Additions to
 Linear Functional Analysisfor Scientists and Engineers

Springer, Singapore, 2016

Balmohan V. Limaye

In the following, $\mathbf{p} . \mathbf{i},+\mathbf{j}$ means the j th line from the top on page i, whereas $\mathbf{p} . \mathbf{i},-\mathbf{j}$ means the j th line from the bottom on page i.

Chapter 2

p. $37,+15,+16$

Thus we obtain $C(E) \subset L^{\infty}(E) \subset L^{2}(E) \subset L^{1}(E)$ as opposed to $c_{00} \subset \ell^{1} \subset$ $\ell^{2} \subset \ell^{\infty}$.

Chapter 3

p. 92, -5

For $p \in \mathcal{P}$ and $x, y \in X$,

$$
|p(x)-p(y)| \leq p(x-y) \leq \wp(x-y) \leq \alpha\|x-y\|
$$

Now given $\epsilon>0$, if we let $\delta:=\epsilon / \alpha$, then $|p(x)-p(y)|<\epsilon$ for all $p \in \mathcal{P}$, and $x, y \in X$ with $\|x-y\|<\delta$. Hence the set \mathcal{P} is equicontinuous on X.

p. 98, +1

The first assertion in Remark 3.29 is illustrated by Example 3.19 (i). Note that the map $F: C^{1}([0,1]) \rightarrow C([0,1])$ given by $F(x):=x^{\prime}$ is a closed map. Another illustration of this assertion is given by the following example.

Let $X:=c_{00}$ with the sup norm $\|\cdot\|_{\infty}$, and for $x \in X$, let $p(x):=$ $\sum_{k=1}^{\infty}|x(k)|$. Then the seminorm p on X is discontinuous, even though it is countably subadditive. To see this, let $x_{n}:=e_{1}+\cdots+e_{n}$ for $n \in \mathbb{N}$. Since $\left\|x_{n}\right\|_{\infty}=1$ for all $n \in \mathbb{N}$, and $p\left(x_{n}\right)=n \rightarrow \infty$, we see that p is discontinuous on X. Next, let $Y:=\ell^{1}$ with the usual norm $\|\cdot\|_{1}$. Then Y is a Banach space. Define $F: X \rightarrow Y$ by $F(x):=x$ for $x \in X$. To that F is a closed map, we note that if $x_{n} \rightarrow x$ in X, and $F\left(x_{n}\right) \rightarrow y$ in Y, then

$$
y(j)=\lim _{j \rightarrow \infty} F\left(x_{n}\right)(j)=\lim _{j \rightarrow \infty} x_{n}(j)=x(j) \text { for each } j \in \mathbb{N}
$$

and so $y=x=F(x)$. As a result, the seminorm p is countably subadditive on X. Note that in this example, Y is a Banach space, but X is not.
p. 98, +3

A proof of the converse statement in Remark 3.29 was given by Zabreiko in an email correspondence. It is as follows. Suppose the seminorm p is countably subadditive. To prove that the linear map F is closed, we let $x_{n} \rightarrow 0$ in X such that $F\left(x_{n}\right) \rightarrow y$ in Y, and show that $y=0$. There are $n_{1}<n_{2}<\cdots$ in \mathbb{N} such that $\left\|F\left(x_{n_{k}}\right)-y\right\| \leq 1 / 2^{k}$ for each $k \in \mathbb{N}$. We can, therefore, assume without loss of generality, that $\sum_{k=1}^{\infty}\left\|F\left(x_{k}\right)-y\right\|<\infty$. Fix $n \in \mathbb{N}$, and let $m \geq n$. Then
$\sum_{k=n}^{m}\left(x_{k}-x_{k+1}\right)=x_{n}-x_{m+1} \rightarrow x_{n}$ as $m \rightarrow \infty$, and so $x_{n}=\sum_{k=n}^{\infty}\left(x_{k}-x_{k+1}\right)$.
Since p is assumed to be countably subadditive and since F is linear,

$$
\left\|F\left(x_{n}\right)\right\|=p\left(x_{n}\right) \leq \sum_{k=n}^{m} p\left(x_{k}-x_{k+1}\right)=\sum_{k=n}^{m}\left\|F\left(x_{k}\right)-F\left(x_{k+1}\right)\right\| .
$$

By the triangle inequality,

$$
\left\|F\left(x_{n}\right)\right\| \leq \sum_{k=n}^{m}\left\|F\left(x_{k}\right)-y\right\|+\sum_{k=n}^{m}\left\|y-F\left(x_{k+1}\right)\right\|
$$

Also, since $\sum_{k=1}^{\infty}\left\|F\left(x_{k}\right)-y\right\|<\infty$, we see that

$$
\left\|F\left(x_{n}\right)\right\| \leq \sum_{k=n}^{\infty}\left\|F\left(x_{k}\right)-y\right\|+\sum_{k=n}^{\infty}\left\|y-F\left(x_{k+1}\right)\right\| \rightarrow 0+0=0 \text { as } n \rightarrow \infty
$$

This shows that $F\left(x_{n}\right) \rightarrow 0$. But $F\left(x_{n}\right) \rightarrow y$, and so $y=0$. It is clear that neither X nor Y is assumed to be a Banach space.

Chapter 5

p. 167, +4

As a result, $\left\|(I-A)^{-1}\right\| \leq \sum_{n=0}^{\infty}\left\|A^{n}\right\| \leq \sum_{n=0}^{\infty}\|A\|^{n}=1 /(1-\|A\|)$.

