x) = x(mod P ) for all x 2 Bg:The �xed �eld of T is 
alled the inertia �eld of P w.r.t. L=K and is denoted by KT . Observethat K � KD � KT � L, and KT =KD is a Galois extension with Galois group D=T . A betterdes
ription of this group and its order is given by the following lemma.Lemma 3.35. The extension �B= �A of residue �elds is normal, and � : D ! Gal( �B= �A) de�nesan isomorphism of D=T onto Gal( �B= �A).Proof. Let �� 2 B be any element, and � 2 B be its representative. Let f(X) be the minimalpolynomial of � over K. Sin
e � 2 B, f(X) 2 A[X℄. Moreover, sin
e L=K is normal, L andhen
e B 
ontains all the roots of f(X). Now f(�) = 0 and thus Irr(��; �A) divides �f(X), theredu
tion of f(X) mod p. It follows that �B 
ontains all the roots of Irr(��; �A). Thus �B= �A isnormal.Next, we 
an �nd �� 2 �B su
h that �B = �A(��) be
ause �B= �A is a �nite separable extension.Let � 2 B be a representative of B. By Chinese Remainder Theorem, we 
an �nd some � 2 Bsu
h that for any � 2 G we have� � �(mod �(P )) for � 2 D and � � 0(mod �(P )) for � =2 D:Clearly �� = �� and thus �B = �A( ��). Let 
 2 Gal( �B= �A) be any element. As in the previousparagraph, we see that 
( ��) is the image of some 
onjugate of �. Thus 
( ��) = �(�) for some� 2 G. If � =2 D, then by the 
hoi
e of � we have �(�) 2 P , i.e., 
(�) = �(�) = �0, whi
h isimpossible. It follows that 
 = �� = �(�). This proves the Theorem.41



Corollary 3.36. We have jT j = e = [L : KT ℄ and [KT : KD℄ = f . Further, if AT = B \KT isthe integral 
losure of A in KT and PT = P \AT , then we havePDAT = PT with f(PT =PD) = f and PTB = P e with f(P=PT ) = 1:In parti
ular, we see that p is unrami�ed in KT .Proof. Sin
e jDj = ef and [ �B : �A℄ = f , it follows from Lemma 3.35 that jT j = e = [L : KT ℄and [KT : KD℄ = f . Now if we 
onsider the extension L=KT and the prime P lying over PT(i.e., repla
e K;A; p by KT ; AT ; PT respe
tively), then we have DP (L=KT ) = TP (L=KT ) =Gal(L=KT ) = T and the above results show that e(P=PT ) = e and e(P=PT )f(P=PT ) = e.The desired result follows from this using the transitivity relations for rami�
ation indi
es andresidue degrees.Exer
ise 3.37. Let E be a sub�eld of L 
ontaining K and AE = B \E be the integral 
losureof A in E. Let PE = P \ AE. Show that DP (L=E) = DP (L=K) \Gal(L=E) and TP (L=E) =TP (L=K) \Gal(L=E).Exer
ise 3.38. Let H be the subgroup of G generated by the subgroups TP (L=K) as P variesover all nonzero prime ideals of B. Let E be the �xed �eld of H. Show that E=K is anunrami�ed extension.Exer
ise 3.39. For n � 0, de�ne Gn = f� 2 G : �(x) � x(mod P n+1)g. Show that Gn aresubgroups of G with G0 = T . Prove that Gn = f1g for all suÆ
iently large n. Also show thatG0=G1 is isomorphi
 to a subgroup of the multipli
ative group of nonzero elements of �B = B=P ,and therefore it is 
y
li
. Further show that for n � 1, Gn=Gn+1 is isomorphi
 to a subgroupof the additive group �B. Dedu
e that the inertia group T is a solvable group.Remark 3.40. Let Kp be the 
ompletion of K w.r.t. the valuation of K 
orresponding top (whose valuation ring is Ap), and LP be the 
ompletion of L w.r.t. the valuation of L
orresponding to P . Then we know that LP 
an be regarded as a �eld extension ofKp. Sin
eKpis 
omplete, there is only one prime of LP lying over the prime (or the 
orresponding valuation)of Kp. And sin
e the residue �elds of these primes in the 
ompletions 
oin
ide with the residue�elds �A and �B respe
tively, it follows that the residue degrees are the same. Hen
e using theTheorem proved in the last se
tion, we see that the rami�
ation index 
orresponding to LP=Kp ispre
isely e, and we have ef = [LP : Kp℄. Moreover, every element of the de
omposition groupD = DP (L=K) extends by 
ontinuity to an Kp{automorphism of LP , and sin
e jDj = ef ,it follows that Gal(LP =Kp) ' DP (L=K). In parti
ular, if P is unrami�ed, then T = f1gand thus D is isomorphi
 to Gal( �B= �A). Furthermore, if �A is �nite (whi
h is the 
ase if Kis a number �eld), then Gal( �B= �A) is 
y
li
, and thus whenever P is unrami�ed, we haveGal(LP =Kp) ' Gal( �B= �A) ' Gal(�LP= �Kp), where �LP and �Kp denote the residue �elds of (thevaluation rings of) LP and Kp respe
tively, so that the lo
al Galois group Gal(LP =Kp) is 
y
li
.For more on these matters, see [17℄3.7 Quadrati
 and Cy
lotomi
 ExtensionsIn this se
tion we shall 
onsider the examples of quadrati
 and 
y
lotomi
 �elds and try todetermine expli
itly the splitting of rational primes when extended to these number �elds.42



Example 1: Quadrati
 FieldsLet K be a quadrati
 �eld. As noted earlier, we have K = Q(pm), for some uniquelydetermined squarefree integer m (with m 6= 0; 1). Let O be the ring of integers of K. We havealso seen that O = ( Z[pm℄ if m � 2; 3(mod 4)Z[1+pm2 ℄ if m � 1(mod 4):In parti
ular, we see that the hypothesis of Kummer's Theorem 3.24 is satis�ed.Now let p be a rational prime. We are interested in the de
omposition of the extended idealpO. The formula Pgi=1 eifi = n shows that g as well as ei; fi 
an only be 1 or 2, and that thesituation has to be one of the following.(i) g = 2; e1 = f1 = e2 = f2 = 1 so that pO = P1P2 for some distin
t primes P1, P2 of Owith O=Pi ' Z=pZ. In this 
ase, we say that p is a de
omposed (or split) prime, or that pde
omposes (or splits) in O.(ii) g = 1; e1 = 2; f1 = 1 so that pO = P 2 for some prime P of O with O=P ' Z=pZ. Inthis 
ase p is a rami�ed prime.(iii) g = 1; e1 = 1; f1 = 2 so that pO = P for some prime P of O with [O=P : Z=pZ℄ = 2. Inthis 
ase, we say that p is an inertial prime.Now let's �gure out whi
h one is whi
h. First we 
onsiderCase 1: m 6� 1(mod 4), i.e., m � 2; 3(mod 4).In this 
ase, O = Z[pm℄ and f(X) = X2�m is the minimal polynomial of pm over Q . ByKummer's Theorem 3.24, the fa
torization of pO is determined by the fa
torization of �f(X),the redu
tion of f(X) modulo p. If pjm or p = 2, then �f(X) = X2 or (X � 1)2, and hen
e(p)O = P 2, with P = (p;pm) or P = (p; 1 �pm), and p is rami�ed. If p6 jm and p 6= 2, then�f(X) is either irredu
ible in (Z=pZ)[X℄ or has two distin
t roots in Z=pZ (why?). The latter isthe 
ase if and only if m is a square mod p, i.e., m � x2(mod p) for some integer x. So we knowwhi
h primes are de
omposed and whi
h are inertial. The result 
an be 
onveniently expressedusing the Legendre symbol, whi
h is de�ned thus.10�mp � = 8<: 1 if p 6 jm and m is a square mod p�1 if p 6 jm and m is not a square mod p0 if pjm.What we have shown so far is that if m � 2; 3(mod 4), thenthe rational prime p is 8>>><>>>: de
omposed if p 6= 2 and �mp � = 1rami�ed if p = 2 or �mp � = 0inertial if p 6= 2 and �mp � = �1:10It may be noted that the Legendre symbol 
an be e�e
tively 
omputed using its basi
 properties, viz., �abp � =�ap�� bp�, �ap� = � bp� if a � b(mod p), and the Gauss' Law of Quadrati
 Re
ipro
ity whi
h states that for anyodd prime p, we have ��1p � = (�1) p�12 , � 2p� = (�1) p2�18 , and last but not the least, � pq�� qp� = (�1) p�12 q�12 ,where q is any odd prime. 43



Now let's 
onsiderCase 2: m � 1(mod 4).In this 
ase, O = Z h1+pm2 i and f(X) = X2�X� m�14 is the minimal polynomial of 1+pm2over Q . If p = 2, then �f(X) has a root mod p i� m�14 � 0(mod 2), i.e., m � 1(mod 8) [be
ausex2�x = x(x�1) � 0(mod 2) for any x 2 Z℄, and in this 
ase, ea
h of the two distin
t elementsin Z=2Z is a root of �f(X), whi
h implies that 2 is a de
omposed prime. If p = 2 andm 6� 1(mod8), then �f(X) has to be irredu
ible in (Z=2Z)[X℄, and so 2 is an inertial prime. Now assumethat p 6= 2. Then the \roots" 1�pm2 of X2 � X � m�14 will exist in Z=pZ if and only if pmexists in Z=pZ, or equivalently, m is a square mod p. Moreover, �f(X) has multiple roots inZ=pZ i� pjm. (Verify!) Thus, by Kummer's Theorem 3.24, we �nd that p is rami�ed i� pjm,and if p 6= 2 and p6 jm, then p is de
omposed or inertial a

ording as m is or is not a squaremod p. So if m � 1(mod 4), thenp is 8>>><>>>: de
omposed if p = 2 and m � 1(mod 8) or if p 6= 2 and �mp � = 1rami�ed if pjm, i.e., �mp � = 0inertial if p = 2 and m 6� 1(mod 8) or if p 6= 2 and �mp � = �1:Re
all that the dis
riminant of the quadrati
 �eld K = Q(pm) is given bydK = � 4m if m � 2; 3(mod 4)m if m � 1(mod 4):Now the above observations 
on
erning rami�ed primes in K 
an be expressed in a uni�edmanner as follows. p is a rami�ed prime in K , pjdK :This veri�es the theorem of Dedekind, whi
h was proved in Se
tion 3.4.Exer
ise 3.41. (Fermat's Two Square Theorem): Show that the ring of integers of the quadrati
�eld Q(i), where i2 = �1, is the ring Z[i℄ of Gaussian integers. Show that the de
omposedprimes are pre
isely the primes of the form 4k + 1. Use this and the fa
t that Z[i℄ is a PID toshow that any prime of the form 4k + 1 
an be written as a sum of two squares. Further, usethe fa
t that primes of the form 4k + 3 are inertial in Z[i℄ to show that any positive integern, with n = pe11 : : : pehh where p1; : : : ; ph are distin
t primes and e1; : : : ; eh are positive integers,
an be written as a sum of two squares if and only if ei is even whenever pi � 3(mod 4).Example 2: Cy
lotomi
 FieldsLet p be an odd prime number and � be a primitive p{th root of unity. Let O be the ringof integers of the 
y
lotomi
 �eld K = Q(�). We have noted earlier that the prime p is totallyrami�ed in K. In fa
t, we have (p)O = P p�1 where P is the prime ideal of O generated by(� � 1). We also know that dK = (�1) p�12 pp�2. Hen
e p is the only rami�ed prime. (This fa
t
an also be seen from Kummer's Theorem 3.24 whi
h is appli
able sin
e O = Z[�℄). Let q be arational prime di�erent from p. Then qO is a produ
t of g distin
t prime ideals of O. Let Qbe a prime ideal of O lying over qZ, and let f = [O=Q : Fq ℄ = (p � 1)=g, where Fq = Z=qZ.44



Then f (and hen
e g) 
an be determined as follows. If �� denotes the image of � in the �eld�O = O=Q, then we have �O = Fq (��) and ��p = 1. Thus �� is a nonzero element of �O�, whi
h isa multipli
ative group of order qf � 1. So it follows that p divides qf � 1, i.e., qf � 1(mod p).Moreover, if for some l < f , ql � 1(mod p), then �� would be in a �eld of ql elements and hen
ethis �eld have to 
ontain �O = Fq (��), whi
h is a 
ontradi
tion. Therefore f is the least positiveinteger su
h that qf � 1(mod p). In this way f and hen
e g is expli
itly determined. The primeideals lying above qZ 
an be determined by 
onsidering the fa
torization of Xp� 1 in Z=qZ[X℄by using Kummer's Theorem 3.24. For example, if p = 7 and q = 5, then we �nd that f = 6and g = 1; moreover, Q = (5; 1 + � + �2 + �3 + �4 + �5 + �6) = (5) is the only prime ideal of Olying over 5Z.Exer
ise 3.42. Let p; � andK be as above. LetH be the unique subgroup of index 2 in the 
y
li
group Gal(Q(�)=Q ). The �xed �eld of H, say E, is a quadrati
 �eld. Show that E = Q(pp�)where p� = (�1) p�12 p. Let q be an odd prime di�erent from p, f be as above, and let g = p�1f .Show that q de
omposes in E i� �p�q � = 1. Next, if q de
omposes in E, then show that g iseven and � qp� = 1. [You may use the elementary fa
t that �ap� � a p�12 (mod p).℄ Conversely, ifg is even, then show that the de
omposition �eld of q 
ontains E, and so q de
omposes in E.Further, if g is odd, then use the minimality of f to show that � qp� = �1. Dedu
e from all thisthat �pq�� qp� = (�1) (p�1)2 (q�1)2 .
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Chapter 4Class Number and Latti
esIn this 
hapter, we will 
on
entrate on the 
ase of (algebrai
) number �elds. We shall see hownumber �elds give rise to latti
es in Rn in a natural way. We will then prove some resultsof Minkowski 
on
erning latti
es and dedu
e some of its number-theoreti
 
onsequen
es. Inparti
ular, we will show that the 
lass number of any number �eld is always �nite, and alsothat in any number �eld other than Q , some prime (of Z) is always rami�ed.4.1 Norm of an idealLet K be a number �eld and let A = OK denote its ring of integers.To every nonzero fra
tional ideal J of A, we asso
iate a nonzero rational number, denotedN(J), and 
alled the norm of J , as follows. For a nonzero prime ideal p of A, we de�neN(p) = pf if p 2 Z is su
h that p \Z= pZ and f = f(p=pZ) = [A=p : Z=pZ℄:This de�nition is extended to nonzero fra
tional ideals by multipli
ativity. Thus, if J 2 FA andif J = pe11 � � � pehh is its fa
torization as in Theorem 3.11, thenN(J) = pe1f11 � � � pehfhh ; if p1; : : : ; ph 2 Z are su
h that pi \ Z= piZ and fi = f(pi=piZ):It is 
lear that N is multipli
ative, i.e., N(J1J2) = N(J1)N(J2) for any J1; J2 2 FA; moreover,J is an integral ideal of A =) N(J) 2 Z; for any J 2 FA.If p is a nonzero prime ideal of A lying over pZ and f = f(p=pZ), then as in the proof ofTheorem 3.22, we see that for any positive integer e, A=pe is isomorphi
 to e 
opies of A=p, asa ve
tor spa
e over Z=pZ. Thus, N(pe) = pef = jA=pej. Using this and the Chinese RemainderTheorem, we see thatN(I) = jA=Ij; for any nonzero integral ideal I of A:Thus, from (2.3), we obtain the following important relation between the ideal norm and thedis
riminant: �(I) = N(I)2dK for any nonzero integral ideal I of A: (4.1)46



The ideal norm behaves just like the norm of an element w.r.t. K=Q when we pass from Kto a larger number �eld L. More pre
isely, if L=K is a �nite extension, J 2 FA and B = OL,then JB 2 FB and from the transitivity relations in Exer
ise 3.21, it is readily seen thatN(JB) = N(J)[L:K℄: (4.2)The following proposition shows that in the 
ase of prin
ipal fra
tional ideals the ideal norm isessentially the same as the norm of a generator.Proposition 4.1. If xA the prin
ipal fra
tionary ideal of A generated by x 2 K; x 6= 0, thenN(xA) = jNK=Q(x)j:Proof. Let L be a normal 
losure of K so that L is a �nite extension of K su
h that L=Q isGalois. From (4.2) and elementary properties of the norm of an element, we haveN(xB) = N(xA)[L:K℄ and NL=Q(x) = NK=Q(x)[L:K℄where B = OL is the ring of integers of L. Hen
e it suÆ
es to show that N(xB) = jNL=Q(x)j.With this in view, we may assume without loss of generality that K=Q is a Galois extension.Now, suppose p is a nonzero prime ideal of A. Let p 2 Z be su
h that p \ Z = pZ and lete = e(p=pZ) and f = f(p=pZ). If P1; : : : ; Pg are the prime ideals of A lying over pZ (with, say,P1 = p), then from Lemma 3.29 and Theorem 3.31, it is 
lear thatN(p)A = pfA = (pA)f = (P1 � � �Pg)ef = Y�2Gal(K=Q) �(p): (4.3)Note that sin
e A is integral over Z, we have mA\Z= mZ. for any m 2 Z. Thus, to prove theproposition, it suÆ
es to show that the integers N(xA) and NK=Q(x) generate the same idealin A. Let xA = pe11 � � � pehh be the fa
torization of xA as a produ
t of powers of distin
t primeideals of A. Then, N(xA)A = (N(p1)A)e1 � � � (N(ph)A)eh , and so from (4.3), we see thatN(xA)A = hYi=1 Y�2G �(pi)!ei = Y�2G � hYi=1 peii ! = Y�2G � (xA) =  Y�2G �(x)!A = NK=Q(x)Awhere G = Gal(K=Q) denotes the Galois group of K over Q . This 
ompletes the proof.We shall use the notion of ideal norm to prove the �niteness of the 
lass number of K. Abasi
 observation is the following.Lemma 4.2. If every ideal 
lass of K 
ontains an integral ideal I with N(I) � C, where C isa positive real number independent of I (but may depend on K), then CK is �nite.Proof. It suÆ
es to show that that the number of nonzero ideals I of A with N(I) = m is �nite,for any positive integer m. Now, if N(I) = m, then the additive abelian group A=I has orderm and thus ma 2 I for all a 2 A. In parti
ular, I 
ontains mZ. But from Theorem 3.22, it is
lear that there are only �nitely many ideals of A 
ontaining mZ.47



In se
tion 4.4, we use some results of Minkowski to obtain an expli
it value of C for whi
hLemma 4.2 holds. A 
rude bound 
an, however, be obtained by a less intri
ate argument asshown in the book of Mar
us [13, Ch. 5℄. We outline it here as an exer
ise.Exer
ise 4.3. Let fu1; : : : ; ung be an integral basis of A. Also, let u(1)i ; : : : ; u(n)i denote the
onjugates of ui w.r.t. K=Q , for 1 � i � n.(i) Given any nonzero ideal I of A, let m = �N(I)1=n� be the integer part of N(I)1=n. Showthat there are (m+ 1)n elements of the form Pni=1miui where mi 2 Z with 0 � mi � m.Dedu
e that I 
ontains a nonzero element x su
h that x =Pni=1miui where mi 2 Z withjmij � m.(ii) Show that if x is as in (i) above, thenjNK=Q(x)j � C N(I) where C = nYj=1 nXi=1 ju(j)i j:(iii) Show that every ideal 
lass of K 
ontains an ideal I 0 of A su
h that N(I 0) � C, where Cis as in (ii) above. Dedu
e that CK is �nite.4.2 Embeddings and Latti
esLet K be a number �eld and let n = [K : Q ℄. Sin
e K=Q is separable and a normal 
losure ofK 
an be found in C (in fa
t C also 
ontains an algebrai
 
losure of K), it follows that thereare exa
tly n distin
t Q-homomorphisms of K ! C . These homomorphisms are 
alled theembeddings of K (in C ). If an embedding � : K ! C is su
h that �(K) � R, then it is 
alleda real embedding; otherwise it is 
alled a 
omplex embedding. Note that the word `
omplex' isused here in the sense of `non-real'. In parti
ular, if � : K ! C is a 
omplex embedding, then�� : K ! C de�ned by��(u) = �(u) = the 
omplex 
onjugate of �(u); for u 2 K;is an embedding of K di�erent from �. It follows that the number of 
omplex embeddings ofK is even. We usually denote the number of real embeddings of K by r (or by r1) and thenumber of 
omplex embeddings of K by 2s (or by 2r2). We have r+2s = n. In 
ase s = 0, the�eld K is said to be totally real.Example 4.4. For K = Q(p2), we have r = 2 and s = 0, sin
e any embedding is of the forma + bp2 7! a � bp2. Thus Q(p2) is a totally real �eld. On the other hand, for K = Q(i),we have r = 0 and s = 1. For the 
ubi
 �eld K = Q( 3p2), we have r = 1 and s = 1, and theembeddings of K are essentially given by 3p2 7! 3p2, 3p2 7! ! 3p2 and 3p2 7! !2 3p2, where !denotes a primitive 
ube root of unity.A subset L of Rn su
h that L = Zv1+ � � �+ Zvnfor some R-basis fv1; : : : ; vng of Rn , is 
alled a latti
e in the Eu
lidean spa
e Rn . We 
all theset P = f�1v1 + � � � + �nvn : 0 � �i < 1 for i = 1; : : : ; ng48



a fundamental parallelotope of L (w.r.t. the Z-basis fv1; : : : ; vng of L). Note that Rn is 
overedby the translates of P by elements of L, i.e.,Rn = ax2Lx+ P (4.4)where ` denotes disjoint union.It is 
lear that any latti
e 
an be transformed to Zn by an invertible linear transformationof Rn , say T . If T 0 is another su
h linear transformation, then T and T 0 di�er by an invertiblelinear transformation if Zn, or in other words, by an element of GLn(Z). In parti
ular, detT =�detT 0, and thus the absolute value jdet T j is independent of 
hoi
e of T . We 
all this absolutevalue the volume of L, and denote it by Vol(Rn=L). Note that the volume of L is a positivereal number. Moreover, from the Change of Variables formula for n-fold integrals, we readilysee that the notion of the volume of a latti
e L is related to the 
lassi
al notion of volume ofsubsets of Rn by the formula Vol(Rn=L) = vol(P );where P is a fundamental parallelotope of L and vol(P ) denotes its volume as a subset of Rn .Re
all that for any measurable subset E of Rn , the volume of E is de�ned byvol(E) = ZE d�where � denotes the Lebesgue measure on Rn . Note that if E is 
ompa
t or 
ontained in a
ompa
t set, then vol(E) < 1. Also note that if E0 = �E := f�x : x 2 Eg, then E0 ismeasurable and vol(E0) = �nvol(E).The following result shows how number �elds generate latti
es, and also how their volume
an be 
omputed.Proposition 4.5. Let K be a number �eld of degree n over Q . Let �1; : : : ; �r be the realembeddings and �1; : : : ; �s; ��1; : : : ; ��s be the 
omplex embeddings of K. De�ne f : K ! Rn by,f(u) = (�1(u); : : : ; �r(u);Re�1(u); : : : ;Re�s(u); Im ��1(u); : : : ; Im ��s(u)) for u 2 K:Then f is inje
tive and the image of OK under f is a latti
e LK in Rn . In parti
ular K embedsdensely in Rn . Moreover, if dK denotes the (absolute) dis
riminant of K, thenVol (Rn=LK) = pjdK j2s :More generally, if I is any nonzero ideal of OK , then f(I) is a latti
e LI in Rn andVol (Rn=LI) = pjdK j2s N(I):Proof. Let fu1; : : : ; ung be an integral basis of OK . The 
onjugates of ui w.r.t. K=Q arepre
isely given by �1(u); : : : ; �r(u); �1(u); : : : ; �s(u); ��1(u); : : : ; ��s(u). Thus from the expressionfor DL=K(u1; : : : ; un) in the proof of Theorem 1.11, we see thatdK = �1(u1) : : : �r(u1) �1(u1) : : : �s(u1) ��1(u1) : : : ��s(u1)... ...�1(un) : : : �r(un) �1(un) : : : �s(un) ��1(un) : : : ��s(un) 2:49



Now, in the n�n matrix above, let us make the following elementary 
olumn operations. First,we add the the (r+ s+ j)-th 
olumn to the (r+ j)-th 
olumn for 1 � j � s. Next, we multiplythe resulting (r + j)-th 
olumn by 1=2 and subtra
t it from the (r + s + j)-th 
olumn for1 � j � s. As a 
onsequen
e, we see thatdK = (�1)s22s [det (fi(uj))℄2 and pjdK j = 2s jdet (fi(uj))jwhere f1; : : : ; fn denote the 
oordinate fun
tions of f . In parti
ular, the determinant on theright is nonzero, and thus the ve
tors f(u1); : : : ; f(un) in Rn are linearly independent. It followsthat f is inje
tive and LK = f(OK) is a latti
e in Rn with Vol (Rn=LK) = 2�spjdK j. Theassertion about K being densely embedded in Rn follows sin
e f(K) 
ontains the Q-span off(u1); : : : ; f(un).In the more general 
ase when I is a nonzero ideal of OK and LI = f(I), we 
an pro
eed asbefore but with fu1; : : : ; ung repla
ed by an integral basis of I so that dK is repla
ed by �(I).The desired formula for Vol(Rn=LI) is then a 
onsequen
e of (4.1).Remark 4.6. 1. The above proof shows that the sign of the dis
riminant of a number �eld with2s 
omplex embeddings is given by (�1)s. This result is sometimes 
alled Brill's Dis
riminantTheorem.2. From Proposition 4.5, it is immediate that N(I) = Vol(Rn=LI)=Vol(Rn=LK). Sometimesthe norm of an ideal is de�ned this way as the quotient of the volumes of latti
es LI and LK .In this 
ase, proving the multipli
ativity of ideal norm requires some e�ort. For an approa
halong these lines, see, for example, the re
ent book of Swinnerton-Dyer [16℄.De�nition 4.7. A subset S of Rn is 
alled symmetri
 if 0 2 S and moreover, �x 2 S wheneverx 2 S.Lemma 4.8. let L be a latti
e in Rn and S be a 
onvex, measurable, symmetri
 subset of Rnsu
h that vol(S) > 2nVol(Rn=L). Then S 
ontains a nonzero point of L. In 
ase S is also
ompa
t, then S 
ontains a nonzero point of L even when vol(S) = 2nVol(Rn=L).Proof. Let P be a fundamental parallelotope for L. Then from (4.4), we see that given anymeasurable subset E of Rn , we have E =`x2LE \ (x+ P ). Therefore,vol(E) =Xx2L vol (E \ (x+ P )) =Xx2L vol ((E � x) \ P ) : (4.5)Now, 
onsider E = 12S. We havevol(E) = 12n vol(S) > Vol(Rn=L) = vol(P ): (4.6)Hen
e, if the sets (E�x)\P were all disjoint, as x varies over L, then the rightmost expression in(4.5) would be � vol(P ), whi
h 
ontradi
ts (4.6). Therefore, there exist a; b 2 S and p 2 P su
hthat p = 12a�x = 12b�y for some x; y 2 L, x 6= y. It follows that 0 6= x�y = 12a+ 12(�b) 2 S\L.In 
ase S is 
ompa
t, we 
onsider Sn = S + 1nS, and obtain nonzero points xn 2 Sn \ Lfrom the previous 
ase. Note that Sn = �1 + 1n�S � 2S be
ause S is 
onvex and 0 2 S. Thus,xn 2 2S \L for all n � 1. But 2S \L is �nite sin
e S is 
ompa
t. Therefore, the sequen
e (xn)has a 
onstant subsequen
e, whose limit is in the 
losure of S, whi
h is S itself.50



Remark 4.9. The above lemma is sometimes referred to as Minkowski's Convex Body Theorem.It is a key result in Minkowski's geometri
 approa
h to the theory of numbers. A leisurelydis
ussion of this result along with several appli
ations as well as referen
es to alternativeproofs and further developments, 
an be found in the re
ent book of Olds, Lax and Davido� [14℄.The exer
ise below gives two su
h appli
ations. The �rst is an elementary theorem of Diri
hlet,whi
h may be regarded as a starting point for the theory of Diophantine Approximation (and inparti
ular, the study of 
ontinued fra
tions). The se
ond result is the 
elebrated Four SquareTheorem, �rst proved by Lagrange in 1770. Classi
al proofs of Diri
hlet's Theorem (usingPigeonhole prin
iple) and Lagrange's Theorem (using Fermat's method of in�nite des
ent) 
anbe found in the book of Baker [2℄. The appli
ations of Minkowski's Convex Body Theorem withwhi
h we shall be 
on
erned, appear after the exer
ises and in the subsequent se
tions.Exer
ises 4.10. 1. Given any real number � and any integer Q > 1 show that there existintegers p; q with 0 < q < Q and jq�� pj � 1=Q. [Hint: Let L = Z2 and S be the parallelogrambounded by the lines x = �Q and y � �x = �1=Q, and use Lemma 4.8.℄2. Let p be an odd prime. First, show that there exist integers a; b su
h that pja2 + b2 + 1.[Hint: The numbers a2 with 0 � a � (p�1)=2 are mutually in
ongruent (mod p), and the sameholds for the numbers �1� b2 with 0 � b � (p� 1)=2.℄ Next, show that p is a sum of squaresof four integers. [Hint: Let L � R4 be the latti
e spanned by (m; 0; a; b); (0;m; b;�a); (0; 0; 1; 0)and (0; 0; 0; 1), and S be the open dis
 in R4 
entered at origin and of radius p2m, and useLemma 4.8.℄ Finally, use the trivial representation 2 = 12 + 12 + 02 + 02 and Euler's identity(x2 + y2 + z2 + w2)(x02 + y02 + z02 + w02)= (xx0 + yy0 + zz0 + ww0)2 + (xy0 � yx0 + wz0 � zw0)2+(xz0 � zx0 + yw0 � wy0)2 + (xw0 � wx0 + zy0 � yz0)2to dedu
e that every positive integer is a sum of four squares.Let n be a positive integer and r; s be nonnegative integers su
h that r+2s = n. We de�nethe (r; s)-norm of any x = (x1; : : : ; xn) 2 Rn byNr;s(x) = x1 � � � xr �x2r+1 + x2r+s+1� � � � �x2r+s + x2n� :Observe that if K is a number �eld of degree n and r; s have their usual meaning, then forany u 2 K we have NK=Q(u) = Nr;s(f(u)), where f denotes the inje
tion of K in Rn given byLemma 4.5.Corollary 4.11. Let n be a positive integer and r; s be nonnegative integers su
h that r+2s = n.If 
 is a 
ompa
t, 
onvex, symmetri
 subset of Rn su
h thatvol(
) > 0 and jNr;s(a)j � 1 for all a 2 
;then every latti
e L in Rn 
ontains a nonzero ve
tor x su
h thatjNr;s(x)j � 2nVol(Rn=L)vol(
) :Proof. Apply Lemma 4.8 with S = �
, where � = 2 npVol(Rn=L)=vol(
).51



4.3 Minkowski's TheoremWe will now use the ma
hinery developed in the previous se
tion to prove the following impor-tant result of Minkowski.Theorem 4.12 (Minkowski). Let n be a positive integer and r; s be nonnegative integers su
hthat r + 2s = n. If L is any latti
e in Rn , then L 
ontains a nonzero ve
tor x su
h thatjNr;s(x)j � n!nn � 8��sVol(Rn=L):Proof. For any positive real number t, let 
t = 
t(r; s) denote the setf(x1; : : : ; xn) 2 Rn : rXi=1 jxij+ 2 r+sXj=r+1qx2j + x2j+s � tg:It is 
lear that 
t is a 
ompa
t and symmetri
 subset of Rn . Further, from the Cau
hy-S
hwartzinequality, we see thatp(a+ 
)2 + (b+ d)2 �pa2 + b2 +p
2 + d2 for any a; b; 
; d 2 Rand this, in turn, implies that if x; y 2 
t and � 2 R with 0 � � � 1, then �x+ (1� �)y 2 
t.Thus 
t is 
onvex. Now let t = n. By applying the AM-GM inequality to the n numbersjx1j; : : : ; jxrj; qx2r+1 + x2r+s+1 ;qx2r+2 + x2r+s+2 ; : : : ;qx2r+s + x2n, we see thatjNr;s(x)j � 1 for all x 2 
n:Now the desired result follows at on
e by applying Corollary 4.11 to 
 = 
n if we prove thefollowing. vol(
t) = tn2r ��2�s 1n! : (4.7)To prove (4.7), let Vr;s(t) = vol(
t(r; s)). Sin
e 
t = t
1, we have Vr;s(t) = tnVr;s(1) =tr+2sVr;s(1). We now 
al
ulate Vr;s(1) using double indu
tion on r and s. First, if r > 0, thenfrom the de�nitions of 
t(r; s) and Vr;s(t), we see thatVr;s(1) = Z 1�1 Vr�1;s(1� jxj)dx= 2Z 10 Vr�1;s(1)(1 � x)r�1+2sdx= 2r + 2s Vr�1;s(1):Thus by indu
tion on r, we obtainVr;s(1) = 2r(r + 2s)(r � 1 + 2s) � � � (1 + 2s)V0;s(1):52



Next, if s > 0, then V0;s(1) = ZZ x2+y2�1=2 V0;s�1(1� 2px2 + y2)dxdy= Z 2�0 Z 1=20 V0;s�1(1� 2�)� d� d�= Z 2�0 Z 1=20 V0;s�1(1)(1 � 2�)2s�2� d� d�= 2�V0;s�1(1) 14(2s)(2s � 1) :Thus using indu
tion on s and by noting that V0;1(1) = RR x2+y2�1=2 dx dy = �2 12 , we see thatV0;s(1) = (�=2)s(1=(2s)!), and hen
eVr;s(1) = 2r(r + 2s)!V0;s(1)��2�s = �s 2r�sn!This implies (4.7), and thus the theorem is proved.4.4 Finiteness of Class Number and Rami�
ationTheorem 4.13. Let K be a number �eld with [K : Q ℄ = n and let dK be its (absolute) dis-
riminant. Suppose K has 2s 
omplex embeddings. Then every ideal 
lass of K 
ontains anideal of I of A su
h that N(I) � n!nn � 4��spjdK j: (4.8)Consequently, the ideal 
lass group CK of K is �nite.Proof. Let I 0 be an integral ideal in a given ideal 
lass of K. If J 0 = (I 0)�1, then J 0 is afra
tional ideal but we 
an �nd d 2 A, d 6= 0 su
h that J := 1dJ 0 is an integral ideal. Now,
onsider the map f : K ! Rn de�ned in Proposition 4.5, and let LJ = f(J) be the latti
e in Rn
orresponding to I. Applying Minkowski's Theorem 4.12 to the latti
e LJ , we see that thereexists u 2 J su
h that u 6= 0 andN(Au) = jNK=Q(u)j = jNr;s(f(u))j � n!nn � 8��sVol(Rn=LJ) = n!nn � 4��spjdK jN(J):where the last equality follows from Proposition 4.5. Using the multipli
ativity of ideal norm,we see that if I := (u)J�1, then N(I) � n!nn � 4��spjdK j:Moreover, I = (ud)I 0 and thus I is an integral ideal in the given ideal 
lass. This proves thedesired inequality. The last assertion follows Lemma 4.2.53



In the examples below, we show how Minkowski's Theorem 
an be e�e
tively used to de-termine the 
lass number in several 
ases.Examples 4.14. 1. Let K = Q(p5). Then n = 2. s = 0 and dK = 5. Thus the Minkowski'sinequality (4.8) redu
es to N(I) � 2!22p5 = p52 < 2:Thus every ideal 
lass 
ontains an ideal I of A with N(I) = 1, i.e., I = A. It follows that CKis trivial and hK = 1. Noti
e that a similar argument will show that if K = Q(p2) or Q(p3),then hK = 1.2. Let K = Q(p�5). Then n = 2. s = 1 and dK = �20. Thus the Minkowski's inequality(4.8) redu
es to N(I) � 2!22 � 4��p20 = 2p20� = 2:84 : : : :Now if N(I) = 2, then I must be a prime ideal lying over 2Z and with residue degree 1. Sin
e2OK = (2; 1 +p�5)(2; 1 �p�5) = (2; 1 +p�5)2, it follows that there is only one possibilityfor I, namely I = (2; 1 +p�5). Thus there are at most two distin
t ideal 
lasses in K. Hen
ehK � 2. But we know that OK is not a UFD and so hK > 1. Thus, hK = 2.3. Let K = Q(p17). Then n = 2. s = 0 and dK = 17. Thus the Minkowski's inequality(4.8) redu
es to N(I) � 2!22p17 = p172 = 2:06 : : : :Thus there are at most two ideal 
lasses and hK � 2. Moreover, if N(I) = 2, then I must be aprime ideal lying over 2Z and with residue degree 1. Now,2 = 17� 94 =  p17 + 32 ! p17� 32 !and both the fa
tors are irredu
ible elements in OK (
he
k!). It follows that only ideals of OKwith norm 2 are the prin
ipal prime ideals �p17+32 � and �p17�32 �. Thus every ideal 
lass of K
ontains a prin
ipal ideal and so hK = 1.Exer
ise 4.15. Show that the 
lass number of the quadrati
 �eld Q(pd) is 1 if d = �1;�2;�3;�7or if d = 2; 3; 5.Remark 4.16. It turns out, more generally, that the 
lass number of the imaginary quadrati
�eld Q(pd) is 1, if d = �1;�2;�3;�7;�11;�19;�43;�67;�163. The 
onverse, that theseare the only imaginary quadrati
 �elds with 
lass number 1, was proved independently, byBaker and Stark in 1967. For a beautiful exposition of this problem, known as the Gauss ClassNumber One Problem, and related results, see the arti
le of D. Goldfeld in the Bull. Amer.Math. So
. 13 (1985), pp. 22{37.We end with a beautiful result, usually as
ribed to Hermite and/or Minkowski, whi
h maybe viewed as an arithmeti
 analogue of the topologi
al fa
t that C is simply 
onne
ted1.1For more explanation, see the remarks at the end of Appendix B.54



Theorem 4.17. Let K be a number �eld and dK be the (absolute) dis
riminant of K. IfK 6= Q , then jdK j > 1 and 
onsequently, at least one rational prime must ramify in K.Proof. Let n = [K : Q ℄ and let r and 2s denote, respe
tively, the number of real and 
omplexembeddings of K. Then r � 0 and r + 2s = n, and so s � [n=2℄, where [n=2℄ denotes theintegral part of n=2. As a 
onsequen
e,nnn! =0�[n=2℄Yi=1 ni1A0� nYi=[n=2℄+1 ni1A � 0�[n=2℄Yi=1 n(n=2)1A0� nYi=[n=2℄+1 11A = 2[n=2℄ � 2s:Thus, from the Minkowski's inequality (4.8), we see thatpjdK j � nnn! ��4�s � 2[n=2℄ ��4�s � ��2�s :Sin
e K 6= Q , we have n > 1, and so pjdK j � 2[n=2℄ > 1 if s = 0 whereas pjdK j � (�=2)s > 1if s > 0. Thus in any 
ase, jdK j > 1. Therefore, by Dedekind's Dis
riminant Theorem [
f.Corollary 3.28℄, it follows that some rational prime must ramify in K.Remarks 4.18. 1. If one analyzes the inequalities in the above proof a little more 
arefully, thenwe 
an see that jdK j � �3 �3�4 �n�1 :Consequently, n= log jdK j is bounded by a 
onstant independent of K, and, moreover, given anyd 2 Z, the degree of a number �eld with dis
riminant d is bounded. The last assertion has beenre�ned by Hermite to show that given any integer d, there are only �nitely many number �eldswith dis
riminant d. For details 
on
erning these �ner results, we refer to the book of Samuel[15℄.2. Some of the te
hniques in this 
hapter are useful to prove a 
elebrated result of Diri
hlet,whi
h states that if K is a number �eld with r real embeddings and 2s 
omplex embeddings,then the group OK� of units of OK is isomorphi
 to �K � Zr+s�1, where �K is a �nite 
y
li
group 
onsisting of the roots of unity in K. Diri
hlet's Unit Theorem may be regarded as avast generalization of some 
lassi
al observations 
on
erning the solutions of the Brahmagupta-Bhaskara
harya-Pell-Fermat equation2 X2�dY 2 = 1. For a proof of Diri
hlet's Unit Theorem,we refer to the books of Samuel [15℄ or Lang [12℄.
2For a histori
al dis
ussion of this famous equation, see the write up at the Ma
Tutor History of Mathemati
sar
hive: http://www-gap.d
s.st-and.a
.uk/ history/HistTopi
s/Pell.html, and the referen
es therein.55
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Appendix ANotes on Galois Theory
A.1 PreambleThese notes attempt to give an introdu
tion to some basi
 aspe
ts of Field Theory and Galois Theory.Originally, a preliminary version of a part of these notes was prepared to supplement the le
tures of theauthor on Galois Theory and Rami�
ation Theory at the All India Summer S
hool in Number Theoryheld at Pune in June 1991. Subsequently, the �rst 6 se
tions of the Pune Notes were separated andslightly revised to form these \Notes on Galois Theory". These notes were, then, used for the pre-
onferen
e distribution to the parti
ipants of the NBHM sponsored Instru
tional S
hool on Algebrai
Number Theory (University of Bombay, De
ember 1994) at the request of the organizers. A few minorrevisions have taken pla
e in the subsequent years.The main aim of these notes has always been to provide a geodesi
, yet 
omplete, presentationstarting from the de�nition of �eld extensions and 
on
luding with the Fundamental Theorem of GaloisTheory. Some additional material on separable extensions and a se
tion on Norms and Tra
es is alsoin
luded, and some histori
al 
omments appear as footnotes. The prerequisite for these notes is basi
knowledge of Abstra
t Algebra and Linear Algebra not beyond the 
ontents of usual undergraduate
ourses in these subje
ts. No formal ba
kground in Galois Theory is assumed. While a 
omplete proofof the Fundamental Theorem of Galois Theory is given here, we do not dis
uss further results su
has Galois' theorem on solvability of equations by radi
als. An annotated list of referen
es for GaloisTheory appears at the end of Se
tion 5. By way of referen
es for the last se
tion, viz., Norms andTra
es, we re
ommend Van der Waerden's \Algebra" (F. Ungar Pub. Co., 1949) and Zariski{Samuel's\Commutative Algebra, Vol. 1" (Springer-Verlag, 1975).It appears that over the years, these notes are often used by students primarily interested in NumberTheory. Thus it may be pertinent to remark at the outset that the topi
s dis
ussed in these notesare very useful in the study of Algebrai
 Number Theory1. In order to derive maximum bene�t fromthese notes, the students are advised to attempt all the Exer
ises and �ll the missing steps, if any, inthe proofs given. The author would appre
iate re
eiving 
omments, suggestions and 
riti
ism regardingthese notes.1In fa
t, questions 
on
erning integers alone, 
an sometimes be answered only with the help of �eld extensionsand 
ertain algebrai
 obje
ts asso
iated to them. For instan
e, Kummer showed that the equation Xp+Y p = Zphas no integer solution for a 
lass of odd primes p, 
alled regular primes, whi
h in
lude all odd primes less than100 ex
ept 37, 59 and 67. Even a 
onvenient de�nition of regular primes, not to mention the proof of Kummer'sTheorem, involves many of the algebrai
 notions dis
ussed in these le
tures. Indeed, an odd prime is regular ifit doesn't divide the 
lass number of the 
y
lotomi
 �eld extension Q(�p ) of Q. For details, see H. Edwards'Springer monograph \Fermat's Last Theorem" (1977).57



A.2 Field ExtensionsLet K be a �eld 2. By a (�eld) extension of K we mean a �eld 
ontaining K as a sub�eld. Let a �eldL be an extension of K (we usually express this by saying that L=K [read: L over K℄ is an extension).Then L 
an be 
onsidered as a ve
tor spa
e over K. The degree of L over K, denoted by [L : K℄, isde�ned as [L : K℄ = dimK L = the ve
tor spa
e dimension of L over K:If [L : K℄ < 1, we say that L is a �nite extension of K or that L is �nite over K. A sub�eld K of Csu
h that [K : Q℄ <1 is 
alled an algebrai
 number �eld or simply a number �eld.Lemma 1: Finite over �nite is �nite. More pre
isely, if L=E and E=K are �eld extensions, thenL is finite over K , L is finite over E and E is finite over Kand, in this 
ase, [L : K℄ = [L : E℄[E : K℄.Proof: The impli
ation \)" is obvious. The rest follows easily from the observation that if fuig isan E{basis of L and fvjg is a K{basis of E, then fuivjg is a K{basis of L. 2Let L=K be a �eld extension. An element � 2 L is said to be algebrai
 overK if it satis�es a nonzeropolynomial with 
oeÆ
ients in K, i.e, 9 0 6= f(X) 2 K[X ℄ su
h that f(�) = 0. Given � 2 L whi
h isalgebrai
 over K, we 
an �nd a moni
 polynomial in K[X ℄ of least possible degree, satis�ed by �. Thisis unique and is 
alled the minimal polynomial of � over K. It is easily seen to be irredu
ible and wewill denote it by Irr(�;K). Note that if f(X) is any moni
 irredu
ible polynomial satis�ed by �, thenwe must have f(X) =Irr(�;K) and that it generates the ideal fg(X) 2 K[X ℄ : g(�) = 0g in K[X ℄.3 Theextension L of K is said to be algebrai
 if every element of L is algebrai
 over K.Lemma 2: Finite ) algebrai
. That is, if L=K is a �nite extension, then it is algebrai
.Proof: For any � 2 L, there must exist a positive integer n su
h that f1; �; �2; :::; �ng is linearlydependent over K, thus showing that � is algebrai
 over K. 2Exer
ise 1: Show, by an example, that the 
onverse of the above lemma is not true, in general.We now study extensions for whi
h the 
onverse is true.De�nition: Given elements �1; : : : ; �n in an extension L of a �eld K, we de�neK[�1; : : : ; �n℄ = the smallest subring of L 
ontaining K and �1; : : : ; �nK(�1; : : : ; �n) = the smallest sub�eld of L 
ontaining K and �1; : : : ; �n:Note thatK[�1; : : : ; �n℄ pre
isely 
onsists of elements of the form f(�1; : : : ; �n) where f(X1; : : : ; Xn)varies overK[X1; : : : ; Xn℄ (= the ring of polynomials in the n variablesX1; : : : ; Xn with 
oeÆ
ients inK)whereasK(�1; : : : ; �n) pre
isely 
onsists of elements of the form f(�1;:::;�n)g(�1;:::;�n) where f(X1; : : : ; Xn); g(X1; : : : ; Xn)vary over K[X1; : : : ; Xn℄ with g(�1; : : : ; �n) 6= 0. Also note that K(�1; : : : ; �n) is the quotient �eld ofK[�1; : : : ; �n℄ in L.De�nition: An extension L of K is said to be �nitely generated over K if there exist �1; : : : ; �n inL su
h that L = K(�1; : : : ; �n). We say that L is a simple extension of K if L = K(�) for some � 2 L.For simple extensions, the 
onverse to Lemma 2 is true. In fa
t, we 
an say mu
h more.Lemma 3: Let � be an element in an over�eld L of a �eld K. Then:K(�)=K is algebrai
 , � is algebrai
 over K , K[�℄ = K(�), [K(�) : K℄ <1:2Fields are usually denoted by K or k sin
e the German word for �eld is K�orper. Mu
h of Modern FieldTheory was 
reated by the German mathemati
ian E. Steinitz; see his paper \Algebrais
he Theorie der K�orper",Crelle Journal (1910), pp. 167{308, for an original exposition.3It may be instru
tive to verify the observations made in the last few statements. General Hint: Use theDivision Algorithm in K[X℄. 58



Moreover, if � is algebrai
 over K and f(X) =Irr(�;K), then there exists an isomorphism of K(�) ontoK[X ℄=(f(X)) whi
h maps � to X, the residue 
lass of X , and the elements of K to their residue 
lasses.Proof: Without loss of generality, we 
an and will assume that � 6= 0. The �rst assertion triviallyimplies the se
ond. Now, the map ' : K[X ℄! L de�ned by f(X) 7! f(�) is 
learly a ring homomorphismwhose image is K[�℄. If � is algebrai
 over K, then the kernel of ' is a nonzero prime ideal in K[X ℄and is hen
e a maximal ideal (prove!). So K[�℄ ' K[X ℄=ker' is a �eld 
ontaining K and �. ThereforeK[�℄ = K(�). Next, if K[�℄ = K(�), we 
an write ��1 = a0+ a1�+ � � �+ ar�r for some a0; : : : ; ar 2 Kwith ar 6= 0, whi
h shows that �r+1 lies in the K{linear span of 1; �; �2; : : : ; �r, and 
onsequently sodoes �r+j for any j � 1. And sin
e 1; �; �2; : : : 
learly span K[�℄ = K(�), it follows that [K(�) : K℄ �r + 1 < 1. If [K(�) : K℄ < 1, Lemma 2 shows that K(�) is algebrai
 over K. Moreover, if � isalgebrai
 over K and f(X) =Irr(�;K), then, as noted earlier, ker' is generated by f(X), from whi
hwe get the desired isomorphism between K(�) and K[X ℄=(f(X)). 2Exer
ise 2: If � is algebrai
 over K, then show that [K(�) : K℄ equals the degree of Irr(�;K).Exer
ise 3: Try to give a more 
onstru
tive proof of the fa
t that if � is algebrai
 over K, thenK[�℄ = K(�) by showing that for any g(X) 2 K[X ℄ with g(�) 6= 0, we 
an �nd h(X) 2 K[X ℄ su
h thatg(�)�1 = h(�).The following lemma gives ne
essary and suÆ
ient 
onditions for the 
onverse to Lemma 2.Lemma 4: Let L be an extension of a �eld K. Then:L is finite over K , L is algebrai
 and finitely generated over K:Proof: If L is �nite over K, then it is algebrai
, and if u1; : : : ; un is a K{basis of L, then 
learlyL = K(u1; : : : ; un). Conversely, if L = K(�1; : : : ; �n) for some �1; : : : ; �n 2 K, then using Lemmas 1and 3 and indu
tion on n, it is seen that L is �nite over K. 2Let us obtain some useful 
onsequen
es of the above lemma.Lemma 5: Algebrai
 over algebrai
 is algebrai
. More pre
isely, if L=E and E=K are �eld exten-sions, then: L is algebrai
 over K , L is algebrai
 over E and E is algebrai
 over KProof: The impli
ation \)" is obvious. To prove the other one, take any � 2 L. Find b0; b1; : : : ; bn 2E, not all zero, su
h that b0 + b1� + � � � + bn�n = 0. Then � is algebrai
 over K(b0; b1; : : : ; bn), andK(b0; b1; : : : ; bn) � E is algebrai
 over K. Hen
e, in view of Lemmas 1, 3 and 4, we see that[K(�) : K℄ � [K(b0; b1; : : : ; bn; �) : K℄= [K(b0; b1; : : : ; bn; �) : K(b0; b1; : : : ; bn)℄[K(b0; b1; : : : ; bn) : K℄< 1whi
h shows that � is algebrai
 over K. 2Lemma 6: Let L be an extension of a �eld K and letE = f� 2 L : � is algebrai
 over Kg:Then E is a sub�eld of L 
ontaining K.Proof: Clearly K � E � L. Given any �; � 2 E, by Lemma 3, we see that[K(�; �) : K℄ = [K(�; �) : K(�)℄[K(�) : K℄ <1and therefore every element of K(�; �) is algebrai
 over K. So �+ �; �� �; �� 2 E and if � 6= 0, then�� 2 E, and hen
e E is a sub�eld of L. 2Exer
ise 4: Given elements �; �, algebrai
 over a �eld K, 
an you expli
itly �nd polynomials in K[X ℄satis�ed by �+ �, ��? Find, for instan
e, a polynomial, preferably irredu
ible, satis�ed by p2 +p3.59



A.3 Splitting Fields and Normal ExtensionsGalois Theory, at least in its original version, has to do with roots of polynomial equations. Thismotivates mu
h of what is done in this se
tion.Let K be a �eld. By a root of a polynomial f(X) 2 K[X ℄ we mean an element � in an over�eld ofK su
h that f(�) = 0. It is easy to see that a nonzero polynomial in K[X ℄ of degree n has at most nroots (Verify!). The following lemma, usually attributed to Krone
ker, shows, by a method not unlikewit
h
raft, that roots 
an always be found.Lemma 7: Let f(X) 2 K[X ℄ be a non
onstant polynomial of degree n. Then there exists anextension E of K su
h that [E : K℄ � n and f(X) has a root in E.Proof: Let g(X) be a moni
 irredu
ible fa
tor of f(X). Then (g(X)), the ideal generated by g(X)in K[X ℄, is a maximal ideal and hen
e E = K[X ℄=(g(X)) is a �eld. Let � : K[X ℄! E be the 
anoni
alhomomorphism whi
h maps an element in K[X ℄ to its residue 
lass modulo (g(X)). Note that �jK isinje
tive and hen
e K may be regarded as a sub�eld of E. Let � = �(X). Then g(�) = g(�(X)) =�(g(X)) = 0. Hen
e, f(�) = 0. By Lemma 3 and Exer
ise 2, [E : K℄ = deg g(X) � n. 2Remark: The above proof, though 
ommon in many texts, is slightly impre
ise. To be pedanti
,an a
tual extension E of K as in the statement of Lemma 6 
an be 
onstru
ted by putting E =(�(K[X ℄)n�(K)) [ K, where � is as in the above proof, and by de�ning �eld operations on E in anobvious manner. Note that we then have E ' �(K[X ℄).To study the roots of a polynomial f(X) 2 K[X ℄, it seems natural to be in a ni
e set 
ontaining allthe roots of f(X) and whi
h, in some sense, is the smallest su
h. This is a�orded by the following.De�nition: Let f(X) 2 K[X ℄ be a non
onstant polynomial. By a splitting �eld of f(X) over K wemean an extension L of K su
h that f(X) splits into linear fa
tors in L and L is generated over K bythe roots of f(X) in L, i.e.,(i) f(X) = 
(X � �1) : : : (X � �n) for some 
 2 K and �1; : : : ; �n 2 L.(ii) L = K(�1; : : : ; �n).Lemma 8: Given any non
onstant polynomial f(X) 2 K[X ℄ of degree n, there exists a splitting�eld L of f(X) over K su
h that [L : K℄ � n!.Proof: Indu
t on n. If n = 1, then L = K does the job. For n > 1, by Lemma 7, we 
an �nd anextension E of K su
h that [E : K℄ � n and f(X) = (X � �)g(X) for some � 2 E and g(X) 2 E[X ℄.Sin
e deg g(X) = n� 1 � 1, a splitting �eld, say L, of g(X) over E exists. Clearly, L is also a splitting�eld of f(X) over K; moreover, [L : K℄ = [L : E℄[E : K℄ � (n� 1)!n = n!. 2Notation: Given any �elds K and K 0, a homomorphism � : K ! K 0, and a polynomial f(X) 2K[X ℄, by f�(X) we denote the 
orresponding polynomial in K 0[X ℄, i.e., if f(X) =PaiX i then f�(X) =P�(ai)X i. Note that f(X) 7! f�(X) gives a homomorphism ofK[X ℄! K 0[X ℄ whi
h is an isomorphismif � is an isomorphism.The following lemma will help us prove that a splitting �eld is unique up to isomorphism.Lemma 9: Let K and K 0 be �elds and � : K ! K 0 be an isomorphism. Let g(X) 2 K[X ℄ be anirredu
ible polynomial and let � and �0 be roots of g(X) and g�(X) in some extensions of K and K 0respe
tively. Then there exists an isomorphism � : K(�)! K 0(�0) su
h that �jK = � and �(�) = �0.Proof: Clearly � gives an isomorphism ofK[X ℄ ontoK 0[X ℄, whi
h, in turn, indu
es an isomorphism ofK[X ℄=(g(X)) onto K 0[X ℄=(g�(X)). By Lemma 3, we get an isomorphism of K(�) onto the former and ofK 0(�0) onto the latter. By suitably 
omposing these maps, we obtain an isomorphism � : K(�)! K 0(�0)su
h that �jK = � and �(�) = �0. 2Note: A �eld has no proper ideals. This means that a homomorphism of a �eld (into a ring) iseither inje
tive or maps everything to 0. If L is an extension of K, by a K{homomorphism of L we meana homomorphism � : L ! L0, where L0 is some extension of K, whi
h is identity on K, i.e., �(
) = 
8 
 2 K. Observe that a K{homomorphism is always inje
tive.4 Also observe that, a K{homomorphism4Indeed, 1 2 K and �(1) = 1 6= 0. 60



� : L! L0, where L0 is an extension of L, is an automorphism (= isomorphism onto itself) of L provided�(L) � L [sin
e �(L) and L have the same ve
tor spa
e dimension over K℄.Before proving the uniqueness of splitting �elds, let us dedu
e an important 
onsequen
e of the abovelemma.Corollary: Let � be algebrai
 overK and f(X) = Irr(�;K). Let L be any extension ofK 
ontaininga splitting �eld of f(X). Then the number of K{homomorphisms of K(�) to L is equal to the numberof distin
t roots of f(X); in parti
ular, this number is � [K(�) : K℄ with equality holding if and only ifall roots of f(X) are distin
t.Proof: Let �1; : : : ; �r 2 L be all possible distin
t roots of f(X). By Lemma 9, there exist K{isomorphisms �i : K(�) ! K(�i) su
h that �i(�) = �i (1 � i � r). Moreover, if � : K ! L is anyK{homomorphism, then f�(X) = f(X), and hen
e �(�) = �i for some i, whi
h shows that � = �i. Theinequality r � [K(�) : K℄ follows from Exer
ise 2. 2Lemma 10: Let K and K 0 be �elds and � : K ! K 0 be an isomorphism. Let f(X) 2 K[X ℄ beany non
onstant polynomial and let L and L0 be splitting �elds of f(X) and f�(X) over K and K 0respe
tively. Then there exists an isomorphism � : L! L0 su
h that � jK = �. Moreover, the number ofsu
h isomorphisms is � [L : K℄.Proof: Let n = deg f(X) = deg f�(X) � 1. We pro
eed by indu
tion on n. If n = 1, we musthave L = K and L0 = K 0, so the assertion follows with � = �. Suppose n > 1. Let g(X) be a moni
irredu
ible fa
tor of f(X). Let � and �0 be roots of g(X) and g�(X) in L and L0 respe
tively. ByLemma 9, we 
an �nd a K{isomorphism � : K(�) ! K(�0) su
h that �jK = � and �(�) = �0. Nowwrite f(X) = (X � �)h(X) for some h(X) 2 K(�)[X ℄ and note that L and L0 are splitting �elds ofh(X) and h�(X) over K(�) and K 0(�) respe
tively. Using the indu
tion hypothesis, we get the desiredisomorphism, and, in view of the above Corollary, also the desired inequality. 2Taking K = K 0 and � to be the identity map in the above Lemma, we getCorollary: If f(X) 2 K[X ℄ is a non
onstant polynomial, then any two splitting �elds of f(X) overK are K{isomorphi
. 2A notion 
losely related to splitting �elds is de�ned below.De�nition: An extension L of K su
h that whenever an irredu
ible polynomial in K[X ℄ has a rootin L it has all its roots in L, is 
alled a normal extension.And here is the 
onne
tion.Lemma 11: Let L=K be a �nite extension. Then the following statements are equivalent.(1) L is a normal extension of K.(2) L is a splitting �eld of a polynomial in K[X ℄.(3) Any K{homomorphism � : L! L0, where L0 is any extension of L, is anautomorphism of L.Proof: (1)) (2): Sin
e L=K is �nite, we 
an write L = K(�1; : : : ; �n) for some �1; : : : ; �n 2 L.Let fi(X) = Irr(�i;K) and f(X) = Qni=1 fi(X). Then, by our hypothesis, all the roots of f(X) are inL. Also L is 
learly generated (over K) by these roots.(2)) (3): Let L = K(�1; : : : ; �n) be a splitting �eld of some f(X) 2 K[X ℄ where �1; : : : ; �n are theroots of f(X) in L. If � : L! L0 is any K{homomorphism, then f�(X) = f(X) and hen
e �(�i) mustbe a root of f(X). Sin
e � is inje
tive, it permutes the roots of f(X), and therefore �(L) = L.(3)) (1): Let f(X) be any irredu
ible polynomial having a root � 2 L. Let � be any other root of f(X).Let L0 be a splitting �eld of f(X) over L so that � 2 L0. By Lemma 9, there exists a K{isomorphism� : K(�)! K(�) su
h that �(�) = �. By Lemma 10, � 
an be extended to aK{isomorphism � : L0 ! L0.Let � = � jL. Then, by our hypothesis, � = �(�) 2 L. 2Remark: The above lemma also holds for in�nite algebrai
 extensions provided in (2) we repla
e \apolynomial" by \a family of polynomials". Verify!Example: The usual formula for the roots of a quadrati
 equation shows that an extension of degree2 is always normal. Extensions of Q of degree 2 are 
alled quadrati
 �elds. If ! is a \primitive n{th root61



of unity" (i.e., !n = 1 and !m 6= 1 for 1 � m < n), then Q(!) is a normal extension of Q (prove!); it is
alled the 
y
lotomi
 �eld of the n{th roots of unity.Exer
ise 5: Prove that if an extension L=K is normal and E is a sub�eld of L 
ontaining K, thenL=E is also normal.Exer
ise 6: Show, by an example, that normal over normal need not be normal.Exer
ise 7: Show that if L=K is any �nite extension, then we 
an �nd a least normal extension of K
ontaining L (as a sub�eld), i.e., an extension N of L su
h that N=K is normal, and no proper sub�eldof N 
ontaining L is normal over K; note that any su
h N is �nite over K. Show that any two leastnormal extensions of K 
ontaining L are K{isomorphi
.A.4 Separable ExtensionsLet K be a �eld. An irredu
ible polynomial in K[X ℄ is said to be separable if all its roots (in itssplitting �eld) are distin
t. An element �, whi
h is algebrai
 over K, is said to be separable if Irr(�;K)is a separable polynomial. An algebrai
 extension L of K is 
alled separable if every element of L isseparable over K.Assuming an extension to be separable 
an lead to ni
e 
onsequen
es su
h as the followingLemma 12 (Primitive Element Theorem): Finite separable extensions are simple.Proof: Let L=K be a �nite separable extension. If K is �nite, then so is L, and using the well-knownfa
t that the multipli
ative group of the nonzero elements of a �nite �eld is 
y
li
,5 we 
an �nd � 2 Lwhi
h generates N = Lnf0g; 
learly L = K(�), and thus L=K is simple. Now assume that K is in�nite.Obviously L is �nitely generated over K and so it suÆ
es to show that if L = K(�; �), then we 
an �nda \primitive element" � 2 L so that L = K(�). Let f(X) = Irr(�;K) and g(X) = Irr(�;K). Suppose�1; : : : ; �m and �1; : : : ; �n are the roots of f(X) and g(X) respe
tively with �1 = � and �1 = �. Byhypothesis, �i 6= �j and �i 6= �j for all i 6= j. Sin
e K is in�nite, we 
an �nd an element 
 2 K su
hthat 
 6= �i � �j�r � �s for all 
hoi
es of i; j; r; s su
h that 1 � i; j � m; 1 � r; s � n and r 6= s:Let � = �+ 
� and h(X) = f(�� 
X). Clearly h(X) 2 K(�)[X ℄ and h(�) = 0. Also h(�j) 6= 0 for j � 2lest 
 = �i�����j for some i � 1. It follows that the GCD of g(X) and h(X) in K(�)[X ℄ must be X � �.Hen
e � 2 K(�), and 
onsequently, � 2 K(�). Thus K(�) = K(�; �) = L. 2Remark: Note that the above proof a
tually shows that if either one of � or � is separable over K,then K(�; �)=K is simple.To 
he
k separability, the notion of derivatives 
omes in handy. In Algebra, derivatives 
an be de�nedin a purely formal manner (i.e., without involving limits) as follows. Given any f(X) 2 K[X ℄, let f(X) =Pni=0 aiX i, with ai 2 K, and de�ne the derivative of f(X), denoted by f 0(X), by f 0(X) =Pni=1 iaiX i�1.The usual properties su
h as linearity [i.e., (af � bg)0 = af 0 � bg0℄, produ
t rule [i.e., (fg)0 = f 0g+ fg0℄,
an be easily 
he
ked using this de�nition. Now re
all that an element � in an extension L of K is 
alleda multiple root of f(X) 2 K[X ℄ if f(X) = (X � �)2g(X) for some g(X) 2 L[X ℄.Lemma 13: Let f(X) be an irredu
ible polynomial in K[X ℄. Thenf(X) has a multiple root , f 0(X) = 0:Proof: If � is a multiple root of f(X), then, by the produ
t rule, f 0(�) = 0. But f(X), beingirredu
ible, is a polynomial of the least degree satis�ed by �, whi
h 
ontradi
ts the fa
t that deg f 0(X) <deg f(X) unless f 0(X) = 0. Conversely if f 0(X) = 0, then any root of f(X) is a multiple root. 25A proof of this fa
t may be taken as an exer
ise. A hint is to take the maximum order, say m, of the elementsof the multipli
ative group, and note that the order of every element divides m whereas the equation Xm = 1has at most m solutions in the �eld. 62



Exer
ise 8: Let Z=pZbe the �eld of residue 
lasses of integers modulo a prime number p. Let q = pnand Fq denote the splitting �eld of Xq�X over Z=pZ. Show that Fq is a �nite �eld 
ontaining q elementsand that it is a separable and normal extension of Z=pZ.6Exer
ise 9: Let F be a �nite �eld. Show that jF j, the 
ardinality of F , must equal pn for some primep, and that F is isomorphi
 to Fpn .De�nition: A �eld K is said to be perfe
t if either 
har(K), the 
hara
teristi
 of K, is 0, or
har(K) = p 6= 0 and K = Kp, i.e., for any � 2 K, there exists � 2 K su
h that � = �p.Lemma 14: Any algebrai
 extension of a perfe
t �eld is separable.Proof: Let K be a perfe
t �eld and L be an extension of K. Let � 2 L and Irr(�;K) = f(X) =Pni=0 aiX i. If � is not separable, then f(X) has multiple roots and hen
e f 0(X) =Pni=1 iaiX i�1 = 0.In 
ase 
har(K) = 0, we get ai = 0 for all i � 1, whi
h is a 
ontradi
tion. In 
ase 
har(K) = p 6= 0, wehave ai = 0 if p 6 ji. Sin
e K is perfe
t, we 
an �nd bi 2 K su
h that ai = bpi , and thus f(X) = g(X)pwhere g(X) =Ppji biX i=p 2 K[X ℄, whi
h 
ontradi
ts the irredu
ibility of f(X). 2Exer
ise 10: Prove that the 
onverse of Lemma 14 is also true. That is, if K is a �eld su
h that everyalgebrai
 extension of K is separable, then K is perfe
t.Exer
ise 11: Prove that a �nite �eld is perfe
t.Exer
ise 12: Show that not everything is perfe
t! More pre
isely, let k be a �eld of 
hara
teristi
p 6= 0, and K = k(t) be the �eld of rational fun
tions in an indeterminate t over k. Let L be analgebrai
 extension of K 
ontaining a root of Xp�t. Show that L is not separable overK. In parti
ular,inseparable (= not separable) extensions and imperfe
t (= not perfe
t) �elds do exist.Exer
ise 13: Let L=K be a �nite extension of degree n. Show that L=K is separable if and only ifthere are n distin
t K{homomorphisms of L into N , for any normal extension N=K 
ontaining L as asub�eld. [Hint: Use Lemma 12 and the Corollary to Lemma 9℄. Further show that if L=K is separableand E is a sub�eld of L 
ontaining K, then ea
h K{homomorphism of E into N has exa
tly [L : E℄distin
t extensions to L.Exer
ise 14: Show that separable over separable is separable. More pre
isely, if L=E and E=K arealgebrai
 extensions, then show that L=K is separable i� both L=E and E=K are separable. [Hint: Forthe nontrivial impli
ation, redu
e to the 
ase of �nite extensions and use Exer
ise 13℄. Dedu
e that if�1; : : : ; �n are algebrai
 and separable over a �eld K, then K(�1; : : : ; �n) is a separable extension ofK. Further dedu
e that if L=K is a �nite separable extension and N is a least normal extension ofK 
ontaining L, then N=K is also a �nite separable extension [in this 
ase N is 
alled a least Galoisextension of K 
ontaining L℄.In Number Theory, the �elds o

urring are algebrai
 extensions of Q or Z=pZ, and thus, in view ofLemma 14 and Exer
ise 11, we only have to deal with separable extensions.A.5 Galois TheoryLet K be a �eld. Given any polynomial f(X) 2 K[X ℄ having distin
t roots, the splitting �eld L of f(X)over K is a �nite, normal and separable extension. The essen
e of Galois theory lies in the asso
iationof a group G, known as Galois group, to su
h a polynomial or more generally, to an extension L=Kwith the above properties. Intrinsi
 properties of the polynomial f(X) (or the extension L=K) areni
ely 
aptured in this group. A main result of Galois Theory establishes a one{to{one 
orresponden
ebetween the subgroups of G and the sub�elds of L 
ontaining K. This enabled Galois to obtain his
elebrated results in Theory of Equations.76Finite �elds are often 
alled Galois �elds, and Fq is sometimes denoted by GF (q); these �elds were �rststudied by E. Galois in a paper, published in 1830, entitled \Sur la theori�e des nomberes".7Galois showed that the equation f(X) = 0 is solvable by radi
als (like the quadrati
 equation) if and onlyif G, the Galois group of f(X), is a solvable group. The Galois group of a general equation of degree n turnsout to be Sn, whi
h is not solvable for n � 5, and thus general equations of degree 5 or more 
annot be solvedby radi
als. For details, see any of the referen
es given at the end of this se
tion. It may be worth noting that63



To des
ribe the Galois group and the said 
orresponden
e, let us begin with someDe�nitions: Let L=K be a �eld extension.(1) The Galois group of L=K, denoted by Gal(L=K), is de�ned byGal(L=K) = the group of all K{automorphisms of L(2) L=K is said to be a Galois extension if it is �nite, normal and separable.8(3) For a subgroup H of Gal(L=K), the �xed �eld of H , denoted by LH , is de�ned byLH = f� 2 L : �(�) = � for all � 2 Hg:Note that Gal(L=K) is indeed a group (with 
omposition of maps as the group operation) and thatLH is a sub�eld of L 
ontaining K. Also note that if L=K is a Galois extension, then for any sub�eldE of L 
ontaining K, L=E is also a Galois extension (
f. Exer
ise 5) and Gal(L=E) is a subgroup ofGal(L=K).Theorem 1 (Fundamental Theorem of Galois Theory): Let L=K be a Galois extension.Then Gal(L=K) is a �nite group of order [L : K℄, and there is a bije
tion between the sub�elds E of L
ontaining K and the subgroups H of Gal(L=K), given byE 7! Gal(L=E) with the inverse given by H 7! LH :In parti
ular, K is the �xed �eld of Gal(L=K).Note that this bije
tion is in
lusion{reversing. It also has additional ni
e properties whi
h 
an bededu
ed from the above Theorem.Corollary (Supplement to the Fundamental Theorem of Galois Theory): Let L=K be aGalois extension and E be a sub�eld of L 
ontaining K. Then E=K is a �nite separable extension, andE=K is a normal extension, Gal(L=E) is a normal subgroup of Gal(L=K)and, in this 
ase, Gal(E=K) is isomorphi
 to the quotient group Gal(L=K)Gal(L=E) :A proof of the above Theorem will be given by pie
ing together the following lemmas.Lemma 15: Let L=E be a Galois extension. Then Gal(L=E) is a �nite group of order [L : E℄ andE is its �xed �eld.Proof: By Primitive Element Theorem, L = E(�) for some � 2 L. Now Irr(�;E) is of degreen = [L : E℄ and, sin
e L=E is normal and separable, it has n distin
t roots in L. By Corollary to Lemma9, we see that there are exa
tly n distin
t E{automorphisms of L, i.e, jGal(L=E)j = n. If � is in the�xed �eld of Gal(L=E) and � 62 E, then we 
an �nd �0 2 L su
h that �0 6= � and �0 is a root of Irr(�;E).By Lemma 9, there exists an E{isomorphism � : E(�) ! E(�0) with �(�) = �0, and, by Lemma 10,this 
an be extended to an E{automorphism � : L! L. Now � 2 Gal(L=E) and �(�) = �0 6= �, whi
h
ontradi
ts the assumption on �. 2The following result is a key step in the proof of the above Theorem.Lemma 16: Let L=K be a �eld extension and H be a �nite subgroup of Gal(L=K). Then L=LH isa Galois extension and Gal(L=LH) = H .Evariste Galois, the inventor of Galois theory, did his work at a very early age. He was born in O
tober 1811,and he died twenty years and seven months later in a duel.8It may be noted that by a Galois extension, some authors mean an extension whi
h is algebrai
, normal, andseparable, i.e., they don't require it to be �nite. 64



Proof: Let � 2 L and H = f�1; : : : ; �ng where �1; : : : ; �n are distin
t elements so arranged thatf�(�) : � 2 Hg = f�1(�); : : : ; �m(�)g for some m � n. Noti
e that �1(�); : : : ; �m(�) are distin
t andfor any � 2 H , we havef��1(�); : : : ; ��m(�)g = f��(�) : � 2 Hg = f�1(�); : : : ; �m(�)g:Consider the polynomialf(X) = mYi=1(X � �i(�)) and note that f� (X) = mYi=1(X � ��i(�)) = mYi=1(X � �i(�)) = f(X):So every � 2 H �xes the 
oeÆ
ients of f(X), and hen
e f(X) 2 LH [X ℄. Also f(�) = 0 and ifg(X) = Irr(�;LH), then g(�i(�)) = �i(g(�)) = 0 for all i = 1; : : : ;m. Thus deg g(X) � deg f(X), and,sin
e g(X) is the minimal polynomial of � over LH , we have g(X) = f(X). Therefore � is algebrai
and separable over LH , and moreover, [LH(�) : LH ℄ = m � n = jH j. Now 
hoose � 2 L su
h that[LH(�) : LH ℄ is maximal. Then we must have L = LH(�). To see this, assume the 
ontrary. Then we 
an�nd � 2 L su
h that � 62 LH and we note that, by Lemma 1, [LH(�; �) : LH ℄ > [LH(�) : LH ℄ and that,by Lemma 12, LH(�; �) is a simple extension of LH . But this 
ontradi
ts the maximality of [LH(�) : LH ℄.Hen
e L = LH(�) and thus L=LH is a Galois extension. Moreover, H � Gal(L=LH) and, in view ofLemma 15, we have Gal(L=LH) = [L : LH ℄ = deg Irr(�;LH) � jH j. Therefore H = Gal(L=LH). 2Remark: Note that the sub�eld K did not play any role in the above proof. In fa
t, we 
ould havetaken H to be any �nite group of automorphisms of L.Proof of the Fundamental Theorem of Galois Theory: Let L=K be a Galois extension. From Lemma15, it follows that the 
omposite of the maps given by E 7! Gal(L=E) and H 7! LH is identity,i.e., Gal(L=E) is a subgroup of Gal(L=K) and LGal(L=E) = E. From Lemma 16, it follows that theother 
omposite is identity, i.e., LH is a sub�eld of L 
ontaining K, L=LH is a Galois extension, andGal(L=LH) = H . Thus we have a bije
tion as desired. 2Proof of the Supplement to FTGT: Let L=K be a Galois extension and E be a sub�eld of L 
ontainingK. The �niteness and separability of E=K is obvious. For any � 2 Gal(L=K); �(E) is a sub�eld of L
ontaining K, and it is easy to see thatGal(L=�(E)) = �Gal(L=E)��1:From Lemma 11, it follows thatE=K is a normal extension , �(E) = E for all � 2 Gal(L=K):Consequently, if E=K is a normal extension, then Gal(L=E) is a normal subgroup of Gal(L=K). Toprove the 
onverse, note that for any � 2 Gal(L=K), by Lemma 15, we have thatthe �xed �eld of Gal(L=E) = E and the �xed �eld of �Gal(L=E)��1 = �(E):Therefore if Gal(L=E) is a normal subgroup of Gal(L=K), we have �(E) = E for any � 2Gal(L=K),and hen
e E=K is normal. In the 
ase E=K is normal, it is Galois, and the map � 7! �jE de�nes agroup homomorphism of Gal(L=K) into Gal(E=K). By Lemma 10, any K{automorphism of E 
an beextended to a K{automorphism of L, whi
h shows that this group homomorphism is surje
tive. Hen
eGal(E=K) is isomorphi
 to the quotient group Gal(L=K)=Gal(L=E). 2Remark: Let f(X) 2 K[X ℄ be a non
onstant polynomial of degree n having distin
t roots �1; : : : ; �n.Let L = K(�1; : : : ; �n) be the splitting �eld of f(X) over K. Then Gal(L=K) is 
alled the Galois groupof f(X) over K, and may be denoted by Gf . Note that a K{automorphism of L gives a permutationof the n roots �1; : : : ; �n, whi
h uniquely determines this automorphism. Thus Gf 
an be 
onsidered asa subgroup of Sn, the group of all permutations of n symbols. A more 
on
rete de�nition of Gf , whi
hdoesn't involve automorphisms, is as follows.Gf = f� 2 Sn : �(��(1); : : : ; ��(n)) = 0 for all � 2 K[X1; : : : ; Xn℄ with �(�1; : : : ; �n) = 0g:65



Exer
ise 15: Let f(X) and Gf be as in the above Remark. Prove that f(X) is irredu
ible if and onlyif Gf is transitive. [A subgroup H of Sn is said to be transitive if for any i; j 2 f1; : : : ; ng, there exists� 2 H su
h that �(i) = j.℄Exer
ise 16: Let F be a �nite �eld 
ontaining q elements and E be a �nite extension of F . Show thatE=F is a Galois extension and that Gal(E=F ) is 
y
li
; in fa
t, the \Frobenius map" � 7! �q de�nes anF{automorphism of E, whi
h generates Gal(E=F ).De�nition: A Galois extension L=K is said to be abelian (resp: 
y
li
) if its Galois group Gal(L=K)is abelian9 (resp: 
y
li
).Exer
ise 17: Let E and F be sub�elds of a �eld L and K be a sub�eld of E \ F . Let EF denotethe smallest sub�eld of L 
ontaining E and F (this looks like fP�i�i : �i 2 E; �i 2 Fg, and is 
alledthe 
ompositum of E and F ). Show that if E=K is Galois, then so is EF=F , and that � 7! �jE is aninje
tive homomorphism of Gal(EF=F ) into Gal(E=K) whi
h is an isomorphism if K = E \ F . Alsoshow that if E=K and F=K are Galois and K = E \ F , then Gal(EF=K) ' Gal(E=K) � Gal(F=K).In parti
ular, if Gal(E=K) and Gal(F=K) are abelian, then so is Gal(EF=K), and thus one 
an talk ofthe maximal abelian extension of K in L.Exer
ise 18: Let L=K be a Galois extension and G = Gal(L=K). Let H be the 
ommutator subgroupof G, i.e, the subgroup generated by the elements ����1��1 as �; � vary over elements of G. Show thatH is a normal subgroup of G and the �xed �eld LH is an abelian extension of K with Gal(LH=K)isomorphi
 to the `abelianization' of G, viz., G=H . Further show that LH is, in fa
t, the maximalabelian extension of K 
ontained in L.There is more to Galois Theory than what has been dis
ussed so far. Our obje
tives being limited, wehaven't said anything about 
omputing the Galois group of a given polynomial or a given extension. Nogeneral method is known. There are, however, various te
hniques whi
h sometimes help in determiningthe Galois group. It may be mentioned that one of the major open problems in the area, 
alled theInverse Problem of Galois Theory or the Constru
tion Problem of Number Theory, is whether any �nitegroup G is the Galois group of some (normal) extension of Q.10 As an aid for further studies, we givebelow a list of relevant books with some (highly subje
tive) remarks.Annotated List of Referen
es for Galois TheoryBooks on Galois Theory, or Abstra
t Algebra in general, seem quite abundant these days. We willmention only a few.[1℄ E. Artin, Galois Theory, 2nd Ed., Notre Dame Press, 1956.a 
lassi
 little text on whi
h most of the modern treatments of Galois theory are based.[2℄ M. Artin, Algebra, Prenti
e Hall In
., 1991 (Ch. 14).a novel text on Algebra with a friendly introdu
tion to the rudiments of Galois Theory.[3℄ H. Edwards, Galois Theory, Springer GTM 101, 1984.a histori
ally guided treatment; 
ontains a translation of Galois' original memoirs.[4℄ I. Herstein, Topi
s in Algebra, 2nd Ed., John Wiley, 1975 (Ch. V).elementary and rather verbose; well{suited for an undergraduate 
ourse.9The term `abelian' is derived from the name of the Norwegian mathemati
ian N. H. Abel who proved, around1829, that a 
ertain 
lass of equations is always solvable by radi
als. In the modern terminology, this is pre
iselythe 
lass of equations whose Galois group is 
ommutative. The usage of `abelian' seems to have been initiatedby L. Krone
ker who, in 1853, announ
ed that the roots of every abelian equation with integer 
oeÆ
ients 
anbe represented as rational fun
tions of roots of unity, a result whi
h is nowadays known as the Krone
ker{WeberTheorem and is usually expressed as: every abelian extension of Q is 
ontained in a 
y
lotomi
 �eld. In an 1870paper, Krone
ker formally de�ned \abstra
t abelian groups" and proved what is now known as the Stru
tureTheorem for Finite Abelian Groups. To get an idea of Abel's work on solvability by radi
als, see Van derWaerden's en
hanting book \A History of Algebra", Springer (1985), or the arti
le `Niels Hendri
k Abel and theequations of �fth degree' by M. Rosen in the Ameri
an Math. Monthly, Vol. 102 (1995), pp. 495{505.10It is not diÆ
ult to see that the answer is Yes if G is an abelian group. For re
ent work on this problem, seethe arti
le by B. Matzat in the MSRI Pro
eedings on \Galois groups over Q" published by Springer (1988) orthe book \ Groups as Galois groups" by H. V�olklein (Cambridge University Press, 1996).66



[5℄ T. Hungerford, Algebra, Springer GTM 73, 1980 (Ch. V).a useful referen
e; 
ontains a treatment applying also to in�nite extensions.[6℄ N. Ja
obson, Basi
 Algebra I, 2nd Ed., W. H. Freeman, 1985 (Ch. IV).the introdu
tion to the 
hapter is highly readable and informative; the 2nd Ed. has a valuablese
tion on mod p redu
tion.[7℄ S. Lang, Algebra, 2nd Ed., Addison{Wesley, 1984 (Ch. VII, VIII).a neat exposition of the elements of Galois theory as well as more advan
ed material; 
ontains agood 
olle
tion of exer
ises.[8℄ TIFR Mathemati
al Pamphlet on Galois Theory, No. 3, 1965.short, self{
ontained, neat, and thorough; seek elsewhere for motivation and history.A.6 Norms and Tra
esIn the study of �nite �eld extensions L=K, a useful passage from L to K is provided by the fun
tions
alled Norm and Tra
e. These notions 
an be used in de�ning the so 
alled dis
riminant, whi
h playsan important role in Number Theory.De�nition: Let L=K be a �nite extension of degree n and � be any element of L. Let (aij) be ann� n matrix, with entries in K, 
orresponding to the K{linear transformation x 7! �x of L into itself,i.e., for some K{basis fu1; : : : ; ung of L, we have�ui = nXj=1 aijuj i = 1; : : : ; n:The tra
e of � w.r.t. L=K, denoted by TrL=K(�) or simply Tr(�), is de�ned byTr(�) = nXi=1 aii:The norm of � w.r.t. L=K, denoted by NL=K(�) or simply N(�), is de�ned byN(�) = det(aij):We also de�ne the �eld polynomial of � w.r.t. L=K 11 to be the polynomial �(X) 2 K[X ℄ given by�(X) = det(XÆij � aij) [where Æij is the Krone
ker delta℄.Note that TrL=K(�), NL=K(�), and �(X) are independent of the 
hoi
e of a K{basis of L, and dependonly upon the extension L=K and the element �.Lemma 17: Let L=K be a �nite extension of degree n and � 2 L. Then:(1) TrL=K is a K{linear map, i.e.,TrL=K(a�+ b�) = aTrL=K(�) + bTrL=K(�) 8 a; b 2 K; �; � 2 L:(2) NL=K is multipli
ative, i.e.,NL=K(��) = NL=K(�)NL=K(�) 8�; � 2 L:(3) For any a 2 K, we have TrL=K(a) = na and NL=K(a) = an:11this is sometimes 
alled the 
hara
teristi
 polynomial of � w.r.t. L=K; indeed, it is the 
hara
teristi
polynomial of the matrix (aij) [or the 
orresponding linear transformation℄ in the sense of Linear Algebra.67



Proof: Assertions (1) and (2) follow from the fa
t that (aaij + bbij) and (Pnk=1 bikakj) are n � nmatri
es 
orresponding to the K{linear transformations x 7! (a�+b�)x and x 7! (��)x, where (aij) andb(ij) are n� n matri
es 
orresponding to the K{linear transformations x 7! �x and x 7! �x. Moreover,for any a 2 K, (aÆij) is a matrix 
orresponding to the K{linear transformation x 7! ax, and hen
e weget (3). 2Note that a �eld polynomial is moni
 of degree equal to the degree of the 
orresponding extension.Its relation to the tra
e and the norm is given in the followingLemma 18: Let L=K be a �nite extension of degree n and � 2 L. Let �(X) = Xn+a1Xn�1+� � �+anbe the �eld polynomial of � w.r.t. L=K. Then TrL=K(�) = �a1 and NL=K(�) = (�1)nan.Proof: Let aij be a matrix 
orresponding to the K{linear transformation x 7! �x of L into itself.Expanding det(XÆij � aij), it is easily seen that the 
oeÆ
ient of Xn�1 is �(a11 + � � � + ann) and the
onstant 
oeÆ
ient is (�1)n det(aij). 2Lemma 19: Let L=K be a �nite extension, � 2 L, and �(X) be the �eld polynomial of � w.r.t.L=K. Suppose E is a sub�eld of L 
ontaining K su
h that � 2 E and 	(X) is the �eld polynomial of� w.r.t. E=K. Then �(X) = 	(X)[L:E℄and, in parti
ular,TrL=K(�) = [L : E℄ �TrE=K(�)� and NL=K(�) = �NL=E(�)�[L:E℄ :Proof: Let fu1; : : : urg be an E{basis of L and fv1; : : : ; vsg be a K{basis of E. Then fuivj : 1 � i �r; 1 � j � sg, ordered lexi
ographi
ally (say), is a K{basis of L. If (ajl) is the s� s matrix su
h that�vj = sXl=1 ajlvl j = 1; : : : ; sthen, for 1 � i � r and 1 � j � s, we have�(uivj) = sXl=1 ajl(uivl) = X1�k�r1�l�s ajlÆik(ukvl):Now (ajlÆik) [where (i; j) and (k; l) vary, in a lexi
ographi
 order, over the set f1; : : : ; rg� f1; : : : ; sg℄ isthe rs � rs matrix 
orresponding to the K{linear transformation x 7! �x of L into itself. The rs � rsidentity matrix 
an be represented as (ÆikÆjl), and so�(X) = det (XÆikÆjl � ajlÆik) = det (Æik [XÆjl � ajl℄) = [det (XÆjl � ajl)℄r :Thus �(X) = 	(X)[L:E℄. The rest is evident. 2Corollary: Let L=K be a �nite extension and � 2 L. Then the �eld polynomial �(X) of � w.r.t.L=K is a power of the minimal polynomial of � over K. In fa
t, �(X) = [Irr(�;K)℄[L:K(�)℄.Proof: Let 	(X) be the �eld polynomial of � w.r.t. K(�)=K. Then 	(X) is a moni
 polynomialin K[X ℄ with 	(�) = 0 and deg	(X) = [K(�) : K℄ = deg Irr(�;K). Hen
e 	(X) = Irr(�;K). Ourassertion now follows from the previous Lemma. 2Remark: The �eld polynomial is usually easy to 
ompute and, in view of the above results, it oftenhelps in �nding the minimal polynomial.We now pro
eed to give an alternative expression for the tra
e and norm.De�nition: Two elements � and �0 in an extension of a �eld K are said to be 
onjugates of ea
hother if there exists a K{isomorphism of K(�) onto K(�0) whi
h maps � to �0.Note that, in view of Lemma 9, � and �0 are 
onjugates over K if and only if they have the sameminimal polynomial over K. Also note that � and �0 are 
onjugates over K if and only if �0 = �(�) forsome K{homomorphism � of K(�) into an extension of K 
ontaining �0.68



Let L=K be a �nite separable extension of degree n, � 2 L, and N be a normal extension of K
ontaining L [su
h N exists by Exer
ise 7; it 
an, for example, be the least Galois extension of K
ontaining L℄. By Lemma 12 and the Corollary to Lemma 9, we see that there exist exa
tly n distin
tK{isomorphisms �1; : : : ; �n of L into N . Clearly, �i(�) and � are 
onjugates over K for ea
h i with1 � i � n. The n elements �1(�); : : : ; �n(�) will be 
alled the 
onjugates of � w.r.t. L=K; these areuniquely determined provided we �x our N . Note that these n elements need not be distin
t; in fa
t, thenumber of distin
t 
onjugates among these is [K(�) : K℄ and ea
h of these is repeated exa
tly [L : K(�)℄times. (This follows from Exer
ise 12. Verify!)Lemma 20: Let L=K be a �nite separable extension of degree n and � 2 L. Fix a normal extensionN of K 
ontaining L. Then:(1) TrL=K(�) is the sum of all 
onjugates of � w.r.t. L=K. In parti
ular, if L=K is Galois, thenTrL=K(�) = X�2Gal(L=K)�(�):(2) NL=K(�) is the produ
t of all 
onjugates of � w.r.t. L=K. In parti
ular, if L=K is Galois, thenNL=K(�) = Y�2Gal(L=K)�(�):Proof: Let r = [L : K(�)℄ and s = [K(�) : K℄. If �1; : : : ; �r are the distin
t K{homomorphismsof K(�) into N , then �1(�); : : : ; �s(�) are pre
isely the distin
t 
onjugates of � w.r.t. L=K and theminimal polynomial of � over K fa
tors asIrr(�;K) = sYj=1 (X � �j(�))Now the 
onjugates �1(�); : : : ; �n(�) of � w.r.t. K are nothing but �1(�); : : : ; �s(�) ea
h repeated rtimes. Hen
e, by the Corollary to Lemma 19, we see that�(X) = nYi=1 (X � �i(�))where �(X) denotes the �eld polynomial of � w.r.t. L=K. In view of Lemma 18, the above identityreadily implies (1) and (2). 2Remark: In the above Lemma and the dis
ussion pre
eding that, we 
ould have repla
ed N by analgebrai
 
losure12 of K (assumed to 
ontain L). Fixing an algebrai
 
losure K of K, one 
an de�neGal(L=K), for any separable extension L=K with L � K, to be the set of all K{homomorphisms of Linto K. With this 
onvention, the displayed identities for the tra
e and norm in Lemma 20 remain validfor any �nite separable extension L=K. Our de�nition of Gal(L=K) applies only to Galois extensions butit has the advantage that we don't have to talk about algebrai
 
losures, and that we 
an legitimately
all it the Galois group.Exer
ise 19: Let L=K be a �nite separable extension and E be a sub�eld of L 
ontaining K. Provethe following transitivity properties of the tra
e and norm.TrL=K = TrE=K ÆTrL=E and NL=K = NE=K ÆNL=E:12By an algebrai
 
losure of a �eld K we mean an algebrai
 extension K of K su
h that every non
onstantpolynomial inK[X℄ has a root inK. It 
an be shown that every �eldK has an algebrai
 
losure with the propertythat any algebrai
 extension of K is isomorphi
 to some sub�eld of it; further any two algebrai
 
losures of Kare K{isomorphi
. For details, see Lang's \Algebra". 69



Appendix BDis
riminants in Algebra andArithmeti
1We begin with the familiar notion of the dis
riminant of a quadrati
 and dis
uss how it 
an be extendedto more general situations. We also outline some important appli
ations of the notion of dis
riminantin Algebra and Arithmeti
.B.1 Dis
riminant in High S
hool AlgebraUsually, we �rst 
ome a
ross dis
riminants in High S
hool when we study the quadrati
 equationaX2 + bX + 
 = 0: (B.1)The quantity � = b2 � 4a
 is 
alled the dis
riminant of (B.1) and it has the quintessential property:� = 0() the equation (B.1) has a repeated root. (B.2)Stri
tly speaking, (B.2) holds if (B.1) is a genuine quadrati
, i.e., if a 6= 0. Indeed, if a 6= 0 and if �; �are the roots of (B.1), then we haveaX2 + bX + 
 = a(X � �)(X � �) (B.3)or equivalently �+ � = �ba and �� = 
a :Thus from the simple identity (�� �)2 = (�+ �)2 � 4��, it follows that� = a2(�� �)2: (B.4)Note that the above expression makes it obvious that the property (B.2) holds.We now 
onsider the problem of suitably de�ning the dis
riminant of a general equationf(X) = 0where f is a polynomial of degree n, i.e.,f(X) = a0Xn + a1Xn�1 + � � �+ an�1X + an; with a0 6= 0: (B.5)1This appendix is a verbatim reprodu
tion of an arti
le with the same title published in Bona Mathemati
a,Vol. 11, No. 2-3 (2000), pp. 43{62. 70



Let us assume that f is a non
onstant polynomial, i.e., n � 1. What should the dis
riminant of f be?Burnside and Panton (1892) answer this ni
ely by saying that the dis
riminant ought to be the simplestfun
tion of the 
oeÆ
ients in a rational and integral form, whose vanishing expresses the 
ondition forequal roots. Let �1; : : : ; �n denote the roots2 of f so thatf(X) = a0(X � �1) : : : (X � �n): (B.6)As a �rst guess for the dis
riminant of f , it seems natural to 
onsider an expression su
h asVf = Y1�i<j�n(�i � �j):This is 
ertainly a simple fun
tion whose vanishing expresses the 
ondition for repeated roots. But itisn't really a fun
tion of the 
oeÆ
ients, even in the 
ase of a quadrati
. So we take a 
ue from (B.4),and 
onsider V 2f = Y1�i<j�n(�i � �j)2:Now this is a symmetri
 polynomial fun
tion in �1; : : : ; �n, in the sense that it is un
hanged if we permute�1; : : : ; �n. We have a fundamental result going ba
k to Newton whi
h says that every symmetri
polynomial 
an be expressed as a polynomial in the `elementary symmetri
 fun
tions'. The elementarysymmetri
 fun
tions in �1; : : : ; �n are as follows.e1 = �1 + � � �+ �n = X1�i�n�ie2 = �1�2 + � � �+ �n�1�n = X1�i<j�n�i�i...en = �1 : : : �n:From (B.5) and (B.6), we see thate1 = �a1a0 ; e2 = a2a0 ; : : : ; en = (�1)nana0 : (B.7)Thus it follows from Newton's Theorem on symmetri
 fun
tions, that any symmetri
 polynomial in�1; : : : ; �n is a polynomial in e1; : : : ; en, and hen
e it equals a polynomial in the 
oeÆ
ients a0; a1; : : : ; andivided by some power of a0. In the 
ase of V 2f , the degree in �1 is 2(n � 1), and sin
e ea
h ei is ofdegree 1 in �1, we see that the degree of V 2f in e1; : : : ; en is at most 2(n� 1). Thus a2n�20 V 2f would bea polynomial in a0; a1; : : : ; an with integral 
oeÆ
ients. We are now ready to make a formal de�nition.De�nition B.1. The dis
riminant of f , denoted by Dis
(f), is de�ned byDis
(f) = a2n�20 Y1�i<j�n(�i � �j)2:2It may be worthwhile to digress here a bit to dis
uss the idea of roots of a polynomial. If our polynomial f(X)has 
omplex 
oeÆ
ients (in parti
ular, integral, rational or real 
oeÆ
ients), then the Fundamental Theorem ofAlgebra assures us that it has exa
tly n roots in C , when 
ounted with multipli
ities. Re
all that � is said tobe a root of multipli
ity m if f(X) = (X � �)mg(X) for some polynomial g(X) with g(�) 6= 0. In 
ase m > 1,we say that � is a multiple root or a repeated root of f . In general, if A is an integral domain and f 2 A[X℄ (i.e.,f is a polynomial in X with 
oeÆ
ients in A), then for any integral domain B 
ontaining A as a subring, f hasat most n roots in B. Moreover, there exists a �eld L 
ontaining A as a subring su
h that f has exa
tly n rootsin L when 
ounted with multipli
ities. Thus abstra
tly speaking, by suitably enlarging the domain, if ne
essary,we 
an always 
onsider n elements �1; : : : ; �n whi
h are the roots of f . Here ea
h root is repeated as many timesas its multipli
ity. 71



From the de�nition of Dis
(f), the following result is evident.Theorem B.2. Dis
(f) = 0() f has a repeated root. 2Although our de�nition of Dis
(f) meets all the basi
 requirements, the situation is still unsatisfa
-tory be
ause for any pra
ti
al use of the above theorem, we should not have to �nd the Dis
(f) by �rst�nding the roots of f . In other words, it is highly desirable to have a 
on
rete expression for Dis
(f)purely in terms of the 
oeÆ
ients a0; a1; : : : ; an of f . This is not so easy (try the 
ase of n = 3)! But we
an give a ni
e expression for Dis
(f) if we know the 
lassi
al notion of resultant. Let us qui
kly re
allsome basi
s 
on
erning resultants. We refer to [21℄ for more on this topi
.De�nition B.3. Given any two polynomialsf(X) = a0Xn + � � �+ an and g(X) = b0Xm + � � �+ bm; (B.8)the resultant of f(X) and g(X) is de�ned to be the (m+ n)� (m+ n) determinant����������������
a0 a1 : : : : : : : : : ana0 a1 : : : : : : : : : an�1 an: : : : : : : : : : : : : : : : : : : : : : : : : : :a0 a1 : : : : : : : : : anb0 b1 : : : : : : : : : : : : bmb0 b1 : : : : : : : : : : : : bm�1 bm: : : : : : : : : : : : : : : : : : : : : : : : : : :b0 b1 : : : : : : : : : : : : bm

����������������
9>>>>>>>>=>>>>>>>>;9>>=>>;

m rowsn rowswhere the blanks before a0; b0 and after an; bm are to be �lled with zeros. It is denoted by ResX(f; g;n;m)or simply by Res(f; g).An important fa
t about resultants is the following.Theorem B.4 (Produ
t Formula). Let f(X) and �1; : : : ; �n be as in (B.5) and (B.6). Also letg(X) = b0Xm + b1Xm�1 + � � �+ bm be a polynomial in X. ThenRes(f; g) = am0 nYi=1 g(�i):Moreover, if b0 6= 0 and if �1; : : : ; �n are the roots of g so that g(X) = b0Qmj=1(X � �j), thenRes(f; g) = (�1)mnbn0 mYj=1 f(�j) = am0 bn0 nYi=1 mYj=1(�i � �j):In parti
ular, Res(f; g) = 0 if and only if f and g have a 
ommon root.We are now ready to relate resultants to dis
riminants and thereby get a 
on
rete formula for Dis
(f)in terms of the 
oeÆ
ients of f .Theorem B.5. Let f(X) = a0Xn+ a1Xn�1+ � � �+ an�1X + an be a non
onstant polynomial of degreen. Let f 0(X) be the derivative of f(X), i.e., f 0(X) = na0Xn�1 + (n� 1)a1Xn�2 + � � �+ an�1. ThenRes(f; f 0) = (�1)n(n�1)2 a0Dis
(f):72



Proof: Let �1; : : : ; �n be the roots of f . Then we havef(X) = a0 nYi=1(X � �i); and therefore f 0(X) = a0 nXi=1 nYj=1j 6=i(X � �j):Hen
e, using Theorem B.4, we see that Res(f; f 0) equalsan�10 nYi=1 f 0(�i) = an�10 nYi=1 a0 nYj=1j 6=i(�i � �j) = a2n�10 nYi=1 nYj=1j 6=i(�i � �j):Now if in the last produ
t, we 
ollate together the terms of the form (�i��j) and (�j ��i) so as to getthe 
orresponding term in the expression for Dis
(f), then the number of sign 
hanges required wouldbe X1�i<j�n 1 = nXi=1 nXj=i+1 1 = nXi=1(n� i) = n(n� 1)2 :(Alternatively, the number of sign-
hanges is the number of 2-element subsets f�i; �jgi<j of the n-element set f�1; : : : ; �ng, and so it is �n2� = n(n�1)2 .) Therefore, we 
on
lude thatRes(f; f 0) = a2n�10 (�1)n(n�1)2 nYi=1 nYj=1i<j(�i � �j)2 = (�1)n(n�1)2 a0Dis
(f): 2Remark. The sign fa
tor (�1)n(n�1)2 in the above result has, 
uriously, been missed by several mathe-mati
ians. For example, this error o

urred in the �rst edition of Lang's Algebra. In the se
ond edition[13, p. 211℄, Lang mentions that Serre has pointed out to him this error and also that it o

urs in vander Waerden, Samuel, and Hilbert but not in Weber. Indeed, the error o

urs in van der Waerden'sAlgebra [23, p. 82℄, the original Fren
h edition of Samuel's Algebrai
 Theory of Numbers [17, p. 49℄although not in its English translation. In the 
ase of Hilbert, one might expe
t that the referen
e isto Hilbert's famous Zahlberi
ht (see [8, pp. 63{363℄ or the re
ent English translation [9℄), but we havenot been able to spot any error there. This may be be
ause Hilbert's 
olle
ted works were revised and
orre
ted by Olga Taussky et al. On the other hand, Weber's Textbook of Algebra, written more than a
entury ago, is quite 
areful about the sign during the dis
ussion of the dis
riminant (
f. [24, x50℄).Corollary B.6. Let f(X) and �1; : : : ; �n be as in (B.5) and (B.6). Assume that f 0(X) is of degreen� 1 3 and let �1; : : : ; �n�1 be the roots of f 0(X). ThenDis
(f) = (�1)n(n�1)2 an�20 nYi=1 f 0(�i) = (�1)n(n�1)2 nnan�10 n�1Yj=1 f(�j):Proof: Follows easily from Theorem B.4 and Theorem B.5 by noting that (�1)n(n�1) = 1. 2Example: Consider a 
ubi
 polynomial of the form f(X) = X3 + pX + q. To �nd Dis
(f), we notethat the roots of f 0(X) = 3X2 + p are �(�p=3)1=2. Therefore, by the se
ond formula in the Corollaryabove, Dis
(f) equals(�1) 3(2)2 33 �(�p=3)3=2 + p(�p=3)1=2 + q� ��(�p=3)3=2 � p(�p=3)1=2 + q�= �27 hq2 � [(�p=3) + p℄2 (�p=3)i= �27 �q2 + (4p2=9)(p=3)�= �4p3 � 27q2:3This is always the 
ase if the 
oeÆ
ients are 
omplex numbers or more generally, if n is not divisible by the
hara
teristi
. 73



More generally, if f(X) = X3 + aX2 + bX + 
, then using the above method or by dire
tly 
omputingthe resultant, it 
an be seen thatDis
(f) = �4a3
+ a2b2 + 18ab
� 4b3 � 27
2:We leave it to the reader to verify this formula.Exer
ise: Let f(X) and �1; : : : ; �n be as in the de�nition of the Dis
riminant. Assume that f(X) ismoni
, i.e., a0 = 1. Prove that Dis
(f) equals the square of the Vandermonde determinant det��j�1i �
orresponding to �1; : : : ; �n. Dedu
e that Dis
(f) is also given by the determinant of the n� n matrixwhose (i; j)th entry is the power sum symmetri
 fun
tion pi+j�2. In other words, if for k � 0 , pk =�k1 + � � �+ �kn, then show thatDis
(f) = ��������� 1 �1 : : : �n�111 �2 : : : �n�12... . . .1 �n : : : �n�1n ���������2 = ��������� p0 p1 : : : pn�1p1 p2 : : : pn... . . .pn�1 pn : : : p2n�2 ��������� :B.2 Dis
riminant in College AlgebraIn the B.S
. and M.S
. level 
ourses in Algebra, where one mainly studies groups, rings, �elds, et
.,the notion of dis
riminant is en
ountered on
e again. Here, at least initially, it appears far removedfrom the 
lassi
al or the high s
hool algebra notion of dis
riminant. We will try to narrow this gapby �rst re
alling the relevant de�nitions and then des
ribing how the two seemingly di�erent notionsof dis
riminant are related to one another. In what follows, we will assume mild familiarity with the
on
epts su
h as rings, �elds, ve
tor spa
es, and basi
 fa
ts 
on
erning them. We begin with a briefdis
ussion of the notion of tra
e, and some of its properties, whi
h are needed later. For proofs of theseauxiliary results, one may refer to [6℄ or standard texts su
h as [13℄.Let K be a �eld and L be a ring 
ontaining K as a subring. Then L is a ve
tor spa
e over K.We will assume that the ve
tor spa
e dimension of L over K is �nite and denote it by [L : K℄. A ni
epassage from L to K is provided by the tra
e mapTrL=K : L! Kwhi
h is de�ned as follows. Let n = [L : K℄. Given any � 2 L, let t� denote the linear transformationof L ! L de�ned by t�(x) = �x for x 2 L. Then we de�ne TrL=K(�), to be the tra
e of t�. In otherwords, if fu1; : : : ; ung is a K-basis of L, and if t�(uj) =Pni=1 aijui for some aij 2 K (1 � j � n), thenTrL=K(�) = Pni=1 aii. The latter is easily seen to be independent of the 
hoi
e of a basis. Some basi
properties of the tra
e map Tr (we often drop the subs
ript L=K when it is 
lear from the 
ontext) areas follows.(i) TrL=K is aK{linear map, i.e., Tr(au+bv) = aTr(u)+bTr(v) for all a; b 2 K and u; v 2 L. Moreover,the restri
tion of TrL=K toK equals [L : K℄ times the identity map, that is, Tr(a) = na. for a 2 K.(ii) Suppose L is a �eld su
h that L = K(�) for some � 2 L.4 Let f(X) be the minimal polynomial 5of � over K. Assume that f(X) has distin
t roots, say �1; : : : ; �n. Then Tr(�) = �1 + � � �+ �n.4By K(�) one denotes the smallest sub�eld of L 
ontaining K and �; it 
onsists of all `rational fun
tions'p(�)=q(�), where p(X); q(X) 2 K[X℄ with q(�) 6= 0.5A moni
 polynomial (i.e., a polynomial whose leading 
oeÆ
ient is 1) in K[X℄ satis�ed by � and of leastpossible degree is unique and is 
alled the minimal polynomial of � over K. Its degree equals [K(�) : K℄. See[6℄, [11℄, [13℄ or [26℄ for more on this. 74



Remarks. 1. Suppose L is a �eld. Then K is a sub�eld of L and the �niteness of [L : K℄ = dimK Limplies that for ea
h � 2 L, the minimal polynomial of � over K exists.6 The roots �1; : : : ; �d of thisminimal polynomial are 
alled the 
onjugates of � over K.2. Suppose L is a �eld. If every u 2 L has distin
t 
onjugates over K, then we say that L=K isseparable. It 
an be shown that if K is any �eld 
ontaining rationals, then L=K is always separable. IfL=K is separable (and dimK L is �nite), then the so 
alled Primitive Element Theorem assures us thatthere exists some � 2 L su
h that L = K(�); su
h an element � is 
alled a primitive element in L.3. Suppose L is a �eld su
h that L=K is a separable and u is any element of L. If we let d denote thedegree of the minimal polynomial of u overK and u1; : : : ; ud denote the roots of the minimal polynomial,then n = de, where e = dimK(u) L, and the n elements u(1); : : : ; u(n) obtained by taking ea
h of u1; : : : ; udexa
tly e times, are 
alled the 
onjugates of u w.r.t. L=K. We have Tr(u) = u(1) + � � �+ u(n).Example. Consider L = Q(p2) = fa+ bp2 : a; b 2 Qg. This is a �eld and a 2-dimensional ve
tor spa
eoverK = Q with f1;p2g as a basis. Given any u = a+bp2 2 L, the matrix of the linear transformationtu w.r.t. the above basis is easily seen to be � a b2b a �and therefore Tr(u) = 2a. Alternately, u satis�es the polynomialX2 � 2aX + (a2 � 2b2) = �X � (a+ bp2)��X � (a� bp2)�and this is the minimal polynomial of u if b 6= 0. Therefore a + bp2; a � bp2 are the 
onjugates of uw.r.t. L=K and the last equality in the Remark above is veri�ed.We are now ready to de�ne the notion of dis
riminant in the set-up of the ring L 
ontaining a �eldK as a subring and su
h that dimK L = n is �nite.De�nition B.7. Given any n elements u1; : : : ; un 2 L, the dis
riminant DL=K(u1; : : : ; un) of u1; : : : ; unw.r.t. L=K is de�ned to be the determinant of the n� n matrix �TrL=K(uiuj)�.Note that DL=K(u1; : : : ; un) is an element of K.Lemma B.8. If u1; : : : ; un 2 L are su
h that DL=K(u1; : : : ; un) 6= 0, then fu1; : : : ; ung is a K{basis ofL.Proof: It suÆ
es to show that u1; : : : ; un are linearly independent over K. Suppose Pni=1 
iui = 0 forsome 
1; : : : ; 
n 2 K. Multiplying the equation by uj and taking the tra
e, we �nd thatPni=1 
iTr(uiuj) =0. By hypothesis, the matrix �TrL=K(uiuj)� is nonsingular. Hen
e it follows that 
j = 0 for j = 1; : : : ; n.2Lemma B.9. If fu1; : : : ; ung and fv1; : : : ; vng are two K{bases of L and ui = Pnj=1 aijvj , aij 2 K,then we have DL=K(u1; : : : ; un) = [det(aij)℄2DL=K(v1; : : : ; vn):In parti
ular, sin
e (aij) is nonsingular, we haveDL=K(u1; : : : ; un) = 0() DL=K(v1; : : : ; vn) = 0:6Indeed, sin
e n = dimK L, the set f1; �; : : : ; �ng of n+ 1 elements must be linearly dependent over K, andthus � satis�es a nonzero polynomial of degree � n over K. This, or any nonzero polynomial satis�ed by �, 
aneasily be made moni
 upon dividing by its leading 
oeÆ
ient.75



Proof: For any i; j 2 f1; : : : ; ng, we haveuiuj =  nXk=1 aikvk!uj = nXk=1 aikvk  nXl=1 ajlvl! = nXk=1 nXl=1 aikajlvkvl:Taking tra
e of both sides, and letting A denote the matrix (aij), we see that(Tr(uiuj)) = At (Tr(vivj))Aand so the result follows. 2Remark: We shall say that the dis
riminant of L=K is zero (or nonzero) and write DL=K = 0 (orDL=K 6= 0) if for some K{basis fu1; : : : ; ung of L, the quantity DL=K(u1; : : : ; un) is zero (or nonzero).The last lemma justi�es this terminology.We are now ready to des
ribe the link between the two notions of dis
riminant 
onsidered in thisand the previous se
tion.Theorem B.10. Suppose L is a �eld and L=K is a separable. Then the dis
riminant of L=K is nonzero.In fa
t, if � is a primitive element (so that L = K(�) and f1; �; �2; : : : ; �n�1g is a K{basis of L) andf(X) is its minimal polynomial, then we haveDL=K(1; �; �2; : : : ; �n�1) = Yi>j (�i � �j)2 = Dis
(f)where �1; �2; : : : ; �n denote the 
onjugates of �.Proof: Sin
e L=K is separable, the tra
e of any element of L equals the sum of its 
onjugates w.r.t.L=K. Thus if fu1; : : : ; ung is a K{basis of L and ui(1); ui(2); : : : ; ui(n) denote the 
onjugates of ui w.r.t.L=K, then we have Tr(uiuj) =Pnk=1 u(k)i u(k)j . In other words, the matrix (Tr(uiuj)) equals the produ
tof the matrix �u(j)i � with its transpose. ThereforeDL=K(u1; : : : ; un) = ���������� u(1)1 u(2)1 : : : u(n)1u(1)2 u(2)2 : : : u(n)2... ... . . . ...u(1)n u(2)n : : : u(n)n ����������2:In 
ase u1; u2; : : : ; un are 1; �; : : : ; �(n�1) respe
tively, then the determinant above is a Vandermondedeterminant and the RHS be
omes��������� 1 1 : : : 1�1 �2 : : : �n... ... . . . ...�1n�1 �2n�1 : : : �nn�1 ���������2=Yi>j (�i � �j)2 = Yi<j (�i � �j)2 :Therefore, we obtain the desired formulae. Our �rst assertion follows from the fa
t that if L = K(�) isseparable over K, then the 
onjugates �(1); �(2); : : : ; �(n) of � w.r.t. L=K are distin
t. 2Remark: The 
onverse of the above Theorem, viz., if DL=K 6= 0 then L=K is separable, is also true.For a proof, see [26℄. 76



B.3 Dis
riminant in Arithmeti
In Arithmeti
, whi
h we start learning even before entering high s
hool, we mainly deal with numbersand their divisibility properties. A basi
 result is theFundamental Theorem of Arithmeti
 Every nonzero integer 
an be fa
tored as �1 times a �niteprodu
t of prime numbers. Moreover, this de
omposition is unique up to rearrangement of terms.In higher arithmeti
, we are interested in knowing if su
h a result holds in domains more generalthan Z, the ring of integers. An example of su
h a domain isZ[i℄ = fa+ bi : a; b 2 ZgThis is a subring of C , and is 
alled the ring of Gaussian integers. Here i is the usual 
omplex numberwhose square is �1. The notion of divisibility is easily de�ned in Z[i℄ or for that matter, in any ring.Given a ring7 A and elements a; b 2 A, we say that b divides a, and write bja, if a = b
 for some
 2 A.The analogue of a prime number is the so 
alled irredu
ible element.An element p in a ring A is said to be irredu
ible if p 6= 0, p is not a unit8, and whenever p = b
 forsome b; 
 2 A, either b is a unit or 
 is a unit.For example, 5 is irredu
ible in Z but not in Z[i℄ sin
e it de
omposes as 5 = (2 + i)(2� i). Further,the fa
tors 2+ i and 2� i 
an be shown to be irredu
ible elements whi
h are distin
t; in fa
t, they do noteven di�er by a unit. On the other hand, 3 remains prime in Z[i℄. Indeed, if u = a+ bi and v = 
+ diare elements of Z[i℄ su
h that 3 = uv, then by taking modulus (as 
omplex numbers) and squaring, wehave 9 = (a2 + b2)(
2 + d2). But the square of an integer is always � 0 or 1 (mod 4), and so the sumof two squares is never � 3 (mod 4). Hen
e a2 + b2 = 1 or 
2 + d2 = 1. This implies that either u or vis in f1;�1; i;�ig, i.e., either u is a unit or v is a unit. The prime 2 of Z is spe
ial. It splits in Z[i℄ as2 = (1+ i)(1� i) and the fa
tors 1� i are irredu
ible, but they aren't really distin
t be
ause they di�ersimply by a unit [indeed, 1 + i = i(1 � i) and so 2 = i(1 � i)2℄. In general, a prime number p, whenextended to Z[i℄ 8<: splits as a produ
t of two distin
t irredu
ibles if p � 1(mod 4)remains irredu
ible if p � 3(mod 4)equals unit times the square of an irredu
ible if p = 2:In
identally, for p � 1(mod 4), the two irredu
ible fa
tors in Z[i℄ must be (
omplex) 
onjugates ofea
h other (prove!), and thus the result about the de
omposition of su
h primes in Z[i℄ is equivalent toFermat's Two Squares Theorem (viz., primes � 1(mod 4) are sums of two squares).The ring Z[i℄ is an example of the ring of algebrai
 integers (in a number �eld). The latter arede�ned as follows. A sub�eld K of C , whi
h is �nite dimensional as a ve
tor spa
e over Q is 
alled analgebrai
 number �eld or simply a number �eld. We 
all dimQK the degree of K=Q and denote it by[K : Q℄. If K is a number �eld, then every element of K satis�es a nonzero polynomial with integer
oeÆ
ients (
he
k!). Those elements of K whi
h satisfy a moni
 polynomial with integer 
oeÆ
ients are
alled (algebrai
) integers in K. The set of all algebrai
 integers in K form a subring of K, 
alled thering of integers of K and denoted by OK .Exer
ises. Let K be a number �eld of degree n and OK be its ring of integers.1. Show that given any u 2 K, there exists d 2 Z su
h that d 6= 0 and du 2 OK . Dedu
e that thequotient �eld of OK is K and moreover, there exist a Q-basis fu1; : : : ; ung of K su
h that ui 2 OK forall i = 1; : : : ; n.7By a ring we shall always mean a 
ommutative ring with identity.8Units in a ring A are de�ned to be the elements whi
h divide 1. For example, 1, �1 are the only units in Z.77



2. Show that OK \ Q = Z. In other words, if a rational number satis�es a moni
 polynomial withinteger 
oeÆ
ients, then it must be an integer.If fu1; : : : ; ung is a Q-basis of K su
h that fu1; : : : ; ung � OK , then from Exer
ise 2 above, we seethat DK=Q(u1; : : : ; un) is an integer. Moreover, by Theorem B.10, it is a nonzero integer.Lemma B.11. Let fu1; : : : ; ung � OK be a Q-basis of K with the property that jDK=Q(u1; : : : ; un)j isminimal. Then OK = Zu1 + � � � + Zun, i.e., u 2 OK if and only if u = 
1u1 + � � � + 
nun for some
1; : : : ; 
n 2 Z.Proof: It is 
lear that Zu1+ � � �+ Zun � OK . If u 2 OK , then we 
an write u = r1u1 + � � �+ rnun forsome r1; : : : ; rn 2 Q. If rk 62 Z for some k (1 � k � n), then rk = mk + �, where mk 2 Z and � is arational number with 0 < � < 1. De�ne v1; : : : ; vn by vj = uj if j 6= k and vk = u �mkuk. Then it is
lear that fv1; : : : ; vng � OK and fv1; : : : ; vng is a Q-basis of K. Moreover the matrix (aij) of rationalsfor whi
h vi =Pnj=1 aijuj for i = 1; : : : ; n, is the identity matrix ex
ept for the k{th row, whi
h is givenby (r1; : : : ; rk�1; �; rk+1; : : : ; rn). Thus in view of Lemma B.9, we see thatDK=Q(v1; : : : ; vn) = [det (aij)℄2DK=Q(u1; : : : ; un) = �2DK=Q(u1; : : : ; un):Sin
e � < 1, the minimality of jDK=Q(u1; : : : ; un)j is 
ontradi
ted. This proves the lemma. 2De�nition B.12. A Q-basis u1; : : : ; un of a number �eld K su
h that OK = Zu1+ � � �+Zun is 
alled anintegral basis of K.The above Lemma shows that every number �eld has an integral basis. Also, it is 
lear that iffu1; : : : ; ung and fv1; : : : ; vng are any two integral bases of K, then vi =Pnj=1 aijuj for j = 1; : : : ; n, forsome n�n matrix (aij) with integral entries. Moreover the inverse of (aij) is also a matrix with integralentries. Therefore, det (aij) = �1. Hen
e from Lemma B.9, it follows that any two integral bases of Khave the same dis
riminant; it is 
alled the (absolute) dis
riminant of K and is denoted by dK .The following example illustrates the 
omputation of dis
riminant and determination of integralbases.Example: Let K be a quadrati
 �eld [that is, a sub�eld of C su
h that [K : Q℄ = 2℄ and O be its ringof integers. If � is any element of K whi
h is not in Q, then 1 < [Q(�) : Q℄ � [K : Q℄ = 2, and hen
eK = Q(�). Moreover, � satis�es a quadrati
 polynomial with integer 
oeÆ
ients, and thus � = a+ bp�for some a; b 2 Q and � 2 Z. Sin
e � 62 Q, we must have b 6= 0 and � not a square. It follows thatK = Q �p��. Removing the extraneous square fa
tors from �, if any, we 
an write K = Q(pm),where m is a squarefree integer. We now attempt to give a more 
on
rete des
ription of O. First, notethat Z[pm℄ = fr + spm : r; s 2 Zg � O. Let x = a + bpm 2 O for some a; b 2 Q. Then the other
onjugate a � bpm of x must also be in O. Therefore the sum of these two, i.e., Tr(x) = 2a and theprodu
t a2 �mb2 are both in OK \ Q = Z. Sin
e m is squarefree and a2 �mb2 2 Z, we see that a 2 Zif and only if b 2 Z. Thus if a =2 Z, then we 
an �nd an odd integer a1 su
h that 2a = a1, and relativelyprime integers b1 and 
1 with 
1 > 1 su
h that b = b1
1 . Now�a1 = 2a 2 Z and a2 �mb2 2 Z�) �4j
21a21 and 
21j4mb21�) 
1 = 2:Hen
e b1 is odd and a21�mb21 � 0(mod 4). Also a1 is odd, and therefore, m � 1(mod 4). It follows thatif m 6� 1(mod 4), then a; b 2 Z, and so in this 
ase,O = Z[pm℄ = fa+ bpm : a; b 2 Zg and f1;pmg is an integral basis.In the 
ase m � 1(mod 4), the pre
eding observations imply thatO � �a1 + b1pm2 : a1; b1 2 Z with a1 � b1(mod 2)�78



and, moreover, 1+pm2 2 O sin
e it is a root of X2 �X � m�14 ; thereforeO = Z[ 1+pm2 ℄ = fa+ bpm2 : a; b 2 Z with a � b(mod 2)gand 
onsequently, f1; 1 +pm2 g is an integral basis.We 
an now 
ompute the dis
riminant of K as follows.dK = 8>><>>: det� 2 00 2m � = 4m if m � 2; 3(mod 4)det� 2 11 (1 +m)=2 � = m if m � 1(mod 4):It may be remarked that the integer d = dK determines the quadrati
 �eld K 
ompletely, and the setf1; d+pd2 g is always an integral basis of K. (Verify!)In general, the unique fa
torization property is not true in the ring of integers of a number �eld; inother words, the Fundamental Theorem of Arithmeti
 may not hold there. For example, ifK = Q(p�5),then from the example above, we have OK = Z[p�5℄, and for the number 6, we have two di�erentfa
torizations: 6 = 3 � 2 = (1 +p�5)(1�p�5):It is not diÆ
ult to see that the fa
tors 2; 3; 1+p�5 and 1�p�5 are irredu
ible and genuinely distin
t(i.e., no two di�er by a unit) in OK = Z[p�5℄. Around 1844, the German mathemati
ian E. Kummerwas studying arithmeti
 in the ring Z[�℄ of 
y
lotomi
 integers9 while trying to prove Fermat's LastTheorem10. Kummer realized that the unique fa
torization may not always hold in rings of 
y
lotomi
integers. Instead of giving up the problem, he 
ontinued to delve deeper and made a remarkable dis
overy!He showed that the unique fa
torization property 
an be salvaged if we repla
e numbers by what he
alled ideal numbers. Another German mathemati
ian R. Dedekind simpli�ed and extended Kummer'swork by using ideals in pla
e of ideal numbers.11 Dedekind's results were �rst published in 1871.12 Ine�e
t, Dedekind showed that if K is a number �eld, then every nonzero ideal of OK fa
tors as a �niteprodu
t of prime ideals, and this fa
torization is unique up to rearrangement of terms. Integral domainswith this property are now known as Dedekind domains.At any rate, if K is a number �eld and p is a prime number, then, thanks to the abovementionedresult of Kummer-Dedekind-Krone
ker, the extended ideal pOK 
an be fa
tored uniquely aspOK = P e11 P e22 � � �P ehh9If � = �n is a primitive n{th root of unity (e.g., � = e2�i=n = 
os(2�=n)+ i sin(2�=n)), then Q(�) is a number�eld, 
alled a 
y
lotomi
 �eld and its ring of integers is Z[�℄ = fa0 + a1� + � � �+ an�1�n�1 : a0; a1; : : : ; an 2 Zg,whi
h is 
alled the ring of 
y
lotomi
 integers.10Fermat's Last Theorem (FLT) is the famous assertion of P. Fermat that the equation xn + yn = zn has nosolution in nonzero integers, if n � 3. It is natural to 
onsider the ring of 
y
lotomi
 integers here be
ause theexisten
e of a solution (x; y; z) yields a fa
torization xn = (y � z)(y � �z) : : : (y � �n�1z) in Z[�℄ and to pro
eedfurther, it would be useful to know if the unique fa
torization property is valid in Z[�℄. In a sense, Kummerdidn't su

eed in proving FLT (though he settled it for several values of n) be
ause of the failure of uniquefa
torization in Z[�℄. Re
ently, in 1994 FLT has been proved by A. Wiles partly in 
ollaboration with R. Taylor.11In fa
t, the 
on
ept of an ideal of a ring was thus born in the work of Kummer and Dedekind. Note that thesehistori
al origins justify the nomen
lature \ideal", whi
h may otherwise seem obs
ure. Indeed, by 
onsideringideals, the ideal situation (of unique fa
torization) is restored!12In
identally, another approa
h towards understanding and extending Kummer's work was developed by hisstudent L. Krone
ker, whose work was apparently 
ompleted in 1859 but was not published until 1882.79



where P1; : : : ; Ph are distin
t prime ideals of OK and e1; : : : ; eh are positive integers. The prime p issaid to be rami�ed in K if ei > 1 for some i.Example: If K = Q(i), then 2 is the only rami�ed prime.In general, to understand the phenomenon of rami�
ation, the dis
riminant is an indispensable tool.This may be 
lear from the following basi
 result.Theorem B.13 (Dedekind's Dis
riminant Theorem). Let K be a number �eld and dK be its dis-
riminant. Then for any prime number p, we havep is rami�ed in K () pjdK :Example: If K = Q(pm), where m is a squarefree integer, then we have 
al
ulated the dis
riminantdK of K. Thus, for any prime number p, we have:p is rami�ed in K () � pjm if m � 1(mod 4)pjm or p = 2 if m 6� 1(mod 4):In the 
ase of the 
y
lotomi
 �eld K = Q(�n ), where n is any integer > 2 and �n is a primitive n{theroot of unity, the dis
riminant turns out13 to bedK = (�1)'(n)=2 n'(n)Qpjn p'(n)=(p�1)where the produ
t in the denominator is over all prime numbers dividing n, and '(n) denotes the numberof positive integers � n and relatively prime to n. Therefore,p is rami�ed in Q(�n )() pjn:Remarks. 1. For a proof of Dedekind's dis
riminant Theorem, see [7℄ or the books of Lang [14℄ or Serre[19℄.2. The notions of dis
riminant and resultant are no doubt 
lassi
al and date ba
k more than a 
entury.However, extensions and generalizations (to `higher dimensions') of these notions are of mu
h 
urrentinterest. For an introdu
tion, see the expository arti
le [22℄ by Sturmfels and the referen
es therein.At a more advan
ed level, there is a book [5℄ by Gelfand, Kapranov and Zelevinsky, and the re
entlypublished review [3℄ by Catanese may be a good starting point for this.3. It may be remarked that the phenomenon of rami�
ation or rather the absen
e of rami�
ation, is
losely related to 
ertain basi
 notions in Topology. Brie
y speaking, unrami�ed �eld extensions (i.e.,extensions for whi
h no prime `below' is rami�ed `above') 
orrespond to (topologi
al or unbran
hed)
overings. Thus, saying that a �eld has no unrami�ed extensions, is analogous to the 
ondition that the
orresponding topologi
al spa
e is simply 
onne
ted. Unfortunately, in the 
ompartmentalized 
ourses atCollege and University level, su
h analogies are rarely highlighted. Thus we might take this opportunityto mention the following brief and rough di
tionary of some basi
 
on
epts from Algebra and Topology.Algebrai
 Field Extensions  ! Bran
hed Coverings;Galois extensions  ! Regular Coverings;Galois Groups  ! Groups of De
k transformations.For more on Coverings Spa
es in parti
ular, and Topology, in general, we re
ommend the 
lassi
 text ofSeifert and Threlfall [18℄ or the more re
ent book of Massey [15℄. The �rst appendix in [16℄ also gives ani
e and qui
k summary of the basi
s of 
overing spa
es.13For a proof of the dis
riminant formula for 
y
lotomi
 �elds, one may refer to [25℄.80



4. It is a nontrivial result of Minkowski that for any number �eld K other than Q, we have jdK j > 1.This means that there exists at least one prime number p whi
h is rami�ed in K. Thus, we might saythat Q is simply 
onne
ted! Analogous result holds when Q is repla
ed by the �eld C (X) of rationalfun
tions in one variable with 
omplex 
oeÆ
ients. This time, the topologi
al analogue is the morefamiliar result that the Riemann sphere or the extended 
omplex plane is simply 
onne
ted.5. The study of rami�
ation (and hen
e of dis
riminants) is of basi
 importan
e in some advan
eddevelopments in Algebrai
 Number Theory, whi
h go under the name of Class Field Theory. This is afas
inating topi
, and to learn more about it, see [2℄ or [14℄. It may also be worthwhile and interesting tosee Hilbert's Zahlberi
ht, whi
h was meant as a report to the German Mathemati
al So
iety on the statusof Algebrai
 Number Theory in 1895. This report 
ontained several original 
ontributions by Hilbertand perhaps started the subje
t of Class Field Theory. The Zahlberi
ht is now available in English [9℄.6. The relation with rami�
ation is perhaps the most important appli
ation of dis
riminant inNumber Theory. However, the 
lassi
al dis
riminant � = b2 � 4a
 of a quadrati
 also 
omes up in thefollowing important and 
lassi
al question.Given an integer �, what are the possible binary quadrati
 forms ax2 + bxy + 
y2 with integer
oeÆ
ients a; b; 
, for whi
h � = b2 � 4a
? Can we 
lassify them?This was studied by Legendre and Gauss, and the notions of 
lass number and genera were developedby Gauss for 
lassifying binary quadrati
 forms with a given dis
riminant. For an exposition of the basi
sof this theory, one may 
onsult the texts of Baker [1℄ or Flath [4℄. For a beautiful introdu
tion to somemodern developments motivated by this problem, we refer to Serre's Singapore le
ture [20℄.7. The dis
riminant also makes an unexpe
ted appearan
e in questions related to the generalizationof the so 
alled Waring's problem. For example, it is shown in [12℄ that if K is a number �eld and n; kare integers with n � k � 2, then every n�n matrix over OK is a sum of k-th powers of matri
es overOK if and only if the dis
riminant dK of K is 
oprime to k. Moreover, when this 
ondition is met, sevenpowers always suÆ
e.A
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