Let F be a p-adic field and let G be the group of F-rational points of a connected quasi-split reductive F-group. Let $P = MN$ be a parabolic subgroup. Let $\psi : W'_F \to L M < L G$ be an Arthur parameter of G which factors through $L M$, where W'_F is the Deligne-Weil group and $L G$ (resp. $L M$) denotes the Langlands dual of G (resp. M). Thus ψ is an Arthur parameter for M. Assume that the image of ψ is not contained in a smaller Levi subgroup. Let S_{ψ} be the centralizer in \tilde{G} of the image of ψ, and let S^o_{ψ} denote its identity component. Let T_{ψ} be a maximal torus of S^o_{ψ}. Define $W_{\psi} = N_{S_{\psi}}(T_{\psi})/Z_{S_{\psi}}(T_{\psi})$ and $W^o_{\psi} = N_{S^o_{\psi}}(T_{\psi})/Z_{S^o_{\psi}}(T_{\psi})$. Let σ be an irreducible unitary representation of M which belongs to the A-packet $\Pi_{\psi}(M)$. Let $W(\sigma) = \{ w \in W(G,A) \mid w \sigma \cong \sigma \}$, where A is the split component of M. Let $W_{\psi,\sigma} = W_{\psi} \cap W(\sigma)$ and $W^o_{\psi,\sigma} = W^o_{\psi} \cap W(\sigma)$. The Arthur R-group is defined as $R_{\psi,\sigma} = W_{\psi,\sigma}/W^o_{\psi,\sigma}$. Note that Arthur’s characterization of the R-group does not require σ to be in the discrete series whereas the classical Knapp-Stein R-group requires such a constraint as it is defined in terms of Plancherel measures. In a number of situations, the Arthur R-group is known to match the Knapp-Stein R-group if σ is in the discrete series.

Let $I = \text{Ind}_{S^o_{\psi}}^G \sigma$ be the parabolically induced representation of G. Let $A'(\sigma, \tilde{w})$ be Shahidi’s normalized intertwining operator, where \tilde{w} is a representative of w. If $w \in W(\sigma)$, σ extends to a representation σ_w of the smallest group containing M and \tilde{w}. Define $A(\sigma, w) = \sigma_w(\tilde{w}) A'(\sigma, \tilde{w})$. The definition is independent of the choices involved and this defines an element in the commuting algebra $C(\sigma) = \text{Hom}(I, I)$. From the cocycle condition satisfied by Shahidi’s operator, it follows that $A(\sigma, w_1 w_2) = \eta(w_1, w_2) A(\sigma, w_1) A(\sigma, w_2)$ for a constant $\eta(w_1, w_2)$.

Now let R be a subgroup of $W(\sigma)$. There is a finite central extension $1 \to Z_{\alpha} \to \tilde{R} \to R \to 1$ which splits η. Let $\xi : \tilde{R} \to \mathbb{C}^\times$ be the function which splits η. There is a homomorphism from \tilde{R} to $C(\sigma)$ and to each component π of I, there is an attached representation ρ_{π} of \tilde{R}. For $r \in R$, define $\langle r, \pi \rangle = \text{trace} \rho_{\pi}(r, 1)$. Then the authors prove that

$$\text{trace}(A(\sigma, r) I(f)) = \xi(r) \sum_{\pi} \langle r, \pi \rangle \text{trace} \rho_{\pi}(f)$$

where $f \in C_c^\infty(G)$. For σ in the discrete series, this is a well-known property of the Knapp-Stein R-group.

The authors also show that two other basic properties of the Knapp-Stein R-group do not carry over to the Arthur R-group. Thus, the normalized standard intertwining operators $A(r, \sigma), r \in R_{\psi,\sigma}$ in general do not form a basis for the commuting alge-
bra and the components of I are not in bijective correspondence with the irreducible representations of $R_{\psi,\sigma}$. This is shown by considering $\pi = \text{Ind}_P^G(\text{St}_{\text{GL}(2)} \otimes 1_{\text{GL}(2)})$, where $G = \text{SO}(9), P = MN$ with $M = \text{GL}(2) \times \text{GL}(2)$. It is shown that π has three components whereas $R_{\psi,\sigma} = \mathbb{Z}/2 \times \mathbb{Z}/2$.

\textit{U. K. Anandavardhanan (Mumbai)}

\textit{Classification :}

\begin{itemize}
 \item 11F70 Representation-theoretic methods in automorphic theory
 \item 22E50 Repres. of Lie and linear algebraic groups over local fields
\end{itemize}