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Abstract. The symmetrized bidisc has been a rich field of holomorphic function theory
and operator theory. A certain well-known reproducing kernel Hilbert space of holomor-
phic functions on the symmetrized bidisc resembles the Hardy space of the unit disc in
several aspects. This space is known as the Hardy space of the symmetrized bidisc. We
introduce the study of those operators on the Hardy space of the symmetrized bidisc that
are analogous to Toeplitz operators on the Hardy space of the unit disc. More explicitly,
we first study multiplication operators on a bigger space (an L2-space) and then study
compressions of these multiplication operators to the Hardy space of the symmetrized
bidisc and prove the following major results.

(1) Theorem I analyzes the Hardy space of the symmetrized bidisc, not just as a Hilbert
space, but as a Hilbert module over the polynomial ring and finds three isomorphic
copies of it as D2-contractive Hilbert modules.

(2) Theorem II provides an algebraic, Brown and Halmos type, characterization of
Toeplitz operators.

(3) Theorem III gives several characterizations of an analytic Toeplitz operator.
(4) Theorem IV characterizes asymptotic Toeplitz operators.
(5) Theorem V is a commutant lifting theorem.
(6) Theorem VI yields an algebraic characterization of dual Toeplitz operators.

Every section from Section 1 to Section 6 contains a theorem each, the main result of
that section.

0. Γ and Γ-contractions - preliminaries

Ever since Brown and Halmos published their seminal paper ([14]) on Toeplitz operators,
it has been vastly studied. The book by Bottcher and Silverman ([13]) is a veritable
treasure. For the introduction to the theory for just the space H2(D), the survey article
by Axler ([7]) is excellent. State of the art research, even just in the context of the unit
disc D = {z ∈ C : |z| < 1} is still going on, see [17], [20] and [30] and there are open
problems, see [22]. Toeplitz operators have found applications in a wide variety of areas of
mathematics from algebraic geometry ([28]) to operator algebras ([19]).

In several variables, Toeplitz operators have been studied by several authors, see [23]
and the references therein. Naive attempts to generalize one variable results quickly run
into difficulties and innovative new ideas are required.

The open symmetrized bidisc is defined as

G = {(z1 + z2, z1z2) : |z1| < 1 and |z2| < 1}.
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The novelty of this domain arises from the fact that it behaves significantly differently from
even the bidisc (e.g., a realization formula for a function in the unit ball of H∞(G) requires
uncountably infinitely many “test functions”, see [6] and [11] or see [1] for a description of
the sets with the extension property). The Toeplitz operators on this domain will highlight
a few similarities and a lot of differences with the classical situation of Brown and Halmos as
well as with later endeavours on the bidisc. It will also bring out once again the importance
of the fundamental operator of a Γ-contraction introduced in [9]. Let Γ denote the closed
symmetrized bidisc Γ = {(z1 + z2, z1z2) : |z1| ≤ 1 and |z2| ≤ 1}. The following terminology
is due to Agler and Young, [4].

Definition 1. Let bΓ be the distinguished boundary of the symmetrized bidisc, i.e., bΓ =
{(z1 + z2, z1z2) : |z1| = |z2| = 1}.

(1) A commuting pair (R,U) is called a Γ-unitary if R and U are normal operators
and the joint spectrum σ(R,U) of (R,U) is contained in the distinguished boundary
of Γ.

(2) A commuting pair (T, V ) acting on a Hilbert space K is called a Γ-isometry if there
exist a Hilbert space N containing K and a Γ-unitary (R,U) on N such that K is
left invariant by both R and U , and

T = R|K and V = U |K.
In other words, (R,U) is a Γ-unitary extension of (T, V ). In block operator matrix form,

R =

(
T ∗
0 ∗

)
and U =

(
V ∗
0 ∗

)
with respect to the decomposition N = K ⊕K⊥.

A Γ-isometry (T, V ) on H is said to be a pure Γ-isometry if V is a pure isometry, i.e.,
there is no non trivial subspace of H on which V acts as a unitary operator.

It is clear from the block matrices above that for any polynomial ξ in two variables,

ξ(R,U) =

(
ξ(T, V ) ∗

0 ∗

)
.

Consequently, if ‖f‖∞,Γ denotes the supremum norm of f over the compact set Γ for a
function holomorphic in a neighbourhood of Γ, then for any polynomial ξ,

‖ξ(T, V )‖ ≤ ‖ξ(R,U)‖
= r(ξ(R,U)) (because of normality)

= sup{|ξ(s, p)| : (s, p) ∈ σ(R,U)}
≤ sup{|ξ(s, p)| : (s, p) ∈ bΓ} (because σ(R,U) ⊆ bΓ)

= ‖ξ‖∞,Γ.
This von Neumann type inequality will also remain true for another class of operator

pairs (S, P ). Suppose H is a subspace of K that is invariant under T ∗ and V ∗. On H, we
consider the operators S and P which are defined by

(0.1) S∗ = T ∗|H and P ∗ = V ∗|H.
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So, S and P are compressions of T and V to a co-invariant subspace. In block operator
matrix form with respect to the orthogonal decomposition K = H⊕ (K 	H), we have

T =

(
S 0
∗ ∗

)
and V =

(
P 0
∗ ∗

)
.

If ξ(s, p) =
∑
aijs

ipj is a polynomial, then because of the structure of the block matrices
above,

ξ(T, V ) =

(
ξ(S, P ) 0
∗ ∗

)
.

Thus,

(0.2) ‖ξ(S, P )‖ = ‖PHξ(T, V )‖ ≤ ‖ξ(T, V )‖ ≤ ‖ξ‖∞,Γ.
Since Γ is polynomially convex and since the inequality (0.2) holds for all polynomials,
the Oka-Weil Theorem implies that the same holds for all f ∈ A(Γ). Thus starting with
a co-invariant subspace H of a Γ-isometry (T, V ), we showed that the compression pair
(S, P ) = PH(T, V )|H satisfies the inequality (0.2). It is a remarkable fact that the converse
is true, i.e., given any commuting pair (S, P ) of bounded operators on a Hilbert space H
satisfying the inequality

‖ξ(S, P )‖ ≤ ‖ξ‖∞,Γ
for all polynomials ξ in two variables (equivalently, for all f ∈ A(Γ) because of the Oka-Weil
Theorem), there is a bigger Hilbert space K containing H and a Γ-isometry (T, V ) acting
on K such that H is a joint co-invariant subspace for (T, V ) (T ∗H ⊂ H and V ∗H ⊂ H)
and (S, P ) and (T, V ) satisfy (0.1). This is the Agler-Young dilation of a Γ-contraction,
discovered and expounded upon in [2], [3] and [4].

Definition 2. A pair of commuting bounded operators (S, P ) on a Hilbert space H is called
a Γ-contraction if

‖ξ(S, P )‖ ≤ ‖ξ‖∞,Γ
for all polynomials ξ in two variables.

We saw in the paragraph preceding the definition that every Γ–contraction dilates, first
to a Γ–isometry and then to a Γ–unitary. Thus the structures of these two classes of
operator pairs become important. The two following propositions are collections of results
from [4] and [9] and characterize Γ-unitaries and Γ-isometries.

Proposition 3. Let H be a Hilbert space and let R,U ∈ B(H) satisfy RU = UR. Then
the following are equivalent:

(1) (R,U) is a Γ-unitary;
(2) there exist commuting unitary operators U1 and U2 on H such that

R = U1 + U2, U = U1U2;

(3) U is unitary, R = R∗U, and r(R) ≤ 2, where r(R) is the spectral radius of R;
(4) (R,U) is a Γ-contraction and U is a unitary;
(5) U is a unitary and R = W +W ∗U for some unitary W commuting with U .
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Proposition 4. Let H be a Hilbert space and let T, V ∈ B(H) satisfy TV = V T . The
following statements are equivalent:

(1) (T, V ) is a Γ-isometry;
(2) (T, V ) is a Γ-contraction and V is isometry;
(3) V is an isometry , T = T ∗V and r(T ) ≤ 2.

Note that if (S, P ) is a Γ-contraction, then P is a contraction. For a contraction P , the
space DP denotes the closure of the range of the defect operator DP := (I −P ∗P )1/2 of P .

The discovery of the fundamental operator F of a Γ-contraction (S, P ) in [9] changed
the subject because with the help of it, one produces the Γ–isometric dilation, alluded to
above, explicitly; characterizes Γ-contractions (Theorem 4.4 in [9]); constructs a functional
model (Theorem 4.4 in [10]) and characterizes distinguished varieties in the symmetrized
bidisc, see [26]. The fundamental operator is the unique bounded operator on DP that
satisfies the equation

S − S∗P = DPFDP .

Since its discovery, it has proved to be an indispensable tool in the study of operator theory
on the symmetrized bidisc. The fundamental operator appears in this paper in Example
15 and also in Proposition 25 while characterizing compact operators on H2(G).

1. The Hardy space, boundary values and Toeplitz operators

The beginning of this section warrants a discussion on Hilbert modules over polynomial
rings. A Hilbert module over the polynomial ring C[z1, z2] is a Hilbert space H which is
also a module over C[z1, z2]. If Ω is a domain in C2, then a Hilbert module H is said to
be Ω-contractive if ‖ξ · h‖ ≤ ‖ξ‖∞,Ω‖h‖ for all ξ in C[z1, z2] and h in H. For example, by
virtue of Ando’s theorem, a pair of commuting contractions T1 and T2 acting on a Hilbert
space H makes H a D2-contractive Hilbert module if we define

(1.1) ξ · h = ξ(T1, T2)h, for all polynomials ξ in two variables and h ∈ H.
Conversely, any D2-contractive Hilbert module gives rise to a pair of commuting contrac-
tions T1 and T2 such that the module action agrees with (1.1) above. Indeed, just define
Tih = zi · h for h in H and i = 1, 2. We shall be concerned with four Hilbert modules over
the polynomial ring in two variables. The contractivity conditions will be over the bidisc
D2. These specific D2-contractive Hilbert modules that we are concerned with will appear
towards the end of this section because the appropriate spaces and the commuting pairs
of contractions need to be introduced first.

Let π be the symmetrization map

π(z1, z2) = (z1 + z2, z1z2),(1.2)

and J be the complex Jacobian of π, i.e., J(z1, z2) = z1 − z2 and T = {α : |α| = 1}.
Definition 5. The Hardy space H2(G) of the symmetrized bidisc is the vector space of
those holomorphic functions f on G which satisfy

sup
0<r<1

∫
T×T
|f ◦ π(rζ1, rζ2)|2|J(rζ1, rζ2)|2dm(ζ1, ζ2) <∞
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where m is the measure on the torus T × T obtained by taking product of the normalized
arc length measure on the unit circle T with itself. The norm of f ∈ H2(G) is defined to
be

‖f‖ = ‖J‖−1
{

sup
0<r<1

∫
T×T
|f ◦ π(rζ1, rζ2)|2|J(rζ1, rζ2)|2dm(ζ1, ζ2)

}1/2

,

where ‖J‖2 =
∫
T×T|J(ζ1, ζ2)|2dm(ζ1, ζ2) = 2.

In the expression of ‖f‖, we divide by ‖J‖ to ensure that the norm of the function 1
in H2(G) is 1. This space has been discussed before for other purposes in [11]. Our first
result establishes boundary values of the Hardy space functions. To that end, first consider
the measure µ on the 2-torus T× T defined, for a Borel subset F of T× T, as

µ(F ) :=

∫
F

|J(ζ1, ζ2)|2dm(ζ1, ζ2).

We then consider the push forward measure on bΓ via the symmetrization map π:

ν(E) = µ(π−1(E)) for every Borel subset E of bΓ.

We are now ready to define the L2-space over bΓ with respect to this push-forward measure:

L2(bΓ) = {f : bΓ→ C :

∫
bΓ

|f |2dν <∞}

= {f : bΓ→ C :

∫
T×T
|f(π(ζ1, ζ2))|2|J(ζ1, ζ2)|2dm(ζ1, ζ2) <∞}.

The following embedding lemma immediately allows us to consider boundary values of
the Hardy space functions.

Lemma 6. There is an isometric embedding of the space H2(G) inside L2(bΓ).

Proof. Consider the subspace

H2
anti(D2)

def
= {f ∈ H2(D2) : f(z1, z2) = −f(z2, z1)}

of anti-symmetric functions of the Hardy space over the bidisc

H2(D2) = {f : D2 → C : f(z1, z2) =
∞∑
i=0

∞∑
j=0

ai,jz
i
1z
j
2 with

∞∑
i=0

∞∑
j=0

|ai,j|2 <∞}.

Suppose L2
anti(T2) is the subspace of L2(T2) consisting of anti-symmetric functions, i.e.,

f(ζ1, ζ2) = −f(ζ2, ζ1) a.e..

Define Ũ : H2(G)→ H2
anti(D2) by

Ũ(f) =
1

‖J‖
J(f ◦ π), for all f ∈ H2(G)(1.3)

and U : L2(bΓ)→ L2
anti(D2) by

Uf =
1

‖J‖
J(f ◦ π), for all f ∈ L2(bΓ).(1.4)
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It is easy to see that U and Ũ are indeed unitary operators. Also note that there is an
isometry W : H2

anti(D2) → L2
anti(T2) which sends a function to its radial limit. Therefore

we have the following commutative diagram:

H2(G)
U−1◦W◦Ũ−−−−−−→ L2(bΓ)

Ũ

y yU
H2

anti(D2) −−−→
W

L2
anti(T2)

.

Hence the map that places H2(G) isometrically into L2(bΓ) is U−1 ◦W ◦ Ũ . �

The above identification theorem reveals that the isometric image of the Hardy space of
the symmetrized bidisc is precisely the following space:

{f ∈ L2(bΓ) : U(f) has all the negative Fourier coefficients zero}.
In this paper, we shall not make any distinction between these two realizations of the
Hardy space of the symmetrized bidisc and Pr will stand for the orthogonal projection
of L2(bΓ) onto the isometric image of H2(G) inside L2(bΓ). With this identification, the
unitary Ũ is the restriction of the unitary U to the subspace H2(G). Hence, we shall not
write Ũ any more. Whenever we mention U , it will be clear from the context whether it
is being applied on L2(bΓ) or on H2(G). In the latter case, the range is H2

anti(D2).
The internal co-ordinates of the (open or closed) symmetrized bidisc will be denoted by

(s, p). Several criteria for a member (s, p) of C2 to belong to G (or Γ) are known, the
interested reader may see Theorem 1.1 in [9]. Let

L∞(bΓ) = {ϕ : bΓ→ C : there exists M > 0, such that |ϕ(s, p)| ≤M a.e. in bΓ}.

Definition 7. For a function ϕ in L∞(bΓ), the multiplication operator Mϕ is defined to
be the operator on L2(bΓ):

Mϕf(s, p) = ϕ(s, p)f(s, p),

for all f in L2(bΓ). The Mϕ is called the Laurent operator with symbol ϕ. The compression
of Mϕ to H2(G) is called Toeplitz operator and is denoted by Tϕ. Therefore

Tϕf = PrMϕf for all f in H2(G).

We note that the co-ordinate multiplication operators Ms and Mp are commuting normal
operators on L2(bΓ). We now describe an equivalent way of studying Laurent operators
and Toeplitz operators on the symmetrized bidisc. Let L∞sym(T2) denote the sub-algebra of

L∞(T2) consisting of symmetric functions, i,e., f(ζ1, ζ2) = f(ζ2, ζ1) a.e. and Π1 : L∞(bΓ)→
L∞sym(T2) be the ∗-isomorphism defined by

ϕ 7→ ϕ ◦ π
where π is as defined in (1.2). Let Π2 : B(L2(bΓ)) → B(L2

anti(T2)) denote the conjugation
map by the unitary U as defined in (1.3), i.e.,

T 7→ UTU∗.
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Proposition 8. Let Π1 and Π2 be the above ∗-isomorphisms. Then the following diagram
is commutative:

L∞(bΓ)
Π1−−−→ L∞sym(T2)

i1

y yi2
B(L2(bΓ)) −−−→

Π2

B(L2
anti(T2))

,

where i1 and i2 are the canonical inclusion maps. Equivalently, for ϕ ∈ L∞(bΓ), the
operators Mϕ on L2(bΓ) and Mϕ◦π on L2

anti(T2) are unitarily equivalent via the unitary U .

Proof. To show that the above diagram commutes all we need to show is that UMϕU
∗ =

Mϕ◦π, for every ϕ in L∞(bΓ). This follows from the following computation: for every ϕ in
L∞(bΓ) and f ∈ L2

anti(T2),

UMϕU
∗(f) = U(ϕU∗f) = (ϕ ◦ π)

1

‖J‖
J(U∗f ◦ π) = Mϕ◦π(f).

�

As a consequence of the above, given a Toeplitz operator on the Hardy space of the
symmetrized bidisc, there is a unitarily equivalent copy of it on H2

anti(D2).

Corollary 9. For ϕ ∈ L∞(bΓ), Tϕ is unitarily equivalent to Tϕ◦π := PaMϕ◦π|H2
anti(D2),

where Pa stands for the projection of L2
anti(T2) onto H2

anti(D2).

Proof. This follows from the fact that the operators Mϕ and Mϕ◦π are unitarily equivalent

via the unitary Ũ , which takes H2(G) onto H2
anti(D2). �

In what follows, the pair (Ts, Tp) will be specially useful, where Tsf = Msf and Tpf =
Mpf for f in H2(G) (no projection is required because H2(G) is invariant under Ms

and Mp). The unitary U mentioned in the theorem above intertwines Ts with Tz1+z2 =
Mz1+z2|H2

anti(T2) and Tp with Tz1z2 = Mz1z2|H2
anti(T2). In the decomposition L2(bΓ) = H2(G)⊕

(L2(bΓ)	H2(G)), we have

Ms =

(
Ts ∗
0 ∗

)
and Mp =

(
Tp ∗
0 ∗

)
.

Lemma 10. The pair (Ms,Mp) is a commuting pair of normal operators and σ(Ms,Mp) =
bΓ.

Proof. The Laurent operators Ms and Mp are co-ordinate multiplications on L2(bΓ). Hence
they are normal and σ(Ms,Mp) = bΓ. �

If we appeal to Proposition 3, we see that the pair (Ms,Mp) is a Γ-unitary. Thus, by
Proposition 4, (Ts, Tp) is a Γ-isometry. Since the adjoint pair of a Γ-contraction is again a
Γ-contraction, the pair (T ∗s , T

∗
p ) is a Γ-contraction. So, it has a fundamental operator.
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Since polynomials of the form zj1 − zj2 with j = 1, 2, . . . form a basis for H2
anti(D2),

we define X in B(H2
anti(D2)) by defining it on these elements of H2

anti(D2) and extending
linearly:

(1.5) X(z1z2)i(zj1 − z
j
2) = (z1z2)i(zj+1

1 − zj+1
2 ) for i = 0, 1, . . . and j = 1, 2, . . . .

Let us denote

Y := U∗XU.(1.6)

Since X commutes with Mz1z2|H2
anti(D2), Y commutes with Tp.

There is a reducing subspace of X that plays a special role. Define

E = span{zj1 − z
j
2 : 1 ≤ j <∞} ⊂ H2

anti(D2)

and it can be easily checked that E is a reducing subspace for X. Let X0 = X|E . Consider
four Hilbert modules as follows.

HM1 : H2(G) with the module action ξ · h = ξ(Tp, Y )h,

HM2 : H2
anti(D2) with the module action ξ · h = ξ(Mz1z2|H2

anti(D2), X)h,

HM3 : H2(D)⊗ E with the module action ξ · h = ξ(Tz ⊗ IE , IH2(D) ⊗X0)h,

HM4 : H2(D2) with the module action ξ · h = ξ(Tz1 , Tz2)h.

Two Hilbert modules H1 and H2 over the polynomial ring C[z1, z2] are said to be
isomorphic if there is a unitary z : H1 → H2 such that

z(ξ · h) = ξ ·z(h) for all polynomials ξ and all h in H1.

Theorem I. The four D2-contractive Hilbert modules above are isomorphic, i.e.,

HM1
∼= HM2

∼= HM3
∼= HM4.

Proof. The first isomorphism is by virtue of U of (1.4).
For the second one, note that the vectors {zi⊗(zj1−z

j
2) : i = 0, 1, 2, . . . and j = 1, 2, 3, . . .}

form an orthogonal basis for H2(D)⊗E . On the other hand, the space H2
anti(D2) is spanned

by the orthogonal set {(z1z2)i(zj1 − zj2) : i ≥ 0 and j ≥ 1}. Define the unitary operator
from H2

anti(D2) onto H2
E(D) by mapping

(z1z2)i(zj1 − z
j
2) 7→ zi ⊗ (zj1 − z

j
2)

and then extending linearly. This preserves norms, is surjective and intertwines Tz1z2 with
Tz ⊗ I and X with I ⊗X0.

And for the third one, consider the map

zi ⊗ (zj1 − z
j
2) 7→

√
2zi1z

j−1
2 for i ≥ 0, j ≥ 1,

and extend linearly. This norm-preserving map takes orthonormal basis of H2
E(D) to that

of H2(D2) and hence is unitary. Also it is easy to see that this unitary map intertwines
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the operators Tz and I ⊗ X0 acting on H2
E(D) with the operators Tz1 and Tz2 acting on

H2(D2), respectively. This completes the proof of the theorem. �

The operator Y defined above is important for this note. It will appear again. So,
we end this section relating it to the fundamental operator of (T ∗s , T

∗
p ). The fundamental

operator of the adjoint of a Γ-isometry is especially nice. Indeed, if (T, V ) is a Γ-isometry,
then by general theory, delineated at the end of the Preliminaries section, T ∗ − TV ∗ is
non-zero only on the subspace DV ∗ . Moreover, since V is an isometry and hence V ∗DV ∗ =
0, we have T ∗ − TV ∗ acting on DV ∗ is just T ∗|DV ∗ . Applying this to the Γ-isometry
(Mz1+z2 ,Mz1z2)|H2

anti(D2), a little computation shows that the fundamental operator of the

adjoint of (Mz1+z2 ,Mz1z2)|H2
anti(D2) is X0. Recall that E is a reducing subspace for X. By

the theorem above, DT ∗p is then a reducing subspace for Y . By unitary equivalence, the
fundamental operator of (T ∗s , T

∗
p ) is Y ∗|DT∗p

. Therefore, Y is the inflation of the adjoint of

the fundamental operator of (T ∗s , T
∗
p ).

2. The Brown Halmos relations

The definition of a Toeplitz operator is analytic. Hence, it is interesting to characterize
it algebraically. This is what we do in Theorem II below.

If M is a bounded operator on L2(T) belonging to {Mz}′, the commutant of the operator
Mz on L2(T), then it is well known that there exists a function ϕ ∈ L∞(T) such that
M = Mϕ. The following result is an analogue of this phenomenon for the symmetrized
bidisc.

Lemma 11. Let M be a bounded operator on L2(bΓ) which commutes with both Ms and
Mp. Then there exists a function ϕ ∈ L∞(bΓ) such that M = Mϕ.

Proof. Since (Ms,Mp) is a pair of commuting normal operators and σ(Ms,Mp) = bΓ,
then by the spectral theorem for commuting normal operators the von Neumann algebra
generated by {Ms,Mp} is L∞(bΓ), which is a maximal abelian von Neumann algebra. This
completes the proof. �

By Proposition 8, the above result can be rephrased in the bidisc set up.

Corollary 12. Let Mz1+z2 and Mz1z2 denote the multiplication operators on L2
anti(T2).

Then any bounded operator M on L2
anti(T2) that commutes with both Mz1+z2 and Mz1z2 is

of the form Mϕ, for some function ϕ ∈ L∞sym(T2).

Lemma 13. The pair (Ts, Tp) is a pure Γ-isometry with (Ms,Mp) as its minimal Γ-unitary
extension and σ(Ts, Tp) = Γ.

Proof. we have already seen that the pair (Ts, Tp) is a Γ-isometry. The operator Tp is
pure because by Corollary (9) Tp is unitarily equivalent to Mz1z2|H2

anti(D2), which is pure.

The extension (Ms,Mp) is minimal because Mz1z2 is the minimal unitary extension of
Mz1z2|H2

anti(D2).
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It remains to prove that σ(Ts, Tp) = Γ. This is easily accomplished by noting that H2(G)
is a reproducing kernel Hilbert space, see page 513 of [11]. Its kernel is

kS((s1, p1), (s2, p2)) =
1

(1− p1p̄2)2 − (s1 − s̄2p1)(s̄2 − s1p̄2)
.

If (s, p) is a point of G, then (s, p) is a joint eigenvalue of (T ∗s , T
∗
p ) with the eigenvector

k(·, (s, p)). Since (s, p) is in G if and only if (s, p) is in G, we have entire G in the joint point
spectrum of (T ∗s , T

∗
p ). Since the spectrum is a closed set, σ(Ts, Tp) = σ(T ∗s , T

∗
p ) = Γ. �

We progress with basic properties of Toeplitz operators. Although, a Toeplitz operator
is defined in terms of an L∞ function, it is a difficult question of how to recognize a given
bounded operator T on the relevant Hilbert space as a Toeplitz operator. This question
was answered for the Hardy space of the unit disc by Brown and Halmos in Theorem 6 of
[14] where they showed that T has to be invariant under conjugation by the unilateral shift.
We show that in our context one needs both Ts and Tp to give such a characterization.

Definition 14. Let T be a bounded operator on H2(G). We say that T satisfies the Brown-
Halmos relations with respect to the Γ-isometry (Ts, Tp) if

T ∗s TTp = TTs and T ∗p TTp = T.(2.1)

It is a natural question whether any of the two Brown-Halmos relations implies the other.
We give here an example of an operator Y which satisfies the second one, but not the first.

Example 15. This example shows that the operator Y defined in (1.6) does not satisfy
the first of the Brown-Halmos relations. To that end, we note that

T ∗s Y Tp = T ∗s TpY = TsY

so that the question boils down to whether Y commutes with Ts. This is easy to resolve
using the U of (1.4) because

Y Ts(1) = U∗XUTs(1) =
1

‖J‖
U∗X(z2

1 − z2
2) =

1

‖J‖
U∗(z3

1 − z3
2) = s2 − p

and

TsY (1) = TsU
∗XU(1) =

1

‖J‖
TsU

∗X(z1 − z2) =
1

‖J‖
TsU

∗(z2
1 − z2

2) = Tss = s2.

However, the second Brown-Halmos relation is satisfied because of commutativity of Y
with Tp.

Theorem II. A Toeplitz operator satisfies the Brown-Halmos relations and vice versa.
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Proof. We first prove that the condition is necessary. Let T be a Toeplitz operator with
symbol ϕ. Then for f, g ∈ H2(G),

〈T ∗p TϕTpf, g〉 = 〈TϕTpf, Tpg〉
= 〈PrMϕTpf, Tpg〉
= 〈MϕMpf,Mpg〉
= 〈Mϕf, g〉
= 〈PrMϕf, g〉 = 〈Tϕf, g〉.

Also,

〈T ∗s TϕTpf, g〉H2 = 〈PrMϕTpf, Tsg〉H2

= 〈MϕMpf,Msg〉L2

= 〈M∗
sMpMϕf, g〉L2

= 〈MϕMsf, g〉L2

= 〈PrMϕMsf, g〉H2 = 〈TϕTsf, g〉H2 .

In the above computation, we have used the equality Ms = M∗
sMp.

Now we prove that the condition is sufficient. To this end we work on H2
anti(D2) and

invoke Corollary 9 to draw the conclusion. So let T be a bounded operator on H2
anti(D2)

satisfying T ∗z1+z2
TTz1z2 = TTz1+z2 and T ∗z1z2TTz1z2 = T . For two different integers i and

j, let ei,j := zi1z
j
2 − z

j
1z
i
2. Note that for n ≥ 0, Mn

z1z2
ei,j = ei+n,j+n. Therefore for every

different integers i and j, there exists a sufficiently large n such that Mn
z1z2

ei,j ∈ H2
anti(D2).

For each n ≥ 0, define an operator Tn on L2
anti(T2) by

Tn := M∗n
z1z2

TPaM
n
z1z2

,

where Pa is the orthogonal projection of L2
anti(T2) onto H2

anti(D2). Let i, j, k and l be
integers such that i 6= j and k 6= l, then for sufficiently large n, we have

〈Tnei,j, ek,l〉 = 〈TMn
z1z2

ei,j,M
n
z1z2

ek,l〉 = 〈Tei+n,j+n, ek+n,l+n〉.(2.2)

Since T ∗z1z2TTz1z2 = T , we have for every n ≥ 0, T ∗nz1z2TT
n
z1z2

= T . Let i, j, k and l be
non-negative integers such that i 6= j and k 6= l, then for every n ≥ 0,

〈Tei,j, ek,l〉 = 〈TT nz1z2ei,j, T
n
z1z2

ek,l〉 = 〈Tei+n,j+n, ek+n,l+n〉.(2.3)

Since {ei,j : i 6= j ∈ Z} is an orthogonal basis for L2
anti(T2) and the sequence of operators

Tn on L2
anti(T2) is uniformly bounded by ‖T‖, by (2.2) and (2.3) the sequence Tn converges

weakly to some operator T∞ (say) acting on L2
anti(T2).

We now use Corollary 12 to conclude that T∞ = Mϕ, for some ϕ ∈ L∞sym(T2). Therefore
we have to show that T∞ commutes with both Mz1+z2 and Mz1z2 . That T∞ commutes
with Mz1z2 is clear from the definition of T∞. The following computation shows that T∞
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commutes with Mz1z2 also. Let i, j, k and l be integers such that i 6= j and k 6= l. Then

〈M∗
z1+z2

T ∗∞ei,j, ek,l〉
= lim

n
〈M∗

z1+z2
M∗n

z1z2
T ∗PaM

n
z1z2

ei,j, ek,l〉

= lim
n
〈T ∗z1+z2

T ∗Mn
z1z2

ei,j,M
n
z1z2

ek,l〉 (for sufficiently large n)

= lim
n
〈T ∗z1z2T

∗Tz1+z2M
n
z1z2

ei,j,M
n
z1z2

ek,l〉 (applying (2.1))

= lim
n
〈M∗n+1

z1z2
T ∗PaM

n+1
z1z2

M∗
z1z2

Mz1+z2ei,j, ek,l〉

= lim
n
〈M∗n+1

z1z2
PaT

∗PaM
n+1
z1z2

M∗
z1+z2

ei,j, ek,l〉 (since Mz1+z2 = M∗
z1+z2

Mz1z2)

= 〈T ∗∞M∗
z1+z2

ei,j, ek,l〉.

Therefore there exists a ϕ ∈ L∞sym(T2) such that T∞ = Mϕ. Now for f and g in H2
anti(D2),

we have

〈PaMϕf, g〉 = 〈Mϕf, g〉 = 〈T∞f, g〉
= lim

n
〈Tnf, g〉 = lim

n
〈TT nz1z2f, T

n
z1z2

g〉 = 〈Tf, g〉.

Hence T is the Toeplitz operator with symbol ϕ. �

The following is a straightforward consequence of the characterization of Toeplitz oper-
ators obtained above.

Corollary 16. If T is a bounded operator on H2(G) that commutes with both Ts and Tp,
then T satisfies the Brown-Halmos relations and hence is a Toeplitz operator.

Proof. It is given that TTp = TpT . Multiplying both sides from the left by T ∗p , we get that
T ∗p TTp = T because Tp is an isometry. The following simple computation shows that T
also satisfies the other relation.

T ∗s TTp = T ∗s TpT = TsT = TTs,

where we used the fact that (Ts, Tp) is a Γ-isometry and hence Ts = T ∗s Tp. �

3. Further properties of a Toeplitz operator

In this section, we study further properties of Toeplitz operators and characterize Toeplitz
operators with analytic and co-analytic symbols.

Lemma 17. For ϕ ∈ L∞(bΓ) if Tϕ is the zero operator, then ϕ = 0, a.e. In other words,
the map ϕ 7→ Tϕ from L∞(bΓ) into the set of all Toeplitz operators on the symmetrized
bidisc, is injective.
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Proof. Let ϕ ◦ π(z1, z2) =
∑

i,j∈Z αi,jz
i
1z
j
2 ∈ L∞sym(T2). Then Tϕ◦π on H2

anti(D2) is the zero
operator. Now we have for every m, k ≥ 0 and n, l ≥ 1,

0 = 〈Tϕ◦π(z1z2)m(zn1 − zn2 ), (z1z2)k(zl1 − zl2)〉
= 〈

∑
i,j∈Z

αi,j(z
i+m+n
1 zj+m2 − zi+m1 zj+m+n

2 ), (z1z2)k(zl1 − zl2)〉

= αk+l−m−n,k−m + αk−m,k+l−m−n − αk+l−m,k−m−n − αk−m−n,k+l−m

= 2(αk+l−m−n,k−m − αk−m−n,k+l−m).

To obtain the last equality we have used the fact that αi,j = αj,i for all i, j ∈ Z. Since the
sequence {αi,j} is square summable, the above computation says that for every m, k ≥ 0
and n, l ≥ 1,

αk−m−n+l,k−m = αk−m−n,k−m+l = 0.

Note that {k−m : m, k ≥ 0} = Z and for fixed k,m ≥ 0, {(k−m)−(n− l) : n, l ≥ 1} = Z.
Hence αi,j = 0 for all i, j ∈ Z. This completes the proof. �

It is easy to see that the space H∞(G) consisting of all bounded analytic functions on G
is contained in H2(G). We identify H∞(G) with its boundary functions. In other words,

H∞(G) = {ϕ ∈ L∞(bΓ) : ϕ ◦ π has no non-zero negative Fourier coefficients}.

Definition 18. A Toeplitz operator Tϕ is called

(1) an analytic Toeplitz operator if ϕ is in H∞(G),
(2) a co-analytic Toeplitz operator if T ∗ϕ is an analytic Toeplitz operator.

Our next goal is to characterize analytic Toeplitz operators. But to be able to do that
we need to define the following notion and prove the proposition following it.

Definition 19. Let ϕ be in L∞(bΓ). The operator Hϕ : H2(G)→ L2(bΓ)	H2(G) defined
by

Hϕf = (I − Pr)Mϕf

for all f ∈ H2(G), is called a Hankel operator.

We write down a few observations about Toeplitz operators for the sake of completeness.
The proofs are similar to the one dimensional case.

Proposition 20. Let ϕ, ψ ∈ L∞(bΓ). Then

(1) T ∗ϕ = Tϕ.
(2) The product TϕTψ is a Toeplitz operator if ϕ or ψ is analytic. In each case, TϕTψ =

Tϕψ.
(3) TϕTψ − Tϕψ = −H∗ϕHψ.
(4) For an operator T , let Π(T ) be the approximate point spectrum of T . Then

essential range of ϕ = Π(Mϕ) = σ(Mϕ) ⊆ Π(Tϕ) ⊆ σ(Tϕ).

Hence
(a) ‖ϕ‖∞ = ‖Mϕ‖ = ‖Tϕ‖ = r(Tϕ) and
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(b) ‖Tϕ −K‖ ≥ ‖Tϕ‖, for every compact operator K on H2(G).

Now we are ready to characterize Toeplitz operators with analytic symbol.

Theorem III. Let Tϕ be a Toeplitz operator. Then the following are equivalent:

(i) Tϕ is an analytic Toeplitz operator;
(ii) Tϕ commutes with Tp;

(iii) Tϕ(RanTp) ⊆ RanTp;
(iv) TpTϕ is a Toeplitz operator;
(v) Tϕ commutes with Ts;

(vi) TsTϕ is a Toeplitz operator.

Proof. (i)⇔ (ii):That (i) ⇒ (ii) is easy. To prove the other direction, we use part (3)
of Proposition 20 to get that H∗pHϕ = 0. This shows that the corresponding product of

Hankel operators on H2
anti(D2) is also zero, that is H∗z1z2Hϕ◦π = 0. Let the power series

expansion of ϕ ◦ π ∈ L∞symm(T2) be

ϕ ◦ π(z1, z2) =
∑
m,n∈Z

αm,nz
m
1 z

n
2 for all z1, z2 ∈ T.

Since ϕ ◦ π is symmetric we have αm,n = αn,m, for every m,n ∈ Z. For k, r ≥ 0 and l ≥ 1,
we have

0 = 〈Hϕ◦π(z1z2)r(zl1 − zl2), Hz1z2(z
k+1
1 − zk+1

2 )〉L2(T2)

= 〈
∑
m,n∈Z

αm,nz
m
1 z

n
2 (z1z2)r(zl1 − zl2), (zk1z2 − z1z

k
2 )〉L2(T2)

= 〈
∑
m,n∈Z

αm,n(zm+r+l
1 zn+r

2 − zm+r
1 zn+r+l

2 ), (zk1z2 − z1z
k
2 )〉L2(T2)

= 2(αk−r−l,−r−1 − αk−r,−r−1−l),

where to obtain the last equality we have used αm,n = αn,m for every m,n ∈ Z. Now since
the sequence {αm,n} is square summable, we conclude that for every k, r ≥ 0 and l ≥ 1

α−r−1,(k−l)−r = α−(r+l)−1,k−r = 0.

From these equalities we claim that αm,n = 0, unless both of m and n are non-negative,
which would imply that ϕ is analytic. First we show that if m ≥ 0 and n ≥ 1, then
α−n,m = αm,−n = 0. For that we choose r = n − 1 and k, l such that k − l = m + n − 1.
For this choice of k, r and l we have 0 = α−r−1,(k−l)−r = α−n,m. Now we show that if
m ≥ 1 and n ≥ 0, then α−m,−n = 0. To this end, we choose r = m− 1 and k, l such that
k − l = m− n− 1. For this choice of k, r and l we have 0 = α−r−1,(k−l)−r = α−m,−n.

(ii)⇔ (iii): The part (ii) ⇒ (iii) is easy. Conversely, suppose that RanTp is invariant

under Tϕ. Since RanTp is closed, we have for every f ∈ H2(G),

TϕTpf = Tpgf for some gf in H2(G).

⇒ T ∗p TϕTpf = gf ⇒ Tϕf = gf (by Theorem II).
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Hence TϕTp = TpTϕ.
(ii)⇔ (iv): If Tϕ commutes with Tp, then TpTϕ is same as TϕTp, which is a Toeplitz

operator by Proposition 20. Conversely, if TpTϕ is a Toeplitz operator, then it satisfies
Brown-Halmos relations, the second one of which implies that Tϕ commutes with Tp.

(i)⇔ (v): For an analytic symbol ϕ, Tϕ obviously commutes with Ts. The proof of

the converse direction is done by the same technique as in the proof of (ii) ⇒ (i). If
Tϕ commutes with Ts, then by part (3) of Proposition 20 we have H∗sHϕ = 0. Suppose
ϕ ◦ π ∈ L∞symm(T2) has the following power series expansion

ϕ ◦ π(z1, z2) =
∑
m,n∈Z

αm,nz
m
1 z

n
2 for all z1, z2 ∈ T.

For every k, l ≥ 1 and r ≥ 0, we have

0 = 〈Hϕ◦π(z1z2)r(zl1 − zl2), Hz1+z2(z
k
1 − zk2 )〉L2(T2)

= 〈
∑
m,n∈Z

αm,nz
m
1 z

n
2 (z1z2)r(zl1 − zl2), (zk1z2 − z1z

k
2 )〉L2(T2)

= 〈
∑
m,n∈Z

αm,n(zm+r+l
1 zn+r

2 − zm+r
1 zn+r+l

2 ), (zk1z2 − z1z
k
2 )〉L2(T2)

= 2(α−r−1,(k−l)−r − α−(r+l)−1,k−r).

Similar argument as in the proof of (ii) ⇒ (i) reveals that αm,n = 0, if either of m and n
is negative, in other words, ϕ is analytic.

(v)⇔ (vi): The implication (v)⇒ (vi) follows from Proposition 20. Conversely suppose
that TsTϕ is a Toeplitz operator. Therefore applying Theorem II and the relation Ts =
Ts
∗Tp, we get TϕTs = Ts

∗TϕTp = Tp
∗TsTϕTp = TsTϕ. �

The following is a direct consequence of the preceding theorem.

Corollary 21. Let Tψ be a Toeplitz operator. Then the following are equivalent:

(i) Tψ is a co-analytic Toeplitz operator;
(ii) Tψ commutes with T ∗p ;

(iii) T ∗ψ(RanTp) ⊆ RanTp;
(iv) TpT

∗
ϕ is a Toeplitz operator;

(v) T ∗ϕ commutes with Ts;
(vii) TsT

∗
ϕ is a Toeplitz operator.

We end this section with two facts about Toeplitz operators on the symmetrized bidisc
- one is similar to the unit disc and the other is dissimilar.

Proposition 22. The only compact Toeplitz operator on the symmetrized bidisc is zero.

Proof. The proof is similar to that in case of the unit disc. Let Tϕ be a compact Toeplitz
operator. For every m > n ≥ 0, let em,n = zm1 z

n
2 − zn1 zm2 . Then {em,n : m > n ≥ 0} is an
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orthogonal basis of H2
anti(D2). Since Tϕ is compact, ‖Tϕ◦πem,n‖ → 0 as m,n → ∞. Also

T ∗z1z2Tϕ◦πTz1z2 = Tϕ◦π, so we have for every r ≥ 0,

|〈Tϕ◦πem,n, ek,l〉| = |〈Tϕ◦πem+r,n+r, ek+r,l+r〉| ≤
√

2‖Tϕ◦πem+r,n+r‖ → 0

as r →∞, which shows that Tϕ◦π is zero, since m > n ≥ 0 and k > l ≥ 0 are arbitrary. �

It has been observed over the last decade that operator theory on the symmetrized
bidisc enjoys some one dimensional phenomena. Specifically, we would like to mention the
following peculiar fact related to the minimal normal boundary dilation of a Γ-contraction
(S, P ). The space on which the minimal normal boundary dilation of (S, P ) acts is the
same as the space of minimal unitary dilation of the contraction P ([12], Theorem 4
and the discussion preceding it). However, the following example shows that the Coburn
Alternative, which has several useful consequences in the study of Toeplitz operators on
the unit disc, fails to hold true in the symmetrized bidisc.

Proposition 23 (The Coburn Alternative). For a non-zero function ϕ in L∞(T), either
Tϕ or Tϕ

∗ is injective.

See Theorem 3.3.10 of the book [24] for a proof of this. To show that it fails in the case
of the symmetrized bidisc, we choose the symbol to be ϕ(z1, z2) = z2

1z2
2 + z1

2z2
2 . Note that

ϕ is in L∞sym(T2) and Tϕ(z1 − z2) = 0 = T ∗ϕ(z1 − z2).

4. Asymptotic Toeplitz operators and Compactness

The weak limit of a sequence {T ∗z nTT nz }n≥1 from B(H2(D)) is a Toeplitz operator. The
second co-ordinate multiplier Tp of H2(G) is unitarily equivalent to Tz on a vector-valued
Hardy space on the unit disc. But, we have seen an example which shows that an operator
need not be a Toeplitz operator even if it commutes with Tp. Therefore, if T ∈ B(H2(G))
is such that the sequence {T ∗p nTT np }n≥1 is weakly convergent, the weak limit, B say, may

not be a Toeplitz operator on H2(G). The following lemma gives a necessary and sufficient
condition for when B is Toeplitz.

Lemma 24. Let T and B be bounded operators on H2(G) such that T ∗p
nTT np → B weakly.

Then B is a Toeplitz operator if and only if

T ∗p
n[T, Ts]T

n
p → 0 weakly,

where [T, Ts] denotes the commutator of T and Ts.

Proof. Note that if T and B are bounded operators on H2(G) such that T ∗p
nTT np → B

weakly, then T ∗pBTp = B. Suppose T ∗p
n[T, Ts]T

n
p → 0 weakly. To prove that B is Toeplitz,

it remains to show that B satisfies the first Brown-Halmos relation with respect to the
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Γ-isometry (Ts, Tp).

T ∗sBTp = w-limT ∗s (T ∗p
nTT np )Tp

= w-limT ∗p
n(T ∗s TTp)T

n
p

= w-limT ∗p
n+1TsTT

n+1
p

= w-limT ∗p
n+1(TsT − TTs + TTs)T

n+1
p

= w-limT ∗p
n+1TT n+1

p Ts = BTs.

Conversely, suppose that the weak limit B of T ∗p
nTT np is a Toeplitz operator and hence

satisfies the Brown-Halmos relations. Thus,

w-limT ∗p
n(TTs − TsT )T np = w-lim(T ∗p

nTT np Ts − T ∗p
nT ∗s TpTT

n
p )

= w-lim(T ∗p
nTT np Ts − T ∗s T ∗p

n−1TT n−1
p Tp)

= BTs − T ∗sBTp = 0.

�

The next result characterizes compact operators on H2(G).

Proposition 25. For every n ≥ 1, let ηn : B(H2(G)) → B(H2(G) ⊕ H2(G)) be the
completely positive map defined by

ηn(T ) :=

(
Y ∗n

T ∗np

)
T
(
Y n, T np

)
,

where Y is the bounded operator on H2(G) as defined in (1.6). Then T ∈ B(H2(G)) is
compact if and only if ηn(T )→ 0 in norm as n→∞.

Proof. By virtue of Theorem I, a bounded operator T on H2(G) satisfies the convergence
conditions in the statement if and only if the isomorphic copy T̃ of T on H2(D2) satisfies
T ∗zi

mT̃ Tmzj → 0 in norm for 1 ≤ i, j ≤ 2. This is known to be a characterization of compact

operators on H2(D2), see [23] for example. That completes the proof. �

Definition 26. A bounded operator T on H2(G) is called an asymptotic Toeplitz operator
if T ∗p

n[T, Ts]T
n
p → 0, T ∗p

nTT np → B and ηn(T −B)→ 0, where ηn is as in Proposition 25.

Theorem IV. A bounded operator T on H2(G) is an asymptotic Toeplitz operator if and
only if T is the sum of a compact operator and a Toeplitz operator.

Proof. If T is a asymptotic Toeplitz operator and T ∗p
nTT np converges to B, then it follows

from Lemma 24 that B is a Toeplitz operator because T ∗p
n[T, Ts]T

n
p → 0. Also, since

ηn(T −B)→ 0, by Proposition 25, T −B is a compact operator. Hence T is the sum of a
compact operator and a Toeplitz operator.

Conversely, let T = K + Tϕ, where K is some compact operator. Then by Proposition
25, T ∗p

nTT np → Tϕ. Since Tϕ is Toeplitz, by Lemma 24, T ∗p
n[T, Ts]T

n
p → 0. And finally,

since K is compact, by Proposition 25, ηn(T −Tϕ)→ 0. Hence T is an asymptotic Toeplitz
operator. �
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Remark 27. If T is an operator such that both T ∗np TT np and Y ∗nTY n converge to T ,
even then it is not necessary that T is a Toeplitz operator. For example, choose T = Y .
Because Y is an isometry and it commutes with Tp, for every n ≥ 0, Y ∗nY Y n = Y and
T ∗np Y T np = Y . But we have noticed in Example 15 that Y is not a Toeplitz operator.

5. A Commutant Lifting Result

It is a natural generalization of the concept of Toeplitz operators to replace the mul-
tiplication by the co-ordinate multiplier by a more general isometry (in the classical case
of Brown and Halmos). Moreover, depending on the domain, one can introduce a tuple
of operators with a suitable property. Prunaru did it for the Euclidean ball Bd. The
natural operator tuple to consider there is a spherical isometry, i.e., a commuting tuple
T = (T1, T2, . . . , Td) of bounded operators with the property T ∗1 T1+T ∗2 T2+· · ·+T ∗dTd = I, its
prototypical example being the tuple of co-ordinate multiplications Tz = (Tz1 , Tz2 , . . . , Tzd)
on the Hardy space of the Euclidean ball. Prunaru called an operator X a Toeplitz operator
with respect to a given spherical isometry T if T ∗1XT1 + T ∗2XT2 + · · ·+ T ∗dXTd = X.

Definition 28. Given a Hilbert space H, a Γ-isometry (S, P ) on H and a bounded operator
T on H, we say that T satisfies the Brown-Halmos relation with respect to the Γ-isometry
(S, P ) (or just satisfies the Brown-Halmos relation when the pair (S, P ) is clear from the
context) if

(5.1) S∗TP = TS and P ∗TP = T.

Definition 29. We say that a family F = {(Sα, Pα) : α ∈ Λ} of Γ-isometries on a Hilbert
space H is commuting if the union ∪α∈Λ{Sα, Pα} is a commutative set of operators.

For a commuting family F of Γ-isometries on a Hilbert space H, let T (F) be the set of
all operators X ∈ B(H) such that

S∗αXPα = XSα and P ∗αXPα = X, for all α ∈ Λ.

In other words, an element of T (F) satisfies the Brown-Halmos condition for each α.

Remark 30. T (F) contains F and the commutant of F .

The main result of this section is the following. It is similar in spirit to Theorem 1.2 of
Prunaru [27] whose roots can be traced back to Section 3 of Beltita and Prunaru [8]. The
difference in our theorem lies in the Sα. We shall apply Beltita and Prunaru’s ideas to
obtain simultaneous dilation of the Pα and then note how the representation acts on Sα.
It will be clear in course of the proof that the dilation space is no bigger than that of the
simultaneous dilation of Pα.

Theorem V. Let F = {(Sα, Pα) : α ∈ Λ} be a commuting family of Γ-isometries on a
Hilbert space H. Then

(1) There exists a commuting family G = {(Rα, Uα) : α ∈ Λ)} of Γ-unitaries acting
on a Hilbert space K containing H such that each pair (Rα, Uα) is an extension of
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(Sα, Pα). Moreover, G is the minimal extension of F in the sense that K is the
smallest reducing subspace of each Rα and Uα containing H. In fact,

K = {Um1
α1
Um2
α2
· · ·Umn

αn
h : h ∈ H, n ∈ N and for 1 ≤ j ≤ n, αj ∈ Λ and mj ∈ Z}.

Moreover, any X ∈ B(H) commutes with F if and only if X has a unique norm
preserving extension Y acting on K commuting with G.

(2) An X ∈ B(H) is in T (F) if and only if there exists an Y ∈ B(K) in the commutant
of the von-Neumann algebra generated by {Rα, Uα : α ∈ Λ} such that X = PHY |H.

(3) Let C∗(F) and C∗(G) denote the unital C∗-algebras generated by {Sα, Pα : α ∈ Λ}
and {Rα, Uα : α ∈ Λ}, respectively and I(F) denote the closed ideal of C∗(F)
generated by all the commutators XY −Y X for X, Y ∈ C∗(F)∩T (F). Then there
exists a short exact sequence

0→ I(F) ↪→ C∗(F)
π0−→ C∗(G)→ 0

with a completely isometric cross section, where π0 : C∗(F)→ C∗(G) is the canoni-
cal unital ∗-homomorphism which sends the generating set F to the corresponding
generating set G, i.e., π0(Pα) = Uα and π0(Sα) = Rα for all α ∈ Λ.

Remark 31. A commuting family G = {(Rα, Uα) : α ∈ Λ)} of Γ-unitaries as above is said
to extend F .

Proof. For each α ∈ Λ, define Φα : B(H)→ B(H) by

Φα(X) = P ∗αXPα.

Then the family {Φα}α∈Λ consists of commuting, completely positive, unital, normal map-
pings acting on B(H). Therefore, by Lemma 2.3 of [27], there exists a completely positive
map Φ : B(H)→ B(H) such that Φ ◦ Φ = Φ and

RanΦ = {X ∈ B(H) : Φα(X) = P ∗αXPα = X, for all α ∈ Λ}.

In particular, Φ(X) = X for all X ∈ T (P) where

T (P) = {X : P ∗αXPα = X, for all α ∈ Λ}.

Also since Φ is an idempotent unital completely positive map, it follows from a well-known
result of [15] that

(5.2) Φ(Φ(X)Y ) = Φ(XΦ(Y )) = Φ(Φ(X)Φ(Y ))

Let C∗(T (P)) denote the C∗-algebra generated by T (P) and Φ0 denote the restriction
of Φ to C∗(T (P)). Consider the minimal Stinespring dilation π : C∗(T (P)) → B(K) of
Φ0. Hence Φ0(X) = V ∗π(X)V for some isometry V : H → K and for all X ∈ B(H). It
follows from (5.2) that KerΦ0 is an ideal of C∗(T (P)) and therefore KerΦ0 = Kerπ and the
mapping ρ : π(C∗(T (P)))→ B(H) defined by ρ(π(X)) = V ∗π(X)V for X ∈ C∗(T (P)) is a
complete isometry such that π ◦ ρ = idπ(C∗(T (P))) and Ranρ = RanΦ. Define Uα = π(Pα).
The two properties below are obtained from the proof of Theorem 1.2 of Prunaru [27]
applied to P :
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(P1) The commuting family of unitaries U = {Uα = π(Pα) : α ∈ Λ} is a minimal unitary
extension of the family of isometries P , i.e.,

Pα = V ∗UαV and Uα(VH) ⊆ VH
for all α ∈ Λ and K is the minimal reducing subspace containing VH for the family
U .

(P2) If X ∈ B(H) belongs to the commutant of P , then X̂ = π(X) is the unique norm
preserving extension of X in the commutant of U which leaves VH invariant.

We identify H with VH and view H as a subspace of K. Applying (P2) from above, we
get Rα = π(Sα) to be a norm preserving extension of Sα. Moreover, Rα = π(Sα) = π(Sα) =
π(S∗αPα) = π(Sα)∗π(Pα) = R∗αUα for each α ∈ Λ. Hence by part (3) of Proposition 3,
(Rα, Uα) is a Γ-unitary for each α. It is now clear from property (P1) that the commuting
family of Γ-unitaries G = {(Rα, Uα) : α ∈ Λ)} is a minimal normal extension of the
commuting family of Γ-isometries F .

For the rest of part (1), note that if X commutes with F , then X belongs to the
commutant of P . Therefore again by property (P2), π(X) is the unique norm preserving
extension of X in the commutant of U . Moreover, π(X) belongs to the commutant of G
as X commutes with Sα for all α ∈ Λ. This proves part (1) of the theorem.

To prove part (2), let Y be in the commutant of the von Neumann algebra generated
by the Rα and the Uα. Note that Rα, Uα and Y have the following matrix representation
with respect to the decomposition H⊕ (K 	H)(

Sα ∗
0 ∗

)(
Pα ∗
0 ∗

)
and

(
X ∗
∗ ∗

)
,

respectively and they satisfy R∗αY Uα = RαY and U∗αY Uα = Y . Now it follows from a
simple block matrix computation that X, the compression of Y to H, is in T (F).

Conversely, if X is in T (F), then the natural candidate for Y is Y = π(X). This indeed
serves the purpose proving part (2).

To prove part (3), we first note that the representation π0 in the statement of the theorem
is actually the restriction of π to C∗(F) as the representation π also maps the generating
set F of C∗(F) to the generating set G of C∗(G). Since π0(F) = G, range of π0 is C∗(G).
Therefore to prove that the following sequence

0→ I(F) ↪→ C∗(F)
π0−→ C∗(G)→ 0

is a short exact sequence, all we need to show is that kerπ0 = I(F). Since π0(C∗(F)) is
commutative, we have XY −Y X in the kernel of π0, for any X, Y ∈ C∗(F)∩T (F). Hence
I(F) ⊆ kerπ0. To prove the other inclusion, let us agree to denote by F∗, for a family F of
operators, the adjoints of members of F . Let Z1 be a finite product of members of F∗ and
Z2 be a finite product of members of F and call Z = Z1Z2. Then by the commutativity of
the family F , we have for each α ∈ Λ, Φα(Z) = Z and hence Φ0(Z) = Z, where Φ0 and Φα’s
are as in the proof of part (1). Note that Φ0(Z) = PHπ0(Z)|H, for every Z ∈ C∗(F). Now
let Z be any arbitrary finite product of members from F and F∗. Since π0(F) = G, which
is a family of normal operators, we obtain, by Fuglede-Putnam’s theorem that, action of
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Φ0 on Z has all the members from F∗ at the left and all the members from F at the right.
It follows from kerπ = kerΦ and Φ is idempotent that kerπ0 = {X −Φ0(X) : X ∈ C∗(F)}.
Also, because of the above description of Φ0(X), if X is a finite product of elements from F
and F∗ then X−Φ0(X) belongs to the ideal generated by all the commutators XY −Y X,
where X, Y ∈ C∗(F)∩T (F). This shows that kerπ0 = I(F). In order to find a completely
isometric cross section, recall the completely isometric map ρ : π(C∗(T (P)))→ B(H) such
that π ◦ ρ = idπ(C∗(T (P))). Set ρ0 := ρ|π(C∗(F)). Then by the definition of ρ it follows that
Ranρ0 ⊆ C∗(F) and therefore is a completely isometric cross section. This completes the
proof of the theorem. �

6. Dual Toeplitz Operators

To pick up from where the last section ended, we note that as a special case of part (2)
above, we know that if (S, P ) is a Γ-isometry on H with (R,U) on K being its minimal
Γ-unitary extension then an X in B(H) satisfies the Brown-Halmos relations with respect
to (S, P ) if and only if there exists an operator Y in the commutant of the von-Neumann
algebra generated by {R,U} such that X = PHY |H. The block matrix representation of the
operator Y shows that it need neither be an extension nor a co-extension of the operator
X, in general. For example, choose the Γ-isometry to be (Ts, Tp). Then by Theorem II,
any operator that satisfies the Brown-Halmos relations with respect to this Γ-isometry is
a Toeplitz operator with some symbol ϕ ∈ L∞(bΓ) and Y , by Lemma 11, would be Mϕ,
which has the matrix representation as in (6.2).

Dual Toeplitz operators have been studied on the Bergman space of the unit disc D
in [29] and on the Hardy space of the Euclidean ball Bd in [18] and [21]. In our setting,
consider the space

H2(G)⊥ = L2(bΓ)	H2(G).(6.1)

For a symbol ϕ ∈ L∞(bΓ), define the dual Toeplitz operator on H2(G)⊥ by

DTϕ = (I − Pr)Mϕ|H2(G)⊥ ,

where (I − Pr) denotes the orthogonal projection of L2(bΓ) onto H2(G)⊥. Therefore with
respect to the decomposition (6.1) of L2(bΓ),

Mϕ =

(
Tϕ H∗ϕ
Hϕ DTϕ

)
.(6.2)

Lemma 32. The special pair D = (DTs, DTp) is a Γ-isometry with (Ms,Mp) as its minimal
Γ-unitary extension.

Proof. It is a Γ-isometry because it is the restriction of the Γ-unitary (Ms̄,Mp̄) to the space
H2(G)⊥. And this extension is minimal because Mp is the minimal unitary extension of
DTp. �

Theorem VI. A bounded operator T on H2(G)⊥ is a dual Toeplitz operator if and only if
it satisfies the Brown-Halmos relations with respect to D = (DTs, DTp).
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Proof. The fact that every dual Toeplitz operator on H2(G)⊥ satisfies the Brown-Halmos
relations with respect to (DTs, DTp) follows from the following identities

Ms
∗MϕMp = MϕMs and Mp

∗MϕMp = Mϕ for every ϕ ∈ L∞(bΓ)

and from the 2×2 matrix representations of the operators in concern. For the converse, let T
on H2(G)⊥ satisfy the Brown-Halmos relations with respect to the Γ-isometry (DTs, DTp).
By the comments at the beginning of this section and Lemma 11, there is a ϕ ∈ L∞(bΓ)
such that T is the compression of Mϕ to H2(G)⊥. �
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