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Abstract

We give an interpretation for the coefficients of the two variable refinement DSn (q, t) of the distance
enumerator of the Shi hyperplane arrangement Sn in n dimensions. This two variable refinement was
defined by Stanley in [R.P. Stanley, Hyperplane arrangements, parking functions and tree inversions, in:
B. Sagan, R. Stanley (Eds.), Mathematical Essays in Honor of Gian-Carlo Rota, Birkhauser, Boston, Basel,
Berlin, 1998, pp. 359–375] for the general r -extended Shi hyperplane arrangements.

For the Shi hyperplane arrangement, we define three natural partitions of the number (n + 1)n−1. The
first arises from parking functions of length n, the second from geometric considerations and the third from
inversions on rooted spanning forests on n vertices. We call the three partitions as the parking partition,
the geometric partition and the inversion partition respectively. We show that one of the parts of the
parking partition is identical to the number of edge-labelled trees with label set {1, 2, . . . , n} on n + 1
unlabelled vertices. We prove that the parking partition majorises the geometric partition and conjecture
that the inversion partition also majorises the geometric partition.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Let r ≥ 1 and n ≥ 2. The r -extended Shi hyperplane arrangement in n dimensions is denoted
Sr

n . It is given by the following hyperplanes in Rn .

xi − x j = −r + 1, −r + 2, . . . r, for 1 ≤ i < j ≤ n.

1.1. The Shi hyperplane arrangement

When r = 1, the arrangement is called the Shi hyperplane arrangement in n dimensions and
denoted Sn .
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Its distance enumerator is defined with respect to a base region B as follows. Let R(Sn)

be the set of regions of the Shi hyperplane arrangement. Each region R ∈ R(Sn) is separated
from B by a set HR of hyperplanes. Let h R = |HR | and define the distance polynomial as
Dist(Sn, q) =

∑
R∈R(Sn) qh R . The base region B is the region bounded by the hyperplanes

xn > xn−1 > · · · > x2 > x1 and x1 − xn < 1.
It is known (see [5], Corollary 5.11) that |R(Sn)| = (n + 1)n−1. This is also the number

of n-length Parking Functions. We recall the definition of an n-length parking function. There
are n parking spaces 0, 1, . . . , n − 1 in a one-way street. n cars C1, C2, . . . Cn enter the street
in that order. Ci has a preferred space ai and proceeds directly to slot ai . If slot ai is occupied,
it will try to park in the next available space. If a car leaves the street without parking then the
process fails. a = (a1, a2, . . . , an) is an n-length parking function if all cars can park with ai
being their respective choices. The set of all parking functions of length n is denoted PFn . It
is known that a = (a1, a2, . . . , an) is a parking function iff the weakly increasing permutation
b = (b1, b2, . . . , bn) of a satisfies bi < i (see [3], Exercise 5.49).

It is also known (see [5], Corollary 6.14) that Dist(Sn, q) =
∑

a∈PFn
qa1+a2+···+an .

Dist(Sn, q) satisfies the remarkable identity

Dist(Sn, q) = q( n
2 ) In+1(1/q), (1)

where In+1(q) =
∑

T q inv(T ) is the inversion enumerator, where the sum is over all spanning
trees, T on [n] ∪ {0} (see [5], Theorem 6.22).

Stanley (see [4]) defined a two variable distance enumerator of the Shi hyperplane
arrangement with respect to the same base region B. For each region R ∈ R(Sn), let aR
be the number of separating hyperplanes of the form xi − x j = 0 and bR be the number of
separating hyperplanes of the form xi − x j = 1. The two variable distance enumerator is defined
as DSn (q, t) =

∑
R∈R(Sn) qaR tbR . We denote the coefficient of qk t` of DSn (q, t) as Distn(k, `).

We reproduce from [4] the two variable enumerator for n = 3, 4 below. The question of an
interpretation for these numbers was posed (see [5], page 106). We give an answer in terms of
number of ideals of a poset IPπ associated with permutations π ∈ Sn .

k\` 0 1 2 3
0 1 1 2 1
1 2 2 2
2 2 2
3 1

k\` 0 1 2 3 4 5 6
0 1 1 2 3 3 3 1
1 3 3 6 7 6 3
2 5 5 8 9 5
3 6 7 9 6
4 5 6 5
5 3 3
6 1

n = 3 n = 4

Fix n and for 0 ≤ k ≤
( n

2

)
let Πk be the set of permutations on [n] which have exactly

k non-inversions. For a permutation π ∈ Πk , let IPπ be a poset of its inversions ordered by
containment (that is, if g = (πi , π j ) where i < j , and h = (πa, πb) where a < b, are inversions,
then g ≤IPπ

h iff a ≤ i < j ≤ b). For example, when π = 623415, the poset IP623415 is shown
in Fig. 1. For π ∈ Πk , let the number of ideals of IPπ with

( n
2

)
− k − ` elements be IPπ (`). We

prove the following.

Theorem 1. Distn(k, `) =
∑

π∈Πk
IPπ (`).
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Fig. 1. An example of the poset IPπ .

Theorem 1 gives a two variable generalisation to the equality (see [3], page 96)∑
π∈Sn

F(J (NIPπ ), q) = In+1(q), (2)

where Sn is the set of permutations on n distinct letters, F(J (NIPπ ), q) is the rank generating
function of the lattice of order ideals of the poset of non-inversion NIPπ which is similar to IPπ ,
the only difference being that we order non-inversions of π instead of its inversions and In+1(q)

is the inversion enumerator of rooted spanning forests on [n]. The proof of Theorem 1 is given
in Section 2.

Please see Section 3 for the definitions and results about the three partitions of the number
nn−2.

2. Two variable distance enumerator: An interpretation

In this section, we prove Theorem 1. We recall that the arrangement has hyperplanes xi −x j =

0, 1 for 1 ≤ i < j ≤ n.

2.1. Representing a region of R(Sn)

We need the “embroidered permutation” representation (see [5], page 81 or [2]) of an
R ∈ R(Sn). An embroidered permutation is a pair (π, C) where π = (π1, π2, . . . , πn) is a
permutation of [n] and C is a family of inversions of π such that if g = (πi , π j ) ∈ C where i < j
and h = (πa, πb) ∈ C where a < b, then it is not the case that i ≤ a < b ≤ j .

There is a bijection betweenR(Sn) and embroidered permutations. Let R ∈ R(Sn). All points
x = (x1, x2, . . . , xn) ∈ R can be linearly ordered according to increasing xi values and this linear
ordering gives us a permutation. It is simple to see that this permutation is independent of the
point x . We further need to specify which pairs of indices (i, j) satisfy xi − x j < 1.

Given a pair (π, C), consider the region R ∈ R(Sn) bounded by the hyperplanes xπ1 <

xπ2 < · · · < xπn and ∀g = (πi , π j ) ∈ C with i < j , xπ j − xπi < 1. (This is the reason
why we need the family C to contain inversions.) Conversely, given R ∈ R(Sn), all valid
points aR = (a1, a2, . . . , an) of R will give the same permutation π when the ai ’s are listed
in increasing order. This gives us the π part. Consider indices i, j where πi > π j such that
aπ j − aπi < 1. Such (πi , π j ) pairs are as before seen to be inversions and it is simple to see that
the containment-wise maximal pairs form a family C with the non-containment property.

We note that the base region B has the embroidered permutation representation (σ,S) where
σ = (n, n − 1, . . . , 2, 1) and S = {{n, 1}}.
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2.2. Two parameter distance of (π, C)

To each embroidered permutation (π, C), we need to give a pair of non-negative integers (k, `)

such that Dist((π, C), B) = (k, `), that is, there are k hyperplanes of the type xα −xβ = 0 (where
α < β) and ` hyperplanes of the type xα − xβ = 1 (where α < β) which separate the regions
(π, C) and B = (σ,S). When the region (π, C) is fixed, we call k the number of zero separating
hyperplanes and ` as the number of one separating hyperplanes associated with (π, C).

2.2.1. Zero separating hyperplanes

Lemma 1. For the region R = (π, C), k is the number of non-inversions of π .

Proof. To see this, we note that if h = (πi , π j ) where i < j is a non-inversion of π , then (π, C)

satisfies xπi − xπ j < 0 (by definition of the region of the embroidered permutation) while B
satisfies xπi − xπ j > 0. Thus (πi , π j ) gives rise to a zero separating hyperplane.

Conversely, if xα − xβ = 0 (where α < β) is a hyperplane separating B and (π, C), it is easy
to see that xα − xβ > 0 in the region (π, C) and hence that (α, β) is a non-inversion in π . Thus,
non-inversions of π correspond to zero separating hyperplanes. �

2.2.2. One separating hyperplanes
We need the notion of the poset IPπ associated with a permutation π . We note that the family C

which occurs as part of the embroidered permutation (π, C) is an order ideal of IPπ . The reason
for this is geometric: when some inversion has length strictly less than 1, then any inversion
contained within it will also have length strictly less than 1. Thus, when we pick the maximal
(with respect to IPπ ) inversions which have lengths strictly less than 1, we get an ideal (or
equivalently, an antichain) of IPπ . Hence, the family C of any embroidered permutation (π, C),
can be considered as an order ideal of IPπ .

Below, we connect the size of an ideal represented by the family C and the number of one
separating hyperplanes of (π, C).

Lemma 2. The number of one separating hyperplanes of (π, C) is the number of elements of
IPπ not contained in the ideal C.

Proof. We first show that all elements of IPπ not in the order ideal represented by C are one
separating hyperplanes of (π, C). Let g = (πi , π j ) 6∈ C (where i < j) be an inversion of π . By
definition of the region (π, C), since xπi < xπ j and since (πi , π j ) is an inversion, xπ j − xπi > 0.
We claim that in fact xπ j − xπi > 1. To see this, we note that there are only two choices for the
value xπ j − xπi : < 1 or > 1 and those inversions (πi , π j ) such that xπ j − xπi < 1 are those
precisely in the ideal of C. Since g 6∈ C, the claim that xπ j − xπi > 1 follows.

We note that whereas in B, for all pairs (α, β) with α < β, xα − xβ < 1. The argument is
reversible and this gives a bijection between one separating hyperplanes and inversions of π not
in the ideal represented by C. �

Proof (of Theorem 1). The theorem follows from Lemmata 1 and 2. �

Remark 1. Let π have k non-inversions. Let R = (π, C1) ∈ R(Sn) and S = (π, C2) ∈ R(Sn) be
two regions such that the order ideals corresponding to C1 and C2 differ by exactly one element
of IPπ . By Theorem 1, there is a single hyperplane which separates R and S. Hence, the lattice
J (IPπ ) when treated as a graph is the subgraph of the distance graph of R(Sn) with respect to
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the base region B consisting of those regions of R(Sn) which are within a given region of Bn
(the Braid arrangement).

3. Three partitions of R(Sn)

3.1. Definitions

For a positive integer n, let [n] = {1, 2, . . . , n} and let [n0] = {0} ∪ [n]. Let T be a spanning
tree on the set [n0]. We call the vertex 0 as the “root” of T and call such trees 0-rooted spanning
trees.

From the bijection between R(Sn) and the set of spanning trees on (n + 1) vertices [n0] =

{0, 1, . . . , n} (see [5], Theorem 6.23), we can view the regions alternatively as 0-rooted spanning
trees on [n0]. Likewise, we can also view the regions as indexed by Parking Functions of length n.

3.1.1. Parking partition
Let a = (a1, a2, . . . , an) ∈ PFn . We partition PFn into the following three parts: those with

a1 > a2, with a1 = a2 and with a1 < a2. We call the number of such n-length parking functions
as gtn , eqn and ltn respectively. It is clear that we could have chosen any indices i 6= j and
partitioned PFn into three parts as above depending on the relation between ai and a j and still
obtained the same numbers. Below we tabulate the numbers gtn , eqn and ltn for small values of n.

3.1.2. Geometric partition
Consider the hyperplane x1 − x2 = α for α = 0, 1; and let R ∈ R(Sn). Let aR =

(a1, a2, . . . , an) be any point in R. Clearly, the value a1 − a2 is either < 0, strictly between
0 and 1, or > 1 and this condition is independent of the point aR . Thus each region R with
respect to the dimensions x1 and x2 satisfies one of the three properties: all points aR ∈ R either
have a1 − a2 < 0, or 0 < a1 − a2 < 1 or a1 − a2 > 1.

Let R·<0
n , R0<·<1

n and R·>1
n respectively denote the number of regions satisfying the above

three conditions. The main reason for this definition is to understand how |R(Sn)| gets partitioned
by the parallel hyperplanes x1 − x2 = 0, 1. Below we tabulate the numbers R·<0

n , R0<·<1
n and

R·>1
n for a few initial values of n.

3.1.3. Inversion partition
Let T be a 0-rooted spanning tree on [n0]. Let v1, v2 ∈ [n], v1 < v2 be two fixed vertices of T .

There are again three possibilities for the following path relation: either v1 is on the unique v2-0
path; or v2 is in the unique v1-0 path (that is, the pair (v1, v2) is an inversion of T ); or neither
of the two happens. Let T v1

n , T v2
n and T disj

n be the number of 0-rooted spanning trees on [n0] for
each of the above three choices. These numbers are again independent of the choices v1, v2. We
tabulate the numbers T disj

n , T v1
n and T v2

n for small values of n below.

n gtn ltn eqn

3 6 6 4
4 50 50 25
5 540 540 216
6 7203 7203 2401

n R ·<0
n R0<·<1

n R ·>1
n

3 6 5 5
4 50 37 38
5 540 366 390
6 7203 4553 5051

n0 T disj
n T v1

n T v2
n

3 6 5 5
4 51 37 37
5 564 366 366
6 7701 4553 4553

From the above tables, we have the following.

Conjecture 1. The smallest parts of the geometric partition and the inversion partition are
equal.
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3.2. Properties of the partitions

We prove some properties about the order of the components of the three partitions.

Lemma 3. For n ≥ 2, the parking partition satisfies gtn = ltn ≥ eqn .

Proof. Let a = (a1, a2, . . . , an) ∈ PFn with a1 > a2. Clearly, a′
= (a2, a1, . . . , an) obtained

from a by swapping the first two coordinates is also a valid parking function, and has a′

1 < a′

2.
The argument is reversible and this bijection proves that gtn = ltn .

We show that ltn ≥ eqn . Let a ∈ eqn . Let b = (a1, a2+1, a3, . . . , an) and c = (c1, c2, · · · , cn)

be a weakly increasing permutation of b. We show that b ∈ ltn . We only need to check that
b ∈ PFn . Suppose not, then there is an index k such that ck 6< k since we changed only one
coordinate to obtain b from a, ck = a2 + 1. But then a1 = ck − 1 will be ck−x for x ≥ 1.
Hence, there exists an index k − x such that ck−x 6< k − 1, which means that a 6∈ PFn which is
a contradiction. �

Lemma 4. For n ≥ 2, the geometric partition satisfies R·<0
n ≥ max(R·>1

n , R0<·<1
n ).

Proof. We first prove that R·<0
n ≥ R·>1

n . To do this, we note that the regions R·<0
n are those

which are separated from B by the hyperplane x1 − x2 = 0. Hence, they correspond to
embroidered permutations (π, C) such that 1 precedes 2 in π . Such a permutation contributes
|J (IPπ )| elements to R·<0

n .
Similarly, regions R·>1

n are those which correspond to embroidered permutations (π ′, C) such
that 2 precedes 1 in π ′ and with (1, 2) 6∈ C. Consider the ideals of IPπ ′ which do not contain the
inversion {2, 1} (and hence all elements X = {x ≥IPπ ′

{2, 1}}). Let IPπ ′(21) denote the subposet
IPπ ′ − X .

There is a simple bijection between a π with 1 preceding 2 and a π ′ with 2 preceding 1. We
claim a slightly stronger property: For each (π, π ′) pair, |J (IPπ )| ≥ |J (IPπ ′(21))|. To prove
this, we note that it is simple to see that the IPπ ′(21) is a subposet of IPπ . Summing over the
(π, π ′) pairs completes the proof.

An almost identical proof works to show that R·<0
n ≥ R0<·<1

n . We note that R0<·<1
n is the

number of (π ′, C) where π ′ is a permutation with 2 preceding 1 and C is an ideal of IPπ ′ such
that the inversion (2, 1) ∈ C. Thus X = {x |x <IPπ ′

(2, 1)} ∈ I as well. Let IPπ ′(2, 1) = IPπ ′ − X .
The remaining argument is identical. �

Lemma 5. For n ≥ 2, the inversion partition satisfies T disj
n ≥ T v1

n = T v2
n .

Proof. We first prove that T v1
n = T v2

n . Let T ∈ T v1
n . Thus T is a 0-rooted spanning tree on [n0]

and v1 is on the unique v2 − 0 path. By swapping the vertices v2 and v1, we get a tree T ′
∈ T v2

n .
The equality part of the Lemma is thus proved.

To show that T disj
n ≥ T v1

n , let T ∈ T v1
n as before. Let T ′′ be obtained from T by swapping v1

and 0. Clearly T ′′
∈ T disj

n . �

3.3. Properties among the partitions

We recall that eqn is the number of a ∈ PFn which satisfies a1 = a2.

Theorem 2. For all n ≥ 1, eqn = (n + 1)n−2.
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Fig. 2. Representing the three possibilities, where i < j .

Fig. 3. The three forbidden subposets where i < j < k.

Proof (of Theorem 2). The proof of Pollack given in [5], page 92 to count the number of n-length
parking functions carries over exactly. �

It would be nice to get a combinatorial proof of Theorem 2. Let n, k ≥ 2 and let EPFk
n be the

a ∈ PFn such that a1 = a2 = · · · = ak . (With this notation, eqn = EPF2
n .)

Corollary 1. For n, k ≥ 2, |EPFk
n| = (n + 1)n−k .

Remark 2. For n ≥ 1, let U Tn be the number of edge-labelled trees with label set {1, 2, . . . , n}

on n + 1 unlabelled vertices. It is known (see [3], Exercise 5.27) that U Tn = (n + 1)n−2.

Theorem 3. For n ≥ 2, gtn = R·<0
n .

For the proof of Theorem 3, we need the poset representation of a region R ∈ R(Sn). This
representation was defined by Athanasiadis [1]. We briefly discuss this below.

Let aR be a point of R ∈ R(Sn). For a pair (i, j) where i < j , represent each of the three
possibilities ai − a j < 0, 0 < ai − a j < 1 and ai − a j > 1 as in Fig. 2 (the dotted lines in the
second figure represent an incomparability relation between the vertices i and j). We call arcs of
the form (i, j) where i < j as forward arcs and those of the form ( j, i) where i < j as backward
arcs.

Athanasiadis showed that this representation yields a poset on [n] and that such posets do
not have three forbidden subposets (shown in Fig. 3). Athanasiadis also proved that any poset
without these three forbidden subposets arose from a region thereby characterising such posets.
We refer to such posets as “tree-posets”.

Proof (of Theorem 3). For this proof, we need the tree-poset representation of a region R ∈

R(Sn). We use the bijection of Pak and Stanley [4], coupled with the forbidden subposets of
Athanasiadis [1]. By Lemma 4, R·<0

n is the largest part of the geometric partition. We recall
that the posets PR of such a region R has a forward arc (1, 2) between vertices 1 and 2. It is
straightforward to see that the hyperplane x1 − x2 = 0 separates all regions of R·<0

n and B.
Thus, in the bijection of Pak and Stanley, we must cross this hyperplane at some point and

this crossover contributes a 1 to a1, the first component of the parking function a and 0 to a2. It
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Fig. 4. When (1, v) is a forward arc and (2, v) is not.

is simple to check that the only way to increase a2 is to cross the hyperplane x2 − xv = 0 for
some v ∈ [n] − {1, 2} on a path from B to R. All such crossovers are recorded by a forward arc
(2, v) in the poset representation of R. For such vertices v, since (2, v) and (1, 2) are forward
arcs, by transitivity of the poset, (1, v) is also a forward arc and this means we contribute a 1 to
a1 as well. This completes the proof of one-half of the bijection.

For the other half, let a ∈ gtn . We claim that its corresponding region R under the bijection of
Pak and Stanley has (1, 2) as a forward arc. As before, if a2 = k, there exists a set S with |S| = k
such that for all v ∈ S, (2, v) is a forward arc. Similarly, when a1 = k + x for x > 0, there is
a set T such that for all v ∈ T , (1, v) is a forward arc. We claim that 2 ∈ T (and thus 1 6∈ S).
Suppose not, then there is a vertex v ∈ T − S, v 6= 2 such that (1, v) is a forward arc and (2, v)

is not (see Fig. 4). Thus there are two cases for the relation between 2 and v.

• When (2, v) is a backward arc : As (1, v) and (v, 2) are arcs, by transitivity (1, 2) also is, and
thus 2 ∈ T contradicting our supposition.

• When (2, v) is an incomparability : If (1, 2) is a backward arc, then transitivity among these
three vertices would be violated. If (1, 2) were an incomparability relation, then we would get
the first forbidden subposet of Fig. 3 on the vertices 1, 2, v. Thus again 2 ∈ T .

This completes the proof of the theorem. �

We mention two interesting questions whose answers we do not know.

Conjecture 2. For fixed n, k, the numbers Distn(k, `) as ` increases are unimodal.

Question 1. Is there a recurrence relation or a generating function for the numbers occurring in
the inversion partition?
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