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We study the reflection of acoustical shock waves grazing with a small angle over a rigid

surface. Depending on the incidence angle and the Mach number, the reflection patterns

are mainly categorized into two types, namely the regular reflection and the irregular re-

flection. In the present work, using the nonlinear KZ-equation, this reflection problem is

investigated for extremely weak shocks as encountered in acoustics. A critical parameter,

defined as the ratio of the sinus of the incidence angle to the square root of the acous-

tical Mach number, is naturally introduced. For step shocks, we recover the self-similar

(pseudo-steady) nature of the reflection, which is well-know right from von Neumann’s

study. Four types of reflection as a function of the critical parameter can be categorized.

Thus, we describe the continuous but nonlinear and non-monotonic transition from linear

reflection (Snell-Descartes laws) to the weak von Neumann type reflection observed for

almost perfectly grazing incidence. This last one is a new, one-shock regime, contrarily
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to the other already known two- (regular reflection) or three-shocks (reflection of von

Neumann type) regimes. Hence, the transition yet resolves another paradox on acous-

tical shock waves also addressed by von Neumann in his classical paper. However, step

shocks are quite unrealistic in acoustics. Therefore, we investigate the generalization of

this transition for N -waves or periodic saw-tooth waves, which are more appropriate for

acoustics. Our results show an unsteady reflection effect necessarily associated to the en-

ergy decay of the incident wave. This effect is the counterpart of step shock propagation

over a concave surface. For a given value of the critical parameter, all the patterns cate-

gorized for the step shock may successively appear when propagating along the surface,

starting from weak von Neumann type reflection, then gradually turning out to von Neu-

mann reflection and finally evolving into nonlinear regular reflection. This last one will

asymptotically results into linear regular reflection (Snell-Descartes). The transition back

to regular reflection may be of two types, depending on whether a secondary reflected

shock is observed or not. This last case, described here for the first time, appears to be

related to the non-constant state behind the incident shock, which prevents secondary

reflection.

1. Introduction

As soon as a plane shock wave of acoustical Mach number Ma impinges over a rigid

inclined surface with a grazing angle θ (0 < θ < π/2), it gives rise to a reflected shock.

The incident and reflected shocks, as they propagate (for instance, from left to right

as shown in figure 1) along the rigid surface, result in a reflection pattern which can

be basically of two types, namely the regular and the irregular reflections (see Ben-Dor

1992). The type of reflection depends on the grazing angle and the strength of the incident
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Figure 1. Reflection of a grazing wave: geometry of the physical problem.

shock. For a sufficiently large angle, or a sufficiently weak shock, the incident and the

reflected shocks intersect right on the rigid surface. This type of reflection is called the

regular reflection. As the angle decreases, or the shock amplitude increases, the point

of intersection T of the incident and reflected shocks detaches from the surface. Due to

the nonlinear interaction of these two shocks at T , a new shock emerges to ensure the

contact with the surface. This emerging shock is called a Mach shock or Mach stem, and

the point T of intersection of these three shocks is called the Triple point. This type

of reflection is known as irregular reflection. For a strong incident shock, in addition to

these three shocks at T , there exists also a contact discontinuity (slipstream). It divides

the flow behind the reflected and the Mach shock into two states across which the normal

velocity component and the pressure are continuous, whereas other quantities (tangential

velocity, density, temperature, entropy) undergo a jump discontinuity. This is known as

Mach reflection and is named after its first experimental observation by Mach (1878).

This famous work of Mach has given birth to a new field of research commonly known

as shock wave reflection phenomena (see Ben-Dor & Takayama 1992).
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Theoretical investigation of the shock wave reflection was first carried out by von

Neumann (1943) for inviscid perfect gases. His theory on irregular reflection is called

three-shock theory, while the two-shock theory refers to regular reflection. The transition

criteria between the two types of reflection are derived from these theories (see Henderson

1987). A basic assumption made in the derivation of these theories is the pseudo-steady

(or self-similar) nature of the flow. These theories also assume all the waves in the flow

are either shocks with negligible curvature separating constant states, or contact discon-

tinuities with negligible thickness (slipstream).

The three-shock theory has a good agreement with experiments near the transition

criteria when the incident shock Mach number is greater than 1.47, which is considered

as a strong shock (see Colella & Henderson 1990). For weak shocks (incident shock Mach

number less than 1.035), the three-shock theory leads to the conclusion that the Mach

reflection is physically unrealistic while experimental evidence supported by numerical

simulations (from inviscid Euler equations), shows that Mach reflection still remains

possible for such weak shocks (see Colella & Henderson 1990). The discrepancy between

the three-shock theory and the experimental studies has been referred as von Neumann

paradox. The von Neumann paradox was first stated by Birkhoff (1950) and later more

precisely by Colella & Henderson (1990). Several attempts have been made to resolve

this paradox either experimentally or theoretically, with different proposed explanations.

This nevertheless remains a challenging open problem.

For the case when the three-shock theory gives unrealistic results, Colella & Henderson

(1990) observed numerically and experimentally a continuous slope of the shock front

along the incident and the Mach shock. Their numerical results show that this continuous

slope is because the reflected shock breaks down to a band of compressive waves as it

approaches the incident shock and so that there is no triple point. They named this new
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type of reflection the von Neumann reflection, which they introduced as a different regime

from Mach reflection (where the slope has a discontinuity at the triple point as described

by three-shock theory). Henderson, Crutchfield & Virgona (1997) provided computational

and experimental evidence of the importance of viscosity and heat conductivity in the

flow to solve the paradox. The boundary condition on the slipstream separating the two

constant states behind the triple point has been questioned by Skews (1972) (also see

Ben-Dor 1987; Kobayashi et al. 1995), and recently Kobayashi, Adachi & Suzuki (2004)

gave experimental evidence for the non-self-similar nature of the weak Mach reflection.

A singularity in the reflected shock curvature at the triple point shown by Sternberg

(1959), or a singularity in the solution behind the triple point shown by Tabak & Rosales

(1994) are other proposed explanations for the paradox. For more details on the literature

of the paradox and also a detailed discussion of all possible types of reflection with

their transition criteria, we refer to the recent review article by Ben-Dor & Takayama

(1992). Hunter & Brio (2000) studied the weak shock reflection in the case of step shocks

using the 2-dimensional Burgers’ equation. This enabled them to capture a very tiny

supersonic patch behind the triple point which was initially hypothesized by Guderley

(1962). They also proved theoretically the existence of an expansion fan at the triple

point in addition to the three shocks, which is yet another explanation for the paradox.

Such a reflection pattern was first proposed by Guderley (1962) and is commonly known

as Guderley reflection. From different numerical solvers of the Euler equations, Vasil’ev

& Kraiko (1999) and Zakharian, Brio, Hunter & Webb (2000), respectively, captured the

expansion fan and the supersonic patch. Tesdall & Hunter (2002) further investigated the

problem and found (through a new numerical scheme developed by them) a more complex

structure of the reflection pattern with a sequence of triple points along the Mach shock,

each one associated to an additional expansion fan. This whole complex structure takes
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place very locally in a tiny domain behind the leading triple point. Recently, Skews &

Ashworth (2005) performed a very high-resolution experiment, which gives an evidence

for the presence of a multi-reflection structure behind the three-shock reflection.

Extremely weak shock waves do exist in the acoustical regime corresponding to Mach

numbers not much larger than 1.001 (while for instance experiments of Colella & Hen-

derson (1990) do not go below Mach 1.035 and those of Skews & Ashworth (2005) below

Mach 1.04). Examples of such shock waves are sonic boom in the atmosphere at the

ground level, or ultrasonic shock waves produced by piezoelectric arrays in water for

high frequency ultrasound therapy (such as lithotripsy). The objective of the present

study is to investigate the nonlinear reflection of acoustical shock waves and to deter-

mine whether the reflection of extremely weak acoustical shock waves is specific or not.

With this view point several unanswered questions arise. The first one is to investigate

the different regimes of reflection of acoustical weak shock waves depending on the shock

amplitude and the incidence angle. Though acoustical shock waves are extremely weak,

they are nonetheless intrinsically nonlinear. However it remains uncertain whether non-

linear effects play a role at some stage during the reflection or, on the contrary, if acous-

tical shock waves still satisfy the linear Snell-Descartes laws of reflection. Indeed, von

Neumann (1943) hypothesized acoustical shock waves behave differently from stronger

shocks. The question is therefore to match the linear Snell-Descartes laws with weak

shock theory. Another open question has also been pointed out by von Neumann (1943),

who remarked that the linear Snell-Descartes laws themselves are singular. Indeed, they

predict the well-known pressure doubling at the reflector surface, which is valid (in the

linear theory) for any grazing angle except the perfectly grazing angle. For the perfectly

grazing case, the incident shock wave propagates exactly parallel to the surface, there

is no reflection at all and no pressure doubling. Therefore, even in the linear regime,
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Snell-Descartes laws are singular, another paradox we suggest to call the acoustical von

Neumann paradox. In his original paper, von Neumann conjectures for acoustical waves

a smooth and monotonic transition between Snell-Descartes laws and perfectly grazing

incidence, contrarily to the strong shock case. The first main objective of the present

study is therefore to investigate this transition systematically.

Another key feature of acoustical shock waves is that they are never the perfect step

shock between constant states that has been solely examined in the above cited studies.

Indeed, acoustical shock waves are always preceded or followed by nonconstant flows

which will modify the reflection structure. Also, acoustical shock waves are frequently

not unique but appear as a sequence of two or more shocks. For instance, the sonic boom

has typically the shape of an N -wave (two shocks) while long trains of ultrasound have

the shape of a periodic saw-tooth wave. In all these cases, we expect the multiple incident

and reflected shock waves to interact with one another. Our second main objective here

is therefore to examine whether the categorization of the shock reflection regimes that

is observed for the step shock, remains valid or not for other kind of acoustical shock

waves.

In the case of a weak shock incident on the reflector with a small grazing angle, the

wave propagation (whose direction is given by the normal to the wavefront as sketched

on figure 1) is mostly oriented parallel to the reflecting surface. As the direction of

propagation of the reflected wave will also deviate only slightly from the tangent to

the reflector, this suggests that instead of the 2-dimensional Euler equations, the KZ-

equation (see Zabolotskaya & Khokhlov 1969) may be used efficiently (section 2). Indeed,

the KZ-equation is derived under two main assumptions: weak shocks and propagation

in a preferred direction. Both of them are obviously well satisfied here, which makes

the use of this equation especially well suited to the present case. Note this equation
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is equivalent to the 2-dimensional Burgers’ equation used by Hunter & Brio (2000). In

the derivation of the boundary conditions for the KZ-equation, a critical parameter a is

introduced naturally (section 3), which shows that the acoustical shock strength has to

be of the order of the square of the grazing angle θ for full coupling between nonlinear

and diffraction effects near the surface. A similar kind of parameter was also introduced

by Hunter & Brio (2000). Then a self-similar rule is obtained for the step shock in the

acoustical regime. The self-similar rule is also verified numerically in section 4. We also

show that, unlike the nonlinear Fresnel diffraction (see Coulouvrat & Marchiano 2003),

the flow for the N -wave or the periodic saw-tooth wave does not follow any self-similar

law.

We then derive in section 5, a transition condition from regular to irregular reflection for

the step shock, which is a general form of the detachment condition derived by Hunter

(1991). By varying the critical parameter a, we study the different types of reflection

starting from the linear regular reflection for a very large value of a (Snell-Descartes

reflection) to the so-called weak von Neumann reflection for a small value of a, in which

we observe a smooth reflected wave instead of a reflected shock. For intermediate values

we recover the other regimes of reflection already found in the literature as described

above. Such a complete ”panorama” of the step shock reflection is the first main original

result of this study and will enable us to solve the acoustical von Neumann paradox. The

second one is given by the numerical study of the unsteady reflection phenomena in the

case of N -waves and saw-tooth waves (section 6). In both cases, we obtain new results,

which are not possible for step shocks grazing over a plane rigid surface, because the step

shock reflection is self-similar. In particular, we observe non-monotonic trajectory of the

triple-point. This leads to intricate reflection patterns such as inverse Mach reflection

and transitioned regular reflection of two types, one of them being described here for
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the first time. This type-two reflection has a behaviour similar to the unsteady reflection

as discussed in Chapter 4 of Ben-Dor (1992) for step shocks grazing over a concave

double wedge, but to our knowledge this is newly observed for the reflection of complex

shock waveforms over a perfectly plane surface. Finally, we discuss the unsteady effects

related to the decrease of energy of the incident shock wave along the reflecting plate.

This unsteadiness will be shown to imply continuous transition from the initial nonlinear

shock reflection regime at the tip of the plate, up to the final linear Snell-Descartes

reflection.

2. Shock wave reflection and the KZ-equation

We consider a two-dimensional plane shock wave grazing over a plane rigid surface

with acoustical Mach number Ma (defined as the ratio between the maximum amplitude

of acoustical velocity V0, which is the excess of the wave velocity on the constant sound

velocity c0 in the undisturbed medium, to the ambient sound speed). Typical values of

this Mach number are about 10−3 for observed sonic booms (of Concorde) or ultrasonic

shock waves. Note this corresponds in the usual definition of the Mach number to values

smaller than 1.001, so much closer to 1 than the cases investigated previously in the

literature (as mentioned in the introduction). The shock encounters a wedge of angle θ

at point O as shown in figure 1. We assume a homogeneous and inviscid fluid of ambient

density ρ0. Let us take the longitudinal (normal to the incident wavefront) and the

transverse (parallel to the incident wavefront) coordinates as x′ and y′ respectively. We

denote the physical time by t and the oblique coordinates by (x, y) (respectively parallel

and perpendicular to the reflecting surface) and fix the origin O at the tip of the wedge.

We define the dimensionless retarded time as τ ′ = ω (t − x′/c0), where ω is a reference

angular frequency characteristic for the incident signal duration of periodicity. We make
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the transverse and the longitudinal variables dimensionless by Y ′ = y′/L, X ′ = x′/D,

where L = 1/(k
√

2βMa) is the transverse length scale and D = 1/(βkMa) is the shock

formation distance with k = ω/c0 the wave number and β = 1 + B/2A, B/A being the

nonlinearity parameter (see Hamilton & Blackstock 1998). The dimensionless oblique

coordinates and retarded time are defined similarly as (X = x/D, Y = y/L) and τ =

ω (t − x/c0).

We assume that (i) the grazing angle is small θ ≪ 1 (grazing wave assumption) and

(ii) the shock wave is weak Ma ≪ 1, which is appropriate for the acoustic case. These two

assumptions justify the use of the paraxial approximation of the nonlinear wave equation,

which is the well-known KZ-equation (see Zabolotskaya & Khokhlov 1969)

∂2P

∂X∂τ
− ∂2P

∂Y 2
=

∂2

∂τ2

(

P 2

2

)

, (2.1)

where P = pa/(ρ0c0V0) is the dimensionless acoustical pressure with pa the acoustic

pressure. We recall the KZ-equation is an approximation of the Euler equations valid for

finite amplitude sound waves provided two main assumptions are satisfied. The first one

requires waves of small amplitude; it is perfectly satisfied here for acoustical shocks ac-

cording to the small values of the acoustical Mach number. The second one is the paraxial

approximation, which assumes waves propagate mainly into a preferred direction, here

the direction tangent to the reflector surface. In its linearized form, the dispersion re-

lation of the KZ equation replaces the exact dispersion relation of the wave equation,

which is a circle, by the parabola tangent to this circle at the main direction of prop-

agation. This justifies the name of ”parabolic approximation” which is frequently used

instead of the ”paraxial approximation”. That approximation is estimated to be valid

for directions of wave propagation that deviate from less than ±30o, for which case the

error in the dispersion equation is less than 1%. Here, we will study grazing angles for

which the critical parameter introduced in the next section is typically less than 3, which
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corresponds to angles less than 8.5o in air and 14.5o in water, so well within the range

of validity of the paraxial approximation.

The KZ-equation can be expressed in the form of two conservation equations of the

form

∂P

∂X
=

∂U

∂Y
+

∂

∂τ

(

P 2

2

)

, (2.2)

0 =
∂P

∂Y
− ∂U

∂τ
, (2.3)

which can also be viewed as the weak disturbance asymptotic limit of the unsteady

transonic problem (see Hunter 1991). Equation (2.2) is the well known 2-dimensional

Burgers’ equation, which takes care of the nonlinear effect, with equation (2.3) including

the diffraction effect. Note however that when compared to the 2-dimensional Burgers’

equation, the role of time and space have been interchanged in the KZ-equation, which

takes the form of an evolution equation in space rather than in time. This interchange

is allowed by the equivalence between time and space through the introduction of the

retarded time as the ”fast” variable in the multiple scales asymptotic process sustaining

the derivation of the KZ-equation. An equivalent form but with evolution in time is known

as the NPE-equation (see McDonald & Kuperman 1987)), which is strictly equivalent to

the 2-dimensional Burgers’ equation discussed by Hunter (1991). Note also that, because

of this interchange between time and space, the computed solutions appear as a succession

of views in the plane τ, Y with increasing X distances, instead of the more usual views

in the plane X, Y with increasing times. Visually, on figures 3, 6 to 8, 11, 12, 14 and 16,

this makes the incident field inclined towards the left, as it arrives earlier at positions

more distant from the reflector surface. Similarly, the reflected field is inclined towards

the right. To recover the usual viewpoint as sketched on figure 1, a horizontal symmetry

of the above listed figures is simply to be performed.
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The Rankine-Hugoniot condition for the system (2.2)-(2.3) is given by (see Coulouvrat

& Marchiano 2003)

−W [P ] = [U ]NY + [P 2/2]Nτ , (2.4)

0 = [P ]NY − [U ]Nτ , (2.5)

where [f ] = f2 − f1 is the notation for the jump of any quantity f across the shock, W

is the shock normal speed and N = (Nτ , NY ) is the normal vector to the shock wave

τs = τs(X, Y ), which is a curve in the (τ, Y ) space evolving with the propagation variable

X . Eliminating U from the above two jump relations, we get the shock condition as

−WNτ = N2
Y

+ 〈P 〉N2
τ
, (2.6)

where 〈P 〉 = (P1 + P2)/2 is the mean value of P . The shock jump relations (2.4)-(2.5)

and their alternate form (2.6) are used in finding the transition condition from regular

to irregular reflection derived in section 5.1. We use the KZ-equation (2.1) to obtain the

numerical results for the shock reflection problem in the (τ, Y ) plane for a given X . This

numerical problem needs the appropriate initial and boundary conditions, which will be

examined in the next section.

3. The critical parameter and the boundary conditions

For computational purpose, it is convenient to work in the oblique coordinate system

(x, y) in which x and y are parallel and perpendicular to the wedge surface respectively,

as shown in figure 1. We denote the corresponding non-dimensional variables as (X, Y ),

and the corresponding retarded time as τ , as already defined in section 2.

The relation between the coordinates (X, Y ) and (X ′, Y ′) is given by

X ′ = X cos θ − L

D
Y sin θ = X + O(sin2 θ), (3.1)

where L and D are defined in section 2. Here we make the fundamental assumption that
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θ = O(
√

Ma). For typical acoustical Mach numbers of order 10−3, this corresponds to

grazing angles of the order of a few degrees. The transformation Y ′ → Y can be defined

similarly, but it is not used anywhere in our problem. The relation between the retarded

times τ ′ and τ is given by

τ ′ = τ + aY + a2X + O(sin2 θ), (3.2)

where the critical parameter a is naturally introduced as

a =
sin θ√
2βMa

= O(1). (3.3)

For numerical simulation, we have to prescribe the incoming wave at X = 0, from which

we get the initial pressure field in the (τ, Y )-plane for the computation. This incoming

field is the solution of the one dimensional Burgers’ equation

∂P

∂X ′
− P

∂P

∂τ ′
= 0 (3.4)

describing the propagation of a nonlinear plane wave in the X ′ direction.

In our problem, we study three types of waves, namely the step shock, the N -wave

and the saw-tooth wave. We give the solution of the Burgers’ equation in the (X ′, τ ′, Y ′)-

variables for these three cases, and then transfer the solution to the (X, τ, Y )-variables

using the transformations (3.1)-(3.3).

(i) Step Shock: The solution of the incoming field in the (X ′, τ ′, Y ′)-variables is given

by

P (X ′, τ ′, Y ′) =















0, if τ ′ 6 −X ′/2

1, if τ ′ > −X ′/2

(3.5)

and the solution of the incoming field in the (X, τ, Y )-variables is given by

P (X, τ, Y ) =















0, if τ + aY + a2X 6 −X/2

1, if τ + aY + a2X > −X/2.

(3.6)
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(ii) N-Wave: The solution of the incoming field in the (X ′, τ ′, Y ′)-variables is given by

P (X ′, τ ′, Y ′) =















− τ
′

X′+1 , if |τ ′| 6
√

(1 + X ′)/2

0 , otherwise

(3.7)

and the solution of the incoming field in the (X, τ, Y )-variables is given by

P (X, τ, Y ) =















− τ+aY +a
2
X

X+1 , if |τ + aY + a2X | 6
√

(1 + X)/2

0 , otherwise.

(3.8)

(iii) Periodic Saw-tooth Wave: The solution of the incoming field in the (X ′, τ ′, Y ′)-

variables for each period in [-1,1] is given by

P (X ′, τ ′, Y ′) =















− τ
′+1

X′+1 , if − 1 < τ ′ 6 0

− τ
′
−1

X′+1 , if 0 < τ ′ 6 1

(3.9)

and the solution of the incoming field in the (X, τ, Y )-variables for each period in [-1,1]

is given by

P (X, τ, Y ) =















− (τ+aY +a
2
X+1)

X+1 , if − 1 < τ + aY + a2X 6 0

− (τ+aY +a
2
X−1)

X+1 , if 0 < τ + aY + a2X 6 1.

(3.10)

We note that the above wave is of period 2 with shocks at 0,±2, ± 4, ....

We denote the computational boundary in the (τ, Y )-variables as EFGH (see figure

2). We impose the rigid boundary condition ∂P/∂Y =0 on the boundary EF. Since the

propagation of the shock wave is downstream, we use a backward difference for the τ

variable in our finite differences scheme, which makes the boundary FG a free boundary.

This allows us to minimize the complications defining the condition on the boundary GH

if we choose its length large enough so that the reflected shock does not touch the boundary

GH through out the computation, as shown in figure 2. For the transient step shock and

N -wave, we further assume that the incident shock enters the computational domain

through the boundary GH as shown in figure 2. With the above two assumptions, we can

impose the solution (equation (3.6) or (3.8)) of the 1-dimensional Burgers’ equation (3.4)
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Figure 2. The computational domain and the boundary conditions.

on the boundary GH and a constant state (zero) on the boundary HE. For the periodic

saw-tooth wave, the first assumption only is sufficient to impose the solution (3.10) of the

1-dimensional Burgers’ equation (3.4) on the boundary GH, while boundaries FG and HE

are handled simultaneously by the periodicity condition. The numerical algorithm used

to solve the KZ-equation (2.1) in the transient case is identical to the split-step, finite

differences scheme developed by Coulouvrat & Marchiano (2003) and Marchiano et al.

(2005) to study the nonlinear diffraction of weak shock waves respectively by a screen or

at a cusped caustic. The nonlinear part of the wave evolution is treated by a shock-fitting

algorithm based on the exact Poisson solution and weak shock theory, so as to minimize

numerical dissipation and dispersion effects and track shock waves with highest precision.

The linear diffraction part is solved by the finite differences algorithm of Lee & Hamilton

(1995). For the periodic case, the numerical solver is similar to the one developed by

Auger & Coulouvrat (2002) and Marchiano et al. (2003), where time derivatives for the

diffraction part are evaluated by the pseudo-spectral technique to guarantee periodicity.
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The reader is referred to these references for details about the scheme, including many

validation tests such as convergence of the solution with mesh refinement, comparison

with analytical solutions or experimental data, and recovery of self-similar properties of

solutions. Here similar tests have been performed for the case of reflection, with similar

results, and are therefore not all reproduced. However, properties of self-similarity of the

numerical solutions in agreement with theory are demonstrated in the next section 4

(figure 3), and perfect agreement between numerical simulations and two-shock theory

in the case of nonlinear regular reflection, is also demonstrated later on (section 5, figure

10). Finally, preliminary comparison with experimental data also shows some excellent

agreement with numerical simulations (see Baskar, Coulouvrat & Marchiano 2006).

4. About Self-Similarity

In this section, we discuss the similarity behaviour for the step shock, N -wave and the

saw-tooth wave reflection as a solution of the KZ-equation. Self-similarity (also called

pseudo-steadiness) of the step shock reflection problem on a flat rigid surface has been

assumed since the pioneering work of von Neumann (1943), and then in most of the

theoretical subsequent works mentioned in the introduction. First we will recover the

self-similarity of the step shock problem for the KZ-equation as expected from the work

of Hunter & Brio (2000) using the equivalent 2-dimensional Burgers’ equation. However,

we will show that this behaviour is restricted only to this ideal case, while realistic

acoustical signals such as N -waves or saw-tooth waves will be proved to be not self-

similar. In this case, we expect (as will be demonstrated in section 6) more complex

nonlinear reflection effects similar to the unsteady reflection of the step shock over a

concave double wedge (see Ben-Dor 1992). Notice that this case is different from the
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nonlinear Fresnel diffraction of weak shock waves, where all the three kinds of waves

exhibit self-similar behaviour (see Coulouvrat & Marchiano 2003).

We introduce the following rescaling

P → P ∗P, X → X∗X, Y → Y ∗Y and τ → τ∗τ, (4.1)

where the quantities with superscript ∗ denote the rescaling amplitude of each corre-

sponding variable.

The condition for the KZ-equation (2.1) to be invariant under the above rescaling is

given by

P ∗ = τ∗/X∗, Y ∗ =
√

X∗τ∗. (4.2)

To make the step shock (3.6) invariant, we need to choose

P ∗ = 1, τ∗ = X∗, Y ∗ = X∗.

Hence, the self-similar solution for the step shock takes the form

P (X, τ, Y ) = Q

(

ξ =
τ

X
, η =

Y

X

)

. (4.3)

Substituting the above self-similar solution in the KZ-equation (2.1), we get

∂Q

∂ξ
+ ξ

∂2Q

∂2ξ
+ η

∂2Q

∂η∂ξ
+

∂2Q

∂2η
+

1

2

∂2Q2

∂2ξ
= 0.

Obviously, the incident plane wave equation (3.5) also satisfies self-similarity under the

above rescaling, as does the homogeneous boundary condition on the rigid surface. It

is important to notice that the self-similar solution must also satisfy the jump relation

(2.6). Since, the self-similar rule in the present case is identical to the Fresnel solution

discussed by Coulouvrat & Marchiano (2003), the compatibility condition for the shock

curve in the self-similar coordinates can be derived identically.

We depict in figures 3a to 3c, the numerical simulation of the KZ-equation for the

reflected step shock at X = 1, 2 and 3 respectively, rescaled in the self-similar variables.
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Figure 3. Numerical demonstration of the self-similarity property: pressure field (in gray levels)

for a=0.5 and X=1.0 (a), 2.0 (b), 3.0 (c). Contour lines are dotted. Plot (d) superimposes the

computed incident and Mach shock, and the positions of the maximum pressure for the same

values of X. All figures are plotted in self-similar coordinates.

The comparison shows that the curves superimpose almost perfectly, which proves that

the numerical simulation indeed perfectly captures the self-similar behaviour of the solu-

tion. This is confirmed by figure 3d, where the positions of the incident and Mach shock

fronts, and of the points of the maximum pressure for the same three distances X are

undistinguishable.

For the N -wave, to make the expression (3.8) invariant under the rescaling (4.1) with
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the invariance condition (4.2) of the KZ-equation, we at least need a condition which

transforms the phase of the wave from τ

τ∗ +a Y

Y ∗ +a2 X

X∗ −
√

X

2X∗ to τ +aY +a2X−
√

X/2.

This is possible only in the case when τ∗ = X∗ = Y ∗ = 1 and therefore we cannot have

a self-similar solution for the N -wave. Similarly we can prove that there is no self-similar

solution for the periodic saw-tooth wave. However, in the numerical results depicted

in section 6, we observed that the solutions in these two cases have almost self-similar

behaviour for sufficiently small values of X , which is in fact expected from the above

expression.

5. Regimes of regular and irregular reflection for step shocks

The purpose of this section is to investigate the nature of the reflection of step shocks

depending on the value of the critical parameter a introduced in section 3. Reflection

is mainly of two types, namely regular reflection and irregular reflection. First we will

study theoretically the conditions on a for transition between these two types of reflection.

Then, we will review numerically and classify the different reflection patterns by varying

the critical parameter a from infinite to zero.

5.1. Triple-point condition

Let us consider the self-similar flow (as proved in section 4) associated to the step shock

reflection. We assume that the reflected wave is a shock when it hits the incident shock.

In other words, we assume that the triple point does exist and we denote its position

in self-similar coordinates as (ξ∗, η∗). We consider the domain η > η∗ above the triple-

point and assume classical Mach reflection, in the sense that the incident, reflected and

Mach shocks are straight lines separating three constant states. Then the pressure field,
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Figure 4. Sketch of (a) Regular reflection, (b) Mach reflection.

solution of the KZ-equation in the domain (ξ, η > η∗), is given by

P (ξ, η) =































0 , if ξ 6 ξi
s(η)

1 , if ξi
s(η) < ξ 6 ξr

s(η),

P0 , if ξr
s
(η) < ξ

(5.1)

where ξi
s

and ξr
s

are the incident and reflected shocks respectively, which are given by

ξi

s
(η) = −aη − (a2 + 1/2) (5.2)

for the incident shock according to the boundary condition (3.6) and

ξr

s(η) = bη − ((a + b)η∗ + a2 + 1/2) (5.3)

for the reflected shock. In equation (5.3), the parameter b associated to the slope of the

reflected shock is defined similarly to the parameter a as given in (3.3), but now for the

reflected angle θr (say) instead of the incident angle (figure 4). The change of sign in

equation (5.3) compared to (5.2) holds for a reflected wave and the constant is chosen so

that the two shocks meet at the triple-point. In equation (5.1), P0 is the dimensionless

pressure behind the reflected shock, which is yet to be calculated. Our problem is to
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find the condition on b and P0 as a function of a, in such a way that the reflected shock

satisfies the Rankine-Hugoniot condition. The triple point (ξ∗, η∗) is given by

ξ∗ = −aη∗ − (a2 + 1/2). (5.4)

The incident shock velocity W
i and the unit normal vector to the incident shock N

i are

given by

W
i =

(

−(a2 + 1/2), 0
)

, N
i =

1√
1 + a2

(1, a).

The reflected shock velocity W
r and the unit normal vector to the reflected shock N

r

are given by

W
r =

(

−((a + b)η∗ + a2 + 1/2), 0
)

, N
r =

1√
1 + b2

(1,−b).

Any of the two Rankine-Hugoniot relations (2.4) or (2.5) for the incident shock gives the

value U0 = a. The second Rankine-Hugoniot relation (2.5) for the reflected shock gives

the value P0 = 1 + a/b. The first relation finally yields the relation between the incident

and the reflected angles

(b + a)(2b2 − 2(η∗ + a)b + 1) = 0. (5.5)

We note here that b should be positive, because the reflected shock has to propagate

away from the surface. Thus, b = −a is impossible. The other two solutions for (5.5) are

b =
(η∗ + a) ±

√

(η∗ + a)2 − 2

2
, (5.6)

which results in a real value of b if and only if

η∗ >
√

2 − a (5.7)

in which case both solutions are positive.

As a consequence, the triple-point reflection can exist only if the critical parameter a

is smaller than
√

2 (so that η∗ > 0). Otherwise, regular reflection must occur and the
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Figure 5. Transition from nonlinear to linear (Snell-Descartes laws) regular reflection. Upper

curve : ratio of total to incident pressures. Lower curve : ratio of reflected to incident angles.

The linear regular reflection occurs almost for a > 5.

above calculation of the reflected angle b and of the reflected pressure P0 is valid with

η∗ = 0. For the regular reflection and large values of a, the positive branch of (5.6)

tends towards b = a and therefore P0 = 2 (figure 5). Only that branch recovers the

classical Snell-Descartes law for linear waves (reflected angle equal to the incident one

and pressure doubling on the surface) and is consequently physically admissible. Note

however that a significant deviation from the Snell-Descartes law occurs for values of a

smaller than about 5. For typical sonic booms or ultrasound in water (M = 10−3) this

corresponds to angles smaller than 12 degrees. Hence, nonlinear effects will occur even

for non-grazing incidences. They will appear as a reflected wave less grazing than the

incident one (b > a), and a reflected pressure larger than the incident one (P0 > 2). At

the critical value where the largest deviation occurs a =
√

2, the pressure triples on the

surface, while the reflected angle is only half the incident one.
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Figure 6. Regular reflection: Pressure field (in gray levels) in self-similar variables for a=1.5

(a) and a=2.0 (b) at X=1.0. The solid line is the sonic line.

5.2. Regular reflection

The relation between a and b in the above discussion shows that the nonlinearity plays

a role in the regular reflection for a moderate value of a (in practice less than 5). This

is illustrated in the numerical simulations for a = 1.5 and 2.0, which are displayed in

figure 6. Obviously, on the figure, the slope of the incident and the reflected shocks in

the neighbourhood of the surface are different and the pressure behind the reflected

shock is greater than 2. For a = 1.5 in figure 6a, the numerical value of the maximum

pressure, which is obtained at the reflection point is 2.5655. From (5.6), we get b = 1

and consequently the pressure behind the reflected shock P0 = 1 + a/b = 2.5, which

is very close to the numerically obtained maximum pressure. Similarly, for a = 2 in

figure 6b, the numerical value of the maximum pressure is 2.1821 whereas the theoretical

value is 2.1716. Good agreement between theoretical and numerical values will be further

illustrated by figure 10 in section 5.3.

The theory detailed in section 5.1 is indeed equivalent to the von Neumann (1943)

two-shock theory but restricted to the approximate KZ-equation. According to the ap-
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proximations of the theory, shocks are assumed to be perfectly straight and separate only

states with constant pressure and velocity. However, it is observed in the simulations that

these assumptions are valid only in the vicinity of the reflection point. The physical rea-

son for this is the existence of the wave diffracted due to the impact of the incident

shock at the edge X = 0 of the rigid surface. This diffracted wave (neglected in the

simplified theory of von Neumann) called corner signal by Henderson (1987) must have a

spherically shaped wavefront (at least in linear acoustics) according to Huygens principle

; however, because of the parabolic approximation of the KZ-equation, the diffracted

wavefront here has a parabolic shape. Once the diffracted wave and the reflected shock

interact, the reflected shock bends and is now called diffracted shock. Consequently, the

pressure field cannot be constant anymore behind it. This behaviour is very visible on

figure 6b, where we can very clearly see the constant pressure state just behind the re-

flected shock until the arrival of the diffracted (or corner) wave with parabolic wavefront.

Then, the reflected shock begins to bend and the pressure smoothly decays. Because of

the self-similarity of the solution, a point with fixed τ and Y but increasingly large X

in physical variables, will correspond in self-similar variables to the vanishing of ξ and

η variables. Therefore, very far from the edge of the reflector, the diffracted wave lags

very far behind the reflected wave. Ultimately, as X → ∞ the reflected and diffracted

fields will be fully separated, and the observer will see only the vicinity of the reflection

point where the shocks are straight and the pressure level is constant. This limit case is

simply the one described by von Neumann two-shocks theory for which the influence of

the diffracted wave is discarded. In the linear regime of course, and in that farfield limit,

we would recover the Snell-Descartes reflection on an infinite rigid plate.

Finally, it has to be noted that, for the Euler equations, the slope of the diffracted

shock may vanish and then becomes negative so that it may propagate backward and hit
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the rigid surface as sketched in figure 1 drawn according to Ben-Dor (1992). However,

this inversion of the slope cannot be obtained using KZ-equation, because the parax-

ial/parabolic approximation prohibits any backward propagation.

The critical value denoted by ad =
√

2 obtained in section 5.1 near which the transition

from the regular to irregular reflection takes place is called the deflection point (see Hunter

1991). Another transition condition called sonic point is obtained using the notion of sonic

line. The system (2.2)-(2.3) in the self-similar variables (ξ, η) is given by

(ξ + P )
∂P

∂ξ
+ η

∂P

∂η
+

∂U

∂η
= 0, (5.8)

−∂U

∂ξ
+

∂P

∂η
= 0. (5.9)

The eigenvalues of the above quasi-linear system are
(

η ±
√

η2 − 4(ξ + P )
)

/2(ξ + P ),

which shows that the system (5.8)-(5.9) changes its nature from hyperbolic to elliptic

across the parabola

η2

4
− ξ = P. (5.10)

The curve η = 2
√

ξ + P is called the sonic line. The positive side of the parabola is the

elliptic region and the negative side is the hyperbolic region. The sonic lines is plotted

along with each of the numerical solutions for a=1.5 and 2 on figure 6. Note that the

sonic line on figure 6b is extremely close to the diffracted wave beyond which the pressure

ceases to be constant. Also, visible on the figure is the identification of the sonic line with

the curved part of the reflected shock. The notion of sonic line allows to derive a second

transition criteria between regular and irregular reflection. Indeed, the expression (5.10)

shows that the reflection point (ξ∗, 0) lies in the hyperbolic region if and only if

−P0 > ξ∗, (5.11)

where P0 is the pressure at the reflected point, which is the maximum pressure in the

entire pressure field as shown in figure 3d.
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For regular reflection, the reflection point is given by (−(a2 + 1/2), 0) (see equation

(5.4)). From (5.6) and P0 = 1 + a/b, we have

P0 = a2 − a
√

a2 − 2 + 1. (5.12)

Thus, the reflection point lies in the hyperbolic region if and only if

a2 − a
√

a2 − 2 + 1 < (a2 + 1/2),

which implies

a >

√

1 +
√

5/2 = as.

It is well known that a shock cannot appear in an elliptic region. Thus, for the regular

reflection, the reflection point has to lie in the hyperbolic region. The constant as is

the transition condition in the sense that for a < as, the regular reflection cannot exist.

The constant as=1.4553 is the sonic point at which the reflection point lies right on the

sonic line. The values as and ad obtained here are the same as those derived by Brio &

Hunter (1992). Note that the detachment constant ad = 1.4142 is very close to the sonic

point as. Because of this reason, these two transition conditions are usually considered as

equivalent in the literature (see Colella & Henderson 1990), though the reflection pattern

between these two extremely close values remains to be explorated. Note that a third

transition condition called Crocco point based on the condition that the stream lines

behind the reflected shock are approximately straight, can also be derived (see Brio &

Hunter 1992) and yields an intermediate value a = 1.4278.

5.3. Irregular reflection

In section 5.1, we have proved that for a <
√

2, the regular reflection ceases to exist.

Indeed from the triple-point condition (5.7), we necessarily have η∗ > 0, which implies

that the reflected wave (here we use the word wave instead of shock as we will see in this
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Figure 7. Von Neumann reflection: Pressure field (in gray levels) in self-similar variables for

a=1.0 (a) and a=0.7 (b) at X=1.0.

section that it is not necessary that the reflected wave is always a shock when it intersects

the incident shock) intersects the incident shock above the rigid surface, a pattern known

as irregular reflection. More precisely we will show that there are two different types of

irregular reflection observed in our numerical results, which we discuss in this subsection

depending on the value of the critical parameter a between
√

2 and 0.

The first regime is observed for values of a between about 0.4 and
√

2. Figure 7 (a and

b) depicts the reflection solution for a = 1.0 and 0.7, respectively. In this regime we can

clearly see three shocks, namely the incident shock, the reflected shock and the Mach

shock. These three shocks meet at the point T called triple point. While the incident

shock is straight, the Mach and the reflected shocks are obviously curved, contrarily to

the classical Mach reflection. Also the classical definition of Mach reflection (see Ben-

Dor 1992) implies the presence of a slipstream (discontinuity of the entropy, density,

temperature and tangential velocity component) attached to the triple point. Such a

slipstream cannot exist in the KZ-equation associated to weak amplitude approximation,

because temperature and density fluctuations are proportional to pressure ones, while
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entropy discontinuity is of third order and therefore is neglected. Finally, classical Mach

reflection occurs for a moderately strong shock (see Henderson 1987 for more discussion

on weak and strong shocks). As outlined in the introduction, the question of existence

of a triple shock for weak shocks (and therefore for the KZ-equation or its equivalent

2-dimensional Burgers’ equation) remains controversial. We refer the reader to the cited

references for the proposed solutions for the classical von Neumann paradox. Again, we

recall the objective of the present work is not to investigate this well studied phenomenon,

but to study the transition between the different regimes in the acoustical case, therefore

to solve the acoustical von Neumann paradox (see the introduction for the definition).

So we will label the present regime von Neumann reflection according to the terminology

most frequently used in the literature, and this independantly of the exact behaviour of

the solution near the triple point.

For smaller values of parameter a, the reflected shock progressively weakens up to

complete disappearance. This is illustrated by figure 8 representing the pressure field at

value a = 0.1. Here obviously the reflected wave field is simply a smooth compression
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X=1 and a=0.1-1.0 with step 0.3. Both the maximum pressure amplitude (obtained on the

rigid surface) and the shock strength increase with increasing a. The strength of the shock is

very small for a = 0.4 around which the transition from von Neumann to weak von Neumann

reflection is expected to take place. The profile for a = 0.1 is smooth.

wave ahead of the incident shock. The smaller the value of the parameter a, the weaker

this wave will be, up to complete disappearance for a = 0. This reflection regime with no

reflected shock at all has never been observed to our knowledge. This regime is completely

opposite to the Snell-Descartes linear regime. In this last one, the whole pressure field

is completely in the hyperbolic domain, with a perfectly straight reflected shock and a

sonic line pushed away at infinite. On the contrary, in the present regime, there is no

reflected shock and almost all the reflected pressure field lies in the elliptic domain as is

visible in figure 8 where the sonic line has been drawn. Note however that an extremely

small part of the reflected wave lies in the hyperbolic region. The question therefore arises

whether there exists a reflected shock of very small amplitude as hypothesized by Hunter

& Brio (2000). Our numerical simulations show that, whatever the grid refinement of the

numerical domain (up to 5 times more than the one used for figure 8), there is absolutely
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no change in the numerical solution which remains continuous. So, we believe that for

small values of the parameter a, no reflected shock does exist.

We label this new regime weak von Neumann reflection in reference of the paragraph of

von Neumann (1943), where he raises the problem of the acoustical limit. The transition

between von Neumann and weak von Neumann reflection is illustrated by figure 9, which

shows the pressure variation along (just behind) the incident and Mach shocks for a =

0.1 to 1.0. We clearly observe the existence of a pressure jump (down to the constant

value 1) associated to the triple point for the values of a greater than or equal to 0.4. On

the contrary, for the smaller values (for clarity, only the value a = 0.1 is displayed, but it

has been checked also for a=0.2 and 0.3) the curves are continuous, thus indicating there

is no reflected shock in direct contact with the incident one. From the numerical results,

it can also be observed that the arc length of the Mach shock decreases as the value of a

increases, which eventually results into a regular reflection for a sufficiently large value

of a(>
√

2) as already discussed in section 5.1 and 5.2.

As recalled in the introduction, von Neumann remarked that the transition from the

well known Snell-Descartes laws to the vanishing reflected wave (for a = 0) is singular, in

the sense that the former is valid at any grazing angle except the zero angle, where there

cannot be any reflected wave. This singular transition was stated as an acoustical paradox

by von Neumann. In his original paper, von Neumann expects a different behaviour for

extremely weak acoustical shock waves, and for other stronger shocks. In the acoustical

case, he expects a monotonic decrease of the reflected amplitude with grazing, while he

describes a more complex pattern in the other case. Our present study proves on the con-

trary that there is no fundamental difference between an acoustical shock wave and other

stronger shocks. This is illustrated by figure 10, which summarizes the different regimes

of reflection observed above, by plotting the (dimensionless) maximum total pressure as



Acoustical shock wave reflection 31

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

Regular Reflection

W
ea

k
vo

n
N

eu
m

an
n

R
ef

le
ct

io
n

vo
n

N
eu

m
an

n
R

ef
le

ct
io

n

P

a

Figure 10. Solution of von Neumann acoustical paradox illustrated by maximum overpressure

as a function of the critical parameter a: the transition from Snell-Descartes to perfectly grazing

incidence involves successively regular, von Neumann and weak von Neumann reflections. Solid

line is the weak two-shock theory and symbols △ are numerical computations.

a function of the parameter a (or equivalently as a function of the grazing angle for an

incident shock wave of fixed amplitude). Obviously, though we are dealing here only with

weak acoustical shocks, the transition from linear Snell-Descartes laws (value of 2 for high

values of the parameter a) to the perfectly grazing case (value of 1), is not monotonic.

When decreasing the value of parameter a, we observe an increase of the pressure, first

according to the regular reflection law (continuous line for equation (5.12)). Below the

critical value a =
√

2, the increase keeps on, now in the von Neumann reflection regime.

The maximum, about 3.5 times the incident amplitude, is reached slightly below the

critical value, at about a = 1.2. It is only below this value, that a monotonic behaviour

is finally observed. Keeping on decreasing the parameter a, the maximum pressure falls

down progressively, entering finally the weak von Neumann regime around a = 0.4. Note

also that the number of shocks involved in the reflection varies from two (regular reflec-

tion) to three (weak Mach reflection) and finally to one (weak von Neumann reflection).
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Of course, for a very small shock amplitude, this complex transition will occur only over

an extremely small range of grazing angles (in practice a few degrees). It may be difficult

to observe, and this all the more as other competing effects than nonlinearities may affect

the process, such as viscosity, thermal effects, surface roughness, curvature and elasticity.

However, this nonlinear non-monotonic behaviour has been observed experimentally for

ultrasonic shock waves produced in water (see Baskar, Coulouvrat & Marchiano 2006).

So, we can conclude here that the two extreme linear regimes (perfectly grazing and

Snell-Descartes) can indeed be matched continuously as expected by von Neumann, but

this matching is unexpectedly inherently nonlinear and non-monotonic.

6. Unsteady reflection of N-waves and saw-tooth waves

The discussion in section 5 has shown that the reflection of a weak amplitude step shock

can lead to different regimes of reflection. However, step shocks are not very realistic for

acoustical waves and the question remains open for the reflection regimes of more complex

but physically relevant wave profiles. This is the objective of the present section, to

investigate whether irregular reflections also occur for realistic acoustical waves. We have

selected the case of N -waves (section 6.1) and periodic saw-tooth waves (section 6.2).

6.1. N -waves

We consider the incident shock to be an N -wave as defined in (3.8). Unlike the step shock

discussed in section 5 we have here two shocks, the leading shock with a compression from

the ambient state and the rear shock with a recompression back to the ambient state,

the two being connected by an expansion wave. When the leading shock encounters the

wedge surface, the reflection takes place. As a consequence the associated reflected wave

interacts nonlinearly with the expansion wave, and will thus affect the reflection of the
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Figure 11. Unsteady irregular reflection of an N-wave: Pressure field (in gray levels) as a

function of the (τ, Y ) variables for a = 0.5 at X=0.603 (a), 1.8593 (b), 5.0 (c) and 15.0 (d).

rear shock. This interaction is an additional phenomenon compared to the simplified step

shock case.

Figure 11 (a)-(d) depicts the reflection solution for a = 0.5 (a value chosen for being

representative of irregular reflection in the step shock case) and for different values of the

distance X = 0.603, 1.8593, 5 and 15 from the edge of the plate respectively, covering a

sufficiently long propagation distance. In figure 11 (a), we obviously observe the irregular

(von Neumann type) reflection of both the leading and the rear shocks. At such small

values of X , the main difference with the step shock case is the fact that the incident
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rear shock is slightly curved because of the interaction with the reflected wave. If we

decrease the value of the parameter a, we observe also, as for the step shock, the weak

von Neumann reflection around a = 0.4 (figure not shown here) for sufficiently small

values of X . This indicates (as remarked at the end of section 4) that near the tip of the

plate, the reflection of the N -wave is similar to the step shock case. However, because

the N -wave case is not self-similar (as proved in section 4), this cannot last all along the

propagation.

From equation (3.8), we see that the incident shock amplitude decreases with distance

as O(1/
√

X). This decrease results in an increase of the local ”true” value of the param-

eter a and therefore tends to decrease the length of the Mach stem. This effect competes

with the tendency of the Mach stem to increase in length as for a step shock because of

self-similarity. Therefore, for an N -wave, we initially observe a behaviour similar to step

shocks with an increase of the length of the Mach stem. This is named direct irregular

reflection. As the pressure amplitude decreases, as is visible by comparing the length of

the Mach stem between figures 11a and 11b or 11c, it then reaches a maximum before

progressively decreasing, a regime named inverse irregular reflection. Finally, when the

triple point touches the rigid surface at a finite X value called termination point, the

irregular reflection is replaced by the regular reflection. This final reflection regime for

the head shock is observed in figure 11d. A similar behaviour will be detailed in section

6.3 for periodic saw-tooth wave. From the above discussion we see that there are two

types of irregular reflection configuration that take place for the leading shock. Courant

& Friedrichs (1948) have categorized these two reflections for the step shock and the

names of direct or inverse irregular reflection and termination point were suggested by

them.

It has also been observed from our numerical experiments that the value of the ter-
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rigid surface for a = 0.5 at X = 15.0, which

clearly shows the presence of the secondary

reflected shock.

mination point and the maximum of the triple point trajectory both decrease as the

value of a increases, as logically expected as we are closer to regular reflection. Thus,

for a sufficiently large value of a, which is observed approximately as 0.8, there is no

irregular reflection at all, the head shock reflecting always regularly all along the plate.

Thus, with this study, we categorize the types of reflection for the leading shock as the

regular reflection (approximately for a greater than 0.8), dynamical irregular reflection

(approximately for 0.4< a < 0.8) and weak reflection (approximately for a < 0.4), where

initially the reflected wave is not a shock. The exact transition condition between these

three types of reflections and the presence of any further types of irregular reflection

are yet to be investigated. Note however that this categorization is different from the

step shock case where it remains valid all along the plate because of self-similarity. Here,

because of the incident wave amplitude decay, the reflection process is now dynamical.

Whatever the regime it begins with, it always converges towards the regular reflection

and ultimately towards the linear Snell-Descartes laws.
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The reflection phenomena for the rear shock of the N -wave is somewhat different from

the leading shock discussed above. Initially we observe the same succession of direct

and inverse irregular reflections, with the only difference that the length of the Mach

stem remains smaller than the head shock (though the shocks are of same amplitude).

The inverse irregular reflection terminates when the triple point hits the rigid surface.

The difference between the leading and the rear shocks occurs after the termination.

Indeed for the rear shock, we observe an additional shock, which is called secondary

reflected shock, that detaches from the reflected shock right at the termination point.

Our interpretation is that this new shock emerges from the impact on the rigid surface of

the reflected shock when this one collides with the surface at the termination point. This

new kind of reflection therefore has to create a new reflected shock, which appears as

a secondary reflected shock. For this secondary reflection pattern, the primary reflected

shock plays the role of the incident shock, the secondary reflected shock plays the role of

the reflected shock and the two merge into a single reflected shock, that plays the role of

the Mach shock, at a new, secondary triple point. The only difference with the classical

weak Mach reflection is now that the Mach shock extends away from the surface. This

reflection pattern is visible on figure 11 c and d. A closer view is provided by figure 12

where the four shocks are visible (incident rear shock, primary reflected shock, secondary

reflected shock and the merging of the two last ones into a Mach shock). Figure 13

displays the pressure time profile for a = 0.5 and X = 15 on the rigid surface where

we can clearly observe this new secondary reflected shock at the trailing part of the

wave profile. This secondary reflection appears absolutely similar to the von Neumann

reflection described in section 5. Indeed, we can observe from figure 11d and 12 that here

the primary reflected shock (playing here the role of an incident shock) seems almost

straight, the Mach shock is slightly curved while the secondary reflected shock has to
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be strongly curved to match the inclination of the secondary Mach shock at one end

and the normal boundary condition on the surface at the other end. Finally, for long

distances, the terminated reflection of the incident rear shock remains regular (we expect

it to fit linear Snell-Descartes law at very large distance where the amplitude will be

small). Because of this nature of the terminated reflection, this type of reflection is called

transitioned regular reflection of type 2.

The transitioned regular reflection of type 2 has been described by Takayama & Ben-

Dor (1985) for step shocks reflection on a concave rigid surface. Here the curvature of the

surface has been replaced by a decrease of the amplitude of the incident wave, but both

are similar in the sense that the local critical parameter a is not constant but increases

along the reflecting surface. Also, it is similar because in both cases (step shock reflection

on a concave surface, or reflection of a decreasing amplitude wave along a plane surface)

the ambient state behind the incident shock is constant. This is not the case for the

leading shock of the N -wave, for which this type of transitioned regular reflection is not

observed, with no secondary reflected shock. The transitioned regular reflection observed

for the leading shock of the N -wave is therefore called of type 1, to distinguish it from

the type 2, the one observed for rear shock. We will see in the next subsections, that the

type 1 reflection is also observed for the periodic saw-tooth wave.

6.2. Periodic Saw-tooth Wave

Finally, we consider the incident shock to be a periodic saw-tooth wave as given in (3.10),

with the objective of investigating the interactions between the successive incident and

reflected shocks. Figure 14 shows the propagation of the periodic saw-tooth wave for a

= 0.5 at different distances. As for the N -wave, we observe the existence of an unsteady

irregular reflection due to the competition between nonlinear effects at grazing angle

and the decrease of the amplitude. This results in a direct and then inverse irregular



38 S. Baskar, F. Coulouvrat and R. Marchiano

−1  

−0.5

0   

0.5 

1   

1.5 

2   

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4
(a)

Y

τ

−1  

−0.5

0   

0.5 

1   

1.5 

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4
(b)

Y

τ

−0.5

0   

0.5 

1   

1.5 

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4
(c)

Y

τ

−0.4

−0.2

0   

0.2 

0.4 

0.6 

0.8 

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4
(d)

Y

τ

Figure 14. Unsteady irregular reflection of the periodic saw-tooth wave: pressure field (in gray

levels) in (τ, Y ) coordinates for a = 0.5 at X=0.2462 (a), 1.0 (b), 2.5075 (c) and 5.0201 (d).

reflection, up to termination and return to the regular reflection. The trajectory of the

triple point is illustrated on figure 15 for a = 0.5 and a = 0.8. The maximum of the

length of the Mach stem is obtained at almost X = 1 for a = 0.5 and almost X = 0.3

for a = 0.8, with a rather rapid (almost linear as for the self-similar step shock case)

increase during the direct phase for small X , and then a slower decrease up to X about

4.5 for a = 0.5 and up to X about 1 for a = 0.8 (the termination point is not so clearly

traced from our numerical result because of the numerical diffusion near the surface). It is

noticeable that the position of the termination point is highly variable with the pressure
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waveform, with a value of about 15 for the leading shock of the N -wave and only 1.8

for the rear shock of the N -wave (for a = 0.5). However, qualitatively the nature of the

triple point trajectories are similar to the one studied by Ben-Dor & Takayama (1985)

experimentally for a step shock grazing over a cylindrical concave surface. Beyond the

termination point, the reflection phenomena is a transitioned regular reflection of type

1, with no secondary reflection (the solution has been computed up to X = 8 without

observing any secondary shock). In that sense, it is very similar to the leading shock of

the N -wave. Once again, we think that this is due to the fact that the incident pressure

field behind the shock is not constant (here because of the periodic nature of the wave),

which seems to prevent any secondary reflection. Finally, it is to be noticed on figure 11d

that beyond the termination point, the maximum amplitude of the whole pressure field

does not lie anymore on the surface, but now at the intersection between the reflected

shock and the next incident one. Clearly visible also is the curvature of the incident

shocks due to the interaction with the reflected wave.

For transient nonlinear acoustical waves of finite energy, because shock waves are
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Figure 16. Unsteady irregular reflection of the periodic saw-tooth wave: pressure field (in gray

levels) in (τ, Y ) coordinates for a = 0.3 at X=2.0040 (a), 3.6072 (b), 6.0120 (c) and 16.0321 (d).

dissipative processes, energy decreases. As a consequence, contrarily to step shocks, the

reflection phenomena cannot be self-similar, it is necessarily unsteady along the reflector

and it will unavoidably converge towards regular reflection and finally to linear Snell-

Descartes reflection. This has already been observed above with the transition process

from Mach to regular reflection for the N -wave and the saw-tooth wave. This is also true

if we initiate the process with weak von Neumann reflection as illustrated on figure 16 for

a saw-tooth wave with a = 0.3. The computation at different distances clearly shows the

transition from the weak von Neumann reflection for small X values (figure 16a with X
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= 2.0) to von Neumann reflection for intermediate X values (figure 16c with X = 6.0),

the transition occurring around X = 3.6 (figure 16b). Finally, for very large distances

the reflection ultimately evolves into regular reflection (figure 16d with X = 16.03). Note

here again that the maximum amplitude is not observed anymore on the surface.

So, for realistic waveforms, even for fixed incidence angle, no single reflection regime can

be observed, the loss of energy of the incident wave will necessarily imply the transition

from weak von Neumann to Mach to regular and finally to Snell-Descartes reflections.

This transient behaviour may explain why these nonlinear reflection regimes have not

been observed for acoustical shock waves up to very recently (see Baskar, Coulouvrat &

Marchiano 2006).

7. Conclusion

Obliquely grazing shock wave reflection over a rigid surface is studied from the acous-

tical point of view. Three types of incident waves are considered, namely the step shock,

the N -wave and the periodic saw-tooth wave. The shock amplitude and the grazing an-

gle are assumed to be very weak and in a ratio (measured by the critical parameter a)

ensuring the proper balance between the nonlinear and diffraction effects. This critical

parameter is the key parameter of the problem in the sense that it categorizes the nature

of the reflection. Though nonrealistic from an acoustical view point because it is of infi-

nite energy, the step shock case is studied first precisely for the purpose of categorization

of the reflection regimes, based on the self-similar property of the problem. Four different

types of reflection ranging from very strong to very weak reflection are observed and

their transition are studied both theoretically and numerically. The classical linear Snell-

Descartes reflection takes place only for relatively large values of the critical parameter

a > 5. Snell-Descartes laws are generalized (according to the weak shock theory) to the
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nonlinear regular reflection for smaller values of a, but larger than
√

2. Regular reflec-

tion is characterized by a reflection angle and a reflected pressure amplitude larger than

the incident ones. A transition condition from regular to irregular reflection is obtained

theoretically at a =
√

2, which is the classical detachment point obtained by Brio &

Hunter (1992) (another transition condition almost equivalent and called sonic condition

could also be recovered). We categorize the irregular reflection into two types. The first

one is the von Neumann reflection, observed for 0.4 6 a <
√

2 with the existence of

the triple point. As we further decrease the value of a, we observe the complete disap-

pearance of the reflected shock, the reflected wave being only a small amplitude, smooth

compression wave. We suggest to name this new type of reflection weak von Neumann

reflection. This continuous transition between these four regimes provides a nonlinear

solution to the acoustical von Neumann paradox according to which the Snell-Descartes

laws are singular. However, contrarily to von Neumann conjecture, that transition is not

monotonic. For instance, the maximum total pressure is about 3.5 around a = 1.2 for

the intermediate von Neumann regime, much larger than the two extreme values of two

(Snell-Descartes at a = ∞) and one (perfectly grazing shock at a = 0).

For the acoustically more realistic cases of an N -wave or a periodic saw-tooth wave, the

step shock categorization remains valid. However, the key difference is that the process is

now unsteady because of the energy loss of the incident shock. Indeed for a given initial

value of the critical parameter, the reflection patterns all along the plate will evolve from

the initial one (whatever it is) to the regular reflection regime and ultimately to the linear

Snell-Descartes limit. For instance, beginning with the weak von Neumann regime at the

tip of the plate, we will successively observe the transitions to the von Neumann reflection

and then to the regular reflection. We therefore recover types of transition similar to those

categorized in the literature in the case of step shock reflecting over a concave surface.
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Here the role of the surface curvature is simply replaced by the amplitude decay of the

incident wave. Especially, we recover what we call type 2 transitioned regular reflection,

in which a secondary reflection takes place. However, this is observed only for the rear

shock of the N -wave while for all other cases (leading shock of the N -wave or periodic

saw-tooth wave), this transition is only of type 1 with no secondary reflection. This

kind of transition (type 1) has never been described before according to our knowledge.

We assume it is due to the fact that the incident flow behind the incident shock is not

constant, which seems to prevent the type 2 transition. As a consequence, this last one

seems to be rather exceptional.

The present study has been restricted to a rather idealized situation despite the fact

that the incident signals are more complex than the step shock. Indeed, for acoustical

applications it would be necessary to take into account several effects that have been

neglected here. Surface curvature would compete with amplitude decay. For a concave

surface, as for the step shock situation described in the literature, we expect the curvature

to accelerate the transition to regular reflection. On the contrary, a convex surface would

slow down this transition and we may imagine a special surface design that would exactly

compensate nonlinear attenuation. Surface roughness is also expected to significantly

affect the process with hysteretical effects, as already studied for step shock (see Ben-

Dor 1992). Finally, probably the most significant effect will come out from the surface

elasticity. Indeed, it is well known that, for a grazing incident wave in a fluid over an elastic

medium with a transverse wave speed larger than the sound speed (the common case for

metallic materials), total reflection takes place with a reflection coefficient approaching

-1 instead of +1 for a rigid reflector. So, we therefore expect this case to be closer to the

reflection over a pressure release interface. However, pressure release reflection of shock

waves produces inverted shocks that violate the second law of thermodynamics, and that
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will immediately break into expansion fans. Therefore, however rigid the reflector, we

expect dramatic differences with the present ideal rigid case.
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