A Proof of Fundamental Theorem of Algebra Through Linear Algebra due to Derksen

Anant R. Shastri

February 13, 2011
We present a proof of the Fundamental Theorem of Algebra (FTA)

Every non-constant polynomial in one variable with coefficients in \(\mathbb{C} \) has a root in \(\mathbb{C} \).

The proof uses elementary linear algebra except that we begin with the intermediate value theorem in proving that every odd degree real polynomial has a real root.
We present a proof of
the Fundamental Theorem of Algebra (FTA)

Every non constant polynomial in one variable
with coefficients in \(\mathbb{C} \) has a root in \(\mathbb{C} \).
MA106-Linear Algebra 2011

We present a proof of
the Fundamental Theorem of Algebra (FTA)

Every non constant polynomial in one variable
with coefficients in \(\mathbb{C} \) has a root in \(\mathbb{C} \).

through a sequence of easily do-able exercises. The proof uses elementary linear algebra except that we begin with
the intermediate value theorem in proving that every odd degree real polynomial has a real root.
Based on an article in
Based on an article in

In what follows \mathbb{K} will denote any field. However, we need worry about only two cases here: \mathbb{K} is either \mathbb{R} or \mathbb{C}.
We begin with a basic result in real analysis:

Intermediate Value Theorem immediately yields:

Every odd degree polynomial $p(t) \in \mathbb{R}[t]$ has a real root.

It should be noted that there is no purely algebraic proof of FTA which does not use IVT. Indeed, all proofs of FTA use IVT explicitly or implicitly. The simple reason is that IVT is equivalent to any other axiom that is used in the construction of real numbers.

From now onwards we only use linear algebra.
We begin with a basic result in real analysis: **Intermediate Value Theorem**
We begin with a basic result in real analysis: Intermediate Value Theorem which immediately yields:

Every odd degree polynomial \(p(t) \in \mathbb{R}[t] \) has a real root.

It should be noted that there is no purely algebraic proof of FTA which does not use IVT. Indeed, all proofs of FTA use IVT explicitly or implicitly. The simple reason is that IVT is equivalent to any other axiom that is used in the construction of real numbers.

From now onwards we only use linear algebra.
We begin with a basic result in real analysis: **Intermediate Value Theorem** which immediately yields:

- Every odd degree polynomial $p(t) \in \mathbb{R}[t]$ has a real root.
- It should be noted that there is no purely algebraic proof of FTA which does not use IVT.
- Indeed, all proofs of FTA use IVT explicitly or implicitly. The simple reason is that IVT is equivalent to any other axiom that is used in the construction of real numbers.
We begin with a basic result in real analysis: **Intermediate Value Theorem** which immediately yields:

- Every odd degree polynomial $p(t) \in \mathbb{R}[t]$ has a real root.
- It should be noted that there is **no** purely algebraic proof of FTA which does not use IVT.
- Indeed, all proofs of FTA use IVT explicitly or implicitly. The simple reason is that IVT is equivalent to any other axiom that is used in the construction of real numbers.
- From now onwards we only use linear algebra.
Companion Matrix Let

\[p(t) = t^n + a_1 t^{n-1} + \cdots + a_n \]

be a monic polynomial of degree \(n \). Its companion matrix \(C_p \) is defined to be the \(n \times n \) matrix

\[
C_p = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & \cdots & 0 & 1 \\
-a_n & -a_{n-1} & \cdots & \cdots & -a_1 & \end{bmatrix}
\]
Companion Matrix Let \(p(t) = t^n + a_1 t^{n-1} + \cdots + a_n \) be a monic polynomial of degree \(n \). Its companion matrix \(C_p \) is defined to be the \(n \times n \) matrix

\[
C_p = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & \cdots & 0 & 1 \\
-a_n & -a_{n-1} & \cdots & \cdots & -a_1 \\
\end{bmatrix}
\]

Ex.1. Show that the characteristic polynomial of \(C_p \) is \(p \), i.e., \(\det(C_p - tl_n) = (-1)^n p(t) \).
Example 2. Show that every non constant polynomial $p(t) \in \mathbb{K}[t]$ of degree n has a root in \mathbb{K} iff every endomorphism $\mathbb{K}^n \to \mathbb{K}^n$ has an eigenvalue in \mathbb{K}.

Recall that by an endomorphism of a vector space V, we mean a linear transformation $V \to V$. Example 3. Show that every \mathbb{R}-linear map $f : \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}$ has a real eigenvalue.
Ex. 2. Show that every non constant polynomial $p(t) \in \mathbb{K}[t]$ of degree n has a root in \mathbb{K} iff every endomorphism $\mathbb{K}^n \rightarrow \mathbb{K}^n$ has an eigenvalue in \mathbb{K} iff every $n \times n$ matrix over \mathbb{K} has an eigenvalue in \mathbb{K}.
Ex. 2. Show that every non constant polynomial \(p(t) \in \mathbb{K}[t] \) of degree \(n \) has a root in \(\mathbb{K} \) iff every endomorphism \(\mathbb{K}^n \to \mathbb{K}^n \) has an eigenvalue in \(\mathbb{K} \) iff every \(n \times n \) matrix over \(\mathbb{K} \) has an eigenvalue in \(\mathbb{K} \).

Recall that by an endomorphism of a vector space \(V \) we mean a linear transformation \(V \to V \).
Ex. 2. Show that every non constant polynomial $p(t) \in \mathbb{K}[t]$ of degree n has a root in \mathbb{K} iff every endomorphism $\mathbb{K}^n \rightarrow \mathbb{K}^n$ has an eigenvalue in \mathbb{K} iff every $n \times n$ matrix over \mathbb{K} has an eigenvalue in \mathbb{K}.

Recall that by an endomorphism of a vector space V we mean a linear transformation $V \rightarrow V$.

Ex. 3 Show that every \mathbb{R}-linear map $f : \mathbb{R}^{2n+1} \rightarrow \mathbb{R}^{2n+1}$ has a real eigenvalue.
For positive integers r, let $S_1(\mathbb{K}, r)$ denote the following statement:

Every endomorphism $A : \mathbb{K}^n \to \mathbb{K}^n$ has an eigenvector for all n not divisible by 2^r.

Also let $S_2(\mathbb{K}, r)$ denote the statement

Any two commuting endomorphisms $\mathbb{K}^n \to \mathbb{K}^n$ have a common eigenvector for all n not divisible by 2^r.
For positive integers r, let $S_1(\mathbb{K}, r)$ denote the following statement:

Every endomorphism $A : \mathbb{K}^n \to \mathbb{K}^n$ has an eigenvector for all n not divisible by 2^r.

Also let $S_2(\mathbb{K}, r)$ denote the statement

Any two commuting endomorphisms $\mathbb{K}^n \to \mathbb{K}^n$ have a common eigenvector for all n not divisible by 2^r.

We shall prove one result over any field \mathbb{K} and two special results for $\mathbb{K} = \mathbb{R}$ and \mathbb{C}.
For positive integers r, let $S_1(\mathbb{K}, r)$ denote the following statement:

Every endomorphism $A : \mathbb{K}^n \to \mathbb{K}^n$ has an eigenvector for all n not divisible by 2^r.

Also let $S_2(\mathbb{K}, r)$ denote the statement

Any two commuting endomorphisms $\mathbb{K}^n \to \mathbb{K}^n$ have a common eigenvector for all n not divisible by 2^r.

We shall prove one result over any field \mathbb{K} and two special results for $\mathbb{K} = \mathbb{R}$ and \mathbb{C}.
Sketch of Proof

▶ (a) $S_1(K, r) \iff S_2(K, r), r \geq 1$.

▶ Begin with IVT which is the same as $S_1(R, 1)$.

Putting $K = R$ in (a) we get $S_2(R, 1)$.

Now (b) gives $S_1(C, 1)$ and repeated application of (c) gives $S_1(C, k)$ for all $k \geq 1$.

▶ Given n, write $n = 2^k \ell$ where ℓ is odd. Then $S_1(C, k+1)$ implies that every polynomial of degree n has a root. And that completes the proof of FTA.
Sketch of Proof

- (a) $S_1(K, r) \iff S_2(K, r)$, $r \geq 1$.
- (b) $S_2(R, 1) \iff S_1(C, 1)$.

Given n, write $n = 2^k \ell$ where ℓ is odd. Then $S_1(C, k+1)$ implies that every polynomial of degree n has a root. And that completes the proof of FTA.
Sketch of Proof

- (a) $S_1(K, r) \iff S_2(K, r), r \geq 1$.
- (b) $S_2(R, 1) \iff S_1(C, 1)$.
- (c) $S_1(C, r) \iff S_1(C, r + 1), r \geq 1$.
Sketch of Proof

- (a) $S_1(K, r) \iff S_2(K, r), r \geq 1$.
- (b) $S_2(R, 1) \iff S_1(C, 1)$.
- (c) $S_1(C, r) \iff S_1(C, r + 1), r \geq 1$.

Begin with IVT which is the same as $S_1(R, 1)$. Putting $K = R$ in (a) we get $S_2(R, 1)$. Now (b) gives $S_1(C, 1)$ and repeated application of (c) gives $S_1(C, k)$ for all $k \geq 1$.

Given n, write $n = 2^k \ell$ where ℓ is odd. Then $S_1(C, k + 1)$ implies that every polynomial of degree n has a root. And that completes the proof of FTA.
Sketch of Proof

- (a) $S_1(\mathbb{K}, r) \implies S_2(\mathbb{K}, r), r \geq 1$.
- (b) $S_2(\mathbb{R}, 1) \implies S_1(\mathbb{C}, 1)$.
- (c) $S_1(\mathbb{C}, r) \implies S_1(\mathbb{C}, r + 1), r \geq 1$.

Begin with IVT which is the same as $S_1(\mathbb{R}, 1)$. Putting $\mathbb{K} = \mathbb{R}$ in (a) we get $S_2(\mathbb{R}, 1)$. Now (b) gives $S_1(\mathbb{C}, 1)$ and repeated application of (c) gives $S_1(\mathbb{C}, k)$ for all $k \geq 1$.

Given n, write $n = 2^k \ell$ where ℓ is odd. Then $S_1(\mathbb{C}, k + 1)$ implies that every polynomial of degree n has a root. And that completes the proof of FTA.
Ex. 4. Prove statement (a):
\[S_1(\mathbb{K}, r) \implies S_2(\mathbb{K}, r). \]
Ex. 4. Prove statement (a):
\[S_1(K, r) \iff S_2(K, r). \]
We shall prove this by induction on the dimension \(n \) of the vector space.
Ex. 4. Prove statement (a):
\[S_1(\mathbb{K}, r) \implies S_2(\mathbb{K}, r). \]

We shall prove this by induction on the dimension \(n \) of the vector space.

For \(n = 1 \) this is clear, since any non zero vector is an eigenvector for all endomorphisms.
Ex. 4. Prove statement (a):
\[S_1(\mathbb{K}, r) \implies S_2(\mathbb{K}, r). \]

We shall prove this by induction on the dimension \(n \) of the vector space.

For \(n = 1 \) this is clear, since any non zero vector is an eigenvector for all endomorphisms.

So assume that the statement is true for smaller values of \(n \) and let \(A, B \) be two commuting \(n \times n \) matrices over \(\mathbb{K} \), and \(n \) is not divisible by \(2^r \).
Let λ be an eigenvalue of A and put $V_1 = \mathcal{N}(A - \lambda I), V_2 = \mathcal{R}(A - \lambda I)$. Since B commutes with A, it follows that B commutes with $A - \lambda I$ also. Therefore B restricts to endomorphisms $\beta : V_1 \to V_1$ and $\beta : V_2 \to V_2$.
(Refer: Tut. sheet 9.18.)
Let λ be an eigenvalue of A and put $V_1 = \mathcal{N}(A - \lambda I)$, $V_2 = \mathcal{R}(A - \lambda I)$. Since B commutes with A, it follows that B commutes with $A - \lambda I$ also. Therefore B restricts to endomorphisms $\beta : V_1 \to V_1$ and $\beta : V_2 \to V_2$.

(Refer: Tut. sheet 9.18.)

By rank-nullity theorem,

$$\dim V_1 + \dim V_2 = n$$

and hence $\dim V_1$ or $\dim V_2$ is not divisible by 2^r.
Let λ be an eigenvalue of A and put $V_1 = \mathcal{N}(A - \lambda I), V_2 = \mathcal{R}(A - \lambda I)$. Since B commutes with A, it follows that B commutes with $(A - \lambda I)$ also. Therefore B restricts to endomorphisms $\beta : V_1 \to V_1$ and $\beta : V_2 \to V_2$.

(Refer: Tut. sheet 9.18.)

By rank-nullity theorem,

$$\dim V_1 + \dim V_2 = n$$

and hence $\dim V_1$ or $\dim V_2$ is not divisible by 2^r.

If $\dim V_1$ is not divisible by 2^r then $\beta : V_1 \to V_1$ has an eigenvector which is also the eigenvector for A.

"Anant R. Shastri Derksen's Proof of FTA"
Let λ be an eigenvalue of A and put

\[V_1 = \mathcal{N}(A - \lambda I), \quad V_2 = \mathcal{R}(A - \lambda I). \]

Since B commutes with A, it follows that B commutes with $A - \lambda I$ also. Therefore B restricts to endomorphisms $\beta : V_1 \to V_1$ and $\beta : V_2 \to V_2$.

(Refer: Tut. sheet 9.18.)

By rank-nullity theorem,

\[\dim V_1 + \dim V_2 = n \]

and hence $\dim V_1$ or $\dim V_2$ is not divisible by 2^r.

If $\dim V_1$ is not divisible by 2^r then $\beta : V_1 \to V_1$ has an eigenvector which is also the eigenvector for A.

If not, then $\dim V_2 < n$ and not divisible by 2^r.

Now we consider $\alpha, \beta : V_2 \to V_2$ which are restrictions of A and B and hence are commuting endomorphisms.

By induction we are through there is a common eigenvector $v \in V_2 \subset V$ for α and β which is then a common eigenvector for A and B as well.
Ex. 5 Show that the space $\text{HERM}_n(\mathbb{C})$ of all complex Hermitian $n \times n$ matrices is a \mathbb{R} vector space of dimension n^2.
Ex. 5 Show that the space $\text{HERM}_n(\mathbb{C})$ of all complex Hermitian $n \times n$ matrices is a \mathbb{R} vector space of dimension n^2.
(Refer to Exercise 8.5 and a question in the Quiz.)
Ex. 5 Show that the space \(\text{HERM}_n(\mathbb{C}) \) of all complex Hermitian \(n \times n \) matrices is a \(\mathbb{R} \) vector space of dimension \(n^2 \).
(Refer to Exercise 8.5 and a question in the Quiz.)
Recall that a matrix \(A \) is hermitian if it is equal to its transpose conjugate \(A^* \).
and the next one is from 8.6.
Ex. 6 Given \(A \in M_n(\mathbb{C}) \), the mappings
\[
\alpha_A(B) = \frac{1}{2}(AB + BA^*); \quad \beta_A(B) = \frac{1}{2i}(AB - BA^*)
\]
define \(\mathbb{R} \)-linear maps \(\text{HERM}_n(\mathbb{C}) \rightarrow \text{HERM}_n(\mathbb{C}) \).
Show that \(\alpha_A, \beta_A \) commute with each other.
Answer:

$$4v \alpha_A \circ \beta_A(B)$$
$$= 2\alpha_A(AB - BA^*)$$
$$= [A(AB - BA^*) + (AB - BA^*)A^*]$$
$$= [A(AB + BA^*) - (AB + BA^*)A^*]$$
$$= 2v \beta_A(AB + BA^*)$$
$$= 4v \beta_A \circ \alpha_A(B).$$
Ex. 7. If α_A and β_A have a common eigenvector then A has an eigenvalue in \mathbb{C}.

Answer: If $\alpha_A(B) = \lambda B$ and $\beta_A(B) = \mu B$ then consider $AB = (\alpha_A + i\beta_A)(B) = (\lambda + i\mu)B$. Since B is an eigenvector, at least one of the column vectors of B, say $u \neq 0$. It follows that $A u = (\lambda + i\mu)u$ and hence $\lambda + i\mu$ is an eigenvalue for A.

Anant R. Shastri Derksen’s Proof of FTA
Ex. 7. If α_A and β_A have a common eigenvector then A has an eigenvalue in \mathbb{C}.

Answer: If $\alpha_A(B) = \lambda B$ and $\beta_A(B) = \mu B$ then consider

$$AB = (\alpha_A + i\beta_A)(B) = (\lambda + i\mu)B.$$
Ex. 7. If α_A and β_A have a common eigenvector then A has an eigenvalue in \mathbb{C}.

Answer: If $\alpha_A(B) = \lambda B$ and $\beta_A(B) = \mu B$ then consider

$$AB = (\alpha_A + \iota\beta_A)(B) = (\lambda + \iota\mu)B.$$

Since B is an eigenvector, at least one of the column vectors of B, say $u \neq 0$.
Ex. 7. If α_A and β_A have a common eigenvector then A has an eigenvalue in \mathbb{C}.

Answer: If $\alpha_A(B) = \lambda B$ and $\beta_A(B) = \mu B$ then consider

$$AB = (\alpha_A + \iota\beta_A)(B) = (\lambda + \iota\mu)B.$$

Since B is an eigenvector, at least one of the column vectors of B, say $u \neq 0$.

It follows that $Au = (\lambda + \iota\mu)u$ and hence $\lambda + \iota\mu$ is an eigenvalue for A.

Anant R. Shastri
Derksen’s Proof of FTA
Ex. 8. Prove statement (b):
\[S_2(\mathbb{R}, 1) \iff S_1(\mathbb{C}, 1). \] (Exercise 11.4)
Ex. 8. Prove statement (b):
\[S_2(\mathbb{R}, 1) \iff S_1(\mathbb{C}, 1). \] (Exercise 11.4)

Solution: By Ex. 6, given \(A \in M_n(\mathbb{C}) \), \(\alpha_A, \beta_A : \text{Herm}_n(\mathbb{C}) \rightarrow \text{Herm}_n(\mathbb{C}) \) are two commuting endomorphisms of the real vector space \(\text{Herm}_n \) which is of dimension \(n^2 \), by ex. 5.
Ex. 8. Prove statement (b):
\[S_2(\mathbb{R}, 1) \iff S_1(\mathbb{C}, 1). \] (Exercise 11.4)

Solution: By Ex. 6, given \(A \in M_n(\mathbb{C}) \),
\(\alpha_A, \beta_A : \text{Herm}_n(\mathbb{C}) \rightarrow \text{Herm}_n(\mathbb{C}) \) are two commuting endomorphisms of the real vector space \(\text{Herm}_n \) which is of dimension \(n^2 \), by ex. 5.

If \(n \) is odd, so is \(n^2 \).
Ex. 8. Prove statement (b):
\[S_2(\mathbb{R}, 1) \iff S_1(\mathbb{C}, 1). \] (Exercise 11.4)

Solution: By Ex. 6, given \(A \in M_n(\mathbb{C}) \), \(\alpha_A, \beta_A : \text{Herm}_n(\mathbb{C}) \to \text{Herm}_n(\mathbb{C}) \) are two commuting endomorphisms of the real vector space \(\text{Herm}_n \) which is of dimension \(n^2 \), by ex. 5.

- If \(n \) is odd, so is \(n^2 \).
- By Ex. 4, it follows that \(\alpha_A, \beta_A \) have a common eigenvector.
Ex. 8. Prove statement (b):
\[S_2(\mathbb{R}, 1) \iff S_1(\mathbb{C}, 1). \] (Exercise 11.4)

Solution: By Ex. 6, given \(A \in M_n(\mathbb{C}) \), \(\alpha_A, \beta_A : \text{Herm}_n(\mathbb{C}) \to \text{Herm}_n(\mathbb{C}) \) are two commuting endomorphisms of the real vector space \(\text{Herm}_n \) which is of dimension \(n^2 \), by ex. 5.

If \(n \) is odd, so is \(n^2 \).

By Ex. 4, it follows that \(\alpha_A, \beta_A \) have a common eigenvector.

By Ex. 7, \(A \) has an eigenvalue.
Ex. 9. Show that the space $\text{Sym}_n(\mathbb{K})$ of symmetric $n \times n$ matrices forms a subspace of dimension $n(n + 1)/2$ of $M_n(\mathbb{K})$. (Exercise 8.5)
Ex. 9. Show that the space \(\text{Sym}_n(\mathbb{K}) \) of symmetric \(n \times n \) matrices forms a subspace of dimension \(n(n+1)/2 \) of \(M_n(\mathbb{K}) \). (Exercise 8.5)

The next one is Ex. 11.5.
Ex. 9. Show that the space $\text{Sym}_n(\mathbb{K})$ of symmetric $n \times n$ matrices forms a subspace of dimension $n(n + 1)/2$ of $M_n(\mathbb{K})$. (Exercise 8.5)

The next one is Ex. 11.5.

Ex. 10 Given $A \in M_n(\mathbb{K})$, show that

$$\phi_A : B \mapsto \frac{1}{2}(AB + BA^t); \quad \psi_A : B \mapsto ABA^t$$

define two commuting endomorphisms of $\text{Sym}_n(\mathbb{K})$. Show that if B is a common eigenvector of ϕ_A, ψ_A, then

$$(A^2 + aA + b I_n)B = 0$$

for some $a, b \in \mathbb{K}$; further if $\mathbb{K} = \mathbb{C}$, conclude that A has an eigenvalue.
Answer: The first part is easy.
Answer: The first part is easy.

To see the second part, suppose

$$\phi_A(B) = AB + BA^t = \lambda B$$

and

$$\psi_A(B) = ABA^t = \mu B$$
Answer: The first part is easy.

To see the second part, suppose

\[\phi_A(B) = AB + BA^t = \lambda B \]

and

\[\psi_A(B) = ABA^t = \mu B \]

Multiply first relation by \(A \) on the left and use the second to obtain

\[A^2B + \mu B - \lambda AB = 0 \]

which is the same as

\[(A^2 - \lambda A + \mu I_n)B = 0. \]
For the last part, first observe that since B is an eigenvector there is at least one column vector \mathbf{v} which is non zero. Therefore
$$(A^2 + aA + b I_n)\mathbf{v} = 0.$$
For the last part, first observe that since B is an eigenvector there is at least one column vector v which is non zero. Therefore
\[(A^2 + aA + bI_n)v = 0.\]

Now write $A^2 + aA + bI_n = (A - \lambda_1 I_n)(A - \lambda_2 I_n)$. If $(A - \lambda_2 I_n)v = 0$, then λ_2 is an eigenvalue of A and we are through.
For the last part, first observe that since B is an eigenvector there is at least one column vector \mathbf{v} which is non zero. Therefore

$$(A^2 + aA + bI_n)\mathbf{v} = 0.$$

Now write $A^2 + aA + bI_n = (A - \lambda_1 I_n)(A - \lambda_2 I_n)$. If $(A - \lambda_2 I_n)\mathbf{v} = 0$, then λ_2 is an eigenvalue of A and we are through.

Otherwise put $\mathbf{u} = (A - \lambda_2 I_n)\mathbf{v} \neq 0$. Then $(A - \lambda_1 I_n)\mathbf{u} = 0$ and hence λ_1 is an eigenvalue of A.

Ex. 11 Prove statement (c) \[S_1(\mathbb{C}, r) \iff S_1(\mathbb{C}, r + 1). \] Hence conclude that \(S_1(\mathbb{C}, r) \) is true for all \(r \geq 1 \).
Ex. 11 Prove statement (c)
\(S_1(\mathbb{C}, r) \implies S_1(\mathbb{C}, r + 1) \). Hence conclude that
\(S_1(\mathbb{C}, r) \) is true for all \(r \geq 1 \).

Answer:
Let \(n = 2^k \ell \) where \(1 \leq k \leq r \) and \(\ell \) is odd. Let
\(A \in M_n(\mathbb{C}) \). Then \(\phi_A, \psi_A \) are two mutually
commuting operators on \(\text{Sym}_n(\mathbb{C}) \) which is of
dimension \(n(n + 1)/2 = 2^{k-1} \ell(2^k \ell + 1) \) which is
not divisible by \(2^r \).
Ex. 11 Prove statement (c)
$S_1(\mathbb{C}, r) \implies S_1(\mathbb{C}, r + 1)$. Hence conclude that
$S_1(\mathbb{C}, r)$ is true for all $r \geq 1$.

Answer:
Let $n = 2^k \ell$ where $1 \leq k \leq r$ and ℓ is odd. Let $A \in M_n(\mathbb{C})$. Then ϕ_A, ψ_A are two mutually commuting operators on $Sym_n(\mathbb{C})$ which is of dimension $n(n + 1)/2 = 2^{k-1} \ell(2^k \ell + 1)$ which is not divisible by 2^r.

By Ex. 10, with $\mathbb{K} = \mathbb{C}$ along with the induction hypothesis, it follows that A has an eigenvalue.
We summerise what we did.
We summarise what we did.

In order to prove that every non constant polynomial over complex numbers has a root we note that...
We summarise what we did.

In order to prove that every non-constant polynomial over complex numbers has a root we note that

by Ex. 2, it is enough to show that every $n \times n$ complex matrix has an eigenvalue.
We summerise what we did.

In order to prove that every non constant polynomial over complex numbers has a root we note that

by Ex. 2, it is enough to show that every $n \times n$ complex matrix has an eigenvalue.

By Ex. 8, this holds for odd n. This implies that $S_1(\mathbb{C}, 1)$. By Ex. 11 applied repeatedly, we get $S_1(\mathbb{C}, r)$ for all r.

Given any polynomial of degree n, write $n = 2^r \ell$, where ℓ is odd. Then $S_1(\mathbb{C}, r + 1)$ implies that every polynomial of degree n has a root.
THANK YOU
FOR YOUR ATTENTION