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We show a simple connection between determinants and signed-
excedance enumeration of permutations. This gives us an alternate
proof of a result of Mantaci about enumerating signed excedances
in permutations. The connection also gives an alternate proof of
a result of Mantaci and Rakotondrajao about enumerating signed
excedances over derangements.
Motivated by this connection, we define several excedance-like
statistics on permutations and show interesting values for their
signed enumerator. In some cases, we also obtain the signed
excedance-like statistic enumerator with respect to positive integral
weights.
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1. Introduction

Enumerating permutations by statistics is a well-studied area. The most famous statistics on
a permutation are descent, inversion, major-index and excedance and their enumerators are classical
results, see [4,10]. The course notes of Foata and Han [6] gives a self-contained introduction to this
area.

For a positive integer n, define [n] = {1,2, . . . ,n} and let Sn be the set of permutations on [n].
For a π = (π1,π2, . . . ,πn) ∈ Sn , define its number of excedances as exc(π) = |{i ∈ [n]: πi > i}|,
its number of non-excedances as nexc(π) = |{i ∈ [n]: πi < i}| and its number of fixed-points as
fix(π) = |{i ∈ [n]: πi = i}|. For a π ∈ Sn , let its number of weak non-excedances be wknexc(π) =
nexc(π) + fix(π) and its number of weak-excedances be wkexc(π) = exc(π) + fix(π).

Define the number of descents of π ∈ Sn as des(π) = |{i ∈ [n − 1]: πi > πi+1}| and its number
of ascents as asc(π) = |{i ∈ [n − 1]: πi < πi+1}|. For π ∈ Sn , define its number of inversions as
inv(π) = |{1 � i < j � n: πi > π j}|.
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It is well known (see [4]) that excedances and descents are equidistributed when summed over the
elements of Sn . Thus, if Desn(q) = ∑

π∈Sn
qdes(π)+1 and Excn(q) = ∑

π∈Sn
qexc(π)+1, then Desn(q) =

Excn(q) = Euln(q) where Euln(q) is the Eulerian polynomial of degree n defined by

∑
n�0

Euln(q)

(1 − q)n+1

tn

n! =
∑
s�0

qs exp
(
t(s + 1)

) = et

1 − qet
.

The coefficient of xk in Euln(q) is called an Eulerian number and denoted An,k . There are several
other equivalent definitions, see [6, Definition 10.2]. We give this definition of Euln(q) as our Theo-
rem 5 is presented using similar generating function language.

Several signed-statistic enumeration results over permutations are known. Here, for a statistic
s : Sn �→ N ∪ {0}, we count

∑
π∈Sn

(−1)inv(π)qs(π) . Sometimes, the sum is not over all of Sn , but

over some subset. Loday [9] defined SgnDesn(q) = ∑
π∈Sn

(−1)inv(π)qdes(π) as the signed descent enu-
merator and conjectured a recurrence relation which Foata and Desarmenien [5] proved. Wachs [15]
gave a sign reversing involution on Sn , thereby giving an alternate, bijective proof of Foata and De-
sarmenien’s result. Tanimoto [14] has shown divisibility for some coefficients of the signed-descent
enumerator by prime numbers. Recently, Barnabei, Bonetti and Silimbani [2] have enumerated signed
ascents over involutions using properties of the RSK correspondence.

Enumerating signed-excedance-like statistics over both the set of permutations and over derange-
ments is the content of this work. Mantaci [12] showed the following remarkable result.

Theorem 1. For n � 1, let SgnExcn(q) = ∑
π∈Sn

(−1)inv(π)qexc(π) be the signed-excedance enumerator. Then

SgnExcn(q) = (1 − q)n−1 .

In a later paper, Mantaci [11] gave a bijective proof of this result. Mantaci and Rakotondrajao in
[13] determined the signed-excedance enumerator for derangements. If Dn is the set of derangements
on [n], and if the number of signed derangements is defined as SgnDern = ∑

π∈Dn
(−1)inv(π) , then it

is easy to note (see for example Remark 5) that the SgnDern = (−1)n−1(n − 1). We recall that for
non-negative integers, i, its q-analogue is defined as [i]q = 1 + q + q2 + · · · + qi−1, where q is an
indeterminate and [0]q = 0. Mantaci and Rakotondrajao [13] showed the following.

Theorem 2. For n � 2, define DSgnExcn(q) = ∑
π∈Dn

(−1)inv(π)qexc(π) as the signed excedance enumerator

over derangements. Then, DSgnExcn(q) = (−1)n−1q · [n − 1]q.

An equivalent, though differently phrased statement, was proved by Ksavrelof and Zeng [8]. For
a permutation π ∈ Sn , let cyc(π) be its number of cycles. It is easy to show that for even n,
(−1)cyc(π) = (−1)inv(π) and that for odd n, (−1)cyc(π) = −(−1)inv(π) , both statements being for all
π ∈ Sn . They considered the polynomial pn(x, y, β) = ∑

π∈Sn
xexc(π) yfix(π)βcyc(π) and by exhibiting a

sign reversing involution, showed the following.

Theorem 3. For n � 1, let pn(x, y, β) be the polynomial defined above. Then pn(x,1,−1) = −(x − 1)n−1 and
pn(x,0,−1) = −x − x2 − · · · − xn−1 .

In this work, we give a framework for enumerating signed-excedance by determinants of appro-
priate matrices. This framework allows us to derive in a unified manner, alternate proofs of the above
results of Mantaci [12] and Mantaci and Rakotondrajao [13], apart from presenting new results on
signed excedance-like enumeration.

This paper is organized as follows. In Section 2, we show a simple connection between determi-
nants and signed-excedance enumeration. Our framework of evaluating determinants to enumerate
signed excedance statistics is easily seen in this section. In Section 2.1, we show several new re-
sults, by modifying the definitions of quantities that are sign-enumerated. In Section 2.2, we define
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new excedance-like statistics which we sign-enumerate in Sections 3 and 4. The motivation for sign-
enumerating such new excedance-like statistics is the neat results that we obtain. In Section 3, we
sign-enumerate excedance-like statistics over permutations. In Section 4, we first give our alternate
proof of the result of Mantaci and Rakotondrajao [13] and then sign-enumerate some excedance-like
statistics over derangements.

Finally, Bagno and Garber [1] have obtained hyperoctahedral and wreath product analogues of
Theorem 3. Several results in this work have similar analogues which we will treat in a future paper.

2. Determinants and signed excedance enumeration

We will deal with n × n matrices, and for any such matrix denote its i-th column as Coli for
1 � i � n. Fix an integer n > 0 and consider Sn . We recall SgnExcn(q) = ∑

π∈Sn
(−1)inv(π)qexc(π) is

the signed-excedance enumerator. We begin with a determinant based proof of Theorem 1.

Proof of Theorem 1. Consider the following n × n matrices

Mn =

⎛
⎜⎜⎝

1 q q · · · q
1 1 q · · · q
...

...
...

. . .
...

1 1 1 · · · 1

⎞
⎟⎟⎠ and Ln =

⎛
⎜⎜⎝

t q · · · q
t t · · · q
...

...
. . .

...

t t · · · t

⎞
⎟⎟⎠

i.e. if Mn = (mi, j)1�i, j�n , then mi, j = q if i < j and mi, j = 1 otherwise. Similarly, if Ln = (�i, j)1�i, j�n ,
then �i, j = q if i < j, and �i, j = t otherwise.

We claim that SgnExcn(q) = det(Mn). To see this, we only need to note that det(Mn) =∑
π∈Sn

(−1)inv(π)
∏n

i=1 mi,πi . For a π ∈ Sn , let Tπ = ∏n
i=1 mi,πi be the term occuring in the de-

terminant expansion corresponding to π . Since mi, j = q if i < j and mi, j = 1 otherwise, we get
Tπ = qexc(π) . Hence, det(Mn) = ∑

π∈Sn
(−1)inv(π)qexc(π) . It is straightforward to verify that det(Mn) =

(1 − q)n−1. The proof is complete. �
Remark 1. Just as det(Mn) = (1−q)n−1, it is simple to note that perm(Mn) = Euln(q) = ∑n

k=0 A(n,k)qk ,
where perm(M) is the permanent of any matrix M . A bivariate generalisation of this permanent result
is also easy to see. Consider the matrix Ln given above. Then perm(Ln) = t(

∑n−1
k=0 A(n,k)qktn−k).

2.1. Some similar results

Some simple modifications of the matrix Mn above give rise to interesting signed-excedance
enumerators. For n � 1, let SgnSkExcn(q) = ∑

π∈Sn
(−1)inv(π)+nexc(π)qexc(π) be the signed skew ex-

cedance enumerator and let SgnSkExc0(q) = 1. Also define the signed weak-skew excedance enumerator
as SgnWkSkExcn(q) = ∑

π∈Sn
(−1)inv(π)+wknexc(π)qexc(π) . Consider the following two n × n matrices.

Tn =

⎛
⎜⎜⎝

−1 q · · · q
−1 −1 · · · q
...

...
. . .

...

−1 −1 · · · −1

⎞
⎟⎟⎠ and Un =

⎛
⎜⎜⎝

1 q q · · · q
−1 1 q · · · q
...

...
...

. . .
...

−1 −1 −1 · · · 1

⎞
⎟⎟⎠

i.e. if Tn = (ti, j)1�i, j�n , then ti, j = q if i < j and ti, j = −1 otherwise. Similarly, if Un = (ui, j)1�i, j�n ,
then ui, j = q if i < j, ui, j = 1 if i = j and ui, j = −1 otherwise.

Theorem 4. For n � 1, SgnWkSkExcn(q) = (−1)n(1 + q)n−1 .

Consider the matrix Tn . Arguing as above, it is clear that det(Tn) = SgnWkSkExcn(q). It is again
simple to see that det(Tn) = (−1)n(1 + q)n−1, completing the proof.
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Remark 2. perm(Tn) = (−1)nEuln(q), where (−1)nEuln(q) is the n-th Eulerian polynomial with alter-
nate coefficients having opposite sign, with the largest degree coefficient being −1. This follows by
setting t = −1 in the bivariate generalization mentioned in Remark 1.

Theorem 5.
∑

n�0 SgnSkExcn(q)tn = 1
1−t + ∑

n�1(
(−t)n+1

(1−2t)(1−t)n+1 )qn.

Proof. Consider the matrix Un . Clearly, SgnSkExcn(q) = det(Un). Denote det(Un) as dn(q). A list of
di(q) for 1 � i � 5 is given below

d1(q) = 1,

d2(q) = 1 + q,

d3(q) = 1 + 4q − q2,

d4(q) = 1 + 11q − 5q2 + q3,

d5(q) = 1 + 26q − 16q2 + 6q3 − q4.

By performing the elementary column transformation Col1 := Col1 − Col2 and evaluating the de-
terminant after this transformation, we get the following recurrence for dn(q), where d1(q) = 1,
d2(q) = 1 + q are easily seen

dn(q) = (3 − q)dn−1(q) + 2(q − 1)dn−2(q).

Hence if dn(q) = ∑n−1
k=0 an,kqk , it is easy to see that an,0 = 1 for all n � 0 and that an,1 = (2n −n −1)

(i.e. it is the Eulerian number An,2). The above recurrence gives

an,k = 3an−1,k − an−1,k−1 + 2an−2,k−1 − 2an−2,k, for n � 3.

From this, for k � 2 by inducting on n for a fixed k, we get the following (equivalent) recurrences

an,k = −
(

n−1∑
j=k+1

a j,k−1

)
OR an,k = an−1,k − an−1,k−1. (1)

For k = 1 (i.e. the coefficient of q), when we sum over various n’s, we clearly get the generating
function t2

(1−2t)(1−t)2 . The generating function for higher powers of q follows from recurrence (1),

completing the proof. �
Consider the n × n matrices

En =

⎛
⎜⎜⎝

q q · · · q
1 q · · · q
...

...
. . .

...

1 1 · · · q

⎞
⎟⎟⎠ ; Fn =

⎛
⎜⎜⎝

−q q · · · q
−1 −q · · · q
...

...
. . .

...

−1 −1 · · · −q

⎞
⎟⎟⎠ and Gn =

⎛
⎜⎜⎝

q q · · · q
−1 q · · · q
...

...
. . .

...

−1 −1 · · · q

⎞
⎟⎟⎠

i.e. if En = (ei, j)1�i, j�n , then ei, j = q if i � j and ei, j = 1 otherwise. Similarly, if Fn = ( f i, j)1�i, j�n ,
then f i, j = q if i < j, f i, j = −q if i = j and f i, j = −1 otherwise and if Gn = (gi, j)1�i, j�n , then gi, j = q
if i � j, and gi, j = −1 otherwise.
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For n � 1, let SgnWkExcn(q) = ∑
π∈Sn

(−1)inv(π)qwkexc(π) as the signed weak-excedance enumerator.

Define SgnSkWkExcn(q) = ∑
π∈Sn

(−1)inv(π)+nexc(π)qwkexc(π) as the signed skew weak-excedance enu-

merator and let SgnWkSkWkExcn(q) = ∑
π∈Sn

(−1)inv(π)+wknexc(π)qwkexc(π) be the signed weak-skew
weak-excedance enumerator.

Theorem 6. For n � 1, SgnWkExcn(q) = q(q − 1)n−1 . For n � 1, SgnSkWkExcn(q) = q(q + 1)n−1 .

Proof. From the definitions, it is easy to see that SgnWkExcn(q) = det(En). Further, it is straightfor-
ward to see (by applying elementary column operations) that det(En) = q(q − 1)n−1. Similarly, it is
easy to see that SgnSkWkExcn(q) = det(Gn) and that det(Gn) = q(q + 1)n−1, completing the proof. �
Remark 3. It is easy to see from Remark 1 that perm(En) = ∑

π∈Sn
qwkexc(π) = q · Euln(q). It is also

easy to see that perm(Gn) = q · (−1)nEuln(q).

For the next result, we need the following sequence rn(q) of polynomials for n � 1. For n � 1
and 0 � k � n − 2, let cn,k = ∑k

j=0

(n
j

)
be the sum of the first k binomial coefficients. Define rn(q) =∑n−2

k=0(−1)kcn,kqk+1 + (−1)nqn . The polynomials rn(q) for 1 � n � 5 are given below. We note that
these polynomials have coefficients similar to that of the polynomials dn(q) given in the proof of
Theorem 5

r1(q) = −q,

r2(q) = q + q2,

r3(q) = q − 4q2 − q3,

r4(q) = q − 5q2 + 11q3 + q4,

r5(q) = q − 6q2 + 16q3 − 26q4 − q5.

Lemma 1. For n > 2, rn(q) = (1 − 3q) · rn−1(q) − 2q(q − 1) · rn−2(q).

Proof. We equivalently show that cn,k = cn−1,k + 3cn−1,k−1 − 2cn−2,k−2 − 2cn−2,k−1. This easily follows
from the definition that cn,k = ∑k

j=0

(n
j

)
. The following alternate recurrence is also easy to see: cn,k =

cn−1,k − cn−1,k−1 for all k �= n − 1 and cn,n−1 = (−1)n(2n − n − 1) for n � 2. The proof is complete. �
Theorem 7. For n � 1, SgnWkSkWkExcn(q) = rn(q).

Proof. It is clear that SgnWkSkWkExcn(q) = det(Fn). Thus, we only need to show that det(Fn) = rn(q)

for all n � 1. Since the result is true for n = 1,2 we assume n > 2. Let fn denote det(Fn). Applying the
elementary column transformation Coln := Coln − Coln−1, and evaluating the determinant after this,
we get the following recurrence for n � 3

fn = (1 − 3q) · fn−1 − 2q(q − 1) · fn−2.

The proof is complete by combining with Lemma 1. �
2.2. Excedance like statistics

For π ∈ Sn , define its excedance-set as ExcSet(π) = {i ∈ [n]: πi > i} and its weak-excedance set as
WkExcSet(π) = {i ∈ [n]: πi � i}.
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For a π ∈ Sn , define its excedance-sum as ExcSum(π) = ∑
i∈ExcSet(π) i and its excedance-length as

ExcLen(π) = ∑
i∈ExcSet(π)(πi − i). The motivation for these definitions come from similar determinant

expressions for their signed enumerators and the attractive results obtained.

3. Enumeration over permutations

We recall the following notation used in q-analogue enumeration (see the lecture notes [6]). Let q
be a variable and for a non-negative integer n, define

(q;q)n =
{

1 if n = 0,∏n
i=1(1 − qi) if n > 0.

(2)

3.1. Signed excedance like statistic enumeration

Consider the following two n × n matrices

Pn =

⎛
⎜⎜⎜⎜⎝

1 q q · · · q
1 1 q2 · · · q2

...
...

...
. . .

...

1 1 1 · · · qn−1

1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎠ and Sn =

⎛
⎜⎜⎜⎜⎝

1 q q2 · · · qn−1

1 1 q · · · qn−2

...
...

...
. . .

...

1 1 1 · · · q
1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎠

i.e. if Pn = (pi, j)1�i, j�n , then pi, j = qi if i < j and pi, j = 1 otherwise. Similarly, if Sn = (si, j)1�i, j�n ,
then si, j = q j−i if i < j and si, j = 1 otherwise.

Theorem 8. For n � 1, define SgnExcSumn(q) = ∑
π∈Sn

(−1)inv(π)qExcSum(π) to be the signed excedance-

sum enumerator. Then SgnExcSumn(q) = (1 − q)n−1 ∏n
i=1[i]q = (q;q)n−1 .

Proof. Clearly, SgnExcSumn(q) = det(Pn). It is easy to check that det(Pn) = (q;q)n−1, completing the
proof. �
Theorem 9. For n � 1, let SgnExcLenn(q) = ∑

π∈Sn
(−1)inv(π)qExcLen(π) be the signed excedance-length

enumerator. Then SgnExcLenn(q) = (1 − q)n−1 .

Proof. It is clear that SgnExcLenn(q) = det(Sn). It is again easy to see that det(Sn) = (1 − q)n−1,
completing the proof. �

WtdPn =

⎛
⎜⎜⎜⎜⎝

1 qw1 qw1 · · · qw1

1 1 qw2 · · · qw2

...
...

...
. . .

...

1 1 1 · · · qwn−1

1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎠ and WtdSn =

⎛
⎜⎜⎜⎜⎝

1 qw1 qw2 · · · qwn−1

1 1 qw1 · · · qwn−2

...
...

...
. . .

...

1 1 1 · · · qw1

1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎠ .

Next, consider the two n × n matrices given above, depending on n − 1 positive integral “weights”
w1, w2, . . . , wn−1. i.e. if WtdPn = (pi, j)1�i, j�n , then pi, j = qwi if i < j and pi, j = 1 otherwise. Simi-
larly, if WtdSn = (si, j)1�i, j�n , then si, j = qw j−i if i < j and si, j = 1 otherwise.

Consider a weighted signed-excedance sum statistic, where we assign for an excedance i ∈
ExcSet(π), a positive integral weight wi . Thus we have n − 1 weights w1, . . . , wn−1 where wi is
the weight when the i-th position is an excedance. With respect to these weights, define a weighted
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signed-excedance sum for a permutation as WtdExcSum(π) = ∑
i∈ExcSet(π) wi and its enumerator as

SgnWtdExcSumn(q) = ∑
π∈Sn

qWtdExcSum(π) . It is easy to note that when wi = i for 1 � i < n, then
WtdExcSum(π) = ExcSum(π) and when wi = 1 for all i, then WtdExcSum(π) = exc(π). As the fol-
lowing is easy to prove on similar lines, we omit its proof.

Theorem 10. For positive integers n � 2 and positive integral weights w1, w2, . . . , wn−1 , we have
SgnWtdExcSumn(q) = det(WtdPn) = ∏n−1

i=1 (1 − qwi ). Thus the weighted signed-excedance sum enumer-
ator only depends on the set {w1, w2, . . . , wn−1}, i.e. it does not depend on the sequence (w1, w2, . . . , wn)

and thus permuting the weights wi does not change the signed enumerator.

Similarly, consider a weighted signed-excedance length statistic, where we assign for an excedance
i ∈ ExcSet(π), a positive integral weight wπi−i . Thus we have n − 1 weights w1, . . . , wn−1 where wi
is the weight when index j is an excedance and the difference π j − j = i. With respect to the
weights wi , define a weighed signed-excedance for a permutation as WtdExcLen(π) = ∑

i∈ExcSet(π) wi

and its enumerator as SgnWtdExcLenn(q) = ∑
π∈Sn

qWtdExcLen(π) . It is easy to note that when wi = i
for 1 � i < n, then WtdExcLen(π) = ExcLen(π) and when wi = 1 for all i, then WtdExcSum(π) =
exc(π). The following is immediate.

Theorem 11. For positive integers n � 2 and positive integral weights w1, w2, . . . , wn−1 , we have
SgnWtdExcLenn(q) = det(WtdSn) = (1 − qw1 )n−1 . Thus the weighted signed-excedance length enumera-
tor only depends on w1 .

3.2. Signed weak-excedance like enumeration

We recall the definition of WkExcSet from Section 2.2. For a permutation π ∈ Sn , define its weak-
excedance sum denoted WkExcSum(π) = ∑

i∈WkExcSet(π) i.
Consider the n × n matrix

Bn =

⎛
⎜⎜⎝

q q q · · · q
1 q2 q2 · · · q2

...
...

...
. . .

...

1 1 1 · · · qn

⎞
⎟⎟⎠ ; WBn =

⎛
⎜⎜⎝

qw1 qw1 qw1 · · · qw1

1 qw2 qw2 · · · qw2

...
...

...
. . .

...

1 1 1 · · · qwn

⎞
⎟⎟⎠

i.e. if Bn = (bi, j)1�i, j�n , then bi, j = qi if i � j and bi, j = 1 otherwise and similarly given n posi-
tive integers w1, w2, . . . , wn , if WBn = (bi, j)1�i, j�n , then bi, j = qwi if i � j and bi, j = 1 otherwise.
For n positive integral weights W = (w1, w2, . . . , wn) and a π ∈ Sn , define its weighted weak-
excedance sum as WtdWkExcSum = ∑

i∈WkExcSet(π) wi . For n � 1, define SgnWtdWkExcSumn(q) =∑
π∈Sn

(−1)inv(π)qWtdWkExcSum(π) .

Theorem 12. For n � 1, let the signed weak-excedance sum enumerator as SgnWkExcSumn(q) =∑
π∈Sn

(−1)inv(π)qWkExcSum(π) . Then, SgnWkExcSumn(q) = q
q−1 (−1)n(q;q)n. If we have weights W =

(w1, w2, . . . , wn), then SgnWtdWkExcSumn(q) = qw1
∏n

i=2(q
wi − 1).

Proof. It is easy to see that SgnWkExcSumn(q) = det(Bn) and that det(Bn) = q
∏n

i=2(q
i − 1). It is also

easy to see from Eq. (2) that this expression is identical to q
q−1 (−1)n(q;q)n , completing the proof.

The proof for the weighted case is identical, except that we change i to wi and is hence omitted. �
3.3. Signed skew weak-excedance like statistic enumeration

Consider the n × n matrices
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Cn =

⎛
⎜⎜⎝

q q q · · · q
−1 q2 q2 · · · q2

...
...

...
. . .

...

−1 −1 −1 · · · qn

⎞
⎟⎟⎠ and Dn =

⎛
⎜⎜⎝

q q2 q3 · · · qn

−1 q q2 · · · qn−1

...
...

...
. . .

...

−1 −1 −1 · · · q

⎞
⎟⎟⎠

i.e. if Cn = (ci, j)1�i, j�n , then ci, j = qi if i � j and ci, j = −1 otherwise. Similarly, if Dn =
(di, j)1�i, j�n , then di, j = q j−i+1 if i � j and di, j = −1 otherwise. For a π ∈ Sn , define its weak-
excedance length WkExcLen(π) = ∑

i∈WkExcSet(πi − i + 1). Similarly define its weak-excedance sum as
WkExcSum(π) = ∑

i∈WkExcSet i. For n � 1, define the signed skew weak-excedance sum enumerator as
SgnSkWkExcSumn(q) = ∑

π∈Sn
(−1)inv(π)+nexc(π)qWkExcSum(π) . More generally, when there are n pos-

itive integral weights w1, w2, . . . , wn , define WkWtdExcSum(π) = ∑
i∈WkExcSet wi and the weighted

analogue SgnSkWkWtdExcSum = ∑
π∈Sn

(−1)inv(π)+nexc(π)qWkWtdExcSum(π) .

Likewise, let SgnSkWkExcLenn(q) = ∑
π∈Sn

(−1)inv(π)+nexc(π)qWkExcLen(π) be the signed skew weak-
excedance length enumerator.

Theorem 13. For n � 1, SgnSkWkExcSumn(q) = q
∏n

i=2(1 + qi). Further, given weights W = (w1, w2,

. . . , wn), SgnSkWkWtdExcSum = qw1
∏n

i=2(1 + qwi ).

Proof. It is easy to see that SgnSkWkExcSumn(q) = det(Cn). It is straightforward to check that
det(Cn) = q

∏n
i=2(1 + qi), completing one proof. The proof for the weighted version is similar, just

that we replace i by wi . This completes the proof. �
Theorem 14. SgnSkWkExcLenn(q) = ∑

π∈Sn
(−1)inv(π)+nexc(π)qWkExcLen(π) = 2n−1qn.

Proof. From the definition of Dn , it is easy to see that SgnSkWkExcLenn(q) = det(Dn). It is again
straightforward to see that det(Dn) = 2n−1qn , completing the proof. �
3.4. Signed skew excedance like statistic enumeration

Let Rn be the following n × n matrix.

Rn =

⎛
⎜⎜⎜⎜⎝

1 q q2 · · · qn−1

−1 1 q · · · qn−2

...
...

...
. . .

...

−1 −1 −1 · · · q
−1 −1 −1 · · · 1

⎞
⎟⎟⎟⎟⎠

i.e. if Rn = (ri, j)1�i, j�n , then ri, j = q j−i if i < j, ri, j = 1 if i = j and ri, j = −1 otherwise.

Theorem 15. For n � 1, if SgnSkExcLenn(q) = ∑
π∈Sn

(−1)inv(π)+nexc(π)qExcLen(π) is the signed skew

excedance-length i enumerator, then SgnSkExcLenn(q) = (1 + q)n−1 .

Proof. It is clear that SgnSkExcLenn(q) = det(Rn). It is again easy to see that det(Rn) = (1 + q)n−1,
completing the proof. �
3.5. Signed weak-skew excedance like statistic enumeration

The following two are immediate from the results of Section 3.1.

Theorem 16. For n � 1, let SgnWkSkExcSumn(q) = ∑
π∈Sn

(−1)inv(π)+wknexc(π)qExcSum(π) be the signed

weak-skew excedance-sum enumerator. Then, SgnWkSkExcSumn(q) = (−1)n ∏n−1
i=1 (1 + qi).
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Proof. Follows from the simple observation that SgnWkSkExcSumn(−q) = (−1)n det(Pn). �
Theorem 17. For n � 1, let SgnWkSkExcLenn(q) = ∑

π∈Sn
(−1)inv(π)+wknexc(π)qExcLen(π) be the signed

weak-skew excedance-length enumerator. Then SgnWkSkExcLenn(q) = (−1)n(1 + q)n−1 .

Proof. Follows immediately by noting that SgnWkSkExcLenn(−q) = (−1)n det(Sn). �
4. Enumeration over derangements

Let Dn ⊆ Sn be the set of derangements on [n]. We will consider several matrices considered in
Sections 2 and 3 but with their diagonal elements made zero. If αn is a matrix from Section 2 or
Section 3, we will denote the same matrix with all diagonal elements made zero as Dαn . Thus, for
example, we have the two n × n matrices

DMn =

⎛
⎜⎜⎝

0 q q · · · q
1 0 q · · · q
...

...
...

. . .
...

1 1 1 · · · 0

⎞
⎟⎟⎠ and DLn =

⎛
⎜⎜⎝

0 q q · · · q
t 0 q · · · q
...

...
...

. . .
...

t t t · · · 0

⎞
⎟⎟⎠ .

We begin with an alternate proof of Mantaci and Rakotondrajao’s result. Let DSgnExcn(q) =∑
π∈Dn

(−1)inv(π)qexc(π) be the signed excedance enumerator.

Proof of Theorem 2. Consider the matrix DMn . We claim that DSgnExcn(q) = det(DMn ). Denote the
(i, j)-th entry of DMn for 1 � i, j � n as di, j . To see that det(DMn ) = DSgnExcn(q), we note as before
that det(DMn ) = ∑

π∈Dn
(−1)inv(π)

∏n
i=1 di,πi . As in the proof of Theorem 1, it is clear that det(DMn ) =∑

π∈Dn
(−1)inv(π)qexc(π) . It is simple to show that det(DMn ) = (−1)n−1q · [n − 1]q , completing the

proof. �
Just as det(DMn ) = (−1)n−1q[n − 1]q , we note that perm(DMn ) = Pn(q), where Pn(q) = ∑n

k=0 an,kqk

is the polynomial occurring in Mantaci and Rakotondrajao’s work [13, Table 1] and perm(DMn ) is the
permanent of DMn . This polynomial Pn(q) will appear again in Corollary 1.

Remark 4. More generally, if we consider the matrix DLn given above, it is easy to see that perm(DLn )

is a bivariate generalisation of the polynomial Pn(q) in the sense that perm(DLn ) = Pn(q, t) where
Pn(q, t) = ∑n

k=0 an,kqktn−k .

Remark 5. If Dn = |Dn| is the number of derangements in Sn , then it is well known (see for example
[3]) that Dn = (n − 1)(Dn−1 + Dn−2) where D0 = 1, D1 = 0. If SgnDern = ∑

π∈Dn
(−1)inv(π) is the

signed derangement number, then since SgnDern = det( J − I)n×n where J and I are the n × n all-
ones and identity matrix, we get an analogous relation SgnDern = (n − 1)(−SgnDern−1 − SgnDern−2)

where SgnDer0 = 1,SgnDer1 = 0. Theorem 2 yields the following q-analogue of this recurrence:

DSgnExcn(q) = [n − 1]q
[−DSgnExcn−1(q) − q × DSgnExcn−2(q)

]
.

Theorem 18. Define DSgnSkExcn(q) = ∑
π∈Dn

(−1)inv(π)+nexc(π)qexc(π) . Then, DSgnSkExcn(q) =∑n−1
i=1 (−1)iqi−1 .

Proof. It is clear that DSgnSkExcn(q) = det(D Fn ). To evaluate det(D Fn ), we perform the elementary
column operation Coln := Coln − Coln−1 and then evaluate the determinant of the modified matrix.
Denoting det(D Fn ) as dn(q), it is simple to see that we get the following recurrence dn(q) = (1 − q) ·
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dn−1(q) + q · dn−2(q). It is clear that for n = 2,3 that we get d2(q) = q and d3(q) = q − q2. From the
above recurrence, we get dn(q) = ∑n−1

i=1 (−1)iqi−1, completing the proof. �
Corollary 1. If sn(q) = perm(D Fn ) is the permanent of D Fn , then sn(q) = ∑n

k=0 an,kqk(−1)n−k, where the
an,k’s are coefficients that appeared in Mantaci and Rakotondrajao’s work, mentioned in Remark 4.

4.1. Signed excedance-like statistic enumeration

Theorem 19. Let DSgnExcSumn(q) = ∑
π∈Dn

(−1)inv(π)qExcSum(π) be the signed index-excedance enumer-

ator summed over Dn. Then DSgnExcSumn(q) = (−1)n−1(
∑n

i=2 q( i
2)).

Proof. It is clear that DSgnExcSumn(q) = det(D Pn ). Let pn(q) = det(D Pn ). After performing the
elementary column operation Coln := Coln − Coln−1, we get the following recurrence: pn(q) =
−(1 + qn−1)pn−1(q) − qn−1 · pn−2(q). It is easy to see that p2(q) = −q and p3(q) = q + q3. With these

initial values and the above recurrence, it is easy to see that pn(q) = (−1)n−1(
∑n

i=2 q( i
2)), completing

the proof. �
More generally, consider positive integral weights w1, w2, . . . , wn−1 and suppose an excedance at

position i contributes wi to WtdExcSum(π) as done in Section 3.1. With respect to the underlying
weights W = (w1, w2, . . . , wn−1), define DSgnWtdExcSumn(q) = ∑

π∈Dn
qWtdExcSum(π) . We have the

following common generalisation of Theorems 2 and 19.

Theorem 20. For positive integral weights W = (w1, w2, . . . , wn−1) and for i � i < n, define yi = ∑i
j=1 w j .

For all n � 2, with respect to the weights W , we have DSgnWtdExcSumn(q) = (−1)n−1(
∑n−1

i=1 qyi ).

Proof. We induct on n, the dimension of the matrix, with the base case n = 2 being clear. Let n > 2
and given a weight sequence W = (w1, w2, . . . , wn−1), denote the n × n matrix DWtdPn with respect
to weights W as DW

WtdPn
. For a weight sequence W , denote by W1, W2 and W1,2 the sequences

obtained from W by deleting w1, w2 and both w1, w2 respectively. For a sequence W with r weights,
denote f W = det(WtdPW

r+1). In DWtdPn , performing the column operation Col1 := Col1 − Col2 and then
evaluating the determinant, we get the following recurrence

f W = qw1 f W1 − qw1 f W2 − f W1,2 . (3)

Since each of the vectors W1, W2, W1,2 have lesser components, their values are known by induction.
Combining them completes the proof. �

As a preliminary for the next result, we recall the definition of Chebysheff polynomials Un(x)
for n � 0 of the second kind (see [7, Appendix C]). Un(x) is a sequence of polynomials defined by
U0(x) = 1; U1(x) = 2x; and

Un+1(x) = 2x · Un(x) − Un−1(x). (4)

Alternatively, they are also defined by the generating function
∑∞

n=0 Un(x)tn = 1/(1 − 2xt + t2).

Theorem 21. Let DSgnExcLenn(q) = ∑
π∈Dn

(−1)inv(π)qExcLen(π) be the signed excedance-length enumera-

tor summed over Dn. Then DSgnExcLenn+2(q) = (−1)n+1q
n+2

2 Un(
√

q ).

Proof. It is easy to see that DSgnExcLenn(q) = det(D Sn ). Denote by mn(q), det(D Sn ). It is easy to
check that m1(q) = 0, m2(q) = −q. Hence, the theorem follows for n = 1,2. Further, for n � 0, we
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derive the following recurrence

mn+2(q) = −2q · mn+1(q) − q · mn(q). (5)

To see this recurrence, perform the elementary column operation Coln := Coln − q · Coln−1 and

then evaluate mn(q). From recurrence (4), it is easy to see that the polynomials (−1)n+1q
n+2

2 Un(
√

q )

also satisfy recurrence (5) and have the same initial terms. Since both polynomials mn(q) and

(−1)n+1q
n+2

2 Un(
√

q ) have the same initial values as well, they are identical for all n � 1, complet-
ing the proof. �
4.2. Signed skew excedance-like statistic enumeration

Consider the following n × n matrices.

D Hn =

⎛
⎜⎜⎜⎜⎝

0 q q · · · q
−1 0 q2 · · · q2

...
...

...
. . .

...

−1 −1 −1 · · · qn−1

−1 −1 −1 · · · 0

⎞
⎟⎟⎟⎟⎠ ; DWtdHn =

⎛
⎜⎜⎜⎜⎝

0 qw1 qw1 · · · qw1

−1 0 qw2 · · · qw2

...
...

...
. . .

...

−1 −1 −1 · · · qwn−1

−1 −1 −1 · · · 0

⎞
⎟⎟⎟⎟⎠ ;

i.e. if D Hn = (hi, j)1�i, j�n , then hi, j = qi if i < j, hi, j = 0 if i = j and hi, j = −1 otherwise. Similarly,
if DWtdHn = (hi, j)1�i, j�n , then hi, j = qwi if i < j, hi, j = 0 if i = j and hi, j = −1 otherwise. We recall

that for a given w1, w2, . . . , wn−1, yk = ∑k
j=1 w j .

Theorem 22. With respect to weights W = (w1, w2, . . . , wn−1), let the weighted skew signed-excedance
sum enumerator be DSgnSkWtdExcSumn(q) = ∑

π∈Dn
(−1)inv(π)+nexc(π)qWtdExcSum(π) . Then for n � 2,

DSgnSkWtdExcSumn(q) = ∑n−1
i=1 (−1)i−1qyi .

Proof. This proof is very similar to the proof of Theorem 20. In particular, we get the same recurrence
given in Eq. (3), but with different initial values. We omit the routine details. �

We single out the following corollary of Theorem 22 obtained by setting wi = i. With this
weights W , for all π ∈ Sn , WtdExcSum(π) = ExcSum(π).

Corollary 2. Let DSgnSkExcSumn(q) = ∑
π∈Dn

(−1)inv(π)+nexc(π)qExcSum(π) be the skew signed excedance

sum polynomial summed over derangements. Then for n � 2, DSgnSkExcSumn(q) = ∑n
i=2(−1)iq( i

2) .

Below, we give an analog of Theorem 15 for derangements. Hence, we consider the matrix D Rn . Let
DSgnSkExcLenn(q) = ∑

π∈Dn
(−1)inv(π)+nexc(π)qExcLen(π) be the skew signed excedance length enu-

merator summed over derangements.

Theorem 23. For n � 1,

DSgnSkExcLenn(q) =
{

qn/2 if n = 2k,

0 if n = 2k + 1.

Proof. It is clear that DSgnSkExcLenn(q) = det(D Rn ). Let rn(q) = det(D Rn ). As in the proof of Theo-
rem 18, performing the elementary column operation Coln := Coln − q · Coln−1 and then evaluating
the determinant of the resulting matrix gives us the following recurrence: rn(q) = q · rn−2(q). It is
easy to see that r2(q) = q and r3(q) = 0. Using the above recurrence with these initial values yields
us r2n(q) = qn and r2n+1(q) = 0, completing the proof. �
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