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Chapter 1

Vector Bundles

1.1 Basics of vector bundles

Definition 1 Let B be a topological space. By a real vector bundle of rank k over B

we mean an ordered pair ξ = (E, p), where E is a topological space p : E → B is a

continuous maps such that for each b ∈ B, the fibre p−1(b) =: ξb is a k-dimensional

R-vector space satisfying the following local triviality condition:

(LTC) To each point b ∈ B there is an open nbd U of b and a homeomorphism φ :

p−1(U) → U × Rk such that

(i) π1 ◦ φ = p

(ii) π2 ◦ φ : p−1(b′) → Rk is an isomorphism of vector spaces for all b′ ∈ U.

Here π1 : U × Rk → U and π2 : U × Rk → Rk are projection maps.

E is called the total space of ξ and B is called the base.

If ξ = (Ei, pi, Bi), i = 1, 2 are two vector bundles, a morphism ξ1 → ξ2 of vector

bundles consists of a pair (f, f̄) of continuous maps such that the diagram

E1
f̄

π1

E2

π2

B1
f

B2

is commutative and such that f̄ |p−1

1
(b) is R-linear. If both f and f̄ are homeomorphisms

also, then we say (f, f̄) is a vector bundle isomorphism. In this situation we say that

the two bundles are isomorphic.

Often while dealing with vector bundles over a fixed base space B, we require a

bundle morphism (f, f̄) : (E1, p1, B) → (E2, p2, B) to be such that f = IdB.
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Given a subspace E ′ ⊂ E where ξ = (E, p, B) is a vector bundle, consider the

restriction map p′ = p|E′. We say ξ′ = (E ′, p′, B) is a subbundle of ξ iff

(i) ξ′ = (E ′, p′, B) is a vector bundle on its own (in particular, p′ is surjective).

(ii) The inclusion map p′−1(b) ⊂ p−1(b) is a linear map for each b.

Remark 1 It is easy to construct ξ′ satisfying (ii) without satisfying (i). Also, if ξ is

trivial, it does not mean a subbundle ξ′ is also trivial.

Example 1

1. The simplest example of a vector bundle of rank k over B is B × Rk. These are

called trivial vector bundles. In fact any vector bundle isomorphic to a product

bundle is called a trivial vector bundle. We shall denote this by Θk := B×Rk, the

base space of the bundle being understood by the context. For this trivial bundle,

B × Rk, a section σ corresponds to a continuous map π2 ◦ σ : B → Rk.

2. A simple example of a non trivial vector bundle is the infinite Möbius band M :

Consider the quotient space of R×R by the equivalence relation (t, s) ∼ (t+1,−s).

The first projection gives rise to a map p :M → S1 which we claim is a non trivial

real vector bundle of rank 1 over S1. It is easy to see that complement of the

0-section in the total space of this bundle is connected. Therefore, the bundle

cannot be the trivial bundle S1 × R. Indeed the total space of this bundle is not

even homeomorphic to S1 × R but to see that needs a little bit more topological

arguments.

3. The tangent bundle τ(X) := (TX, p,X) of any smooth submanifold X ∈ RN is

a typical example of a vector bundle of rank n, where n = dimX. It satisfies

the additional smoothness condition viz., both total and base spaces are smooth

manifolds, the projection map p is smooth and the homeomorphisms φ : p−1(U) →

U × Rn are actually diffeomorphisms. For a smooth manifold B, a vector bundle

which satisfies this additional smoothness condition will be called a smooth vector

bundle. On a manifold X embedded in R
N
, we get another vector bundle viz.,

the normal bundle, ν(X) which is also a smooth vector bundle.

4. Let B = Pn be the n-dimensional real projective space. The canonical line bundle

γ1n = (E, p,Pn) is defined as follows: Recall that Pn can be defined as the quotient

space of Sn by the antipodal action.

E = {([x],v) ∈ Pn × Rn+1 : v = λx}
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That is, over each point [x] ∈ Pn we are taking the entire line spanned by the

vector x ∈ Sn in Rn+1. Let p : E → Pn be the projection to the first factor.

The verification that this data forms a line bundle is easy. The case n = 1 is

an interesting one. The base space P1 is then diffeomorphic to S1. However, the

bundle γ11 is the infinite Möbius band we considered above.

We begin with the following fundamental criterion to construct/detect isomorphisms

between vector bundles.

Lemma 1 Let f : ξ → ζ be a bundle map from one vector bundle over B to another.

Then f is an isomorphism of vector bundles iff f restricted to each fiber is an isomorphism

of vector spaces.

Proof: The only thing that we have to verify is the continuity of f−1. This then can

be done locally and hence the problem reduces to the case when ξ, ζ are trivial. In this

case, a bundle map f : B × Rk → B × Rk is determined by

f(b,v) = (b, A(b)v)

where b 7→ A(b) is a continuous map A : B →M(n;R) the space of real n× n matrices.

The hypothesis that f restricts to isomorphism on each fiber is the same as saying that

each A(b) is invertible and hence we have a continuous map A : U → GL(k,R). . This

then means that b 7→ A−1(b) is also continuous. Therefore, correspondingly, the map

given by

(b,v) 7→ (b, A−1(b)(v))

is continuous which is nothing but f−1. ♠

Definition 2 Let ξ = (E, p, B) be a vector bundle. By a section of ξ we mean a

continuous (smooth) map σ : B → E such that p ◦ σ = IdB. A section σ is said to be

nowhere zero, if σ(b) 6= 0 for each b ∈ B.

Remark 2

(i) A simple example of a section is the zero-section which assigns to each b ∈ B the

0-vector in p−1(b). (Use (LTC) to see that the zero-section is continuous.)

(ii) It is easy to see that the trivial bundle has lots of sections. Indeed if σ : B → B×Rk

is a section then it is for the form,

σ(b) = (b, f(b))
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where f : B → Rk is continuous and conversely. Thus the set of sections of Θk is equal

to C(B,Rk).

(iii) More generally, the space of sections Γ(ξ) can be given a module structure on the

ring of continuous functions C(B;R) and the study of this module is essentially all about

the study of vector bundles over B.

Theorem 1 A vector bundle ξ of rank k is trivial iff there exist sections {σ1, . . . , σk}

which are linearly independent at every point of B.

Definition 3 By a continuous/smooth vector field on a smooth manifold X we mean

a continuous/smooth section of the tangent bundle. By a parallelizable manifold, we

mean a smooth manifold X whose tangent bundle is trivial.

Remark 3 Alternatively, a manifold is parallelizable iff there exists n smooth vector

fields {σ1, . . . , σn} such that for each p ∈ X, we have

{σ1(p), . . . , σn(p)}

is linearly independent in Tp(X).

1.2 Operations on Vector bundles

Pull-back bundle Given a triple ξ = (E, p, B) (of topological spaces and continuous

map) and a continuous function f : B′ → B the pull-back f ∗ξ = (E ′, p′, B′) is defined

by

E ′ = {(b′, e ∈ B′ ×E : f(b′) = p(e)}; p′(b′, e) = b′.

If map p satisfies a certain topological properties often it is the case that the same

property is satisfied by the map p′. This if the triple ξ is a vector bundle of rank k it

follows that so is the triple f ∗ξ. Moreover, we have a continuous map f̄ : E ′ → E such

that the diagram is commutative:

E ′
f̄

p′

E

p

B
f

B

Notice that (LTC) for f ∗ ξ follows from the observation that if ξ is the trivial bundle

then so is f ∗ξ. The pull-back bundle has the following universal property. Given any
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vector bundle ξ′′ = (E ′′, p′′, B′) over B′ and a continuous map ḡ : E ′′ → E such that

p ◦ ḡ = f ◦ p′′ there exists a unique bundle map g′ : E ′′ → E over B′ i.e., such that

p′ ◦ g′ = p′′ with the property that ḡ = f̄ ◦ g′.

E ′′

g′

ḡ

p′′
E ′

f̄
E

p

B′
f

B

A special case of the pull-back construction is obtained when B′ is a subspace of B

and f = η : B′ →֒ B is the inclusion. We then denote η∗(ξ) by ξ|B′.

Now suppose ξ′ = (E ′, p′, B′) and ξ = (E, p, B) are two vector bundles and (f, f̄) :

ξ′ → ξ is a bundle map

E ′
f̄

p′

E

p

B′
f

B

We then have a unique bundle map f ′ : ξ′ → f ∗ξ. We leave it to you to see that

Theorem 2 The bundle map f ′ : ξ′ → f ∗ξ is an isomorphism iff f̄ restricts to an

isomorphism on each fiber.

Remark 4 Note that f itself is just a continuous map and need not be a homeomor-

phism. However, if f is a homeomorphism, then f is covered by a homeomorphism f̄

iff the two bundles ξ and f ∗(ξ′) over B are isomorphic. More generally, if f is a home-

omorphism, then there is 1-1 correspondence between bundle maps (f, f̄) : ξ → ξ′ and

bundle maps (IdB, g) : ξ → f ∗(ξ′). This is the reason why we assume that a bundle map

ξ → ζ of two vector bundles over the same base space B are of the form (IdB, g).

Cartesian product Given ξ, ξ′ we can take ξ × ξ′ = (E × E ′, p × p′, B × B′) in the

usual way, as a vector bundle of rank = rk(ξ) + rk(ξ′). For this bundle, the fiber over a

point (b, b′) clearly equals ξb × ξ′b′ . Of particular interest is the special case when ξ′ is of

rank 0 i.e., p : E ′ → B′ is a homeomorphism. We denote the product in this case simply

by ξ × B′.

Whitney Sum Let now ξ, ξ′ be bundles over the same base B. Consider the diagonal

map ∆ : B → B × B. The Whitney-sum of ξ and ξ′ is defined by

ξ ⊕ ξ′ = ∆∗(ξ × ξ′)
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the pull back of the Cartesian product via the diagonal map. Denoting ξ ⊕ ξ′ = (E(ξ ⊕

ξ′), q, B), we have a commutative diagram

E(ξ ⊕ ξ′)

qE

p

E ′

p′

B

Whitney-sum indeed corresponds to taking sums of subbundles in the following sense.

Lemma 2 Let ξ1, ξ2 be subbundles of ζ such that for each b ∈ B, ζb is equal to the

direct sum of the subspaces (ξ1)b and (ξ2)b. Then ζ is isomorphic to ξ1 ⊕ ξ2.

Proof: Define φ : E(ξ1 ⊕ ξ2) → E(ζ) by φ(v1,v2) = v1 + v2. ♠

Riemannian Metric Structure Let ξ be a real vector bundle of rant k. A Riemannian

metric on ξ is a continuous function β : E(ξ ⊕ ξ) → R such that restricted to each fiber

β is an inner product.

It is easy to see that on any trivial bundle we can give the standard inner product of

Rk itself on each fiber. More generally, given a continuous map β̂ : B →M(k,R) taking

values inside non degenerate symmetric matrices, we can associate a Riemannian metric

on Θk = B × Rk by the rule:

β(v1,v2)b = v1β̂(b)v
t
2.

And conversely, every Riemannian metric on Θk corresponds to a continuous map from

B to the space of symmetric non degenerate real k × k matrices.

Given two bundles with Riemannian metrics one can seek bundle maps which respect

the inner products. We can then talk about ‘isometries’ of such bundle. The simplest

question one can ask is: ‘what are all isometrically inequivalent metrics on a trivial

bundle?’ The answer is:

Theorem 3 Any two Riemannian metric on Θk are isometrically equivalent.

Proof: Gram-Schmidt process. ♠

Orthogonal Complement

Given a Riemannian bundle ξ and a subbundle ξ′, the orthogonal complement (ξ′)⊥

of ξ′ in ξ is defined by

E((ξ′)⊥) = {v ∈ ξb : v ⊥ ξ′b}

6



together with the projection p : E((ξ′)⊥) → B. The non trivial thing to verify is the

(LTC) which follows once again, from Gram-Schmidt’s process.

Remark 5 It is not true that every vector bundle can be given a Riemannian structure.

The following result is the ‘most’ general in this respect in a certain sense.

Theorem 4 Let B be a paracompact space. Then every vector bundle over B has a

Riemannian structure on it.

Proof: Partition of unity. ♠

Transition functions

Given an open covering {Ui} of B and local trivializations φi : p
−1(Ui) → Ui × Rk,

of a bundle ξ = (E, p, B) for each pair (i, j) of indices, consider the isomorphisms of the

trivial bundles:

φi ◦ φ
−1
j : (Ui ∩ Uj)× Rk → (Ui ∩ Uj)× Rk.

They are of the form

(b,v) 7→ (b, λij(b)(v))

for some continuous maps λij : Ui ∩ Uj → GL(k;R). These are called the transition

functions of the bundle ξ. They satisfy the following two ‘cocycle conditions’:

(CI) λii(b) = Id for all i;

(CII) For b ∈ Ui ∩ Uj ∩ Ut we have

λti(b) ◦ λij(b) = λtj(b).

We would like to reverse the picture: Starting with an open covering {Ui} of B and a

family λ = {λij} of continuous functions λij : Ui ∩ Uj :→ GL(k;R), we define a vector

bundle ξλ = (Eλ, pλ, B) of rank k as follows: On the disjoint union Ẽ = ⊔iUi×Rk define

an equivalence relation by saying that

(b,v) ∼ (b, λij(b)(v))

for each pair (i, j) such that b ∈ Ui ∩ Uj and for all v ∈ Rk.

The two cocycle conditions ensure that the identifications are compatible and define

an equivalence relation. Denote the quotient space by Eλ.

Observe that the projection maps π1 : Ui × Rk → Ui all patch-up to define a contin-

uous map pλ : E → B. Indeed verify that the inclusion Ui × Rk → Ẽ followed by the
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quotient map Ẽ → Eλ is a homeomorphism onto p−1
λ (Ui) and so we obtain homeomor-

phisms ψi : Ui×Rk :→ p−1(Ui). Since each identification map λij(b) : {b}×Rk → {b}×Rl

is an isomorphism of vector bundles we get a unique vector bundle structure on each

fibre p−1(b). Taking φi = ψ−1 : p−1
λ (Ui) → Ui × Rk, we get (LTC) for the bundle ξλ. For

these local trivializations, one can easily verify that

φi ◦ φ
−1
j (b,v) = (b, λij(b)(v))

getting back where we have started.

It is obvious that the topology of the total space as well as the bundle will heavily

depend upon the nature of the transition functions. Indeed, if we start off with a bundle

ξ and a local trivialization, the union of all local trivializations defines a map Φ : Ẽ → E

which in turn defines a bundle isomorphism ξλ → ξ.

The transition function description allows us a sure way of carrying out vector space

operations on vector bundles. For example if ξ and η are two bundles over B, get a

common open covering on which we have local trivializations for both the bundles. Let

λξ, λη be the corresponding families of transition functions. Define the family λξ ⊕ λη

by the formula

(b,v,u) 7→ (b, (λξ)ij(b)(v), (λη)ij(b)(u)).

It is a matter of straight forward verification to see that the resulting vector bundle is

isomorphic to the Whitney sum ξ⊕ η. If you want to construct the bundle Hom(ξ, η) all

that you have to do is to consider the transition functions

Hom(λξ, λη) : (Ui ∩ Uj)× End(Rk,Rl) → (Ui ∩ Uj)× End(Rk,Rl)

defined by

(b, α) 7→ (b, (λη)
−1
ij ◦ α ◦ (λξ)ij .

Likewise, the exterior powers Λiξ are constructed out of the transition functions which

are fibrewise ith exterior power of the transition functions of ξ.

Exercise 1 Show that

Λ2(ξ ⊕ η) ∼= Λ2(ξ)⊕ Λ2(η)⊕ ξ ⊗ η.

Remark 6 A simplistic point of view of the entire theory of vector bundles is that it

is nothing but continuous/smooth version of linear and multi-linear algebra. A simple

illustration of this occurs in the construction of the normal bundle: local triviality of
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the normal bundle is a consequence of carrying out Gram-Schmidt process, on a set of

continuous/smooth vector valued functions which are independent everywhere. Another

simple example is that the polar decomposition is continuous smooth process and hence

yields the following: If µ, µ′ are two Riemannian metrics on a given vector bundle ξ then

there exists a fibre preserving homeomorphism f : E(ξ) → E(ξ) such that µ◦(f, f) = µ′.

Example 2 Recall that a finite dimensional vector space V and its dual V ∗ are isomor-

phic to each other. However, given a vector bundle ξ its dual bundle, in general, may

not be isomorphic to ξ. The reason is that the isomorphism between V and V ∗ is not

canonical. On the other hand, it follows easily that (ξ)∗∗ is isomorphic to ξ. However, if

ξ carries a Riemannian metric then fixing one such, we get an isomorphism ξ ∼= ξ∗.

Example 3 Consider the tangent bundle τ := τ(Pn). Using the double covering map

φ : Sn → Pn, we can describe the total space of τ by

E(τ) = {[±x,±v] : x ∈ Sn,v ⊥ x,v ∈ Rn+1}.

Observe that Dφ : E(τ(Sn)) → E(τ) has the property D(φ)(x,v) = D(φ)(y,u) iff

(y,u) = ±(x,v). Therefore, Dφ is actually the quotient map.

On the other hand a pair (x,v) ∈ Sn × Rn+1 such that v ⊥ x also determines a

linear map on the 1-dim. subspace [x] spanned by x to its orthogonal complement. Note

that the pair (−x,−v) also determines the same linear map. Therefore, we can identify

the quotient space with the space of linear maps from 1-dimensional subspaces to their

complements in Rn+1. This then also describes the vector bundle Hom(γ1n, (γ
1
n)

⊥) over

Pn. We have established:

Theorem 5 Hom(γ1n, (γ
1
n)

⊥) ∼= τ(Pn).

Exercise 2 If ξj are all vector bundles over the same base space B, prove that

Hom(ξ1, ξ2 ⊕ ξ3) ∼= Hom(ξ1, ξ2)⊕ Hom(ξ1, ξ3).

Exercise 3 If η is a line bundle show that Hom(η, η) ∼= Θ1, the trivial line bundle.

Theorem 6 Let τ denote the tangent bundle of Pn. Then

τ ⊕Θ1 ∼= γ1n ⊕ · · · ⊕ γ1n

the n-fold Whitney sum of the canonical line bundle.
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Proof:
τ ⊕Θ1 ∼= Hom(γ1n, γ

⊥
n )⊕Hom(γ1n, γ

1
n)

∼= Hom(γ1n, γ
⊥ ⊕ γ1n)

∼= Hom(γ1n,Θ
n+1)

∼= Hom(γ1n,Θ
1)⊕ · · · ⊕Hom(γ1n,Θ

1).

Since Pn is compact, every vector bundle over it admits a Riemannian metric. Therefore,

every vector bundle is isomorphic to its dual over Pn. The theorem follows. ♠

1.3 Homotopical Aspect

Lemma 3 Let B = X × [a, c], a < b < c. Suppose ξ is a vector bundle over B × [a, c]

such that ξ|B×[a,b] and ξ|B×[b,c] are trivial bundles. Then ξ itself is trivial.

Proof: Let φ1 : ξ|X×[a,b] :→ (X× [a, b])×Rk and φ2 : φ1 : ξ|X×[b,c] :→ (X× [b, c])×Rk be

some trivializations. Consider the isomorphism φ1 ◦φ
−1
2 : X×{b}×Rk → X ×{b}×Rk

which can be written in the form

(x, b,v) 7→ (x, b, λx(v)).

It follows that if λ(x, t,v) = (x, t, λx(v)) then λ is an automorphism of the trivial bundle

B × [b, c]× Rk. Now define φ : E(ξ) → X × [a, c]× Rk by

φ(e) =

{

φ1(e) if π(e) ∈ B × [a, b]

λ ◦ φ2(e) if π(e) ∈ B × [b, c].

Verify φ defines a trivialization of ξ. ♠

Lemma 4 Let ξ be a vector bundle over X × [a, b]. Then there is an open covering Ui

of X such that ξ|Ui×[a,b] is trivial for each i.

Proof: Easy.

Theorem 7 Let ξ be a vector bundle over X × [0, 1] where X is paracompact. Then

ξ, (ξ|X×1)× I and (ξ|X×0)× I are all isomorphic to each other.

Corollary 1 Let f, g : X → Y be two homotopic maps. Then for any vector bundle ξ′

over Y, we have f ∗ξ′ ∼= g∗ξ′.
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Proof of the Corollary If H : X × I → Y is a homotopy from f to g consider the

bundle ξ = H∗(ξ′) over X × I. By the above theorem, ξ|X×0 and ξ|X×1 are isomorphic.

But they are respectively equal to f ∗(ξ′) and g∗(ξ′).

The proof of the theorem itself is obtained easily via the following proposition.

Proposition 1 Let X be a paracompact and Hausdorff space and ξ be a vector bundle

over X × I. Then there is a bundle map (r, r̄) : ξ → ξ, where r(x, t) = (x, 1) and r̄ is an

isomorphism on each fibers.

We shall prove this proposition for the case when X is compact and Hausdorff. The

general case does not involve any deeper ideas but only technically more difficult.

Since a compact Hausdorff space is normal, we can get a finite open covering {U1, . . . , Un}

of X such that

(i) ξ|Ui×[0,1] is trivial for each i;

(ii) there is a continuous map αi : X → [0, 1] such that α−1
i (0, 1] ⊂ Ui, for each i; and

(iii) for every x ∈ X, max{α1(x), . . . , αn(x)} = 1.

For each i, choose trivializations hi : Ui × [0, 1] × Rk → p−1(Ui × I) over Ui × [0, 1]

and define bundle maps (ri, r̄i) : ξ → ξ as follows: ri(x, t) = (x,max{αi(x), t}); whereas,

r̄i(e) =

{

hi(x,max{αi(x), t},v), if e = h−1
i (x, t,v) ∈ p−1(Ui × I)

e, if e 6∈ p−1(Ui × I).

Then clearly ri is continuous. Since r̄i is identity outside the support of αi and is

continuous over Ui × I, it is continuous all over. Moreover, restricted to each fiber, it is

a linear isomorphism also. Now consider the composition

(r, r̄ = (r1, r̄1) ◦ · · · (rn, r̄n).

All that you have to do is to check that r(b, t) = (b, 1). ♠

1.4 The Grassmannian Manifolds and the Gauss Map

Fix integers 1 ≤ k ≤ n. Let Gn,k denote the set of all k-dimensional subspaces of Rn. Let

Vk,n denote the subspace of Sn−1 × · · · × Sn−1 (k factors) consisting of ordered k-tuples

(v1, . . . ,vk) such that 〈vi,vj〉 = δij. There is a surjective map η : Vn,k → Gn,k and we

declare this as a quotient map so as to topologise Gn,k. This is called the Grassmannian

manifold of type (n, k).
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Exercise 4 Show that there is a diffeomorphism of the homogeneous space

O(n)/O(k, )×O(, n− k) → Gn,k

Consider the triple γkn = (E, π,B) where, B = Gn,k,

E = E(γkn) = {(V,v) ∈ Gn,k × Rn : v ∈ V }

and π = π1 the restriction of the projection to the first factor. One can show as in the

case k = 1 that this defines a k-plane bundle over Gn,k.

Now consider Rn as the subspace Rn × 0 of Rn+1. This then induces an inclusion of

Gn,k
ι Gn+1,k. Moreover there is a bundle inclusion:

E(γkn) E(γkn+1)

Gn,k
ι Gn+1,k

Now consider the spaces

Gk = ∪n≥kGn,k, E(γk) = ∪n≥kE(γ
k
n)

with the weak topology, i.e, F ⊂ Gk (resp. E(γk) ) is closed iff F ∩ Gn,k (resp. F ∩

E(γkn)) is closed in Gn,k (resp.in E(γkn)). It is not difficult to see that the corresponding

projection maps patch up to define a projection map π : E(γk) → Gk giving a vector

bundle γk of rank k over Gk.

Gk is called the infinite Grassmannian. Indeed, this is nothing but the space of all

k dimensional subspaces of the infinite direct sum R∞ = R ⊕ R ⊕ · · · . Also, γk is the

tautological (canonical) vector bundle over Gk.

Definition 4 Let ξ be a k-plane bundle over B. A map g : E(ξ) → Rn, k ≤ n ≤ ∞ is

called a Gauss map on ξ, if g|ξb is a linear monomorphism for all b ∈ B.

Example 4 The second projection π2 : Gn,k ×Rn → Rn restricted to E(γkn) is a Gauss

map on γkn for all k ≤ n ≤ ∞. Indeed, these Gauss maps give rise to all other Gauss

maps as elaborated in the following lemma.

Lemma 5 Let (f, f̄) : ξ → γkn be a bundle map which is an isomorphism on each fiber.

Then π2 ◦ f̄ is a Gauss map for ξ. Conversely, given a Gauss map g : E(ξ) → Rn there

exists a bundle map (f, f̄) : ξ → γkn which is an isomorphism on each fibre such that

π2 ◦ f̄ = g.
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Proof: The first part is clear. To prove the converse, we define f(b) = g(ξb) ∈ Gn,k

and f̄(e) = (f(p(e)), g(e)). Use (LTC) to see that f is continuous and therefore f̄ is

continuous. Other requirements are verified straight forward. ♠

Proposition 2 Any k-plane bundle ξ over a paracompact Hausdorff space admits a

Gauss map into R∞.

Proof: Since B is paracompact, there exists a countable open covering Ui of B, a

partition of unity αi subordinate to the cover {Ui} and trivializations hi : Ui × Rk →

p−1(Ui). Define g(e) =
∑

i gi(e) where gi : E(ξ) → Rk is zero outside p−1(Ui) and on

p−1(Ui), we have

gi(e) = αi(p(e)π2(h
−1
i (e)).

Theorem 8 Let B be a paracompact space. Given a k dimensional vector bundle ξ

over B there exists a continuous map f : B → Gk such that ξ ∼= f ∗(γk). Moreover, if

f ′ : B → Gk is another such continuous map then f is homotopic to f ′.

Proof: Let g : ξ → R∞ be a Gauss map as in the previous proposition. Then by the

above lemma, we get a bundle map (f, f̄) : ξ → γk such that π2 ◦ f̄ = g and f̄ is an

isomorphism of fibres. This in turn induces a bundle map (Id, η) : ξ → f ∗γk which is

again an isomorphism on fibres and hence is bundle isomorphism. This proves the first

part.

To prove the second part, we note that an isomorphism ξ ∼= f ′∗(γk) induces a bundle

map (f ′, f̄ ′) : ξ → γk which in turn corresponds to a Gauss map g′ : E(ξ) → R∞.

Likewise to get a homotopy between f and f ′ it is enough to produce a homotopy

gt : E(ξ) → R∞ of g and g′ through Gauss maps.

Let Rev,Rodd be subspaces of R∞ consisting of elements whose odd-place coordinates

(resp. even-place coordinates) are zero. Let ev : R∞ → Rev and od : R∞ → Rodd be the

maps defined by

ev(x1, . . . , xn, 0, . . . , ) 7→ (0, x1, 0, x2, . . .); od(x1, x2, . . . , xn, 0, . . .) 7→ (x1, 0, x2, 0, . . .).

Then ev and od are monomorphisms and are homotopic through monomorphisms to the

identity map:

tx+ (1− t)ev(x); tx+ (1− t)od(x).

Therefore it follows that g is homotopic to ev ◦ g and g′ is homotopic to odd ◦ g′. Now

consider the homotopy

13



gt(e) = (1− t)(ev ◦ g)(e) + t(od ◦ g′)(e)

between ev ◦ g and od ◦ g′. Injectivity of gt follows from the fact that the line joining

ev ◦ g(e) and od ◦ g′(e) does not pass through the origin in the vector space R∞ since

ev ◦ g(e) and od ◦ g′(e) are linearly independent for all e. ♠

Remark 7 We have come to a junction in the study of isomorphism class of vector

bundles over a fixed base space B. We can proceed now in different directions. In the

next chapter we take up the study of characteristic classes.
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Chapter 2

Characteristic Classes

We shall now need a little generalization of the notion of vector bundles namely, fiber

bundles, where the fibres are not necessarily vector spaces, but homeomorphic (diffeo-

morphic) to a fixed topological space (to a manifold). The (LTC) is formulated similarly,

except that the transition functions are no longer linear isomorphisms but take values

in some specific subgroup of the group of all homeomorphisms Homeo(F ) (diffeomor-

phisms (Diff(F )) of F. One such important construction is the projective bundle P (ξ)

associated to a vector bundle ξ in which each fiber ξb is replaced by the projective space

P (ξb). However, note that this is not a vector bundle. Yet another example is the sphere

bundle associated to a k-plane bundle with a Riemannian metric.

2.1 Orientation and Euler Class

(Recall how one defines an orientation on a smooth manifold.)

Definition 5 Let V be real vector space of dimension k > 0. By an orientation on V

one means an equivalence class of an ordered basis; two bases being equivalent if the

transformation matrix taking one to the other is of positive determinant.

Let now ξ be a vector bundle over B. Then by a pre-orientation on ξ we mean a choice

of orientation on each fibre ξb. A pre-orientation is called an orientation, if it satisfies the

following local constancy condition: There exists an open covering Ui of B on which we

have trivializations hi : p
−1(Ui) → Ui×Rk such that the restriction map hi : ξb → b×Rk

preserves orientations, where we orient Rk with the standard orientation.

Remark 8

(i) Thus on a vector space, there are precisely two orientations.
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(ii) Consider two oriented vector spaces. Then we give the orientation on V ×W by

first taking the basis for V and then following it up with a basis for W. Thus it is easily

seen that W ×V will receive the orientation equal to (−1)kl times that of V ×W where

dim(V ) = k, dim(W ) = l.

(iii) Let V0 denote the space V \ {0}. Then one knows that Hk(V, V0;Z) is isomorphic to

Z; so is Hk(V, V0). Consider the standard k-simplex and its embedding in Rk given by

x 7→ x− βk

where, βk = e1+ e2+ · · ·+ ek/k is the barycenter of ∆k. It is not hard to verify that this

embedding defines a singular simplex generating Hk(R
k,Rk

0;Z). Choosing the standard

orientation on ∆k, we get one generator and by changing the orientation on ∆k we get

another. Therefore, it follows that choosing an orientation on V is equivalent to choosing

a generator for Hk(V, V0;Z).

Similar statement can be made by using cohomology groups as well. Moreover, note

that there exist a unique class µ ∈ Hk(U × Rk, U × Rk
0;Z) such that for each b ∈ B,

if ιb : Rk → b × Rk ⊂ U × Rk is the inclusion map, then ι∗(µ) is the orientation class

corresponding to the standard orientation.

Definition 6 Let ξ = (E, p, B) be a k-plane bundle. By a pre-orientation on ξ we

mean a choice of an orientation on each fibre. [This is equivalent to fixing a generator

for the groupHk(ξb, (ξb)0;Z) ≈ Z.] We say a pre-orientation is an orientation if it satisfies

following local constancy condition, viz., for each b ∈ B, there exists a neighbourhood

V of b in B and an element µV ∈ Hk(p−1(V ); p−1(V ) ∩ E0;Z) which, on each fibre over

b′ ∈ V, restricts to the generator given by the pre-orientation.

Theorem 9 A vector bundle ξ is orientable iff there is an element µ ∈ Hn(E,E0;Z)

whose restriction to any fibre is a generator of Hn(ξb, (ξb)o;Z).

Proof: The ‘if’ part is obvious. We need to prove the ‘only if’ part here.

For the simplicity of the exposition, we shall prove this for the case when ξ is of finite

type, viz., when there is a finite cover of B which trivializes p. (See [Sp] page 262 OR

[M-S] chapter 10 for a complete proof.)

The statement is trivially verified in the case when the entire bundle is trivial. Now

it suffices to prove the theorem for the case when B is covered by two open sets V1, V2

over which the bundle is trivial. Put

Ei = p−1(Vi), i = 1, 2, E ′ = p−1(V1 ∩ V2), (Ei)0 = Ei ∩ E0, i = 1, 2, E ′
0 = E ′ ∩ E0.
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Let µi ∈ Hk(Ei; (Ei)0;Z), i = 1, 2 be such that restricted to each fibre they give the

pre-orientation class. Now in the exact Mayer-Vietoris sequence

Hk−1(E ′, E ′
0) → Hk(E,E0) → Hk(E1, (E1)0)⊕Hk(E2, (E2)0) → Hk(E ′, E ′

0) (2.1)

since the bundle over V1 ∩ V2 is trivial, it is easily verified that the element µ1 − µ2 is

mapped to zero. Therefore there exists µ ∈ Hk(E,E0) which maps onto (µ1, µ2). By the

canonical property of cohomology elements, it follows that µ restricts to the generator

of Hk(ξb, (ξb)0) for each b ∈ B. This completes the proof of the theorem. ♠

This theorem allows us to define orientability over any associative ring with a unit.

Definition 7 We say ξ is (cohomologically) orientable over a ring R if there exists

µ ∈ Hk(E,E0;R) such that ι∗b(µ) is a generator of Hk(ξb, (ξb)0;R).

Indeed, analogous to the above theorem, we have

Theorem 10 A vector bundle ξ is cohomologically orientable over R iff there is there

is an open covering {Vi} of the base B and a compatible family {µj} where µj ∈

Hn(p−1(Vj), E0 ∩ p
−1(Vj);R) ≈ R is a generator.

Here ‘compatible’ means whenever Vi ∩ Vj 6= ∅, we have, µi|Vi∩VJ
= µj|Vi∩Vj

.

Remark 9

(i) Every vector bundle is orientable over Z2.

(ii) A bundle ξ is orientable iff it is (cohomologically) orientable over Z.

(iii) A manifold is orientable iff its tangent bundle is orientable.

(iv) One can identify the base space with the image of the zero section of a bundle.

It then follows that the projection map p : E → B is a strong deformation retraction

of E(ξ) onto the base. In particular, p induces isomorphisms between homology (and

cohomology) groups of the total space with those of the base space.

Exercise 5 (a) Show that a bundle is orientable iff there exist local trivializations so

that the corresponding transition functions have positive determinant.

(b) Show that if ξ is orientable then all the exterior powers Λi(ξ) are orientable.

(c) Show that a k-plane bundle ξ is orientable iff Λk(ξ) is orientable iff Λk(ξ) is trivial.

(Λk(ξ) is called the determinant bundle of ξ.)

(d) Let ξ be a line bundle over B. Then ξ is orientable iff it is trivial.

(e) For every complex bundle ξ, the underlying real bundle ξR is orientable.
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Definition 8 Let ξ = (E, p, B) be an oriented real k-plane bundle with an orientation

class µ ∈ Hn(E,E0;Z). Then

e(ξ) := (p∗)−1i∗(µ) ∈ Hn(B;Z)

is called the Euler class of class of ξ.

If ξ is a complex k-plane bundle, then ξR has a canonical orientation with respect

to which we take the Euler class, i.e., (ξ) = e(ξR).

Remark 10

(i) Let ξ and ξ′ be oriented k-plane bundles and (f, f̄) : ξ → ξ′ is a map which is an

isomorphism on each fibres and preserves orientations. Then by naturality property of

cohomology classes, it follows that e(ξ) = f ∗(e(ξ′)).

(ii) If we change the orientation on ξ, then it follows that e(ξ) also changes its sign.

Thus if we agree to denote the bundle with opposite orientation by −ξ then we have

e(−ξ) = −e(ξ).

(iii) Combining (i) and (ii), it follows that if k is odd, then 2e(ξ) = 0. For consider the

automorphism (Id, η) : ξ → −ξ given by v 7→ −v. This is orientation reversing if k is

odd. Therefore from (i), it follows that e(ξ) = Id∗(e(−ξ)) = e(−ξ) = −e(ξ).

Example 5 If ξ is a trivial bundle then e(ξ) = 0. To see this first of all note that B×Rk

is orientable and an orientation class looks like µ = π∗
2(ν) where ν ∈ H2(R2;R2

0;Z) is a

generator. Therefore, it follows that i∗(µ) = 0 in H2(B × R2;Z).

Example 6 Now consider the canonical complex line bundles γ1
C

over the complex

projective space P1

C = S2. From the definition of the projective space, it is clear that the

associated sphere-bundle viz., the bundle restricted to the subspace of norm one vectors is

the Hopf-bundle p : S3 → S2 with fibres S1. Clearly the bundle restricted to Vi = S2\{Pi}

is trivial where Pi denote the north and south pole and we can orient each piece with the

orientation coming from the complex structure on the fibre R2 = C. The compatibility of

this choice over V1∩V2 follows since the transition function ([z2, z2], z) 7→ ([z1, z2], z·z1/z2)

is holomorphic and hence orientation preserving. Therefore, the bundle is orientable.

(This follows from exercise 5 (e) above also.) Indeed, since S3 ⊂ E0 is a deformation

retract, we have H1(E0) = 0 = H2(E0) and hence

H2(E,E0) ≈ H2(E) ≈ H2(S2) ≈ Z.
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Therefore, the orientation class µ has to be a generator of H2(E,E0) which is mapped

onto a generator of H2(S2). This just means e(γ1
C
) = (p∗)−1(i∗(µ)) is a generator of

H2(S2).

Since S2 = P1

C is a complex manifold, it has a canonical orientation which fixes a

generator z ∈ H2(P1

C;Z) and hence e(γ1
C
) = ±z. We need determine the sign.

This is best understood if we work inside P2

C in which there is a natural embedding

of the total space of γ1 as an open subspace:

E(γ1) = {[z0, z1, z2] : z0 6= 0} ⊂ P2

C.

Note that the zero section of the bundle is identified with the line at infinity in P2

C.

There is an orientation on the total space E(γ1) which is obtained by taking the

orientation on the base followed by the orientation on the fibre. With respect to this

orientation, it is clear that each fibre has intersection number with the zero section equal

to 1. This implies that p∗(z) ∪ µ is the generator of H4(P2

C;Z). On the other hand we

also have p∗(z)∪ p∗(z) is also this generator. Therefore, it follows that p∗(z) = µ. Inside

E this just implies that

e(γ1
C
) = z. (2.2)

Example 7 Orientation double cover Given any k-bundle ξ = (E, p, B), we shall

construct an orientable k−bundle ξ̃ = (Ẽ, p̃, B̃) and a bundle map (q, q̄) : ξ̃ → ξ as

follows: Choose any atlas {Ui, hi} of trivializations of ξ. Fix an orientation on each

of Ui × Rk take orient each p−1(Ui) so that hi preserve orientations. Now for each i

take two copies of Vi = p−1(Ui) and label them by V ±
i . Let X be the disjoint union of

{V ±
i }. For each un-ordered pair of indices {i, j}, let Wij = Ui ∩ Uj . On X we define

an equivalence relation by the following rule: Given (b, v) ∈ W±
ij × Rk identify it with

hi ◦ h
−1
j (b, v) ∈ W±

ij × Rk if hi ◦ h
−1
j : {b} × Rk → {b} × Rk is orientation preserving;

otherwise identify it with hi◦h
−1
j (b, v) ∈ W∓

ij ×Rk. Let Ẽ denote the quotient space of X.

Then the projection maps p factor through a map p̃ : Ẽ → B̃ defining a k-plane bundle

ξ̃. Moreover there is an obvious quotient map which defines a bundle map (q, q̄) : ξ̃ → ξ.

Observe that

(i) ξ̃ is always orientable.

(ii) (q, q̄) is a double covering.

(iii) ξ̃ is a disjoint union of two copies of ξ iff ξ is orientable.
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Theorem 11 The Euler class of the Cartesian product is the cross product of the Euler

classes; also the Euler class of a Whitney sum is the cup product of the Euler classes.

e(ξ1 × ξ2) = e(ξ1)× e(ξ2); e(ξ1 ⊕ ξ2) = e(ξ1) ∪ e(ξ2).

Proof: Note that for any two oriented vector spaces V,W, V ×W is oriented by first

taking the basis of V followed by the basis ofW. It follows easily from this that µ(ξ×ξ) =

µ(ξ)× µ(ξ′) from which the first property follows. But then ξ1 ⊕ ξ2 = ∆∗(ξ1 × ξ2) and

the second property follows from the above remark (i). ♠

Corollary 2 Let M be a smooth oriented manifold such that e(M) 6= 0. Then the

tangent bundle τ(M) does not admit any subbundle of odd rank.

Proof: Suppose ξ is an oriented subbundle of odd rank. Fixing a Riemannian metric

on τ, we can take the orthogonal complement ξ⊥ and orient it in such a way so that the

direct sum orientation coincides with that of τ. Therefore,

2e(M) = 2e(τ(M)) = 2e(ξ) ∪ e(ξ⊥) = 0 ∈ Hn(M,Z) ≈ Z

which contradicts the hypothesis e(M) 6= 0. ♠

Now, in the situation of the above corollary, it may happen that ξ is not orientable.

From the earlier example, there is a double cover φ : M̃ → M such that φ∗(ξ) is

orientable. On the other hand, it is a subbundle of φ∗(τ(M)) = τ(M̃). Now we are in

the orientable case. ♠

Exercise 6 Extend the notion of orientability to the sphere bundles η̇ = (Ė, p, B). Show

that a sphere bundle is orientable iff there is µ ∈ Hk−1(Ė;Z) whose restriction to each

fiber is a generator of Hk−1(η̇b;Z).

Exercise 7 Fix a Riemannian metric on a k−plane bundle ξ. Let Ė denote the subspace

of unit vectors in E. Then p : Ė → B defines a (locally trivial) Sk−1-bundle over B.

Theorem 12 Let ξ be a k-plane bundle with a metric and ξ̇ be the sphere bundle. Let

η be the tautological line bundle over the total space of ξ̇. Of the three bundles ξ, ξ̇, η, if

two of them are orientable then the third is also orientable.

Theorem 13 For any oriented vector bundle ξ, e(ξ) = 0 if ξ admits a nowhere vanishing

section.
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Proof: Suppose ξ admits a nowhere vanishing section. Then we can write ξ ∼= ξ′ ⊕Θ1.

It follows that e(ξ) = e(ξ′) ∪ e(Θ1) = 0. ♠

Lemma 6 Let Mm be closed submanifold of a manifold Nm+k. Then for any coefficient

ring R, there is a canonical isomorphism

H∗(E,E0;R) → H∗(N,N \M ;R)

where E is the total space of the normal bundle of M in N and E0 is the subspace of E

consisting of non zero normal vectors.

Proof: Fixing a Riemannian metric on N recall that for some suitable ǫ > 0 the expo-

nential map exp : E(τ(N)) → N restricts to a diffeomorphism

E(ǫ) → N(ǫ)

of the space of all vectors in ν(M) of norm less than ǫ to a tubular neighbourhood E(ǫ) of

M in N. This diffeomorphism is identity on M. On the other hand we have the excision

map

(N(ǫ), N \M) →֒ (N,N \M)

inducing an isomorphism in cohomology. Combining this with (Exp)∗ gives the required

isomorphism. ♠

Remark 11 The isomorphism does not depend upon the choice of ǫ > 0, nor on the

choice of the Riemannian metric. This is so because the homotopy type of the tubular

neighbourhood is independent of such choices. Now suppose that the normal bundle of

M is oriented. Then the image of the fundamental cohomology class µ in Hk(N,N \M)

under the above isomorphism will be denoted by µ′. Since the diffeomorphism Exp is

Identity on M it follows that under the inclusion induced maps M → N followed by

N → (N,N \M) the element µ′ is mapped onto e(ν(M)). As an immediate consequence

we have:

Theorem 14 LetMm be a closed manifold embedded in Rm+k so that the normal bundle

ν(M) is orientable. Then e(ν(M)) = 0.

Proof: You have to only notice that Hk(Rm+k) = (0). ♠

Finally, we come to the result that justifies the name of this characteristic class:
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Theorem 15 LetM be a closed oriented k-dimensional manifold. Then e(M) = χ(M) ¯[M ]

where ¯[M ] ∈ Hk(M ;Z) is the dual to the fundamental class [M ] ∈ Hm(M,Z).

Proof: Consider the diagonal embedding ∆ : M → M ×M. We shall identify M with

∆(M).

First note that the tangent bundle of τ(M) is canonically isomorphic to the normal

bundle ν(M) in M ×M via

(v,v) 7→ (v,−v).

Therefore the normal bundle is also oriented. Let the fundamental orientation class µ

of ν(M) correspond to a class µ′ ∈ Hm(M ×M,M ×M \∆(M);Z). Let µ′′ denote its

image in Hm(M ×M ;Z) under the inclusion induced map.

Then e(M) = e(τ(M)) = e(ν(M)) = ∆∗(µ′′).

We now prefer to work over a field K containing Z say K = Q or = R. We need :

Theorem 16 Poincaré Duality Theorem: Let M be a closed oriented manifold with

the fundamental class [M ] ∈ Hm(M ;Z). Then for each 0 ≤ r ≤ m, there exist basis

{brj} of Hr(M) such that for each r

(br,i ∪ bm−r,j) ∩ [M ] = δij .

and the following lemma:

Lemma 7 ∆∗(µ′′) =
∑

r(−1)r
∑

j brj ∪ b
∗
m−r,j .

Proof: This follows from the fundamental property of the fundamental class [M ] ∈

Hm(M ;Z) viz., for each x ∈ M there is a preferred generatorMx ∈ Hm(M,M \{x}) such

that [M ] is mapped onto Mx under the inclusion induced map M → (M,M \ {x}). The

rest of the argument involves standard properties of cup, cap, cross and slant products.

♠

Continuing with the proof of theorem 15, it follows that if e(τ(M)) = λ ¯[M ] then

λ = e(τ(M)) ∩ [M ] = ∆∗(µ′′) ∩ [M ]

=
∑

r(−1)r(br,j ∪ b
∗
m−r,j) ∩ [M ] =

∑

r(−1)rrank (Hr(M))

= χ(M).

Alternative proof of theorem 15.

We shall prove two lemmas, from which the theorem would follow immediately.
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Lemma 8 LetM is a smooth oriented closed n-manifold. If s :M → τ(M) is a smooth

section of the tangent bundle of a manifold with finitely many zeros, then the index ι(s)

of s is equal to e(M)∩ [M ] where [M ] ∈ Hn(M ;Z) denotes the fundamental class of M.

Lemma 9 Let K be a triangulation of a closed oriented manifold M. Then there exists

a smooth vector field s on M, with finitely many zeros such that ι(s) = χ(K).

For other avatars of Euler characteristic of a smooth closed manifold see [Sh2].

Proof of Lemma 8: Choose disjoint disc neighbourhoods B1, . . . , Bk around the

zeros z1, . . . , zk, respectively. Put P = ∪iBi and Q = M \ intB, E ′ = p−1(Q), where

p : E → M is the projection of the tangent bundle. Put E0 = E \ s0(M) where

s0 : M → E is the zero section, and E ′
0 = E ′ ∩ E0. Then it follows that s : Q → E ′

factors through s′ : Q→ E0 → E ′ and therefore, s∗(µ)|Q = 0. Therefore the computation

of e(M) ∩ [M ] = 〈s∗(µ), [M ]〉 can be effectively carried out by restricting attention on

P. In other words, s∗(µ) can be thought of as a relative n-cochain on (P, ∂P ) and

e(M) ∩ [M ] =
∑

i

s∗(µ) ∩ [Bi, ∂Bi]. (2.3)

Now on each Bi = B the bundle is trivial and fixing some trivialization on each of

them we can write, s(x) = (x, σ(x), where σ : B → Rn is a smooth map such that

σ−1(0) = {zi}. Also over B we can represent µ as 1 × v where v ∈ Hn(Rn,Rn \ 0)

and 1 ∈ H0(B). Therefore s∗[M ] ∩ [B, ∂B] = σ∗[v] ∩ [B, ∂B]. This is nothing but the

winding number of σ|∂B around the point 0 which is also equal to the degree di of the

map σ/‖σ‖ : ∂B → Sn−1. The index of s at the point z = zi is equal to di. Now (2.3)

implies ι(s) =
∑

i di = e(M) ∩ [M ]. ♠

Proof of lemma 9 Let K ′, K ′′ denote respectively the first and second barycentric

subdivision of K. Then each vertex v of K ′′ as an element of |K| belongs to the interior

of a unique simplex s ∈ K. Treating s as a vertex of K ′, this assignment gives a vertex

map ϕ : V (K ′′) → V (K ′). Check that this actually defines a simplicial map ϕ : K ′′ →

K ′. It is easily checked that on the vertices of K ′, ϕ is identity. In fact, we claim

that the fixed points of |ϕ| are precisely vertices of K ′. To prove this, let x ∈ 〈τ〉 for

τ = {v0, . . . , vk} ∈ K ′′. Then x =
∑

i tivi, with ti 6= 0. Therefore, |ϕ|(x) = x implies
∑

i tivi =
∑

i tiϕ(vi). The two convex combinations on either side are taken inside a

single simplex of K and hence it follows that {v0, . . . , vp} = {ϕ(v0), . . . , ϕ(vk)}. This is

possible iff k = 0 and v0 is a vertex of K ′.

[With respect to the CW-structure of K ′ |ϕ| is a cellular map such that under the

canonical orientation of the simplices τ of K ′, |ϕ| : |τ | → |τ | defines a degree 1 map.
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Therefore it follows that the Lefschetz number of |ϕ| is equal χ(K ′) = χ(M). This fact

also follows from the general theory since ϕ is a simplicial approximation to IdM .]

We shall now construct a smooth vector field s on M such that the zero set of the

section s is precisely V (K ′), the vertex set of K ′, so that its index at β(τ) is equal to

(−1)dim τ . Taking the sum of all these indices it would follow that ι(s) = χ(K) = χ(M).

For points x ∈ U = |K| \ V (K ′) the line segment [x, ϕ(x)] in |K| defines a smooth

parameterised curve. Let α(x) denote the unit tangent vector to this curve at x. Then

α is a continuous vector field. In fact, it is smooth wherever |ϕ| is smooth. Consider the

star neighbourhoods

St(v,K ′′) = {λ ∈ |K ′′| : λ(v) 6= 0}

of v ∈ K ′. Then

|K| = ∪{St(v,K ′′) : v ∈ K ′}

form a cell n− decomposition of |K| and α is smooth restricted to each St(v,K ′′) \ {v}.

Let η : [0, 1] → [0, 1] be a smooth 1-1 mapping such that η(0) = η′(0) = 0 = η′(1)

and η(1) = 1. Using polar coordinates for points for St(v,K ′′) we now define s(t, z) =

η(t)α(z) where z ∈ Lk(v,K ′′) = ∂St(v,K ′′) and 0 ≤ t ≤ 1. It is easily checked that s is

the required vector field. It remains to compute the index of s at each of the vertices

v ∈ K ′. Suppose v = β(τ) for some τ ∈ K of dimension d. The vector field s is pointing

towards v at each point of |τ | \ {v}. On the other hand, if τ ′ is the dual (n− d)-cell in

K ′′ then s is pointing away from v at all the points |τ ′| \ {v}. This means ιv(s) = (−1)d

which is what we wanted. ♠

Corollary 3 Let M be a smooth closed manifold. Then M has a smooth nowhere

vanishing section iff e(M) = 0.

Proof: We have already see the only if part. Suppose now that e(M) = 0. We may

assume that M is connected. We can take any vector field s with finitely many zeros

and then ι(s) = 0. We can assume that all the zeros of s are contained in the interior of

a single disc in M (by an ambient isotopy). I then follows by arguments similar to that

used in Hopf index theorem, that we can modify s on this disc so as not have any zeros.

(For more details of this arguments, see section 7.7 in [Sh2].) ♠
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2.2 Construction of Steifel Whitney Classes and Chern

Classes

Convention:

c K = Kc F = Fc

1 Z2 R

2 Z C

We shall consider a F -vector bundle ξ = (E, p, B) of rank n. Let E0 denote the open

space consisting of non zero vectors in E and let p0 = p|E0
. Let P (ξ) = (P (E), q, B)

denote the projectivized bundle. We have the natural projection E0 → P (E) and q

is the factorization of p0 through this map. Note that elements of P (E) are lines in

p−1(b), b ∈ B.

E(γ1) E(λξ)
ι q∗(ξ)

FP∞ P (E)

q

fξ
E0

ι

p0

E(ξ)

p

B

Consider the pullback bundle q∗(ξ) over P (E) :

q∗(ξ) = {(L, v) ∈ E ′ ×E : q(L) = p(v)}

This bundle has a natural line subbundle given by

λξ = {(L, v) : v ∈ L}

Also observe that, for each b ∈ B, the fiber q−1(b) can be identified with the projective

space Pn−1
F and if jb : q

−1(b) → P (E) is the inclusion map, then j∗b (λξ) is the canonical

line bundle on the projective space Pn−1
F .

[It can be seen that if ξ is a numerable bundle then so is λξ]

Therefore, we have a unique homotopy class fξ : E(P (ξ)) = P (E) → P∞
F = G1(F

∞)

such that λξ = f ∗
ξ (γ

1
F ) where γ

1
F is the universal line bundle over P∞

F .

Recall:
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Theorem 17 The cohomology ring H∗(P∞
Fc
, Kc) is the polynomial algebra Kc[z], where

deg z = c, c = 1, 2. The rings H∗(Pn
Fc
;Kc) are got by putting one relation zn+1 = 0 under

the map induced by the inclusion Pn
Fc

⊂ P∞
Fc
.

Remark 12 In case of real projective spaces, (c = 1), there is no ambiguity in the choice

a generator z ∈ H2(Pn

R;Z2) ≈ Z2. In case of complex projective spaces, first of all note

that there is a canonical choice for the orientation class of P1

C being a 1-dimensional

compact complex manifold, which is taken as the generator z for H2(P1

C;Z). Under

inclusion induced map this defines the choice of the generator for all H2(Pn

C;Z) (c = 2).

Let fξ : P (E(ξ)) → P∞
F be the classifying map for the line bundle λξ as constructed

in the above diagram. We denote

aξ = −f ∗
ξ (z) ∈ Hc(P (ξ)) (2.4)

which depends on the homotopy class of fξ and not on the specific choice of fξ.

Theorem 18 The mapping p∗ : H∗(B) → H∗(P (ξ)) is a monomorphism and the ele-

ments {1, aξ, . . . , a
n−1
ξ } form a H∗(B) base for H∗(P (ξ)).

[See Spanier]

In particular consider the universal n-plane bundle ξ = γn over Gn(F
∞). The element

anξ ∈ Hnc(P (ξ)) can be expressed in a unique way

anξ =
n

∑

i=1

(−1)i−1xi(γ
n))an−i

ξ , (2.5)

where xi(γ
n) ∈ Hci(Gn;Kc). These are called universal characteristic classes for n-plane

bundles.

For any n-plane bundle ξ = g∗(γn) over B, where g : B → Gk(F
∞), we define

xi(ξ) = g∗(xi(γ
n)), i ≤ n, and xi(ξ) = 0, i > n. (2.6)

We put

x(ξ) = 1 + x1(ξ) + · · ·+ xn(ξ) + 0 + · (2.7)

For F = R (resp. C ), the element xi(ξ) ∈ H i(B,Z2) resp. ∈ H2i(B;Z) is called

the ith Steifel-Whitney class (Chern class) of ξ denoted by wi(ξ) (resp. ci(ξ). Also, x(ξ)

is called the total Steifel-Whitney class denoted by w(ξ) (total Chern class denoted by

c(ξ).)
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2.3 Fundamental Properties

The following four properties of characteristic classes are so fundamental that they have

been upgraded to the status of being called axioms.

(A1) If ξ and η are isomorphic bundles over B then x(ξ) = x(η).

(A2) If g : B′ → B is a continuous map, then x(g∗(ξ)) = g∗(x(ξ)).

(A3) For any two vector bundles ξ and η over B, we have,

x(ξ ⊕ η) = x(ξ) ∪ x(η).

(A4) x(γ1) = 1 + z, where γ1 := γ1F is the universal line bundle over P∞
F .

The properties (A1), (A2) are verified easily. To verify property (A4), we note that

when ξ = γ1 then P (ξ) = G1(F
∞) = P∞

F and q is the identity map. Therefore λξ = γ1

and f = Id. Therefore aξ = z is the generator of Hc(P∞
F ). On the other hand the identity

(2.5) reduces to the identity aξ = x1(γ
1). This proves (A4). Property (A3) is the one

which will take some effort to verify. We post-pone this for a while. First, let us derive

some easy and beautiful consequences of these axioms.

Corollary 4

(1) x(Θk) = 1.

(2) If η and ξ are stably equivalent, then x(η) = x(ξ).

(3) If B is stably parallelizable manifold, then w(B) := w(τ(B)) = 1.

In particular w(τ(Sn)) = 1.

(4) x(Pn
F ) := x(τ(Pn

F )) = (1 + z)n+1.

Proof: (1) The trivial bundle Θk is induced by the constant map f : B → Gk(F
∞).

(2) We have by property (A3) x(η) = x(η ⊕ θk) = x(ξ ⊕ θk) = x(ξ).

(3) follows from (2).

(4) If γ1 denotes the canonical line bundle over Pn
F then we have seen that the tangent

bundle τ(Pn
F ) is stably equivalent to (n + 1)γ1. Now use (A3) and (A4). ♠

Corollary 5 (Stiefel) The class w(Pn) := w(τ(Pn)) is equal to 1 iff n + 1 is a power of

2. Thus the only projective spaces which can be parallelizable are P2k−1, k ≥ 1.

It is known that Pn is parallelizable iff 1, 3, 7. This requires digging deeper into the

properties of characteristic classes which we shall not deal with here. (See [M] for further

references.)

Some applications

(a) Division Algebras
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Theorem 19 Suppose there is a bilinear map β : Rn × Rn → Rn which has no zero

divisors. Then Pn−1 is parallelizable. In particular, n is a power of 2.

Proof: Let {ej}1≤j≤ denote the standard basis for Rn. That there are no divisors for β

means that

αj : x 7→ β(x, ej)

define isomorphisms or each j. Also note that for any fixed x 6= 0, the set {αj(x)} is

linearly independent. [For

0 =
∑

j

rjαj(x) = β(x,
∑

j

rjej)

implies that
∑

j rjej = 0 which means each rj = 0, j = 1, 2, . . . , n.]

Putting vj = α−1
1 ◦ αj, we get, for each non zero x ∈ Rn, a linearly independent set

{v1(x) = x, v2(x), . . . , vn(x)}. If px denotes the projection on the plane x⊥, orthogonal

to x, then it follows that {pxv2(x), . . . , pxvn(x)} forms a basis of x⊥. This then defines a

trivialization of the bundle Hom(γ1n−1, γ
1
n−1

⊥
) ∼= τ(Pn−1).

Remark 13 Note that by applying Gram-Schmidt process to {v1(x) = x, v2(x), . . . , vn(x)}

we obtain trivialization of τ(Sn−1) also.

Remark 14 Of course, it is known that only R,R2,R4,R8 admit bilinear forms without

any zero divisors but we cannot prove this with the techniques developed so far.

(b) Steifel-Whitney numbers and Un-oriented Cobordism

Given any closed (i.e, compact and without boundary) n-dimensional manifold M,

one knows that Hn(M ;Z2) = Z2. A generator of this group is called a fundamental class

µM (or orientation class) of M. We shall write wi(M) for the ith Steifel-Whitney class

of the tangent bundle of M.

Now consider a sequence of variables T1, . . . , Tk where we give (weighted) degree

deg(Ti) = i. Then each monomial m(T ) = T r1
1 · · ·T rk

k is of total degree

deg(m(T )) =
∑

i

rii.

For each m(T ) of total degree n we get a number

SW (T ) = [w1(M)r1 · · ·wn(M)rn ] ∩ µM ∈ Z2.

The collection {SW (T )} where T varies over all the monomials of total degree n is

referred to as the collection of Steifel-Whitney numbers of M.
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Example 8 Let us prove that all S-W numbers of P2n−1 vanish. We know w(Pm) =

(1 + a)m+1. Putting m = 2n − 1, we see that w(P2n−1) = (1 + a2)n. In particular,

w2i(P
2n−1) = 0 for all i. Now any monomial of total degree odd will have at least one of

the variables of odd degree, the conclusion follows.

On the other hand, for m = 2n, w2n(P
2n) = (2n + 1)a2n = a2n 6= 0. Similarly,

w1(P
2n) = (2n + 1)a = a and hence w2n

1 = a2n 6= 0. So, there are at least two of them

which are non zero.

In the special case when m = 2n, we have w(Pm) = 1 + a + am and so there are no

other non zero S-W numbers.

This computation may not be so impressive. However, the following two results due

to two great topologists take the cake.

Theorem 20 Pontrjagin If M is the total boundary of a compact manifold W, then

the Steifel-Whitney numbers of M are all zero.

Proof: Let ∂ : Hi+1(W,M) → Hi(M) and δ : H i(M) → H i+1(W,M) denote the

canonical connecting homomorphism in the respective long homology (cohomology) ex-

act sequence of the pair (W,M). The relative fundamental class µW ∈ Hn+1(W,M ;Z2)

has the property that ∂(µW ) = µM . By the projection formula for the cap product we

have, for any u ∈ Hn(M)

v ∩ (∂µW ) = (δv) ∩ µM

We know that the tangent bundle τ(W ) restricted to ∂W =M has the tangent bundle

τ(M) of M as a subbundle. Moreover, the normal bundle of M in W is a trivial 1-

dimensional bundle with, for example a strictly outward normal drawn at each point of

M. Thus we have

τ(W )|M ∼= τ(M)⊕Θ1.

This then means that ι∗w(W ) = w(M). Therefore, each class w1(M)r1 · · ·wn(M)rn ∈

Hn(M), (
∑

ri = n), is in the image of ι∗ : Hn(W ) → Hn(M). By the long exact sequence

Hn(W )
ι∗

Hn(M)
δ
Hn+1(W,M)

it follows that δ(w1(M)r1 · · ·wn(M)rn) = 0. ♠

The converse of this theorem is a very deep result due to Thom:

Theorem 21 René Thom If all the Steifel-Whitney numbers of a closed manifold

vanish then M is the total boundary of some manifold.
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(See [T].) For strengthening these results, another type of characteristic classes called

Pontrjagin Classes were invented. We shell study them in the next section.

(c) Immersions and embeddings For any immersed manifold M in RN we can talk

about the normal bundle ν(M) and then we have

τ(M)⊕ ν(M) ∼= θN .

It follows that

w(M)w(ν(M)) = 1.

That is w(ν(M)) is the multiplicative inverse of w(M) in the cohomology algebra

H∗(M ;Z2). In particular, the total Steifel-Whitney class of the normal bundle ν(M)

is independent of the dimension of the immersion. On the other hand, since ν(M) is a

(N − n)-plane bundle, we know that wi(ν(M)) = 0 for i > N −m. This then puts an

obvious lower bound for the immersion dimension, provided we can compute the inverse

of w(M).

This is where we use the formal graded-algebra approach. Consider

H
∏

(M) = K +H1(M ;K) + · · ·+Hn(M,K) + · · ·

be the direct product of H i(M), i ≥ 0 for any connected topological space. An element

of this direct product is a finite or infinite sum

a0 + a1 + · · ·

where ai ∈ H i(M,K). One defines componentwise addition and Cauchy product as

multiplication to make it into a K-algebra. It follows easily that H
∏

(M) is a graded-

commutative algebra in which an element of the form above is invertible iff a0 6= 0. In

particular, let us compute the inverse of w(P9). Indeed

w(P9) = (1 + a)10 = 1 + a2 + a8

and hence

w(P9)−1 = 1 + a2 + a4 + a6.

Therefore we cannot immerse P9 in RN for N < 9 + 6 = 15. For n = 2r, we actually get

a sharp result. Here

w(Pn) = (1 + a)n+1 = 1 + a+ an

and therefore

w(ν) = w(Pn)−1 = 1 + a+ · · ·+ an−1.

This then implies that we cannot immerse Pn in RN for N < 2n−1. On the other hand,

by a celebrated theorem of Whitney, any manifold can be immersed in R2n−1.
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2.4 Splitting Principle and Uniqueness

Let ξ = (E, p, B) be any vector bundle. Call a map f : B1 → B a splitting map for

ξ if f ∗ : H∗(B,K) → H∗(B1, K) is injective and f ∗(ξ) is a direct sum of line bundles.

Clearly

(1) If f : B1 → B is a splitting map for ξ and g : B2 → B1 is such that g∗ : H∗(B1, K) →

H∗(B2, K) is injective then f ◦ g is also a splitting map for ξ.

(2) Any map f : B1 → B such that f ∗ : H∗(B;K) → H∗(B1;K) is injective is a splitting

map for all line bundles over B.

(3) Given any ξ over B let q : P (ξ) → B be the associated projective bundle. Then

H∗(B,K) → H∗(P (ξ);K) is injective. Moreover, q∗(ξ) = λξ ⊕ σξ, where λξ is the

canonical line subbundle and σ is some complementary subbundle.

(4) Thus by induction on the rank of ξ, it follows that there is a splitting map for each

ξ.

(5) Indeed, by repeated application of (1) it also follows that for any finitely many

bundles ξi over B, there is a common splitting map.

Theorem 22 Uniqueness of Characteristic Classes If x(ξ), y(ξ) satisfy the prop-

erties (A1)–(A4), then x = y.

Proof: To begin with for any line bundle λ, we have x(λ) = 1+x1(λ) = 1+y1(λ) = y(λ)

(Use (A4) and (A2).) Given ξ let f : B1 → B be a splitting map, to show that

x(ξ) = y(ξ) it is enough to show that f ∗(x(ξ)) = f ∗(y(ξ)). But we have

f ∗(x(ξ)) = x(f ∗(ξ)) = x(λ1 ⊕ · · · ⊕ λn) = x(λ1)x(λ2) · · ·x(λn)

= y(λ1)y(λ2) · · · y(λn)

= y(λ1 ⊕ · · · ⊕ λn)

= y(f ∗(ξ) = f ∗(y(ξ)).

Verification of Property (A3)

Lemma 10 Let ξ = λ1 ⊕ · · · ⊕ λk, a direct sum of line bundles. Then

x(ξ) = x(λ1) · · ·x(ξk) = (1 + x1(λ1)) · · · (1 + x1(λk)). (2.8)

Proof: Let q : P (ξ) → B be the projective bundle. Consider the line subbundle λξ of

q∗(ξ) = ⊕iq
∗(λi). Proving (2.8) is the same as proving that the product

(aξ + x1(λ1)) · · · (aξ + x1(λk)) = 0. (2.9)
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Upon tensoring with λ∗ξ, the line subbundle λξ, yields a trivial subbundle of ⊕
n
i=1[λ

∗
ξ⊗

q∗(λi)]. This is the same as having a nowhere vanishing section s of the direct sum.

When projected to any of the summands, this yields a cross section si of the line bundle

λ∗ξ ⊗ q∗(λi). Let Vi ⊂ P (ξ) on which si does not vanish. This means that restricted to

Vi, λ
∗
ξ ⊗ q∗(λi) is trivial. Therefore aξ + q∗x1(λi) = x1(λξ) + x1(q

∗(λi)) = 0 on Vi. Since

∪iVi = P (ξ), from a general observation on cup products, (2.9) follows. ♠

Given ξ, η on B, let f : B1 → B be a common splitting. Let

⊕k
i=1λi = f ∗(ξ); ⊕l

j=1 λn+j = f ∗(η).

Then
f ∗x(ξ ⊕ η) = x(f ∗(ξ ⊕ η)) = x(λ1 ⊕ · · · ⊕ λm+n)

= [x(λ1) · · ·x(λn)][x(λn+1 · · ·x(λn+m)

= x(f ∗(ξ))x(f ∗(η)) = f ∗(x(ξ)x(η)).

Since f ∗ is injective, we are through. ♠

Theorem 23 For any complex k-plane bundle η over a paracompact space, we have

e(η) = ck(η).

Proof: By the splitting principle, and the product property of Euler class and Chern

class for Whitney sums, it is enough to prove this for line bundles. By the classification

of line bundles, it is enough to prove this for the universal line bundle γ1 over P∞

C. Since

the inclusion P1

C →֒ P∞

C induces an isomorphism in second cohomology, it is enough

to prove this for γ1
C
. For this case, in example ??, we have verified that e(γ1) = z the

canonical generator and by definition (A4) c1(γ
1) = z. ♠

Exercise 8 Show that for any complex line bundle η over a paracompact space, w2(η) is

equal to the mod 2 reduction of c1(η). [Hint: First show that the restriction of canonical

line bundle over Pn−1

C
to P2n−1

R
is the complexification of the canonical line bundle over

P2n−1

R
.]

2.5 Complex bundles and Pontrjagin Classes

Definition 9 Let V be a R-vector space of even dimension. By a complex structure on

V we mean a R-linear isomorphism J : V → V such that J ◦ J = −Id.

Given a complex vector space F, we shall denote by FR the underlying real vector

space of dimension 2(dimCF ).
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Remark 15 This is an example of a forgetful functor. Here it forgets the complex

structure retaining only the real vector space structure and the orientation. Clearly the

map J(v) = ıv gives a complex structure on FR which is C-isomorphic to F.

Definition 10 By the complexification of a real vector space V we mean taking V ⊗RC.

The complex structure this is defined by J(v ⊗ 1) = v ⊗ ı). Under the identification

V ⊗ C → V ⊕ V given by

(u⊗ 1 7→ (u, 0); u⊗ ı 7→ (0,u)

the complex structure takes the form:

J(u,v) = (−v,u).

Definition 11 Given a complex vector space F by the conjugate complex vector space

F̄ we mean the underlying real vector space together with the complex structure J(v) =

−ıv.

Lemma 11 (i) We have for any real vector space V, V ⊗C is canonically isomorphic to

the conjugate C− vector space V ⊗ C.

(ii) Given a complex vector space F we have a canonical isomorphism FR⊗C → F ⊕ F̄ .

(iii) Both (i) and (ii) hold for vector bundles as well.

Proof: (i) Define Θ(u+ ıv) = u− ıv and verify that Θ is as required.

(ii) Consider the following two maps f, g : F → FR ⊗ C given by

g(u) = (u,−ıu); h(u) = (u, ıu).

Verify that g is a complex linear and h is conjugate linear and both are injective. More-

over, images of the two maps span the entire FR⊗C. Therefore, we can identify FR⊗C

with F ⊕ F̄ .

(iii) Since this isomorphism is canonical, we get the same statement for vector bundles

as well. ♠

Lemma 12 c1(γ1) = −c1(γ1) where γ
1 is the canonical line bundle over CP∞.

Proof: Enough to prove this for the canonical line bundle over CP1. Consider the map

j : CP1 → CP1 defined by z 7→ z̄. Then j ∗(γ1) ∼= γ1. Therefore c(γ1) = j∗(1+z) = 1−z.

♠
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Theorem 24 ci(ξ̄) = (−1)ici(ξ).

Proof: Use splitting principle.

Thus for a real bundle ξ, if the total Chern class is

c(ξ × C) = 1 + c1 + · · ·+ ck

then

c(ξ ⊗ C) = 1− c1 + c2 −+ · · ·+ (−1)kck

from lemma 11, it follows that 2c2i−1(ξ ⊗ C) = 0. So, we concentrate our attention on

the even degree terms.

Definition 12 The ith Pontrjagin class of a real vector bundle ξ is defined as

pi(ξ) = (−1)ic2i(ξ ⊗ C) ∈ H4i(B;Z)

and the total Pontrjagin class

p(ξ) = 1 + p1(ξ) · · ·+ p[n/2](ξ).

Remark 16

(a) The sign is introduced so that elsewhere some formula becomes nicer. (See corollary

7.) You may ignore the sign (like some authors), which is OK provided you are consistent.

(b) All the four fundamental properties of the Chern classes hold for Pontrjagin classes

as well except that the product formula is valid only up to order 2 terms, i.e.,

2[p(ξ ⊕ η) − p(ξ)p(η)] = 0. However, we have the stronger result p(ξ ⊕ θ1) = p(ξ)

which follows directly from the corresponding result for Chern classes. In particular,

p(τ(Sn)) = 1.

Theorem 25 For any complex k-plane bundle ω we have

1− p1 + p2 −+ · · ·+ (−1)kpk = (1− c1 + c2 −+ · · ·+ (−1)kck)(1 + c1 + · · ·+ ck).

In particular,

pj(ω) = c2j − 2cj−1cj+1 +− · · ·+ (−1)k2c2k.

Corollary 6 p(CPk) = (1 + a2)k+1.

Lemma 13 Given any R-bundle of rank k, there is a R-isomorphism ξ⊕ ξ → (ξ⊗C)R
which is orientation preserving iff k(k − 1)/2 is even.

34



Corollary 7 If ξ is an oriented real bundle of rank 2k, then pk(ξ) is equal to the square

of the Euler class e(ξ).

Proof: We have pk(ξ) = (−1)kc2k(ξ⊗C) = (−1)ke(ξ⊗C). On the other hand, e(ξ⊗C) =

(−1)2k(2k−1)/2e(ξ ⊕ ξ) = (−1)k(2k−1)e(ξ)2 = (−1)ke(ξ)2. ♠

Theorem 26 The cohomology ring of the oriented infinite real Grassmannian manifold

G̃2n+1 (respectively, G̃2n) is, up to 2-torsion, isomorphic to the polynomial ring generated

by the Pontrjagin classes p1, . . . , pn (respectively, p1, . . . , pn, and e(γ
2n) of the canonical

oriented 2n+ 1 (respectively (2n))-plane bundle over G̃2n+1 (resp. G̃2n).

Definition 13 Let Mi, i = 1, 2 be any two closed manifolds. We say M1 is cobordant

to M2 if there exists a compact manifold W with ∂W =M1∪̇M2.

Remark 17 It can be shown that being cobordant is an equivalence relation on the

diffeomorphism class of all closed n-dimensional manifolds. Under disjoint union, these

classes form an abelian group. Under the Cartesian product, this abelian group becomes

a graded commutative ring. We state without proof:

Theorem 27 Thom The oriented cobordism group Ωn is finite for n 6≡ 0 mod 4 and

is a finitely generated group of rank equal to the number of partitions of r for n = 4r.

Corollary 8 LetM be a smooth closed oriented manifold. Then some positive multiple

of M is oriented null cobordant iff all the Pontrjagin numbers of M vanish.
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