
Linear Algebra and its Applications 435 (2011) 1479–1489

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

Identities for minors of the Laplacian, resistance and distance

matrices

R.B. Bapat a,∗,1, Sivaramakrishnan Sivasubramanianb,2

a
Indian Statistical Institute, New Delhi 110016, India

b
Department of Mathematics, Indian Institute of Technology, Bombay 400076, India

A R T I C L E I N F O A B S T R A C T

Article history:

Received 1 November 2009

Accepted 14 March 2011

Available online 8 April 2011

Submitted by B. Shader

AMS classification:

15A09

15A15

15A24

Keywords:

Laplacian

Distance matrix

Resistance matrix

Determinant

Partitioned matrix

q-Analogue

It is shown that if L andD are the Laplacian and thedistancematrix of

a tree respectively, then anyminor of the Laplacian equals the sumof

the cofactors of the complementary submatrix of D, up to sign and

a power of 2. An analogous, more general result is proved for the

Laplacian and the resistance matrix of any graph. A similar identity

is proved for graphs in which each block is a complete graph on r

vertices, and for q-analogues of such matrices of a tree. Our main

tool is an identity for the minors of a matrix and its inverse.
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1. Introduction

We consider simple graphs, that is, graphs which have no loops or parallel edges. For a positive

integer n, the set {1, 2, . . . , n} will be denoted by [n]. We usually consider a graph with vertex

set [n].
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Given a graph, one associates a variety of matrices with the graph. Let G be a graph with vertex set

[n]. The Laplacian matrix L of the graph is an n × n matrix defined as follows. For i, j ∈ [n]; i �= j,
the (i, j)-element of L is −1 if vertices i and j are adjacent, and zero otherwise. For i ∈ [n], the (i, i)-
element of L is di, the degree of the vertex i. The adjacency matrix A of the graph is an n × n matrix

defined as follows. For i, j ∈ [n]; i �= j, the (i, j)-element of A is 1 if vertices i and j are adjacent, and

otherwise it is zero. For i ∈ [n], the (i, i)-element of A is 0. Note that L = Δ − A, where Δ is the

diagonal matrix of the vertex degrees.

For i, j ∈ [n], the distance between i and j is defined as the length (i.e., the number of edges) of the

shortest ij-path, if such a path exists. The distance matrix D of a connected graph with vertex set [n] is
an n × n matrix with its (i, j)-element equal to d(i, j) if i �= j, and 0 otherwise.

The interplay between the graph theoretic properties and the algebraic properties comes under

the purview of algebraic graph theory and is an area of intense recent research, see [7,10]. There are

interesting properties of the distancematrix of a tree, as well as relations between the distancematrix

and Laplacian of a tree. In this paper we obtain yet another identity between minors of the Laplacian

and the distance matrix of a tree, generalizing some known results.

For graphs which are not trees, the classical shortest path distance is replaced by the resistance

distance, motivated by resistance in electrical networks.We obtain an identity involvingminors of the

Laplacian and the resistance matrix. The main tool in the proofs is a fairly general identity for minors

of a matrix and its inverse, proved in Section 2.

We also consider graphs inwhich each block is a complete graph on r vertices and prove an identity

forminors of its Laplacian and distancematrices. Finally, we also consider a q-analogue of the distance

matrix of a tree and obtain a determinantal identity

The complement of S ⊆ [n] will be denoted by Sc . Let A be an n × n matrix and let S, K ⊆ [n].
We denote by A[S, K], the matrix obtained by selecting the rows of A indexed by S, and the columns

of A indexed by K. By A(S, K), we mean the matrix obtained by deleting the rows of A indexed by S,
and the columns of A indexed by K. Note that A[S, K] = A(Sc, Kc). We occasionally use notation such

as A[S, K) and A(S, K]. Their meaning should be clear. We tacitly assume that these notations do not

indicate a vacuous matrix. This amounts to assuming that S, K are nonempty, proper subsets. We do

not state these assumptions explicitly. We extend the notation to vectors as well. Thus if x is an n × 1

vector, then x[S] and x(S)will denote the subvector of x, indexed by indices in S and in Sc, respectively.
The all ones vector in any (appropriate) dimension is denoted by 1.

We state a few preliminaries that will be used. If S ⊆ [n], then α(S) will denote the sum of the

integers in S. The transpose of the vector x is denoted by x′. The following determinantal identities are

well-known.

Theorem1 (Jacobi, see [8, Section4.2]). Let A be an invertible n×nmatrix, let B = A−1 and let S, K ⊆ [n]
with |S| = |K|. Then

det A[S, K] = (−1)α(S)+α(K) det B(K, S)

det B
. (1)

Theorem 2 (Sherman–Morrison, see [22, Section 14.6]). Let A be an n × n nonsingular matrix and let

u, v be n × 1 vectors. Then
det(A − uv′) = (det A)(1 − v′A−1u). (2)

2. Minors of a matrix and its inverse

One of our main tools will be the following identity involving a partitioned matrix and its inverse,

which seems to be of independent interest.

Lemma 3. Let A be an n × n invertible matrix, let B = A−1 and let x, u be n × 1 vectors. Let y = Ax and

v = A′u. Let S, K ⊆ [n] with |S| = |K|. Then, assuming that the inverses exist,

v(K)′A(S, K)−1y(S) + u[S]′B[K, S]−1x[K] = u′y. (3)
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Proof. We use the following formula for the inverse of a partitioned matrix from Horn and Johnson’s

book [14, p. 18].

B[K, S]−1 = A[S, K] − A[S, K)A(S, K)−1A(S, K].
Thus,

u[S]′B[K, S]−1x[K] = u[S]′A[S, K]x[K] − u[S]′A[S, K)A(S, K)−1A(S, K]x[K]. (4)

It is simple to note that y(S) = A(S, K)x(K) + A(S, K]x[K], and thus

A(S, K)−1y(S) = x(K) + A(S, K)−1A(S, K]x[K]. (5)

Further, v(K)′ = u(S)′A(S, K) + u[S]′A[S, K), and thus it follows from (5) that

v(K)′A(S, K)−1y(S) = {u(S)′A(S, K) + u[S]′A[S, K)}{x(K) + A(S, K)−1A(S, K]x[K]} (6)

= u(S)′A(S, K)x(K) + u(S)′A(S, K]x[K] + u[S]′A[S, K)x(K)

+ u[S]′A[S, K)A(S, K)−1A(S, K]x[K]. (7)

The proof is complete by adding (4) and (7). �

Special cases of Lemma 3 will be of interest and useful in various situations. We note the following

curious consequence of the lemma. If A and B = A−1 are n× nmatrices such that the row and column

sums of A are all equal to 1, then for any S, K ⊆ [n] with |S| = |K|, assuming that the inverses exist,

the sum of the elements in A(S, K)−1 and B[K, S]−1 equals n.
In the next result we present a fairly general identity for minors. The identity will be applied to

obtain various consequences in the subsequent sections. For a square matrix A, we denote the sum of

all its cofactors by cofsum A.

Theorem 4. Let X and Y be symmetric n × n matrices such that X is nonsingular, each row and column

sum of Y equals 0, and

X−1 = −Y + δzz′ (8)

for some real δ and n × 1 vector z. Let S, K ⊆ [n] with |S| = |K|. Then
cofsum X(K, S) = (−1)α(S)+α(K)(−1)|S|δ(1′z)2(det X)(det Y[S, K]). (9)

Proof. Let B = X−1. Since Y has zero row and column sums, observe that, from (8), B1 = δ(1′z)z.We

have B = −Y + δzz′, and hence Y = δzz′ − B. Therefore

Y[S, K] = −{B[S, K] − δz[S]z[K]′}. (10)

It follows from (10) and Theorem 2 that

det Y[S, K] = (−1)|S| det B[S, K]{1 − δz[K]′(B[S, K])−1z[S]}. (11)

By Theorem 1 we have

cofsum X(K, S) = det X(K, S)1′X(K, S)−11

= (−1)α(S)+α(K)(det B[S, K])(det X)1′X(K, S)−11. (12)

It follows from (12) that

1′X(K, S)−11 = (−1)α(S)+α(K) cofsum X(K, S)

det B[S, K] det X . (13)
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Therefore, setting A = X, B = X−1, x = u = δ(1′z)z and y = v = 1, we obtain from Theorem 3

that

1′X(S, K)−11 + δ2(1′z)2z[S]′B[K, S]−1z[K] = δ(1′z)2. (14)

It follows from (14) and (11) that

1′X(K, S)−11 = δ(1′z)2(1 − δz[K]′B[S, K]−1z[S])
= δ(1′z)2(−1)|S| det Y[S, K]

det B[S, K] . (15)

Using (13) and (15) we obtain

(−1)|S|δ(1′z)2)det Y[S, K]
det B[S, K] = (−1)α(S)+α(K) cofsum X(K, S)

det B[S, K] det X ,

and hence

cofsum X(K, S) = (−1)α(S)+α(K)

(−1)|S|
(det X)(det Y[S, K]). (16)

This completes the proof. �

3. Resistance matrix and its inverse

The distance between two vertices in a graph is traditionally defined as the length (i.e., the number

of edges) in a shortest path between the two vertices. In contrast to this notion, the concept of re-

sistance distance arises naturally from several different considerations and is also more amenable

to mathematical treatment. We refer to [1,9,15] for more information on the resistance distance

and for additional references. Though we restrict ourselves to unweighted graphs, our results eas-

ily generalize to edge-weighted graphs. This only requires a small modification in the definition of the

Laplacian.

Recall that if A is an m × n matrix, then an n × m matrix G is called a g-inverse of A if AGA = A.
Further, a g-inverse G is called theMoore–Penrose inverse of A if it also satisfies GAG = G, (AG)′ = AG

and (GA)′ = GA. It is well-known (see Meyer’s book [17]) that any real matrix A admits a unique

Moore–Penrose inverse which is denoted by A+.
Let G be a connected graph with vertex set [n]. There are several equivalent ways to define the

resistance distance between two vertices.Wepresent two of them, both based on the Laplacianmatrix.

Their equivalence is shown for example in Bapat [1].

Let L be the Laplacian matrix of G and let L+ = ((�+
ij )) be the Moore–Penrose inverse of L. Then

r(i, j), the resistance distance between vertices i, j ∈ [n], is given by

r(i, j) = �+
ii + �+

jj − 2�+
ij . (17)

It may be remarked that we get the same expression if, instead of the Moore–Penrose inverse of L, we

use any symmetric g-inverse.

A second definition of r(i, j) can be given in terms of minors of L. Thus for any i, j ∈ [n], i �= j,

r(i, j) = det L({i, j}, {i, j})
det L(i, i)

. (18)

If i = j, then r(i, j) = 0. By the Matrix-Tree Theorem, det L(i, i) is the number of spanning trees of

G, which we denote by χ(G). Thus
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r(i, j) = det L({i, j}, {i, j})
χ(G)

. (19)

The resistance matrix R of G is defined as the n × n matrix with its (i, j)-entry equal to r(i, j). In this

section we obtain a generalization of (19) in the form of a minor identity involving L and R. The main

tools in the proof are Lemma 3 and some known results for R and its inverse, to be stated next.

We introduce some notation. If i is a vertex of G, thenN (i) will denote the set of vertices adjacent

to i. For i ∈ [n], let
τi = 2 − ∑

j∈N (i)

r(i, j), (20)

and let τ be the n×1 vectorwith components τ1, . . . , τn.Wewill use the following result of Bapat [2].

Theorem5. Let G be a connected graphwith vertex set [n]. Let L be its Laplacianmatrix and R its resistance

matrix. Then the following assertions hold:

(i) 1′τ = ∑n
i=1 τi = 2.

(ii)
∑n

i=1

∑
j∈N (i) r(i, j) = 2(n − 1).

(iii) R is nonsingular and

R−1 = −1

2
L + 1

τ ′Rτ
ττ ′. (21)

(iv)

det R = (−1)n−12n−3 τ ′Rτ
χ(G)

.

The following result follows easily from Theorem 5 and the fact that the Laplacian has zero row and

column sums.

Corollary 6. Let G be a connected graph with vertex set [n] and let R be its resistance matrix. Then

R−11 = 2

τ ′Rτ
τ. (22)

The main result of this section, which is an extension of (19), is presented next.

Theorem7. Let G be a connected graphwith vertex set [n]. Let L be its Laplacianmatrix and R its resistance

matrix. Let S, K ⊆ [n] with |S| = |K|. Then
cofsum R(K, S) = (−1)α(S)+α(K)(−2)n−|S|−1 det L[S, K]

χ(G)
. (23)

Proof. Let B = R−1. By Theorem 5, B = − 1
2
L + 1

τ ′Rτ ττ ′. In view of Corollary 6, an application of

Theorem 4 gives

4

τ ′Rτ
1

(−2)|S|
det L[S, K]
det B[S, K] = (−1)α(S)+α(K) cofsum R(K, S)

det B[S, K] det R
and hence

cofsum R(K, S) = (−1)α(S)+α(K)

(−2)|S|
4

τ ′Rτ
(det L[S, K])(det R). (24)
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Using (24) and part (iv) of Theorem 5 we get

cofsum R(K, S) = (−1)α(S)+α(K)(−2)n−|S|−1 det L[S, K]
χ(G)

and the proof is complete. �

Let i, j ∈ [n], i �= j, and set S = K = [n] \ {i, j} in Theorem 7. Then

R(K, S) =
⎡
⎣ 0 r(i, j)

r(i, j) 0

⎤
⎦

and hence cofsum R(K, S) = −2r(i, j). Hence we see that (19) is a consequence of Theorem 7.

4. Distance matrix and Laplacian of a tree

In this section we only consider trees. Let T be a tree with vertex set [n]. Let d(i, j) be the distance,

i.e., the length of the unique path, between vertices i, j ∈ [n]. Let D be the distance matrix of T,which

is the n × n matrix with its (i, j)-entry equal to d(i, j). Thus D is a symmetric matrix with zeros on

the diagonal. The distance matrix of a tree has been a subject of intensive research, starting with the

classical result of Graham and Pollak [13] that det D = (−1)n−1(n − 1)2n−2, which shows that the

determinant is independent of the structure of the tree. A formula for D−1 was given by Graham and

Lovasz [12].

It is well-known that the resistance distance between vertices i and j in a graph equals the classical

shortest path distance if there is a unique ij-path in the graph. Thus the distance matrix of a tree is the

same as its resistance matrix. Hence we may obtain results for the distance matrix of a tree as special

cases of the results obtained for the resistance matrix in the previous section.

Let L be the Laplacian of T . It has been observed by several authors that

d(i, j) = det L({i, j}, {i, j}), (25)

which is indeed a special case of (19). The following far-reaching generalization of this identity follows

immediately from Theorem 7.

Theorem 8. Let T be a tree with vertex set [n]. Let L be the Laplacian matrix and D the distance matrix of

T . Let S, K ⊆ [n] with |S| = |K|. Then
cofsumD(K, S) = (−1)α(S)+α(K)(−2)n−|S|−1 det L[S, K]. (26)

A combinatorial interpretation of the minors of the Laplacian matrix of a graph is well-known, see

[4,19]. The interpretation is particularly simple for principal minors and is stated next.

Theorem 9. Let G be a connected graph with vertex set [n], and let L be its Laplacian. Let S ⊆ [n] be a

nonempty, proper subset with |S| = k. Then det L[S, S] equals the number of spanning forests of G with

n − k components, each component containing a vertex in Sc.

It is tempting to attempt a combinatorial proof of Theorem 8. We present below such a proof for

the case of principal submatrices, i.e., the case when S = K. First we state the following simple result

of Graham et al. [11] without proof.

Lemma 10. Let A be an n×nmatrix. Subtract the first row of A from every other row, then the first column

from every other column, and delete the first row and column in the resulting matrix. If B is the matrix thus

obtained, then cofsum A = det B.
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We now prove the following special case of Theorem 8.

Theorem 11. Let T be a tree with vertex set [n]. Let L be the Laplacian matrix and D the distance matrix

of T . Let S ⊆ [n] with |S| = k. Then

cofsumD(S, S) = (−2)n−k−1 det L[S, S]. (27)

Proof. Let S ⊆ [n]with |S| = k and let S = {n−k+1, . . . , n},without loss of generality.Wefirst claim

that it is possible to relabel the vertices in Sc asw1, . . . ,wn−k, such that for any1 � i < j < � � n−k,
wi is not on the unique path from wj to w�. This claim is easily proved by induction and we omit the

proof. Fromnowonweassume that the verticesw1, . . . ,wn−k are ordered as stated.When the vertices

are ordered in this fashion we also make the following observation. For any i < j < �, the vertex on

the path from wj to w� that is closest to wi, is the same for all � > j.
Perform the following operations on D(S, S). Subtract the first row from every other row, then the

first column from every other column, and delete the first row and column in the resulting matrix. Let

M be the resulting matrix. Then by Lemma 10, cofsumD(S, S) = detM. It will be convenient to index

the rows and columns of M as 2, . . . , n − k. For i = 2, . . . , n − k, let αi be the vertex closest to 1

on the path from i to j, for any i < j � n − k. Note that αi is well-defined in view of the preceding

observation (see Fig. 1 for an illustration). The (i, j)-element of M is d(i, j) − d(1, i) − d(1, j), which

is easily seen to be −2d(1, α1). ThusM has the form M = −2M̃, where

M̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d(1, 2) d(1, α1) d(1, α1) · · · d(1, α1)

d(1, α1) d(1, 3) d(1, α2) · · · d(1, α2)

...
...

...

d(1, α1) d(1, α2) d(1, α3) · · · d(1, αn−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Wewill prove the result by induction on the cardinality of Sc. The base cases |Sc| = 1, 2 are easy. We

thus assume |Sc| ≥ 3. By induction assumption and by Theorem 9, detM(1, 1) is the

number of ways to break the tree T into n − k − 1 components, with vertices w1,w3, . . . ,wn−k

into separate components. We denote the number of such possibilities (i.e., the number of such

forests with n − k − 1 components) as sep(1, 3, 4 . . . , n − k). Similarly, we denote the number

of forests of T with n − k − 2 components, each of which contains a vertex from {w3,w4, . . . ,wn−k}
as sep(3, 4, . . . , n − k).

Note that the rows and the columns of M̃ are indexed by 2, . . . , n − k. Perform the following

operations on M̃. Subtract row 3 from row i for 4 � i � n − k, and then subtract column 3 from

column i for 4 � i � n − k and let M be the resulting matrix. It is easy to see by expanding detM by

the first row that

detM = d(1, 2)sep(1, 3, 4, . . . , n − k) − d(1, α1)
2sep(3, 4, . . . , n − k). (28)

It is clear (see Fig. 1) that the recurrence (28) is satisfied by sep(1, 2, . . . , n − k). To see this,

we note that d(1, 2)sep(1, 3, 4, . . . , n − k) is the number of ways to break T into forests with

n − k − 1 components, each component containing one of the vertices w1,w3,w4, . . . ,wn−k, and

α n−k−2

α 1 α 3

.....
2

2

3

w

α

w w

n−kw
w1

n−k−1

Fig. 1. The subtree induced on S.
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to choose an edge f on the w1w2-path. Thinking of f as a choice to break the w1w2-path, we see that

this way of counting gives us choices of breaking T into n − k components, with each component

containing one vertex from Sc. Clearly, the choices of f which lie on the 1α1-path, and the choices of

sep(1, 3, 4, . . . , n − k) where the separating edge on the w1w3-path is also from the 1α1 path, will

not separate the vertices w2,w3, and thus we need to remove these choices. It is simple to see that

such choices, whichwemight call asw2w3-nonseparators, are precisely d(1, α1)
2sep(3, 4, . . . , n−k)

in number. Thus detM = det M̃ = sep(1, 2, . . . , n − k), completing the proof. �

5. Graphs with each block as Kr

In this section we illustrate another application of Theorem 4, thereby obtaining a generalization

of Theorem 8. Let G be a connected graph with vertex set [n]. Recall that a block of a graph is defined

as a maximal 2-connected subgraph. We assume that each block of G is Kr, the complete graph on r

vertices. Let G have p blocks. Then it is easy to see that n = pr − p + 1. Let di be the degree of the

vertex i, and let τi = r − di, i = 1, . . . , n. Let τ be the n × 1 vector with components τ1, τ2, . . . , τn.
With this notation we have the following result of Sivasubramanian [20].

Theorem 12. Let G be a connected graph with vertex set [n]. Let D be the distance matrix and L the

Laplacian of G. Then the following assertions hold.

(i) detD = (−1)n−1(n − 1)r
n−r
r−1 .

(ii) Dτ = (n − 1)1.
(iii)

D−1 = −1

r
L + 1

r(n − 1)
ττ ′. (29)

Note that ifwe set r = 2 in Theorem12, thenwe recover theGraham–Lovaśz formula for the inverse

of the distancematrix of a tree.We now have the following result which is an immediate consequence

of Theorems 4 and 12.

Theorem 13. Let G be a connected graph with vertex set [n]. Let D be the distance matrix and L the

Laplacian of G. Let S, K ⊆ [n] with |S| = |K|. Then
cofsumD(K, S) = (−1)α(S)+α(K)(−r)

n−1
r−1

−|S|
det(L[S, K]). (30)

We remark that Theorem 8 is a special case of Theorem 13, obtained when r = 2.

6. q-Analogues for trees

In this section we consider only trees. We begin with some preliminaries. For a positive integer i,

let iq = 1 + q + q2 + · · · + qi−1, called the q-analogue of i, denote the polynomial in the variable q.

The q-distance matrix Dq of any tree is obtained from the distance matrix D by replacing each entry i

by iq, where 0q = 0.

Let A be the adjacency matrix and Δ the diagonal matrix of vertex degrees. Define the q-analogue

of the Laplacian as Lq = q2Δ − qA − (q2 − 1)I, where q is an indeterminate. The matrix Lq has been

studied in the literature [3,5,6,16,18,21]. Note that setting q = 1 in bothDq,Lq gives thematricesD, L
respectively.

Let T be a tree with vertex set [n] and let D, L,Dq,Lq be its appropriate matrices. Let S, K ⊆ [n]
with |S| = |K|. Define

qcofsumDq(S, K) = cofsumDq(S, K) − (1 − q) det D(S, K).
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Again, note that setting q = 1 gives qcofsumDq(S, K) = cofsumDq(S, K) for all S, K ⊆ [n]. For a
tree T , with distances between vertices i and j given by d(i, j), define the exponential distance matrix

EDT = ((ei,j)) as ei,j = 1 if i = j and ei,j = qd(i,j) where q is an indeterminate, and where q0 = 1. We

abuse notation and refer to thematrix as ED instead of EDT when the tree T is clear from the context.

The following result of Bapat et al. [5] will be used.

Theorem 14. With the notation above, for any tree T, L−1
q = 1

1−q2
ED and det(Lq) = 1 − q2.

The following result is yet another generalization of Theorem 8, which is obtained by setting q = 1.
It is not possible to derive this result from Theorem 4 since Lq does not have zero row and column

sums. We give a proof using the Jacobi and Sherman–Morrison formulae.

Theorem 15. Let T be a tree with vertex set [n]. Let S, K ⊆ [n] with |S| = |K|. Then,
(−1)α(S)+α(K)(−1 − q)n−|S|−1 det Lq[S, K] = qcofsumDq(K, S). (31)

Proof. By Theorems 1 and 14 we see that

det Lq[S, K] = (−1)α(S)+α(K) detED(K, S)

(1 − q2)n−|S| (1 − q2) (32)

= (−1)α(S)+α(K) detED(K, S)

(1 − q2)n−|S|−1
. (33)

Note thatED(K, S) = J−(1−q)Dq(K, S),where J is theall onesmatrixofdimension (n−|S|)×(n−|S|)
and hence by Theorem 2,

det ED(K, S)

= (−1)n−|S| det((1 − q)Dq(K, S) − J)

= (−1)n−|S| det((1 − q)Dq(K, S))

[
1 − cofsum ((1 − q)Dq(K, S))

det((1 − q)Dq(K, S))

]

= (−1)n−|S| [
det((1 − q)Dq(K, S)) − cofsum ((1 − q)Dq(K, S))

]
= (−1)n−|S| [

(1 − q)n−|S| det(Dq(K, S)) − (1 − q)n−|S|−1cofsum (Dq(K, S))
]

= (−1)n−|S|(1 − q)n−|S|−1 [
(1 − q) det(Dq(K, S)) − cofsum (Dq(K, S))

]
= (−1)n−|S|−1(1 − q)n−|S|−1 [

qcofsumDq(K, S)
]
. (34)

Using (32) and (34) we get

det(Lq[S, K]) = (−1)α(S)+α(K) (−(1 − q))n−|S|−1qcofsumDq(K, S)

(1 − q2)n−|S|−1

= (−1)α(S)+α(K) (−1)n−|S|−1

(1 + q)n−|S|−1
qcofsumDq(K, S). (35)

The proof is complete in view of (35). �

We obtain the following interesting q2-analogue of (25) as a consequence of Theorem 15. For a

positive integer i, we recall iq = 1+ q+ · · · + qi−1, the q-analogue of i, and denote (i)q2 = 1+ q2 +
q4 + · · · + q2i−2 as the q2-analogue of i.
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Corollary 16. Let Lq be the q-analogue of the Laplacian of a tree T with vertex set [n]. Let u, v ∈ [n], u �=
v and d = d(u, v). Then, det(Lq({u, v}, {u, v})) = (d)q2 . i.e., det(Lq({u, v}, {u, v})) equals the q2-

analogue of d(u, v).

Proof. Let S = K = [n]\{u, v} and let dq = (d(u, v))q be the q-analogue of d(u, v). Since |S| = n−2,

by Theorem 15,

(1 + q) det Lq[S, S] = −qcofsum

⎛
⎝ 0 dq

dq 0

⎞
⎠ . (36)

Using the definition of qcofsum we see that

qcofsum

⎛
⎝ 0 dq

dq 0

⎞
⎠ = −2dq − (1 − q)

(
−d2q

)

= dq(−2 + (1 − q)dq)

= dq

(
−2 + (1 − q)

1 − qd

1 − q

)

= −dq(1 + qd). (37)

It follows from (36) and (37) that

det Lq[S, S] = (1 + qd)dq

1 + q
. (38)

Since dq = 1−qd

1−q
, we get from (38) that

det Lq[S, S] = (1 + qd)(1 − qd))

(1 + q)(1 − q)
= (d)q2 ,

and the proof is complete. �
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