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Let T be a tree with vertices V (T ) = {1, . . . , n}. The distance 
between vertices i, j ∈ V (T ), denoted dij , is defined to be the 
length (the number of edges) of the path from i to j. We set 
dii = 0, i = 1, . . . , n. The squared distance matrix Δ of T is 
the n ×n matrix with (i, j)-element equal to 0 if i = j, and d2

ij

if i �= j. It is known that Δ is nonsingular if and only if the 
tree has at most one vertex of degree 2. We obtain a formula 
for Δ−1, if it exists. When the tree has no vertex of degree 2, 
the formula is particularly simple and depends on a certain 
“two-step” Laplacian of the tree. We determine the inertia of 
Δ. The inverse and the inertia of the edge orientation matrix 
are also described.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and preliminary results

Let G be a connected graph with vertex set V (G) = {1, . . . , n} and edge set E(G). The 
distance between vertices i, j ∈ V (G), denoted dij , is defined to be the minimum length 
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(the number of edges) of a path from i to j (or an (i, j)-path). We set dii = 0, i = 1, . . . , n. 
The distance matrix D(G), or simply D, is the n ×n matrix with (i, j)-element equal to 
0 if i = j and dij if i �= j.

According to a well-known result due to Graham and Pollak [8], if T is a tree with 
n vertices, then the determinant of the distance matrix D of T is (−1)n−1(n − 1)2n−2. 
Thus the determinant depends only on the number of vertices in the tree and not on 
the tree itself. A formula for the inverse of the distance matrix of a tree was given by 
Graham and Lovász [7]. These two results have generated considerable interest and a 
plethora of extensions and generalizations have been proved (see, for example, [1–3,5,10]
and the references contained therein).

Let T be a tree with vertex set {1, . . . , n} and let D be the distance matrix of T . The 
squared distance matrix Δ is defined to be the Hadamard product D ◦D, and thus has 
the (i, j)-element d2

ij . A formula for the determinant of Δ was proved in [6]. It turns out 
that the determinant of Δ depends only on the degree sequence of T . Furthermore, Δ is 
nonsingular if and only if the tree has at most one vertex of degree 2. In this paper we 
obtain a formula for Δ−1 when it exists. We also determine the inertia of Δ.

We introduce more notation. Let G be a connected graph with vertex set V (G) =
{1, . . . , n} and edge set E(G). We denote the degree of vertex i by δi, i = 1, . . . , n; and we 
let δ be the vector (δ1, . . . , δn)′. We use the notation i ∼ j to indicate that vertices i and 
j are adjacent. Recall that the Laplacian matrix L(G), or simply L, is the n × n matrix 
with its (i, j)-element, i �= j, equal to −1, if i ∼ j, and zero otherwise. The diagonal 
elements of L are δ1, . . . , δn. We set τi = 2 − δi, i = 1, . . . , n; and let τ = (τ1, . . . , τn)′. 
We let 1 be the column vector of all ones, of appropriate size. The square matrix of 
appropriate size with all elements equal to 1 will be denoted by J .

We will also consider the vertex-edge incidence matrix of an oriented graph. Let G be 
a connected graph with vertex set V (G) = {1, . . . , n} and edge set E(G) = {e1, . . . , em}. 
We assign an orientation to each edge of G. The incidence matrix Q of G is the matrix 
with its rows indexed by V (G) and the columns indexed by E(G). The entry correspond-
ing to row i and column ej is 1 if ej originates at i, −1 if ej terminates at i, and zero if 
ej and i are not incident. Note that L = QQ′. We refer to [1] for basic properties of the 
incidence and the Laplacian matrices.

Some known results are summarized next.

Theorem 1. Let T be a tree with vertex set {1, . . . , n}, and let D and L, respectively, be 
the distance matrix and the Laplacian of T . Then the following assertions hold.

(i) detD = (−1)n−1(n − 1)2n−2.
(ii) Q′DQ = −2I.
(iii) LDL = −2L.
(iv) Dτ = (n − 1)1.
(v) D−1 = −1

2L + 1
2(n−1)ττ

′.
(vi) −1DL = I − 11τ ′.
2 2
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Assertion (i) is due to Graham and Pollak [8], while (v) is proved in Graham and Lovász 
[7] and (vi) is a consequence of (iv), (v). Assertions (ii)–(iv) can be found in [1,2]. We 
begin by providing an elementary, new proof of (iv). The proof technique will be used 
again. We continue to use the notation introduced earlier.

Lemma 2. Let T be a tree with vertex set {1, . . . , n}, and let D be the distance matrix 
of T . Then

Dτ = (n− 1)1. (1)

Proof. Let i ∈ {1, . . . , n} be fixed. We need to show 
∑n

j=1 dijτj = n − 1, or equivalently,

2
n∑

j=1
dij =

n∑
j=1

dijδj + n− 1. (2)

For j ∈ {1, . . . , n}, j �= i, let γ(j) denote the immediate predecessor of j on the (i, j)-path 
in T . Note that dij = diγ(j) + 1. We have

2
n∑

j=1
dij = 2

∑
j �=i

dij

=
∑
j �=i

(diγ(j) + 1) +
∑
j �=i

dij

=
∑
j �=i

dij(δj − 1) +
∑
j �=i

dij + n− 1, (3)

where (3) follows in view of the fact that j occurs as a predecessor in δj−1 paths from i. 
Clearly, (2) follows from (3) and the proof is complete. �

We let τ̃ be the diagonal matrix with diagonal elements τ1, . . . , τn.

Lemma 3. Let T be a tree with vertex set {1, . . . , n}, and let D, Δ and L be the distance 
matrix, the squared distance matrix and the Laplacian of T , respectively. Then

ΔL = (2D + J)τ̃ − 2J. (4)

Proof. Let i ∈ {1, . . . , n}. Then

(ΔL)ii =
n∑

s=1
d2
is�si

=
∑

d2
is�si
s∼i
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= −
∑
s∼i

d2
is

= −δi. (5)

The (i, i)-element of (2D + J)τ̃ − 2J is τii − 2, which equals −δi. It follows from this 
observation and (5) that the (i, i)-element of ΔL equals the (i, i)-element of (2D+J)τ̃ −
2J .

Now let i, j ∈ {1, . . . , n}, i �= j. We have

(ΔL)ij =
n∑

s=1
d2
is�sj

= δjd
2
ij −

∑
s∼j

d2
is

= δjd
2
ij − (dij − 1)2 − (δj − 1)(dij + 1)2

= −δj + 2dij(2 − δj)

= −δj + 2dijτj . (6)

The (i, j)-element of (2D+J)τ̃−2J is (2dij +1)τj−2 = 2dijτj +τj−2 = −δj +2dijτj . It 
follows from this observation and (6) that the (i, j)-elements of ΔL and (2D+ J)τ̃ − 2J
are equal. This completes the proof. �
Lemma 4. Let T be a tree with vertex set {1, . . . , n}, and let D and Δ be the distance 
matrix and the squared distance matrix of T , respectively. Then Dδ = Δτ .

Proof. Let i ∈ {1, . . . , n} be fixed. We must show that 
∑n

j=1 dijδj =
∑n

j=1 d
2
ij(2 − δj), 

or equivalently,

2
∑
j �=i

d2
ij =

∑
j �=i

dijδj +
∑
j �=i

d2
ijδj . (7)

For j ∈ {1, . . . , n}, j �= i, let γ(j) denote the immediate predecessor of j on the (i, j)-path 
in T . Note that dij = diγ(j) + 1. We have

2
∑
j �=i

d2
ij =

∑
j �=i

d2
ij +

∑
j �=i

(diγ(j) + 1)2

=
∑
j �=i

d2
ij +

∑
j �=i

d2
iγ(j) + 2

∑
j �=i

diγ(j) + n− 1

=
∑
j �=i

d2
ij +

∑
j �=i

(δj − 1)d2
ij + 2

∑
j �=i

(δj − 1)dij + n− 1. (8)

By Lemma 2, Dτ = (n − 1)1, and hence 
∑

j �=i dij(2 − δj)dij =
∑n

j=1 dij(2 − δj) = n − 1. 
Therefore
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2
∑
j �=i

(δj − 1)dij =
∑
j �=i

δjdij −
∑
j �=i

(2 − δj)dij =
∑
j �=i

δjdij − (n− 1). (9)

Using (8) and (9) we get (7) and the proof is complete. �
2. Inverse of the squared distance matrix

In this section we first consider trees with no vertex of degree 2 and obtain a formula 
for the inverse of its squared distance matrix. Let cof A denote the sum of the cofactors 
of the matrix A. The following result will be used.

Theorem 5. (See [5].) Let T be a tree with vertex set {1, . . . , n}, with no vertex of degree 2, 
and let Δ be the squared distance matrix of T . Then

(i) det Δ = (−1)n4n−2 ∏n
i=1 τi

(
2n− 1 − 2

∑n
i=1

1
τi

)
.

(ii) cofΔ = (−1)n−12 · 4n−2 ∏n
i=1 τi.

We introduce some further notation in addition to the notation introduced earlier. 
Let T be a tree with vertex set {1, . . . , n}, and let the degree of each vertex be different 
from 2. Then τi �= 0, i = 1, . . . , n. We set τ̂ to be the diagonal matrix with diagonal 
elements 1

τ1
, . . . , 1

τn
. Thus τ̂ = τ̃−1. We define

ν = τ̃1 − Lτ̂1 and β =
(

2n− 1 − 2
n∑

i=1

1
τi

)−1

.

Note that for i = 1, . . . , n;

νi = τi +
∑
s∼i

1
τs

+ 1 − 2
τi
.

Lemma 6. Let T be a tree with vertex set {1, . . . , n} with no vertex of degree 2, and let 
Δ and L be the squared distance matrix and the Laplacian of T , respectively. Then

Δν = − 1
β
1.

Proof. We have

Δν = Δτ̃1 − ΔLτ̂1

= Δτ̃1 − (2D + J)τ̃ τ̂1 + 2Jτ̂1 by Lemma 3

= Δτ̃1 − (2D + J)1 + 2Jτ̂1

= Δτ − (2D + J)1 + 2Jτ̂1
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= Dδ − 2D1 − n1 + 2
(

n∑
i=1

1
τi

)
1 by Lemma 4

= −D(21 − δ) − n1 + 2
(

n∑
i=1

1
τi

)
1

= −Dτ − n1 + 2
(

n∑
i=1

1
τi

)
1

= −(n− 1)1 − n1 + 2
(

n∑
i=1

1
τi

)
1 by Lemma 2

= −
(

2n− 1 − 2
n∑

i=1

1
τi

)
1

= − 1
β
1,

and the proof is complete. �
The following is the main result of this section where we prove a formula for the 

inverse of the squared distance matrix. Recall that the tree is assumed to have no vertex 
of degree 2.

Theorem 7. Let T be a tree with vertex set {1, . . . , n} with no vertex of degree 2, and let 
Δ and L be the squared distance matrix and the Laplacian of T , respectively. Then

Δ−1 = −1
4Lτ̂L− β

2 νν
′.

Proof. Let X = −1
4Lτ̂L − β

2 νν
′. By Lemma 3 and Lemma 6,

ΔX = −1
4ΔLτ̂L− β

2 Δνν′

= −1
4((2D + J)τ̃ − 2J)τ̂L + β

2
1
β
1ν′

= −1
2Dτ̃ τ̂L− 1

4Jτ̃ τ̂L + 1
2Jτ̂L + 1

21ν′

= −1
2DL + 1

2Jτ̂L + 1
21ν′. (10)

By Theorem 1(vi), and (10) we have

ΔX = I − 11τ ′ + 1
Jτ̂L + 11ν′. (11)
2 2 2
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Since ν = τ̃1 − Lτ̂1, we have

1ν′ = 11′τ̃ − 11′τ̂L = 1τ ′ − Jτ̂L. (12)

It follows from (11) and (12) that ΔX = I and the proof is complete. �
The matrix Lτ̂L that appears in Theorem 7 can be described explicitly. The matrix 

has the form of a “two-step” Laplacian in the sense that its (i, j)-element is nonzero if 
and only if vertices i and j are at a distance of at most two. The formula is given in the 
next result. The proof is easy and is omitted.

Lemma 8. Let T be a tree with vertex set {1, . . . , n} with no vertex of degree 2. Let M be 
the n ×n matrix defined as follows: For i �= j, mij = 1 − 1

τi
− 1

τj
if i and j are adjacent, 

mij = 1
2τk if i and j are at distance 2 with the common neighbor k, and mij = 0 if 

dij > 2. Let mii be defined so that M has row (and column) sums zero, i = 1, . . . , n. 
Then M = 1

2Lτ̂L.

Example. Consider the tree

◦1 ◦5 ◦7

◦2 ◦4 ◦6 ◦8

3

Then it can be verified that

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1/2 −1/2 0 0 0 0
1 −4 1 3 −1/2 −1/2 0 0

−1/2 1 0 −1/2 0 0 0 0
−1/2 3 −1/2 −5 1 3 −1/2 −1/2

0 −1/2 0 1 0 −1/2 0 0
0 −1/2 0 3 −1/2 −4 1 1
0 0 0 −1/2 0 1 0 −1/2
0 0 0 −1/2 0 1 −1/2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In view of Lemma 8, the formula in Theorem 7 takes the form

Δ−1 = −1
2M − β

2 νν
′,

which is similar to the formula for the inverse of the distance matrix given in Theorem 1.
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We now consider trees with precisely one vertex of degree 2. The squared distance 
matrix of such a tree is nonsingular. We do not have a concise formula, comparable to the 
one in Theorem 7, for the inverse of the squared distance matrix in this case. However 
we do obtain an expression for the inverse. Recall the following result about the inverse 
of a partitioned matrix (see, for example, [1, p. 4]).

Lemma 9. Let A be an n × n nonsingular matrix partitioned as

A =
(
A11 A12
A21 A22

)
,

where A11 is square and nonsingular. If B = A−1 is compatibly partitioned as

B =
(
B11 B12
B21 B22

)
,

then B22 is nonsingular and A−1
11 = B11 − B12B

−1
22 B21, the Schur complement of B22

in B.

Let T be a tree with exactly one vertex degree 2 and let Δ be the squared distance 
matrix of T . The main idea is to extend T to a tree T̃ with no vertex of degree 2. If Δ̃
is the squared distance matrix of T̃ , then by Lemma 10, Δ−1 can be realized as a Schur 
complement in Δ̃−1.

We introduce some notation. Let T be a tree with V (T ) = {1, . . . , n}. Let vertex n
be the only vertex of T of degree 2, and let n − 1 and n − 2 be the neighbors of n. Let T̃
be the tree with V (T̃ ) = {1, . . . , n + 1} obtained by attaching the new vertex n + 1 to T
and making it adjacent to vertex n. Let Δ and Δ̃ be the squared distance matrices of T
and T̃ respectively. We define δ, τ, L, ν, β as before, with respect to the tree T̃ . Note that

Δ̃ =
(

Δ x

x′ 0

)

for some x. Let Δ̃−1 be partitioned as

Δ̃−1 =
(
X f

f ′ α

)
.

By Lemma 9, Δ−1 = X − 1
αff

′. Since T̃ has no vertex of degree 2, we have a formula 
for Δ̃−1 given by Theorem 7. Thus we have essentially obtained a formula for Δ−1.

We now turn to the edge orientation matrix, defined in [6]. We first recall the definition. 
Let T be a tree with V (T ) = {1, . . . , n}. We assign an orientation to each edge of T . Let 
D be the distance matrix of T . Let e = (ij) and f = (k�) be edges of T . We say that 
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e and f are similarly oriented if dik = dj�. Otherwise e and f are said to be oppositely 
oriented.

Definition. The edge orientation matrix of T is the (n − 1) × (n − 1) matrix H defined as 
follows. The rows and the columns of H are indexed by the edges of T . The (e, f)-element 
of H, denoted h(e, f) is defined to be 1(−1) if the corresponding edges of T are similarly 
(oppositely) oriented. The diagonal elements of H are set to be 1.

We recall the following basic properties of H, proved in [6].

Lemma 10. Let T be a directed tree on n vertices, let Δ, H and Q be, respectively, the 
squared distance matrix, the edge orientation matrix and the vertex-edge incidence matrix 
of T . Then (i) detH = 2n−2 ∏n

i=1 τi and (ii) Q′ΔQ = −2H.

In the final result of this section we provide a simple formula for the inverse of the 
edge orientation matrix, when it exists.

Theorem 11. Let T be a tree with V (T ) = {1, . . . , n} and let no vertex of T have degree 2. 
Then H−1 = 1

2Q
′τ̂Q.

Proof. Since ν = τ̃1 − Lτ̂1, we have

1′ν = 1′τ̃1 − 1′Lτ̂1 =
n∑

i=1
τi = 2. (13)

By Theorem 7, we get

I = −1
4Lτ̂LΔ − β

2 νν
′Δ. (14)

Using (13) and Lemma 6, we see that −β
2 νν

′Δ is idempotent, and then it follows from 
(14) that −1

4Lτ̂LΔ = I + β
2 νν

′Δ is idempotent. Thus

(
−1

4Lτ̂LΔ
)(

−1
4Lτ̂LΔ

)
= −1

4Lτ̂LΔ,

and hence

Lτ̂LΔLτ̂LΔ == −4Lτ̂LΔ. (15)

From (15), after simplification, we get

(Q′τ̂Q)(Q′ΔQ)(Q′τ̂Q) = −4Q′τ̂Q. (16)
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Since the rank of an idempotent matrix equals its trace, we see by taking the trace of both 
sides in (14) that the rank of Lτ̂LΔ = n − 1. Since Δ is nonsingular, rank Lτ̂L = n − 1. 
Therefore rank Q′τ̂Q ≥ rank QQ′τ̂QQ′ = rankLτ̂L = n − 1. Thus Q′τ̂Q is nonsingular. 
Furthermore, by Lemma 10, Q′ΔQ = −2H. It follows from (16) that Q′τ̂QH = 2I and 
the proof is complete. �
3. Inertia

Let A be a symmetric n × n matrix. Recall that the inertia of A, denoted In(A), is 
the triple (π, ν, ε), where π, ν, ε are, respectively, the number of positive, negative and 
zero eigenvalues of A. In this section we determine the inertia of the squared distance 
matrix of a tree and the edge orientation matrix of a directed tree.

The next result and its extension given in Lemma 13 are well-known (see [9, 
pp. 282–284]).

Lemma 12 (Sylvester’s law of inertia). Let A be a symmetric n × n matrix and let S be 
a nonsingular n × n matrix. Then In(A) = In(S′AS).

Lemma 13. Let A be a symmetric n × n matrix and let S be an n × m matrix. Let 
In(A) = (π, ν, ε) and let In(S′AS) = (π1, ν1, ε1). Then π ≥ π1 and ν ≥ ν1.

The next result is an easy consequence of the Cauchy Interlacing Principle (see [9, 
p. 242]).

Lemma 14. Let A be a symmetric n × n matrix and let B be a principal submatrix of A
of order n − 1. Let In(A) = (π, ν, ε) and let In(B) = (π1, ν1, ε1). Then π1 ≥ π − 1 and 
ν1 ≥ ν − 1.

We denote the column space of the matrix A by C(A). The next result, and its gen-
eralization given in Lemma 16, are well-known, see [4,11].

Lemma 15. Let A be a symmetric n × n matrix partitioned as

A =
(
A11 A12
A21 A22

)
,

where A11 is square and nonsingular. Then

In(A) = In(A11) + In(A22 −A21A
−1
11 A12).

Lemma 16. Let A be a symmetric n × n matrix partitioned as

A =
(
A11 A12
A21 A22

)
,
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where A11 is square. Let C(A12) ⊂ C(A11) and C(A′
21) ⊂ C(A11). Then A21A

−
11A12 is 

invariant with respect to the generalized inverse A−
11 of A, and furthermore,

In(A) = In(A11) + In(A22 −A21A
−
11A12).

Lemma 17. Let T be a tree and let v be a vertex of degree 2 in T . Let s and t be the 
neighbors of v in T . Replace column s of Δ by the sum of the columns s and t minus 
twice the column v. Then in the resulting matrix the column s is (2, 2, . . . , 2)′.

The following result is an immediate consequence of Lemma 17.

Lemma 18. Let T be a tree and let v be a vertex of degree 2 in T . Let s and t be the 
neighbors of v in T . Let z be the vertex indexed by V (T ) with zs = zt = −1, zv = 2 and 
all the remaining coordinates equal to zero. Then Δz = 21.

Lemma 19. Let T be a tree with vertex set {1, . . . , n} and let Δ be the squared distance 
matrix of T . Then the following assertions hold:

(i) If T has no vertex of degree 2, then 1′Δ−11 < 0.
(ii) If T has precisely one vertex of degree 2, then 1′Δ−11 = 0.

Proof. (i). Since T has no vertex of degree 2, τi �= 0, i = 1, . . . , n. By (i), Theorem 5,

detΔ = (−1)n4n−2
n∏

i=1
τi

(
2n− 1 − 2

n∑
i=1

1
τi

)
. (17)

Let cof A denote the sum of the cofactors of the matrix A. By (ii), Theorem 5,

cof Δ = (−1)n−12 · 4n−2
n∏

i=1
τi. (18)

It follows from (17) and (18) that

1′Δ−11 = cof Δ
detΔ = −2

(
2n− 1 − 2

n∑
i=1

1
τi

)−1

. (19)

The result is clear when n = 2, so we assume n ≥ 3. If T has p ≥ 2 pendant vertices, 
then 

∑n
i=1

1
τi

= p − α for some α > 0. Then

2n− 1 − 2
n∑

i=1

1
τi

= 2n− 1 − 2(p− α) = 2(n− p) + 2α− 1 > 0,

since 2(n − p) ≥ 1. It follows from (19) that 1′Δ−11 < 0.
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(ii). Let v be the vertex of degree 2 in T and let s and t be the neighbors of v in T . 
Let z be the vertex indexed by V (T ) with zs = zt = −1, zv = 2 and all the remaining 
coordinates equal to zero. By Lemma 18, Δ−11 = 1

2z. Thus 1′Δ−11 = 1
21

′z = 0. �
Theorem 20. Let T be a tree with n ≥ 3 vertices, p pendant vertices and q vertices of 
degree 2. Let Δ be the squared distance matrix of T . Then In(Δ) equals (n − p, p, 0) if 
q = 0 and (n − p − q + 1, p, q − 1) if q ≥ 1.

Proof. We induct on the number of vertices, with the case when T has 3 vertices being 
clear. Let w be a vertex of T adjacent to t pendant vertices in T where t ≥ 1. Thus the 
degree of w is t + 1, where w is adjacent to vertex u apart from the t pendant vertices. 
Without loss of generality, assume that the t pendant vertices are the vertices 1, 2, . . . , t.

For 1 ≤ i ≤ t, perform the following operations on Δ: replace row i by the sum of row 
i and row u minus twice the row w and similarly, replace column i by the sum of column 
i and column u minus twice the column w. By a repeated application of Lemma 17 with 
respect to the rows as well as the columns, we see that we obtain the matrix

Δ̂ =
[

4(J − I) 2J
2J Δ1

]
,

where Δ1 is the squared distance matrix corresponding to the tree T̃ = T −{1, 2, . . . , t}, 
the top left X = 4(J − I) matrix is of order t × t, and J denotes the matrix of all ones of 
the appropriate size. Note that Δ̂ is obtained from Δ by a sequence of elementary row 
operations, and the same sequence of elementary column operations. Thus Δ̂ = S′AS

for a nonsingular matrix S and it follows by Lemma 12 that Δ and Δ̂ have the same 
inertia. We consider cases.

Case (i). t = 1 and T1 has no vertex of degree 2. Then

Δ̂ =
[

0 21′

21 Δ1

]
.

By Lemma 15,

In(Δ̂) = In(Δ1) + In(−4(1′Δ1
−11)). (20)

The tree T1 has p pendant vertices and no vertices of degree 2. Therefore by the induc-
tion assumption, Δ1 has p negative and n − p − 1 positive eigenvalues. By Lemma 19, 
1′Δ1

−11 < 0. It follows from (20) that Δ̂ has p negative and n − p positive eigenvalues, 
completing the proof in this case.

Case (ii). t > 1 and T1 has precisely one vertex of degree 2. Then using the notation 
introduced earlier
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Δ̂ =
[

4(J − I) 2J
2J Δ1

]
.

Note that Δ1 is nonsingular and by Lemma 19, 1′Δ1
−11 = 0. By Lemma 15,

In(Δ̂) = In(Δ1) + In(4(J − I)). (21)

The tree T1 has n − t vertices of which p − t + 1 are pendant vertices and 1 vertex is of 
degree 2. Therefore by the induction assumption, Δ1 has p − t +1 negative and n −p −1
positive eigenvalues. Clearly, J−I has t −1 negative and 1 positive eigenvalues. It follows 
from (21) that Δ̂ has p negative and n − p positive eigenvalues, completing the proof in 
this case.

Case (iii). t = 1 and T1 has r > 1 vertices of degree 2. Then

Δ̂ =
[

0 21′

21 Δ1

]
.

In this case, Δ1 is singular. By Lemma 18, 1 ∈ C(Δ1) and for any generalized inverse 
Δ−

1 ,

41′Δ−
1 1 = z′Δ1Δ−

1 Δ1z

= z′Δ1z

=
(
−1 2 −1

)⎛
⎜⎝ 0 1 4

1 0 1
4 1 0

⎞
⎟⎠

⎛
⎜⎝−1

2
−1

⎞
⎟⎠

= 0. (22)

It follows from Lemma 16 and (22) that

In(Δ̂) = In(Δ1) + In(0). (23)

The tree T1 has n − 1 vertices of which p are pendant vertices and r vertices are of 
degree 2. Therefore by the induction assumption, Δ1 has p negative and r − 1 zero 
eigenvalues. It follows from (23) that Δ̂ has p negative and r zero eigenvalues. Since T
has r + 1 vertices of degree 2, the proof is complete in this case.

Case (iv). t > 1 and T1 has r > 1 vertices of degree 2. The proof in this case is similar 
to the one in Case (ii) and is omitted. This completes the proof. �
Lemma 21. Let T be a directed tree on n vertices and let H be the edge orientation matrix 
of T . If T has q vertices of degree 2, then rank H = n − 1 − q.
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Proof. If q = 0, then by Lemma 10(i), H is nonsingular and the result is proved. There-
fore we assume q ≥ 1. We prove the result by induction on n, with the case n = 2 being 
easy. So let n ≥ 3. Let v be a vertex of degree 2 in T and let s and t be the neighbors 
of v in T . Let e = (sv), f = (vt) be the edges of T , which we assume to be similarly 
oriented, without loss of generality. Then the columns of H indexed by e and f are 
identical. Let z be the vector indexed by E(T ) with ze = −zf = 1 and with the other 
coordinates of z being zero. Then Hz = 0. Each degree 2 vertex thus gives rise to a null 
vector of H and these vectors must necessarily be independent. Thus H has at least q
zero eigenvalues and hence rank H ≤ n − 1 − q. Let T1 be the tree obtained from T by 
removing vertex v and replacing edges e and f by the single edge (st). Let H1 be the 
edge orientation matrix of H. Then H1 is a principal submatrix of H. Since T1 has q− 1
degree 2 vertices, by the induction assumption rank H1 = n − 2 − (q − 1) = n − 1 − q. 
Since rank H ≥ rankH1 = n − 1 − q, it follows that rank H = n − 1 − q and the proof 
is complete. �
Theorem 22. Let T be a directed tree with n vertices, p pendant vertices and q vertices of 
degree 2. Let H be the edge orientation matrix of T . Then In(H) equals (p − 1, n − p, 0)
if q = 0 and (p − 1, n − p − q, q) if q ≥ 1.

Proof. First let q = 0. By Theorem 20, In(Δ) = (n − p, p, 0). By Lemma 10, H is 
nonsingular and hence In(H) = (r, n − 1 − r, 0) for some r ≥ 0. By Lemma 10(ii) and 
Lemma 13, r ≤ p and n − 1 − r ≤ n − p. Thus In(H) equals either (p, n − p − 1, 0) or 
(p − 1, n − p, 0). By Lemma 10(i), the determinant of H has the same sign as (−1)n−p

and hence In(H) = (p − 1, n − p, 0).
Now let q ≥ 1. By Theorem 20, In(Δ) = (n −p −q+1, p, q−1). By Lemma 21, H has q

zero eigenvalues and hence In(H) = (r, n − 1 − r− q, q) for some r ≥ 0. By the induction 
assumption, In(H1) = (p − 1, n − p − q, q − 1) and hence by Lemma 14, r ≥ p − 1 and 
n −1 − r− q ≥ n −p − q. It follows that r = p −1 and hence In(H) = (p −1, n −p − q, q). 
This completes the proof. �
Acknowledgements

Some theorems in this work were conjectures, tested using the computer package 
“Sage”. We thank the authors of “Sage” for generously releasing their software as an 
open-source package. The first author acknowledges support from the JC Bose Fellow-
ship, Department of Science and Technology, Government of India. The second author 
acknowledges support from project grant P07 IR052, given by IIT Bombay.

References

[1] R.B. Bapat, Graphs and Matrices, second edition, Universitext, Springer/Hindustan Book Agency, 
London/New Delhi, 2014.

http://refhub.elsevier.com/S0024-3795(15)00521-2/bib31s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib31s1


342 R.B. Bapat, S. Sivasubramanian / Linear Algebra Appl. 491 (2016) 328–342
[2] R. Bapat, S.J. Kirkland, M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 
401 (2005) 193–209.

[3] R.B. Bapat, A.K. Lal, Sukanta Pati, A q-analogue of the distance matrix of a tree, Linear Algebra 
Appl. 416 (2–3) (2006) 799–814.

[4] D. Carlson, E. Haynsworth, T. Markham, A generalization of the Schur complement by means of 
the Moore–Penrose inverse, SIAM J. Appl. Math. 16 (1) (1974) 169–175.

[5] R.B. Bapat, Sivaramakrishnan Sivasubramanian, The product distance matrix of a tree and a 
bivariate zeta function of a graph, Electron. J. Linear Algebra 23 (2012) 275–286.

[6] R.B. Bapat, Sivaramakrishnan Sivasubramanian, Product distance matrix of a graph and squared 
distance matrix of a tree, Appl. Anal. Discrete Math. 7 (2013) 285–301.

[7] R.L. Graham, L. Lovász, Distance matrix polynomials of trees, Adv. Math. 29 (1) (1978) 60–88.
[8] R.L. Graham, H.O. Pollak, On the addressing problem for loop switching, Bell System Tech. J. 50 

(1971) 2495–2519.
[9] Roger A. Horn, Charles R. Johnson, Matrix Analysis, second edition, Cambridge University Press, 

Cambridge, 2013.
[10] Weigen Yan, Yeong-Nan Yeh, The determinants of q-distance matrices of trees and two quantiles 

relating to permutations, Adv. in Appl. Math. 39 (3) (2007) 311–321.
[11] Fuzhen Zhang, The Schur Complement and Its Applications, Springer, London, 2005.

http://refhub.elsevier.com/S0024-3795(15)00521-2/bib32s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib32s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib33s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib33s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib34s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib34s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib35s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib35s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib36s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib36s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib37s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib38s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib38s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib39s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib39s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib3130s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib3130s1
http://refhub.elsevier.com/S0024-3795(15)00521-2/bib3131s1

	Squared distance matrix of a tree: Inverse and inertia
	1 Introduction and preliminary results
	2 Inverse of the squared distance matrix
	3 Inertia
	Acknowledgements
	References


