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Abstract. We revisit the study of ω-hypercontractions corresponding to a single weight
sequence ω = {ωk}k≥0 introduced by Olofsson in [22] and find an analogue of Nagy-Foias
characteristic function in this setting. Explicit construction of characteristic functions is
obtained and it is shown to be a complete unitary invariant. By considering a multi-weight
sequence W and W-hypercontractions we extend Olofsson’s work [22] in the multi-variable
setting. Model for W-hypercontractions is obtained by finding their dilations on certain
weighted Bergman spaces over the polydisc corresponding to the multi-weight sequence W.
This recovers and provides a different proof of the earlier work of Curto and Vasilescu [13, 14]
for γ-contractive multi-operators through a particular choice of multi-weight sequence.

Notations

N Set of all natural numbers.
Z+ Set of all positive integers.
Zn+ {α = (α1, . . . , αn) |αi ∈ Z+, i = 1, . . . , n}.
e (1, . . . , 1) ∈ Zn+.
R+ Set of all positive real numbers including 0.
Rn

+ {γ = (γ1, . . . , γn) | γi ∈ R+, i = 1, . . . , n}.
Cn Complex n-space.
z (z1, . . . , zn) ∈ Cn.
zα zα1

1 · · · zαnn for all α ∈ Zn+.
T n-tuple of commuting operators (T1, . . . , Tn).
Tα Tα1

1 · · ·Tαnn for all α ∈ Zn+.
Dn Open unit polydisc {z | |zi| < 1, i = 1, . . . , n}.
B(H) Set of all bounded linear operators on a Hilbert space H.

1. Introduction

Dilations of operators on Hilbert spaces is a mathematical tool which is used to understand
operators in terms of simple and well-understood operators. The basic idea of dilation of an
operator T on a Hilbert space H is to find a well-understood operator V on K such that T is
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a part of V , that is, H ⊆ K is a V ∗-invariant subspace and

T ∼= PHV |H.
In a similar vain, by fixing a well-understood operator (more generally a class of well-
understood operators), one can ask for a characterization of operators which are part of
the fixed operator (or the class of operators). First significant result in this direction is due
to Sz.-Nagy and Foias [21] which states that a contraction T on a Hilbert space H is pure
(that is, T ∗n → 0 as n→∞ in the strong operator topology) if and only if T is a part of the
shift operator Mz on a vector valued Hardy space H2

E(D). Here for a Hilbert space E ,

H2
E(D) = {f : D→ E | f(z) =

∑
n≥0

anz
n,
∑
n≥0

‖an‖2 <∞, z ∈ D, an ∈ E}

is the E-valued Hardy space over D and Mz : H2
E(D) → H2

E(D) is the shift operator, defined
by, (Mzf)(w) = wf(w) for all w ∈ D. In other words, T is a pure contraction if and only if
there exist a Hilbert space E and an M∗

z -invariant subspace Q ⊆ H2
E(D) such that

T ∼= PQMz|Q.
Another remarkable consequence of the Sz.-Nagy and Foias dilation result is that there exist
a Hilbert space E∗ and a B(E∗, E)-valued inner multiplier θT (that is, θT : D → B(E∗, E) is a
contractive analytic function such that θT is isometry-valued a.e. on the unit circle), known
as the characteristic function of T (cf. [21]), such that

Q = H2
E(D)	 θTH2

E∗(D).

The above dilation result is also extended for general contractions and is the stepping stone
of Sz.-Nagy and Foias theory for contractions. Subsequently, by considering Bergman shift
on vector-valued weighted Bergman space, Agler in his seminal paper [1] extended the above
result. He showed that a contraction T is a part of the Bergman shift Mz acting on some
E-valued weighted Bergman space A2

m(E) with kernel

Km(z, w) = (1− zw̄)−mIE , (z, w ∈ D)

if and only if T is a pure m-hypercontraction, that is, T is a pure contraction and

K−1
m (T, T ∗) :=

m∑
k=0

(−1)k
(
m

k

)
T kT ∗k ≥ 0.

Recently, Olofsson in [22] extended it further for shifts on weighted Bergman spaces corre-
sponding to a certain class of weight sequences. He showed that if ω is a weight sequence
then T is part of the Bergman shift on some E-valued weighted Bergman space A2

ω(E) if and
only if T is a pure ω-hypercontraction. The reader is referred to Section 2 and Theorem 2.3
below for terminologies and a detailed description of the result. There are also several works
in the multi-variable setting and an incomplete list of references is [20], [14], [13], [4], [5], [9],
[10], [8], [18], [26] and [6].

The purpose of the present article is twofold. Firstly, we revisit the study of hypercon-
tractions corresponding to a class of weight sequences as considered in [22]; these hypercon-
tractions are known as ω-hypercontractions where ω is a weight sequence (see Section 2 for
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the definition). Using dilations of such hypercontractions, we find an analogue of Sz.-Nagy
and Foias characteristic functions in this setting. Explicit construction of such characteristic
functions is given in terms of triples which we call as characteristic triple. As expected, it is
also shown that the characteristic function is a complete unitary invariant. This generalizes
the work of [11] and [16] for the case n = 1. The main ideas behind this consideration comes
from a recent article [11]. For recent developments on this topic in different context, the
reader is referred to [16], [7], [19], [23], [24] and [17]. Section 2 is devoted to discuss these.

Secondly, we extend Olofsson’s result [22] in the polydisc setting. We say that W =

(ω1, . . . , ωn) is a multi-weight sequence if for all i = 1, . . . , n, ωi = {ω(i)
m }m≥0 is a weight

sequence (see Definition 2.1 below for the definition of a weight sequence). We introduced
the notion ofW-hypercontractions corresponding to a multi-weight sequenceW and obtained
their models by finding their dilations on some weighted Bergman space over the polydisc.
Our method of multi-variable dilation is driven by the idea of using one variable dilation
result, obtained by Olofsson, at a time and it is well supported by a commutant lifting type
result obtained in this setting. For a particular choice of multi-weight sequenceW , we recover
the dilation result of Curto and Vasilescu [13] with a different proof. It is worth mentioning
here that in the setting of unit ball in Cn, Schilo (see Theorem 3.21 [25]) extended Olofsson’s
results. To describe our result succinctly we need to develop some notations and terminology.

Let T = (T1, . . . , Tn) ∈ B(H)n be an n-tuple of commuting contractions. For β =
(β1, . . . , βn) ∈ Zn+ with β ≥ e = (1, . . . , 1) consider the multi-weight sequence Wβ =

(ωβ1 , . . . , ωβn), where ωβi =
{

1

(βi+l−1
l )

}
l≥0

and
(
βi+l−1

l

)
= (βi+l−1)!

(βi−1)!l!
, for all i = 1, . . . , n. Then

for a Hilbert space E , A2
Wβ

(E) is the E-valued weighted Bergman space over Dn with kernel
KWβ

IE , where

KWβ
(z,w) =

n∏
i=1

1

(1− ziw̄i)βi
(z = (z1, . . . , zn) ∈ Dn,w = (w1, . . . , wn) ∈ Dn).

Set

K−1
Wβ

(T, T ∗) =
∑

0≤α≤β

(−1)|α|
β!

α!(β − α)!
TαT ∗α.

Here for α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn+, |α| =
∑n

i=1 αi, α! = α1! · · ·αn!, and α ≤ β
if and only if αi ≤ βi for all i = 1, . . . , n. We say that an n-tuple of commuting contraction
is a part of the multi-shift (Mz1 , . . . ,Mzn) on A2

Wβ
(E) if there exists a joint (M∗

z1
, . . . ,M∗

zn)-

invariant subspace Q of A2
Wβ

(E) such that

Ti ∼= PQMzi |Q

for all i = 1, . . . , n. In this set up, Curto and Vasilescu [14] proved that for β ∈ Zn+ with β ≥ e,
a commuting tuple of contractions T = (T1, . . . , Tn) is a part of the multi-shift (Mz1 , . . . ,Mzn)
on A2

Wβ
(E) if and only if T is pure and satisfies

K−1
Wβ

(T, T ∗) ≥ 0.
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In this article, we show that this result is true for a large class of kernels corresponding to
multi-weight sequences. For a multi-weight sequence W = (ω1, . . . , ωn), we set

S(W) := {(ω′λ1
, . . . , ω′λn) : ω′λi ∈ {ωλi ,1}, i = 1, . . . , n},

where we denote by 1 the constant weight sequence 1. For a coefficient Hilbert space E , we
denote by A2

W(E) the reproducing kernel Hilbert space corresponding to the kernel KW on
the polydisc Dn defined by

KW(z,w) =
∑
α∈Zn+

1

ω
(1)
α1 · · ·ω

(n)
αn

(zw̄)αIE .

By one of the assumptions in the definition of multi-weight sequence, the analytic function

kW(z) =
∑
α∈Zn+

1

ω
(1)
α1 · · ·ω

(n)
αn

zα

on Dn associated to KW does not vanish on Dn. Suppose that

(1.1)
1

kW(z)
=
∑
α∈Zn+

cαz
α (z ∈ Dn)

is the Taylor expansion of 1/kW . For an n-tuple of commuting contractions T = (T1, . . . , Tn) ∈
B(H)n, and r ∈ (0, 1)n, using the hereditary functional calculus introduced by Agler in [2],
we define

(1.2) DW,T (r) :=
∑
α∈Zn+

cαr
αTαT ∗α,

where cα as in (1.1) and if r = (r1, . . . , rn), rα = rα1
1 · · · rαnn .

Definition 1.1. An n-tuple of commuting contractions T = (T1, . . . , Tn) ∈ B(H)n is said
to be an W-hypercontraction corresponding to a multi-weight sequence W = (ω1, . . . , ωn) if
DW ′,T (r) ≥ 0 for all W ′ ∈ S(W) and r ∈ (0, 1)n. In addition, if each Ti is a pure contraction,
then we say that T is a pure W-hypercontraction.

With these terminologies, one of the main theorems of this article is the following.

Theorem 1.2. Let W be a multi-weight sequence. An n-tuple of commuting contractions
T = (T1, . . . , Tn) on H is a part of the multi-shift (Mz1 , . . . ,Mzn) on A2

W(E) for some Hilbert
space E if and only if T is a pure W-hypercontraction.

This theorem is proved in Section 4 as Theorem 4.4 by finding dilation of such an n-tuple
of commuting contraction T . We also remove the pureness assumption and find dilations of
W-hypercontractions (see Theorem 4.6 for more details).

In the case when W = Wβ for some β ∈ Zn+ with β ≥ e, we show that T is a pure Wβ-
hypercontractions if and only if T is pure and K−1

Wβ
(T, T ∗) ≥ 0. Therefore, for the particular

choice of multi-weight sequence W =Wβ, Theorem 1.2 recovers the classical result of Curto
and Vasilescu [14, 13] with a different proof. For the choice of multi-weight sequence Wβ

when β ∈ Rn
+ with β ≥ e, it also provides a natural generalization. Moreover, the class of
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multi-weight sequences is wide enough to include tensor product of reproducing kernel Hilbert
spaces corresponding to certain Nevanlinna-Pick kernels over D (see Example 3.2 below).

Section 3 is devoted to study multi-weight sequences and W-hypercontractions. In Sec-
tion 4, we find dilations of pureW-hypercontractions and more generally forW-hypercontractions.

2. Characteristic functions for ω-Hypercontractions

We construct characteristic functions of ω-hypercontractions in this section. We recall
the notion of ω-hypercontractions and their dilations first. Let ω = {ωk}k≥0 be a positive

decreasing sequence such that ω0 = 1 and lim infk→∞ ω
1
k
k = 1. Corresponding to the sequence

ω and a Hilbert space E , we denote by A2
ω(E) the E-valued weighted Bergman space; the

Hilbert function space consists of f ∈ O(D, E), the space of E-valued analytic functions f on
the open unit disc (D), such that

f(z) =
∑
k≥0

akz
k and ‖f‖2

ω :=
∑
k≥0

‖ak‖2ωk <∞ (ak ∈ E , z ∈ D).

It is also a reproducing kernel Hilbert space with the kernel Kω : D× D→ B(E) defined by

Kω(ζ, η) =
∑
k≥0

1

ωk
(ζη̄)kIE (ζ, η ∈ D).

If the co-efficient Hilbert space is C, we simply write A2
ω to denote A2

ω(C). The multiplication
operator Mz, known as shift operator, on A2

ω(E) is defined by (Mzf)(η) = ηf(η) for all η ∈ D.
A straight forward computation shows that

‖Mz‖2 = supk
ωk+1

ωk
.

Thus an equivalent condition for the shift operator to be a contraction is that the sequence ω
has to be a decreasing sequence. The kernel function Kω has an associated analytic function
kω on D defined by

kω(z) =
∑
k≥0

1

ωk
zk.

Properties of this associated analytic function has been very crucial in Olofsson’s consider-
ation. In fact, the class of weight sequences ω that he considered in [22] are so that the
associated analytic function kω on D possess some additional properties. The first natu-
ral property is that kω is non-vanishing. Then 1

kω
is also analytic on D and suppose that

1
kω

(z) =
∑

k≥0 ckz
k. Other properties that kω needs to satisfy are as follows:

(P1) The function kω
kω,r

has non negative Taylor coefficients for 0 < r < 1, where kω,r(z) =

kω(rz).

(P2) The quotients kω,r
kω

have uniformly bounded Taylor coefficients for 0 < r < 1.

(P3) The Taylor coefficients of the reciprocal function 1
kω

is absolutely summable and the

absolute sum of Taylor coefficients of kω,r
kω

for 0 < r < 1 form a uniformly bounded
family.
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The first two properties are essential to obtain dilations of ω-hypercontractions and we briefly
indicate below the role played by these properties. The above discussion also prompt us to
make the following definition.

Definition 2.1. A weight sequence is a positive decreasing sequence ω = {ωn}n≥0 such that

ω0 = 1, lim infn→∞ ω
1
n
n = 1 and the corresponding analytic function kω is non-vanishing on D

and satisfies (P1) and (P2) as above.

Natural examples of weight sequences are the constant sequence ωn = 1 for all n ≥ 0 and
for a fixed m ∈ N, ωn = 1

(n+m−1
n )

for all n ≥ 0. The constant sequence case corresponds to the

Hardy space where as the later corresponds to the Bergman space defined above with kernel
Km(z, w) = 1

(1−zw̄)m
(z, w ∈ D).

For the rest of this section we fix a weight sequence ω. We suppose that the reciprocal of
the associated analytic function kω has the following power series expansion:

(2.1)
1

kω
(z) =

∑
n≥0

cnz
n (z ∈ D).

Now we recall the notion of ω-hypercontraction introduced by Olofsson in [22].

Definition 2.2. A bounded linear operator T ∈ B(H) is said to be an ω-hypercontraction if
T is a contraction and satisfies

Dω,T (r) :=
∑
n≥0

rncnT
nT ∗n ≥ 0

for all r ∈ (0, 1), where cn’s are as in (2.1).

It can be shown that for the choice ω = {ωn}n≥0 where ωn = 1

(n+m−1
n )

for all n ≥ 0,

ω-hypercontractivity for a contraction T is same as m-hypercontractivity in the sense of
Agler [1] (see [22, Theorem 4.5] for a proof). Thus the notion of ω-hypercontractions is a
natural generalization of m-hypercontractions. Moreover, it has been shown in [22] that every
ω-hypercontraction is part of the shift operator Mz on the weighted Bergman space A2

ω(E)
for some suitable Hilbert space E ; we briefly recall this dilation result next.

Let T ∈ B(H) be an ω-hypercontraction. Then using the property (P1), it can be shown
that the SOT limit of the operator Dω,T (r) exists as r → 1. We denote

Dω,T (1) := SOT− lim
r→1

Dω,T (r),

and we define the defect operator and the defect space of T as

Dω,T :=
(
Dω,T (1)

)1/2
and Dω,T := ran(Dω,T ),

respectively. On the other hand, the property (P2) helps one to establish the identity

(2.2) ‖h‖2 =
∑
k≥0

1

ωk
‖Dω,TT

∗kh‖2 + lim
k→∞
‖T ∗kh‖2 (h ∈ H).



W-HYPERCONTRACTIONS AND THEIR MODEL 7

Then it is evident from the above identity that the map πω,T : H → A2
ω(Dω,T ) defined by

(2.3) πω,Th(z) =
∑
k≥0

1

ωk
(Dω,TT

∗kh)zk (h ∈ H, z ∈ D).

is a contraction and πω,TT
∗ = M∗

z πω,T . Moreover, setting Q2
T := SOT − limk→∞ T

kT ∗k and
QT := ranQT , we have an isometry Πω,T : H → A2

ω(Dω,T )⊕QT defined by

(Πω,Th)(z) =
(

(πω,Th)(z), QTh
)

(h ∈ H, z ∈ D)

and Πω,TT
∗ = (Mz ⊕ U)∗Πω,T , where U is a co-isometry on QT such that U∗QTh = QTT

∗h
for all h ∈ H. Summarizing the above discussion we have the following dilation result.

Theorem 2.3 (c.f. [22]). Let ω = {ωk}k≥0 be a weight sequence. If T is an ω-hypercontraction
on H, then there exist an isometry Πω,T : H → A2

ω(Dω,T ) ⊕QT and a co-isometry U on QT
such that

Πω,TT
∗ = (Mz ⊕ U)∗Πω,T .

In addition, if T is pure then there exists an isometry πω,T : H → A2
ω(Dω,T ) such that

πω,TT
∗ = M∗

z πω,T .

In the above theorem, the co-isometry U can be made to a unitary by taking a co-extension.
We do not include it in the statement as we shall use the present form of the theorem in later
section. The observant reader might have noticed that we have not used (P3) to obtain the
above dilation. But (P3) provides a necessary and sufficient condition for a contraction T ∈
B(H) to be an ω-hypercontraction. To be more precise, a contraction T is ω-hypercontraction
if and only if Dω,T (1) ≥ 0. For more details we refer the reader to [22, Theorem 6.2].

For Hilbert spaces E1 and E2, an operator-valued analytic map θ : D → B(E1, E2) is
a multiplier from H2

E1(D) to A2
ω(E2) if θf ∈ A2

ω(E2) for all f ∈ H2
E1(D). We denote by

M(H2
E1(D), A2

ω(E2)), the space of all multipliers from H2
E1(D) to A2

ω(E2). We also use Mθ, for
θ ∈M(H2

E1(D), A2
ω(E2)), to denote the associated multiplication operator by θ, that is,

Mθf = θf (f ∈ H2
E1(D)).

A multiplier θ ∈ M(H2
E1(D), A2

ω(E2)) is said to be partially isometric if Mθ is a partially
isometric operator from H2

E1(D) to A2
ω(E2). Such a partially isometric multiplier naturally oc-

cur in the Beurling-Lax-Halmos type characterization of invariant subspaces of vector-valued
weighted Bergman spaces (see [24]). The characterization relevant for us is the following.

Theorem 2.4 (c.f. [24]). If S is an Mz-invariant subspace of A2
ω(E∗), then there exist a

Hilbert space E and a partially isometric multiplier θ ∈M(H2
E(D), A2

ω(E∗)) such that

S = θH2
E(D).

Now combining Theorem 2.3 and Theorem 2.4, we can associate a partially isometric mul-
tiplier to a pure ω-hypercontraction as follows.
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Corollary 2.5. Let T ∈ B(H) be a pure ω-hypercontraction. Then there exist a Hilbert
space E and a partially isometric multiplier θ ∈M(H2

E(D), A2
ω(Dω,T )) such that

T ∼= PQθMz|Qθ ,

where Qθ = ran πω,T , πω,T is the dilation map corresponding to T as in Theorem 2.3 and
Q⊥θ = θH2

E(D).

In the rest of this section, we compute such a partially isometric multiplier explicitly corre-
sponding to each pure ω-hypercontraction. The construction is based on a recently developed
technique found in [11] in the context of m-hypercontractions. Let T ∈ B(H) be a pure
ω-hypercontraction. Since T is a contraction, we define DT := (I − TT ∗)1/2. It follows from
Lemma 3.6 in [22] that for h ∈ H,

(2.4) ‖DTh‖2 = ‖Dω,Th‖2 +
∑
k≥1

(
1

ωk
− 1

ωk−1

)‖Dω,TT
∗kh‖2.

Also, since T is pure it follows from (2.2) that

(2.5) ‖h‖2 =
∑
n≥0

1

ωn
‖Dω,TT

∗nh‖2.

Consider the map Cω,T : H → l2(Z+,Dω,T ) defined by

Cω,T (h) = {√ρnDω,TT
∗nh}n≥0, (h ∈ H)

where ρ0 = 1 and ρn = 1
ωn
− 1

ωn−1
≥ 0 for all n ≥ 1. Then by the identity (2.4), for h ∈ H,

‖Cω,Th‖2 =
∑
n≥0

ρn‖Dω,TT
∗nh‖2

= ‖Dω,Th‖2 +
∑
n≥1

(
1

ωn
− 1

ωn−1

)‖Dω,TT
∗nh‖2

= ‖DTh‖2 ≤ ‖h‖2.

Thus Cω,T is a contraction. Now by identity (2.5),

IH = π∗ω,Tπω,T =
∑
n≥0

1

ωn
T nD2

ω,TT
∗n,
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and consequently,

IH − C∗ω,TCω,T =
∑
n≥0

1

ωn
T nD2

ω,TT
∗n −

∑
n≥0

ρnT
nD2

ω,TT
∗n

=
∑
n≥0

(
1

ωn
− ρn)T nD2

ω,TT
∗n

=
∑
n≥1

1

ωn−1

T nD2
ω,TT

∗n

=
∑
n≥0

1

ωn
T n+1D2

ω,TT
∗n+1

= TT ∗.

This shows that the map XT =

[
T ∗

Cω,T

]
: H → H⊕ l2(Z+,Dω,T ) defined by

XT (h) = (T ∗h,Cω,Th) (h ∈ H)

is isometry. By adding a Hilbert space E , if necessary, we get a unitary operator

U :=
[
XT YT

]
: H⊕ E → H⊕ l2(Z+,Dω,T ),

where YT = U |E : E → H ⊕ l2(Z+,Dω,T ) is a contraction. By setting YT =

[
B
D

]
, where

B = PHYT ∈ B(E ,H) and D = Pl2(Z+,Dω,T )YT ∈ B(E , l2(Z+,Dω,T )), we have the following
result which will lead us to construct the characteristic function.

Theorem 2.6. Let T ∈ B(H) be a pure ω-hypercontraction. Then the map Cω,T : H →
l2(Z+,Dω,T ) defined by

Cω,T (h) = {√ρnDω,TT
∗nh}n≥0, where ρ0 = 1 and ρn =

1

ωn
− 1

ωn−1

for all n ≥ 1,

is a contraction and there exist a Hilbert space E and bounded operators B ∈ B(E ,H) and
D = {Dn}∞n=0 ∈ B(E , l2(Z+,Dω,T )) where each Dn ∈ B(E ,Dω,T ) such that[

T ∗ B
Cω,T D

]
: H⊕ E → H⊕ l2(Z+,Dω,T )

is unitary.

The fact that each triple (E , B,D) – which appears in the above theorem – gives rise to a
characteristic function of T , motivates us to make the following definition.

Definition 2.7. A triple (E , B,D) consisting of a Hilbert space E and bounded linear oper-
ators B ∈ B(E ,H) and D ∈ B(E , l2(Z+,Dω,T )) is said to be a characteristic triple of a pure
ω-hypercontraction T on B(H) if[

T ∗ B
Cω,T D

]
: H⊕ E → H⊕ l2(Z+,Dω,T )
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is unitary.

It turns out that characteristic triple is unique in the following sense.

Theorem 2.8. If (E1, B1, D1) and (E2, B2, D2) are two characteristic triple of a pure ω-
hypercontraction T ∈ B(H), then there exists a unitary U : E2 → E1 such that

(E2, B2, D2) = (U∗E1, B1U,D1U).

Proof. The proof follows from the observation that

[
B1

D1

]
and

[
B2

D2

]
are isometries and their

range is same.
We are now in a position to state the main result of this section which provides an explicit

method to construct characteristic functions. The proof of the theorem is similar to Theorem
3.1 in [11] and we only include a sketch of the proof here.

Theorem 2.9. Let T be a pure ω-hypercontraction on H, and let (E , B,D) be a characteristic
triple of T . Then

θT (z) =
∑
n≥0

√
ρnDnz

n + zDω,T

∑
n≥0

1

ωn
znT ∗nB

is a partially isometric multiplier in M(H2
E(D), A2

ω(Dω,T )) such that

Q⊥T = θTH
2
E(D) and T ∼= PQTMz|QT ,

where ρ0 = 1, ρn = 1
ωn
− 1

ωn−1
for all n ≥ 1.

Sketch of the proof. For a contraction A and z ∈ D, we set Kω(z, A) :=
∑

n≥0
1
ωn
znAn,

where the series converges as zA is a strict contraction. Now, note that

(1− zT ∗)Kω(z, T ∗) =
1

ω0

+
∑
n≥1

(
1

ωn
− 1

ωn−1

)znT ∗n =
∑
n≥0

ρnz
nT ∗n.

A direct calculation using the above identity and the unitary property of

[
T ∗ B
Cω,T D

]
, it can

be shown that

(2.6) Kω(η, ζ)IDω,T −
θT (η)θT (ζ)∗

1− ηζ̄
= Dω,TKω(η, T ∗)Kω(ζ̄ , T )Dω,T (ζ, η ∈ D).

Then using some standard arguments in the theory of reproducing kernel Hilbert spaces, we
conclude that

θT ∈M(H2
E(D), A2

ω(Dω,T ))

and
M∗

θT
Kω(., ζ)h = K1(., ζ)θT (ζ)∗h (ζ ∈ D, h ∈ Dω,T ),

where K1(η, ζ) = (1− ηζ̄)−1. Consequently,

(I −MθTM
∗
θT

)Kω(., ζ)h = (Kω(., ζ)IDω,T −K1(., ζ)θT (.)θT (ζ)∗)h,

and therefore by (2.6),

(I −MθTM
∗
θT

)Kω(., ζ)h = Dω,TKω(., T ∗)Kω(ζ̄ , T )Dω,Th
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for all ζ ∈ D and h ∈ Dω,T . On the other hand, the adjoint of the dilation map for the pure
ω-hyeprercontraction π∗ω,T : A2

ω(Dω,T )→ H is given by

π∗ω,TKω(., ζ)h = Kω(ζ̄ , T )Dω,Th (ζ ∈ D, h ∈ Dω,T ).

Then it is easy to see that

πω,Tπ
∗
ω,TKω(., ζ)h = Dω,TKω(., T ∗)Kω(ζ̄ , T )Dω,Th,

for all ζ ∈ D and h ∈ Dω,T . Combining all these we have the required identity

πω,Tπ
∗
ω,T +MθTM

∗
θT

= IA2
ω(Dω,T ).

That is, θT is a partially isometric multiplier such that Q⊥T = θTH
2
E(D).

We call the partially isometric multiplier θT obtained in the above theorem corresponding
to a characteristic triple (E , B,D) as characteristic function of T . Let T1 and T2 be two
pure ω-hypercontractions on H1 and H2, respectively. Also, let θT1 and θT2 be characteristic
functions corresponding to the characteristic triples (E1, B1, D1) and (E2, B2, D2) of T1 and
T2, respectively. Then the characteristic functions θT1 and θT2 is said to be coincide if there
exists two unitaries τ : E2 → E1 and τ∗ : Dω,T ∗1 → Dω,T ∗2 such that

θT2(z) = τ∗θT1(z)τ (z ∈ D).

We end the section with the observation that characteristic function is completely unitary
invariant for pure ω-hypercontractions. We omit the proof as it is exactly same as Theorem
3.2 in [11].

Theorem 2.10. Let T1 and T2 be two pure ω-hypercontractions on H1 and H2, respectively.
Then T1 and T2 are unitary equivalent if and only if θT1 and θT2 coincide.

3. W-Hypercontractions

Let, for each i = 1, . . . , n, ωi = {ω(i)
m }m≥0 be a weight sequence. Then the n-tuple of

weight sequences W = (ω1, . . . , ωn) is called a multi-weight sequence. Corresponding to such
a multi-weight sequence W and a Hilbert space E , consider the E-valued weighted Bergman
space A2

W(E) over Dn consists of f ∈ O(Dn, E) such that

f(z) =
∑
α∈Zn+

aαz
α and ‖f‖2 :=

∑
α∈Zn+

‖aα‖2ω(1)
α1
· · ·ω(n)

αn <∞ (aα ∈ E , z ∈ Dn).

The Hilbert space A2
W(E) is unitarily equivalent to A2

ω1
⊗· · ·⊗A2

ωn⊗E via the natural unitary
which sends the monomials zαe to zα1

1 ⊗ · · · ⊗ zαnn ⊗ e for all α ∈ Zn+ and e ∈ E ; it is also a
reproducing kernel Hilbert space with kernel

KW(z,w) = Kω1(z1, w1) · · ·Kωn(zn, wn)IE =
∑
α∈Zn+

1

ω
(1)
α1 · · ·ω

(n)
αn

(zw̄)αIE (z,w ∈ Dn).
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The analytic function associated to KW is crucial in what follows and has the form

kW(z) = kω1(z1) · · · kωn(zn) =
∑
α∈Zn+

1

ω
(1)
α1 · · ·ω

(n)
αn

zα (z ∈ Dn),

where kωi(z) =
∑

m≥0
1

ω
(i)
m

zm is the associated analytic function corresponding to the kernel

function Kωi and the weight sequence ωi. Since each ωi is a weight sequence, kωi does not
vanish on D and consequently kW does not vanish on Dn and

1

kW(z)
=
∑
α∈Zn+

c(1)
α1
· · · c(n)

αn z
α,(3.1)

where the coefficients satisfy

1

kωi(z)
=
∑
m≥0

c(i)
m z

m (z ∈ D, 1 ≤ i ≤ n).

The several variable analogue of properties (P1), (P2) and (P3) that the analytic function
kW should satisfy are as follows:

(P1′) The function kW
kW,r

has non negative Taylor coefficients for all r ∈ (0, 1)n, where for

r = (r1, . . . , rn) and z ∈ Dn,

kW,r(z) = kω1(r1z1) · · · kωn(rnzn).

(P2′) The quotients
kW,r
kW

have uniformly bounded Taylor coefficients for all r ∈ (0, 1)n.

(P3′) The Taylor coefficients of the reciprocal function 1
kW

is absolutely summable and the

absolute sum of Taylor coefficients of
kW,r
kW

for all r ∈ (0, 1)n form a uniformly bounded
family.

We observe that the analytic function kW automatically inherits properties (P1′) and (P2′).

Proposition 3.1. Let W = (ω1, . . . , ωn) be a multi-weight sequence and kW be the associated
analytic function on Dn as above. Then kW satisfies (P1′) and (P2′).

In addition if, for all i = 1, . . . , n, kωi satisfies (P3) then kW also satisfies (P3′).

Proof. Let r, s ∈ (0, 1]n. Then for each i and |zi| < min(1/ri, 1/si), we have

kωi(rizi)

kωi(sizi)
= (
∑
n≥0

1

ω
(i)
n

rni z
n
i )(
∑
m≥0

c(i)
m s

m
i z

m
i ) =

∑
m≥0

a(i)
m (ri, si)z

m
i ,

where

(3.2) a(i)
m (ri, si) =

∑
0≤k≤m

rki

ω
(i)
k

c
(i)
m−ks

m−k
i .

Then

kW,r(z)

kW,s(z)
=
kω1(r1z1)

kω1(s1z1)
· · · kωn(rnzn)

kωn(snzn)
=
∑
α∈Zn+

aα(r, s)zα,
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where aα(r, s) = a
(1)
α1 (r1, s1) · · · a(n)

αn (rn, sn) for all α ∈ Zn+. This in particular shows that kW
inherits (P1′) and (P2′) from that of kωi .

Now if each kωi satisfies (P3), then it follows from (3.1) and the identity above that kW
satisfies (P3′). This completes the proof.

Although there are abundant examples of analytic functions on Dn satisfying (P1′), (P2′)
and (P3′). We provide a few examples corresponding to a certain type of natural multi-weight
sequence.

Example 3.2. (i) For any β = (β1, . . . , βn) ∈ Rn
+ with β ≥ e, we consider the multi-

weight sequence Wβ = (ωβ1 , . . . , ωβn), where ωβi =
{

1

(βi+l−1
l )

}
l≥0

and
(
βi+l−1

l

)
= Γ(βi+l)

Γ(βi)l!
, for

i = 1, . . . , n. Then the analytic function on Dn corresponding to Wβ is

kWβ
(z) = kωβ1

(z1) · · · kωβn (zn) =
1

(1− z1)β1
· · · 1

(1− zn)βn

=
(∑
α1≥0

(
β1 + α1 − 1

α1

)
zα1

1

)
· · ·
( ∑
αn≥0

(
βn + αn − 1

αn

)
zαnn

)
.

By Corollary 5.5 in [22], the analytic function kωβi (zi) = 1
(1−zi)βi

, for each i = 1, . . . , n, has

the properties (P1), (P2), and (P3). Therefore, using Proposition 3.1, the analytic function
kWβ

(z) on Dn corresponding to the multi-weight sequence Wβ also satisfies the properties
(P1′), (P2′) and (P3′).

Moreover, the reproducing kernel Hilbert space corresponding to the multi-weight sequence
Wβ is the weighted Bergman space over Dn with kernel

KWβ
(z,w) =

n∏
i=1

1

(1− ziw̄i)βi
(z,w ∈ Dn).

In particular, it is easy to see that for β = (1, . . . , 1), each of the weight sequence becomes the
constant sequence 1, which we denote by 1, and the corresponding reproducing kernel Hilbert
space is the Hardy space over Dn.

(ii) For each i = 1, . . . , n, we consider the sequence ωi = {ω(i)
k }k≥0 such that it is a positive

decreasing sequence satisfying ω
(i)
0 = 1, lim infn→∞ ω

(i)
1
k

k = 1, and the associated analytic
function kωi(z) =

∑
l≥0

1

ω
(i)
l

zl (z ∈ D) is a finite product of analytic functions corresponding

to some Nevanlinna-Pick kernels [3]. Then by Proposition 5.4 in [22], each ωi = {ω(i)
k }k≥0

is a weight sequence and the associated analytic function kωi satisfies (P3). Therefore, using
Proposition 3.1, W = (ω1, . . . , ωn) is a multi-weight sequence and the associated analytic
function kW satisfies (P3′).

Recall that an n-tuple of commuting contractions T = (T1, . . . , Tn) ∈ B(H)n is an W-
hypercontraction corresponding to a multi-weight sequenceW = (ω1, . . . , ωn) if DW ′,T (r) ≥ 0
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for all W ′ ∈ S(W) and r ∈ (0, 1)n, where

(3.3) DW,T (r) :=
∑
α∈Zn+

cαr
αTαT ∗α,

cα as in (3.1) and

S(W) := {(ω′λ1
, . . . , ω′λn) : ω′λi ∈ {ωλi ,1}, i = 1, . . . , n}.

For a non-empty subset Λ = {λ1, . . . , λm} of I = {1, . . . , n}, we set

TΛ := (Tλ1 , . . . , Tλm), and WΛ := (ωλ1 , . . . , ωλm).

One of the important properties is that W-hypercontractivity is preserve for subtuples of
an W-hypercontraction.

Proposition 3.3. Let T be an W-hypercontraction for some multi-weight sequence W. Then
for any non-empty subset Λ ⊆ I, TΛ is a WΛ-hypercontraction.

Proof. We only consider Λ = {1, . . . , n − 1} and show that TΛ is an WΛ-hypercontraction,
as the argument for general Λ ⊆ I is similar. Let W ′ = (ω′1, . . . , ω

′
n−1) ∈ S(WΛ) and set

W ′′ := (W ′,1) = (ω′1, . . . , ω
′
n−1,1) ∈ S(W). Since T = (T1, . . . , Tn) is anW-hypercontraction

and W ′′ ∈ S(W), DW ′′,T (r) ≥ 0 for all r ∈ (0, 1)n.
Then using Agler’s hereditary calculus to the identity

kW ′′(r1z1, . . . , rnzn) = (1− rnzn)−1kW ′(r1z1, . . . , rn−1zn−1),

we get

DW ′′,T (r) = DW ′,TΛ
(r′)− rnTnDW ′,TΛ

(r′)T ∗n ,

where r′ = (r1, . . . , rn−1). Now using telescoping sum we have

DW ′,TΛ
(r′) =

l∑
k=0

rknT
k
nDW ′′,T (r)T ∗kn + rl+1

n T l+1
n DW ′,TΛ

(r′)T ∗(l+1)
n .

Since rn ∈ (0, 1), taking limit as l→∞ we conclude that

DW ′,TΛ
(r′) =

∞∑
k=0

rknT
k
nDW ′′,T (r)T ∗kn ≥ 0.

This completes the proof.

The following proposition is the key to define defect operator and defect space corresponding
to an W-hypercontraction.

Proposition 3.4. Let W be a multi-weight sequence. Let T be an n-tuple of commuting
contractions such that DW,T (r) ≥ 0 for all r ∈ (0, 1)n. Then

SOT− lim
r→e

DW,T (r)

is a positive operator, where e = (1, . . . , 1).
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Moreover, if the associated analytic function kW satisfies (P3′) then

lim
r→e

DW,T (r) =
∑
α∈Zn+

cαT
αT ∗α,

where the sum converges in the operator norm in B(H).

Proof. For the existence of the strong operator limit, it is enough to show that if r, s ∈ (0, 1)n

with r ≤ s then DW,T (s) ≤ DW,T (r). Let r ≤ s. Without any loss of generality, we assume
that ri = si for all i = 1, . . . ,m and ri < si for all i = m+ 1, . . . , n. Then using the identity

kW(s1z1) · · · kW(snzn)

kW(r1z1) · · · kW(rnzn)
=
kW(sm+1zm+1) · · · kW(snzn)

kW(rm+1zm+1) · · · kW(rnzn)
=

∑
α∈Zn−m+

aα(sm+1, . . . , sn, rm+1, . . . rn)zα,

where aα(sm+1, . . . , sn, rm+1, . . . rn) = a
(m+1)
α1 (sm+1, rm+1) · · · a(n)

αn−m(sn, rn) for all α ∈ Zn−m+ ,
and Agler’s hereditary functional calculus we have that

(3.4) DW,T (r) =
∑

α∈Zn−m+

aα(sm+1, . . . sn, rm+1, · · · , rn)TαDW,T (s)T ∗α.

Moreover, since (ωm+1, . . . , ωn) is a multi-weight sequence, by (P1′),

aα(sm+1, . . . sn, rm+1, · · · , rn) ≥ 0

for all (α ∈ Zn−m+ ) and a(0,...,0)(sm+1, . . . sn, rm+1, · · · , rn) = 1. This shows that DW,T (s) ≤
DW,T (r).

Finally, if kW satisfies (P3′), by a simple use of Lebesgue’s dominated convergence theorem
we also have DW,T (r)→

∑
α∈Zn+

cαT
αT ∗α as r→ e in B(H). This completes the proof.

Remark 3.5. The proof of the above proposition also suggests that if r ∈ (0, 1)m and s ∈
(0, 1)n−m then

SOT− lim
r→(1,...,1)

DW,T (r, s) ≥ 0.

We denote the positive operator whose existence is shown in the above proposition by

DW,T (e) := SOT− lim
r→e

DW,T (r),

and the defect operator and the defect space of T by

(3.5) DW,T := DW,T (e)1/2 and DW,T := ranDW,T ,

respectively.
It could be difficult in general to determine when an n-tuple of commuting contractions

T = (T1, . . . , Tn) is an W-hypercontraction as it asks to verify infinitely many inequalities.
However, for certain multi-weight sequences it becomes easier to verify. For instance, consider
the multi-weight sequence Wγ for γ = (γ1, . . . , γn) ∈ Zn+ with γ ≥ e as in 3.2. In this case,
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we show that the notion of γ-contractive multi-operator in the sense of [14] is same as Wγ-
hypercontraction. Recall that an n-tuple of commuting contractions T = (T1, . . . , Tn) is a
γ-contractive multi-operator if for all 0 ≤ β ≤ γ,

K−1
Wβ

(T, T ∗) =
∑

0≤α≤β

β!

α!(β − α)!
TαT ∗α ≥ 0.

Observe that the operator K−1
Wβ

(T, T ∗) can also be represented as

K−1
Wβ

(T, T ∗) = (I − CT1)β1 · · · (I − CTn)βn(I),

where for an operator A ∈ B(H), the completely positive map CA : B(H)→ B(H) is defined
by CA(X) = AXA∗ (X ∈ B(H)). We begin with the following lemma.

Lemma 3.6. Let γ = (γ1, . . . , γn) ∈ Rn
+ and r ∈ (0, 1)n. If T = (T1, . . . , Tn) ∈ B(H)n satisfies

DWγ ,T (r) ≥ 0 then DWβ ,T (r) ≥ 0 for all β ∈ Rn
+ such that 0 ≤ β ≤ γ.

Proof. Let 0 ≤ β ≤ γ. For (z1, . . . , zn) ∈ Dn and r ∈ (0, 1)n, applying Agler’s hereditary
functional calculus to the identity

(1− rz1)β1 . . . (1− rzn)βn =
1

(1− rz1)γ1−β1 . . . (1− rzn)γn−βn
(1− rz1)γ1 . . . (1− rzn)γn ,

we have

DWβ ,T (r) =
∑
δ∈Zn+

rδ
(
γ − β + δ − e

δ

)
T δDWγ ,T (r)T ∗δ ≥ 0,

where for β = (β1, . . . , βn) and α = (α1, . . . , αn),
(
β
α

)
=
(
β1

α1

)
· · ·
(
βn
αn

)
. This completes the

proof.

To simplify computations we borrow the following notation from [14]. For β ∈ Zn+, we

denote by ∆β
T the map on B(H) defined by

∆β
T := (I − CT1)β1 · · · (I − CTn)βn

and for r = (r1, . . . , rn) ∈ (0, 1)n,

∆β
rT := (I − r1CT1)β1 · · · (I − rnCTn)βn .

Theorem 3.7. Let T = (T1, . . . , Tn) ∈ B(H)n be an n-tuple of commuting contractions and
γ ∈ Zn+ such that γ ≥ e. Then the following are equivalent.

(a) T is an γ-contractive multi-operator.
(b) T is an Wγ-hypercontraction.

Proof. If T is an Wγ-hypercontraction then by Lemma 3.6, it follows that DWβ ,T (r) ≥ 0 for
all 0 ≤ β ≤ γ and r ∈ (0, 1)n. Then by taking limit as r → e and using Proposition 3.4, we
conclude that DWβ ,T (e) = K−1

Wβ
(T, T ∗) ≥ 0 for all 0 ≤ β ≤ γ. This proves (b)⇒ (a).

To prove (a) ⇒ (b), let 0 ≤ β ≤ γ. We work on one component at a time and only

show that ∆β
(T ′,rTn)(I) ≥ 0 for all r ∈ (0, 1), where T ′ = (T1, . . . , Tn−1), as repetition of the

same argument will then establish ∆β
rT (I) ≥ 0 for all r ∈ (0, 1)n. To this end, we show that
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∆β
(T ′,rTn)(I) ≥ ∆β

T (I) ≥ 0. If β = (β1, . . . , βn) and βn = 0, then there is nothing to prove.

Assume that βn > 0 and set β′ = (β1, . . . , βn−1). First note that

∆β
(T ′,rTn)(I)−∆β

T (I) = ∆β′

T ′ [(I − rCTn)βn(I)− (I − CTn)βn(I)]

= (1− r)
βn−1∑
l=0

∆β′

T ′CTn(I − rCTn)(βn−1−l)(I − CTn)l(I).

It is now enough to show that ∆β′

T ′(I−rCTn)k(I−CTn)(βn−1−k)(I) ≥ 0 for all k = 0, . . . , βn−1.

For k = 0, ∆β′

T ′(I − CTn)(βn−1)(I) = ∆
(β′,βn−1)
T (I) ≥ 0 by the hypothesis. For k = 1,

∆β′

T ′(I − rCTn)(I − CTn)(βn−2)(I)

= ∆β′

T ′ [(I − CTn)(βn−2)(I)− rCTn(I − CTn)(βn−2)(I)]

= ∆
(β′,βn−2)
T (I)− rCTn∆

(β′,βn−2)
T (I)

≥ ∆
(β′,βn−2)
T (I)− CTn∆

(β′,βn−2)
T (I) (as ∆

(β′,βn−2)
T (I) ≥ 0 and 0 < r < 1)

= ∆
(β′,βn−1)
T (I).

This shows that ∆β′

T ′(I−rCTn)(I−CTn)(βn−2)(I) ≥ ∆
(β′,βn−1)
T (I) ≥ 0. By a similar calculation

as above one can show that

∆β′

T ′(I − rCTn)2(I − CTn)(βn−3)(I) ≥ ∆β′

T ′(I − rCTn)(I − CTn)(βn−2)(I) ≥ ∆
(β′,βn−1)
T (I) ≥ 0.

Repeating this k-times we have the following chain of inequalities:

∆β′

T ′(I − rCTn)k(I − CTn)(βn−1−k)(I) ≥ ∆β′

T ′(I − rCTn)k−1(I − CTn)(βn−k)(I)

≥ · · · ≥ ∆β′

T ′(I − rCTn)(I − CTn)(βn−2)(I) ≥ ∆
(β′,βn−1)
T (I) ≥ 0.

This completes the proof.

Even for γ ∈ Rn
+, we have a similar result to the above Theorem.

Theorem 3.8. Let T = (T1, . . . , Tn) ∈ B(H)n be an n-tuple of commuting contractions and
γ ∈ Rn

+ such that γ ≥ e. Then the following are equivalent.

(a) K−1
Wβ

(T, T ∗) := (I − CT1)β1 · · · (I − CTn)βn(I) ≥ 0 for all β ∈ Rn
+ such that 0 ≤ β ≤ γ.

(b) T is an Wγ-hypercontraction.

Proof. If T is an Wγ-hypercontraction then by Lemma 3.6, it follows that DWβ ,T (r) ≥ 0 for
all β ∈ Rn

+ such that 0 ≤ β ≤ γ. Then by taking limit as r → e and using Proposition 3.4,
we conclude that DWβ ,T (e) = K−1

Wβ
(T, T ∗) ≥ 0 for all 0 ≤ β ≤ γ. This proves (b)⇒ (a).

To prove (a)⇒ (b), it is enough to prove that for 0 ≤ β ≤ γ and r ∈ (0, 1), ∆
(β′,βn)
(T ′,rTn)(I) ≥ 0,

where β = (β1, . . . , βn) and β′ = (β1, . . . , βn−1). Let r ∈ (0, 1) be fixed. If βn = 0, then

∆
(β′,βn)
(T ′,rTn)(I) = ∆β′

T ′(I) ≥ 0. Assume that βn > 0. First we consider the case when βn ∈ Z+. If

1 ≤ βn, then using the fact ∆β′

T ′(I) ≥ 0, we have

∆
(β′,1)
(T ′,rTn)(I) = ∆β′

T ′(I − rCTn)(I) ≥ ∆β′

T ′(I − CTn)(I) = ∆
(β′,1)
T (I) ≥ 0.
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Similarly if 2 ≤ βn, then using ∆
(β′,1)
(T ′,rTn)(I) ≥ 0,

∆
(β′,2)
(T ′,rTn)(I) = ∆

(β′,1)
(T ′,rTn)(I−rCTn)(I) ≥ ∆

(β′,1)
(T ′,rTn)(I−CTn)(I) = ∆

(β′,1)
T (1−rCTn)(I) ≥ ∆

(β′,2)
T (I) ≥ 0.

By repeating this method sufficient number of times we conclude that ∆
(β′,βn)
(T ′,rTn)(I) ≥ 0 if βn is

an integer. Next we suppose that βn /∈ Z+. Let [βn] be the largest integer which is less than
or equal to βn. We set δ = βn− [βn]. Since 0 < δ < 1, observe that (1−x)δ = 1−

∑∞
k=1 bkx

k,

where bk ≥ 0 for all k ≥ 1. Now using ∆
(β′,[βn])
(T ′,rTn)(I) ≥ 0,

∆
(β′,βn)
(T ′,rTn)(I)

= ∆β′

T ′(I − rCTn)βn(I)

= ∆β′

T ′(I − rCTn)[βn](I − rCTn)δ(I)

= ∆
(β′,[βn])
(T ′,rTn)(I)−

∞∑
k=1

bkr
kCk

Tn∆
(β′,[βn])
(T ′,rTn)(I)

≥ ∆
(β′,[βn])
(T ′,rTn)(I)−

∞∑
k=1

bkC
k
Tn∆

(β′,[βn])
(T ′,rTn)(I)

= ∆
(β′,[βn])
(T ′,rTn)(I − CTn)δ(I).

To complete the proof of the theorem, we apply the similar strategy as in the proof of the
above theorem to get a chain of inequalities. That is,

∆β′

T ′(I − CTn)δ(I − rCTn)[βn](I) ≥ ∆β′

T ′(I − CTn)δ+1(I − rCTn)[βn]−1(I)

≥ · · · ≥ ∆β′

T ′(I − CTn)δ+[βn]−1(I − rCTn)(I) ≥ ∆β′

T ′(I − CTn)δ+[βn](I) = ∆β
T (I) ≥ 0.

This completes the proof.

We end this section with a few examples of W-hypercontractions.

Examples 3.9. (i) We say T = (T1, . . . , Tn) is a Szegö tuple on H if T is a commuting
tuple of contractions on H such that S−1

n (T, T ∗) ≥ 0 where Sn is the Szegö kernel of the
Hardy space over Dn. Moreover, we say T is a Brehmer tuple ([12]) if TΛ is a Szegö tuple
for any non-empty subset Λ of I. If T is a Brehmer tuple then, by Theorem 3.7, T is an
W-hypercontraction for the multi-weight sequence W = (1, . . . ,1).

(ii) Let T = (T1, . . . , Tn) be an n-tuple of commuting co-isometries on H and W =
(ω1, . . . , ωn) be a multi-weight sequence. For any W ′ ∈ S(W), we have

DW ′,T (r) =
∑
α∈Zn+

c′αr
αTαT ∗α =

1

kW ′(r)
IH (r ∈ (0, 1)n).

Since, kW ′(r) > 0 for any W ′ ∈ S(W), so T is an W-hypercontraction for any multi-weight
sequence W.

(iii) Let R = (R1, . . . , Rn) be an n-tuple of commuting contractions on H such that R1 is an
co-isometry and R

′
= (R2, . . . , Rn) is an W ′-hypercontraction. Then for any weight sequence



W-HYPERCONTRACTIONS AND THEIR MODEL 19

ω1, consider the multi-weight sequence W = (ω1,W ′). Let W ′′ = (ω1, W̃) ∈ S(W). Then
clearly W̃ ∈ S(W ′) and observe that for r ∈ (0, 1)n,

DW ′′,R(r) =
∑
α∈Zn+

c(1)
α1
· · · c(n)

αn r
αRα1

1 Rα2
2 · · ·Rαn

n R∗α1
1 R∗α2

2 · · ·R∗αnn

=
∑
α∈Zn+

c(1)
α1
· · · c(n)

αn r
αRα2

2 · · ·Rαn
n Rα1

1 R∗α1
1 R∗α2

2 · · ·R∗nn

=
( ∑
α1≥0

c(1)
α1
rα1

1

)
DW̃,R′ (r

′
)

=
1

kω1(r1)
DW̃,R′ (r

′
) ≥ 0,

where r
′
= (r2, . . . , rn). Thus R = (R1, . . . , Rn) is an W-hypercontraction on H.

(iv) Let Mz = (Mz1 , . . . ,Mzn) be the n-tuple of multi-shifts on A2
W(E) for some multi-weight

sequence W, that is

Mzif(w) = wif(w) (i = 1, . . . , n, and w ∈ Dn).

Note that for f(z) =
∑

α∈Zn+
aαz

α and β = (β1, . . . , βn) ∈ Zn+,

M∗β
z f(w) =

∑
α∈Zn+

ω
(1)
α1+β1

· · ·ω(n)
αn+βn

ω
(1)
α1 · · ·ω

(n)
αn

aα+βw
α.

Then

‖M∗β
z f‖2 =

∑
α∈Zn+

ω
(1)2

α1+β1
· · ·ω(n)2

αn+βn

ω
(1)
α1 · · ·ω

(n)
αn

‖aα+β‖2.

Now, for r = (r1, . . . , rn) ∈ (0, 1)n,

〈DW,Mz(r)f, f〉 =
∑
β∈Zn+

cβr
β‖M∗β

z f‖2

=
∑
β∈Zn+

cβr
β(
∑
α∈Zn+

ω
(1)2

α1+β1
· · ·ω(n)2

αn+βn

ω
(1)
α1 · · ·ω

(n)
αn

‖aα+β‖2)

=
∑
α∈Zn+

ω(1)2

α1
· · ·ω(n)2

αn (
α∑
β≥0

cβr
β

ω
(1)
α1−β1

· · ·ω(n)
αn−βn

)‖aα‖2

=
∑
α∈Zn+

ω(1)2

α1
· · ·ω(n)2

αn aα(e, r)‖aα‖2,

where for the last equality we use identities as in 3.2. By the property (P1′), aα(e, r) ≥ 0 for
all r ∈ (0, 1)n and therefore, DW,Mz(r) ≥ 0 for all r ∈ (0, 1)n. Thus the n-tuple of multi-shifts
Mz on A2

W(E) is an W-hypercontraction. In fact, Mz is a pure W-hypercontraction. To see
this first observe that the space span{zαh : α ∈ Zn+, h ∈ E} is dense in A2

W(E). For fixed
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α ∈ Zn+ and h ∈ E, if we consider k ∈ Z+ such that k > |α|, then M∗k
zi

(zαh) = 0. Finally,

since {M∗k
zi
}k≥1 is uniformly bounded we get that M∗k

zi
→ 0 in the strong operator topology.

This shows that Mzi is a pure contraction for all i = 1, . . . , n.

4. Model For W-hypercontractions

The main purpose of this section is to find dilations of W-hypercontractions. This multi-
variate dilation is obtained using one-variable dilation at a time. The key to use one variable
dilation theory is a commutant lifting result which we describe first. Let T = (T1, . . . , Tn)
be anW-hypercontraction on H corresponding to a multi-weight sequenceW = (ω1, . . . , ωn).
Then considering the subset Λ = {i} of I and using Proposition 3.3 we have that each Ti is
an ωi-hypercontraction for all i = 1, . . . , n. Thus Dωi,Ti(1) := SOT− limr→1Dωi,Ti(r) ≥ 0 for
all i = 1, . . . , n, and recall that the corresponding defect operator and defect space are

Dωi,Ti = (Dωi,Ti(1))1/2 and Dωi,Ti = ranDωi,Ti ,

respectively. In what follows, we denote by Ŵi (1 ≤ i ≤ n) the multi-weight sequence obtained
from W = (ω1, . . . , ωn) by deleting ωi, that is,

Ŵi := (ω1, . . . , ωi−1, ωi+1, . . . , ωn).

Proposition 4.1. Let W be a multi-weight sequence and let T = (T1, . . . , Tn) be an W-
hypercontraction on H. Suppose (Mz ⊕ UT1) on A2

ω1
(Dω1,T1) ⊕QT1 is the dilation of T1 with

the dilation map Πω1,T1 : H → A2
ω1

(Dω1,T1) ⊕ QT1 as obtained in Theorem 2.3. Then there

exists an Ŵ1-hypercontraction V = (V2, . . . , Vn) on A2
ω1

(Dω1,T1)⊕QT1 such that

Πω1,T1T
∗
i = V ∗i Πω1,T1 and Vi(Mz ⊕ UT1) = (Mz ⊕ UT1)Vi, (i = 2, . . . , n)

where Vi = (IA2
ω1
⊗ Ai)⊕Xi (i = 2, . . . , n) for some commuting operator tuples (A2, . . . , An)

on Dω1,T1 and (X2, . . . , Xn) on QT1.

Proof: Let 2 ≤ i ≤ n and consider the subset Λ = {1, i} of I. Since TΛ is a WΛ-
hypercontraction, then for the multi-weight sequence W ′ = (ω1,1) ∈ S(WΛ), we have
DW ′,TΛ

(1, 1) ≥ 0, that is, Dω1,T1(1) − TiDω1,T1(1)T ∗i ≥ 0. Applying Douglas factorization
lemma ([15]) to the above inequality we have a contraction Ai on Dω1,T1 such that

(4.1) Dω1,T1T
∗
i = A∗iDω1,T1 .

Thus, we get an (n − 1)-tuple of commuting contractions A = (A2, . . . , An) on Dω1,T1 . We

now show that A is an Ŵ1-hypercontraction. To this end, we only consider the multi-weight
sequence Ŵ1 and show that DŴ1,A

(r) ≥ 0 for all r ∈ (0, 1)n−1. As the required positivity

corresponding to other multi-weight sequences in S(Ŵ1) can be shown similarly. For any
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r ∈ (0, 1)n−1 and h ∈ H, we have

〈DŴ1,A
(r)Dω1,T1h,Dω1,T1h〉 =

∑
α=(α2,...,αn)∈Z(n−1)

+

rαc(2)
α2
· · · c(n)

αn 〈Dω1,T1A
αA∗αDω1,T1h, h〉

=
∑

α=(α2,...,αn)∈Z(n−1)
+

rαc(2)
α2
· · · c(n)

αn 〈T
αDω1,T1(1)T ∗αh, h〉

=
∑

α=(α2,...,αn)∈Z(n−1)
+

rαc(2)
α2
· · · c(n)

αn lim
s→1
〈TαDω1,T1(s)T ∗αh, h〉

= lim
s→1

∑
α∈Zn+

(r, s)αcα〈TαT ∗αh, h〉

= lim
s→1
〈DW,T (r, s)h, h〉 ≥ 0.

Here the positivity in the last equality follows from Remark 3.5. This proves that A is an
Ŵ1-hypercontraction.

On the other hand, recall from the construction of dilation in Theorem 2.3 that Q2
T1

=
SOT − limn→∞ T

n
1 T
∗n
1 , QT1 = ranQT1 and the co-isometry UT1 on QT1 is defined by the

identity U∗T1
QT1h = QT1T

∗
1 h for all h ∈ H. Now for any 2 ≤ i ≤ n, since Ti is a contraction

we have TiQ
2
T1
T ∗i ≤ Q2

T1
. Again applying Douglas factorization lemma to the inequality we

get a contraction Xi on QT1 such that

(4.2) X∗i QT1 = QT1T
∗
i (i = 2, . . . , n).

It is now easy to see that (UT1 , X2, . . . , Xn) is an n-tuple of commuting contractions on QT1 .

As before, we show that X = (X2, . . . , Xn) is an Ŵ1-hypercontraction and for this we only
show that DŴ1,X

(r) ≥ 0 for all r ∈ (0, 1)n−1 as the argument for other multi-weight sequences

is similar. Now for h ∈ H and r ∈ (0, 1)n−1,

〈DŴ1,X
(r)QT1h,QT1h〉 =

∑
α=(α2,...,αn)∈Z(n−1)

+

rαc(2)
α2
· · · c(n)

αn 〈T
α( lim
k→∞

T k1 T
∗k
1 )T ∗αh, h〉

= lim
k→∞

∑
α=(α2,...,αn)∈Z(n−1)

+

rαc(2)
α2
· · · c(n)

αn 〈T
αT ∗αT ∗k1 h, T ∗k1 h〉

= lim
k→∞
〈DŴ1,T

(r)T ∗k1 h, T ∗k1 h〉 ≥ 0.

Thus X is an Ŵ1-hypercontraction. We set

Vi := (IA2
ω1
⊗ Ai)⊕Xi ∈ B

(
A2
ω1

(Dω1,T1)⊕QT1

)
(i = 2, . . . , n).

Then it is evident that V = (V2, . . . , Vn) is an Ŵ1-hypercontraction. It remains to verify
that V satisfies the required commuting and intertwining relations. For any h ∈ H and
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i = 2, . . . , n,

Πω1,T1T
∗
i h =

(∑
k≥0

zk
1

ωk
Dω1,T1T

∗k
1 T ∗i h,QT1T

∗
i h
)

=
(∑
k≥0

zk
1

ωk
A∗iDω1,T1T

∗k
1 h,X∗i QT1h

)
=
(
(IA2

ω1
⊗ A∗i )

∑
k≥0

zk
1

ωk
Dω1,T1T

∗k
1 h,X∗i QT1h

)
= V ∗i Πω1,T1h.

Thus Πω1,T1T
∗
i = V ∗i Πω1,T1 for all i = 2, . . . , n. Finally, as each Xi commutes with UT1 it

follows that Mz ⊕ UT1 commutes with each Vi. This completes the proof.

Remark 4.2. If T1 is a pure contraction in the above proposition, then QT1 = 0 and therefore

Xi = 0 for all i = 2, . . . , n. Thus, in this case, the Ŵ1-hypercontraction V = (V2, . . . , Vn) will
be of the form Vi = IA2

ω1
⊗ Ai for all i = 2, . . . , n.

The following lemma is needed to prove the general dilation result below.

Lemma 4.3. Let T,X,A be as in Proposition 4.1 and let Λ ⊆ {2, . . . , n}. Then

(i) Dω1,T1DWΛ,AΛ
(1, . . . , 1)Dω1,T1 = DWΛ∪{1},TΛ∪{1}(1, . . . , 1).

(ii) QT1DWΛ,XΛ
(1, . . . , 1)QT1 = SOT− limk→∞ T

k
1 DWΛ,TΛ

(1, . . . , 1)T ∗k1 .

Proof: Let Λ = (λ1, . . . , λm) ⊆ {2, . . . , n}. Then

Dω1,T1DWΛ,AΛ
(1, . . . , 1)Dω1,T1 = Dω1,T1

(
SOT− lim

r→(1,...,1)

∑
α∈Zm+

rαc(λ1)
α1
· · · c(λm)

αm AαΛA
∗α
Λ

)
Dω1,T1

= SOT− lim
r→(1,...,1)

∑
α∈Zm+

rαc
(λ1)
(α1) · · · c

(λm)
αm TαΛD

2
ω1,T1

T ∗αΛ (by (4.1))

= SOT− lim
r→(1,...,1)

∑
α∈Zm+1

+

rαc(1)
α1
c(λ1)
α2
· · · c(λm)

αm+1
TαΛ∪{1}T

∗α
Λ∪{1}

= DWΛ∪{1},TΛ∪{1}(1, . . . , 1).

For the second part of the lemma we again do a similar computation.

QT1DWΛ,XΛ
(1, . . . , 1)QT1 = QT1

(
SOT− lim

r→(1,...,1)

∑
α∈Zm+

rαc(λ1)
α1
· · · c(λm)

αm Xα
ΛX

∗α
Λ

)
QT1

= SOT− lim
r→(1,...,1)

∑
α∈Zm+

rαc(λ1)
α1
· · · c(λm)

αm TαΛQ
2
T1
T ∗αΛ (by (4.2))

= SOT− lim
r→(1,...,1)

∑
α∈Zm+

rαc(λ1)
α1
· · · c(λm)

αm TαΛ (SOT− lim
k→∞

T k1 T
∗k
1 )T ∗αΛ

= SOT− lim
k→∞

T k1 DWΛ,TΛ
(1, . . . , 1)T ∗k1 .
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In the second last equality, one can interchange of limit and sum using Lebesgue’s dominated
convergence theorem and the interchange of limits in the last equality can be justified by
showing that the double limit exists (see the appendix below for more details). This completes
the proof.

Dilations of pure W-hypercontractions are very concrete and less complicated to describe
compared to that of general W-hypercontractions. We consider this simpler case first which
also helps facilitate the understanding of our dilation method. Recall that for a multi-weight
sequence W = (ω1, . . . , ωn) and a non-empty subset Λ = {λ1, . . . , λm} of I, we denote by WΛ

the multi-weight sequence (ωλ1 , . . . , ωλm). When Λ = {1, . . . , i} ⊆ I then we simply use Wi]

and W[i+1 to denote WΛ and WΛc , respectively, with the convention that W[n+1 = ∅.
Let T = (T1, . . . , Tn) be a pureW-hypercontraction on H. Let Mz on A2

ω1
(Dω1,T1) be the di-

lation of T1 with the canonical dilation map πω1,T1 : H → A2
ω1

(Dω1,T1) as in Theorem 2.3. Then

by Proposition 4.1 and Remark 4.2, we get an W[2-hypercontraction A(2) = (A
(2)
2 , . . . , A

(2)
n )

on Dω1,T1 such that

πω1,T1T
∗
i = (IA2

ω1
⊗ A(2)

i )∗πω1,T1 (i = 2, . . . , n).

Since each Ti is pure then by the intertwining relation 4.1 A(2) is also a pureW[2-hypercontraction.

We now apply Proposition 4.1 to A(2) as follows. Let π
ω2,A

(2)
2

: Dω1,T1 → A2
ω2

(D
ω2,A

(2)
2

) be the

dilation map of A
(2)
2 . Then we get a pure W[3-hypercontraction A(3) = (A

(3)
3 , . . . , A

(3)
n ) such

that

π
ω2,A

(2)
2
A

(2)∗
i = (IA2

ω2
⊗ A(3)∗

i )π
ω2,A

(2)
2

(i = 3, . . . , n).

Set Π1 := πω1,T1 : H → A2
ω1

(Dω1,T1) and

Π2 := IA2
ω1
⊗ π

ω2,A
(2)
2

: A2
ω1

(Dω1,T1)→ A2
ω1
⊗ A2

ω2
(D

ω2,A
(2)
2

) = A2
W2]

(D
ω2,A

(2)
2

).

Then a moments thought reveals that the map Π2 ◦ Π1 satisfies

(Π2 ◦ Π1)T ∗1 = M∗
z1

(Π2 ◦ Π1), (Π2 ◦ Π1)T ∗2 = M∗
z2

(Π2 ◦ Π1),

and for all i = 3, . . . , n,

(Π2 ◦ Π1)T ∗i = (IA2
W2]

(D2) ⊗ A
(3)
i )∗(Π2 ◦ Π1).

Repeating the above procedure j-times we get a pure W[j+1-hypercontraction A(j+1) =

(A
(j+1)
j+1 , . . . , A

(j+1)
n ) and an isometry

Πj := IA2
Wj−1]

⊗ π
ωj ,A

(j)
j

: A2
Wj−1]

(D
ωj−1,A

(j−1)
j−1

)→ A2
Wj]

(D
ωj ,A

(j)
j

),

such that for all i = 1, . . . , j,

(Πj ◦ · · · ◦ Π2 ◦ Π1)T ∗i = M∗
zi

(Πj ◦ · · · ◦ Π2 ◦ Π1),

and for all i = j + 1, . . . , n,

(Πj ◦ · · · ◦ Π2 ◦ Π1)T ∗i = (IA2
Wj]
⊗ A(j+1)

i )(Πj ◦ · · · ◦ Π2 ◦ Π1).
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Thus after n-th step we will have the following chain of isometries

0→ H Π1−→ A2
ω1

(Dω1,T1)
Π2−→ A2

W2]
(D

ω2,A
(2)
2

)
Π3−→ · · · Πn−→ A2

W(D
ωn,A

(n)
n

)

such that the isometry ΠT := Πn ◦ · · · ◦ Π2 ◦ Π1 : H → A2
W(D

ωn,A
(n)
n

) satisfies

ΠTT
∗
i = M∗

zi
ΠT (i = 1, . . . , n).

Thus T dilates to the weighted Bergman shift (Mz1 , . . . ,Mzn) on A2
W(D

ωn,A
(n)
n

) via the dilation

map ΠT . We summarize this in the next result.

Theorem 4.4. Let W be a multi-weight sequence and let T = (T1, . . . , Tn) be a pure W-
hypercontraction on H. Then there exist a Hilbert space E and a joint (M∗

z1
, . . . ,M∗

zn)-
invariant subspace Q of A2

W(E) such that

(T1, . . . , Tn) ∼= PQ(Mz1 , . . . ,Mzn)|Q.

We now consider dilations of general W-hypercontractions and find their explicit dilation.
In order to make the proof of the dilation result shorter, we take out some part of the proof
and prove it as a separate lemma. The lemma is a special case of one operator being a
co-isometry.

Lemma 4.5. Let (V, Y1, . . . , Yn−1) ∈ B(H)n be an n-tuple of commuting contractions such
that V is a co-isometry. Suppose that the (n − 1)-tuple Y ′ = (Y1, . . . , Yn−1) is an W-
hypercontractive tuple and dilates to an W-hypercontractive tuple R′ = (R1, . . . , Rn−1) on
K through the dilation map Π : H → K :=

⊕
Λ⊆I\{n}A

2
WΛ

(EΛ), where

Π =
⊕

Λ⊆I\{n}

ΠΛ and Ri =

 ⊕
Λ⊆I\{n}

RΛ
i

 ,

such that for each Λ = {λ1, . . . , λm}, ΠΛ : H → A2
WΛ

(EΛ) defined by

ΠΛh(z) =
∑
α∈Zm+

( 1

ω
(λ1)
α1 · · ·ω

(λm)
αm

∆ΛY
∗α

Λ h
)
zα,

RΛ
λj

= Mzj on A2
WΛ

(EΛ) (j = 1, . . . ,m) and for i /∈ Λ, RΛ
i = IA2

WΛ
⊗ V Λ

i for some co-isometry

V Λ
i on EΛ = ran∆Λ, with ∆Λ ∈ B(H), satisfying ∆ΛY

∗
i = (V Λ

i )∗∆Λ for all i /∈ Λ. If the
co-isometry V satisfies the relations

V∆∗Λ∆ΛV
∗ = ∆∗Λ∆Λ for each Λ ⊆ {1, . . . , n− 1},

then V lifts to a co-isometry W on K such that the tuple (V, Y1, . . . , Yn−1) on H dilates to
R = (W,R1, . . . , Rn−1) on K.

Proof: By the hypothesis, for each Λ ⊆ {1, . . . , n− 1}, V∆∗Λ∆ΛV
∗ = ∆∗Λ∆Λ. Therefore for

each Λ ⊆ {1, . . . , n− 1}, by the Douglas factorization lemma, there exists a co-isometry WΛ

on EΛ such that

W ∗
Λ∆Λ = ∆ΛV

∗.
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We define a co-isometry W on K =
⊕

Λ⊆I\{n}A
2
WΛ

(EΛ) as

W =

 ⊕
Λ⊆I\{n}

(IA2
WΛ
⊗WΛ)

 .

Now, we observe that for any Λ ⊆ {1, . . . , n− 1}, h ∈ EΛ and z ∈ D|Λ|,

ΠΛV
∗h(z) =

∑
α∈Zm+

( 1

ω
(λ1)
α1 · · ·ω

(λm)
αm

∆ΛY
∗α

Λ V ∗h
)
zα1
λ1
· · · zαmλm

=
∑
α∈Zm+

( 1

ω
(λ1)
α1 · · ·ω

(λm)
αm

∆ΛV
∗Y ∗αΛ h

)
zα1
λ1
· · · zαmλm

=
∑
α∈Zm+

( 1

ω
(λ1)
α1 · · ·ω

(λm)
αm

W ∗
Λ∆ΛY

∗α
Λ h

)
zα1
λ1
· · · zαmλm

= W ∗
ΛΠΛh(z).

Thus ΠV ∗ = W ∗Π. For the commutativity of the tuple (W,R1, . . . , Rn−1), we fix i ∈
{1, . . . , n − 1} and show that WRi = RiW . To this end, it is enough to show that for
each Λ ⊆ {1, . . . , n − 1}, (IA2

WΛ
⊗WΛ)RΛ

i = RΛ
i (IA2

WΛ
⊗WΛ). If i = λj ∈ Λ, then RΛ

i = Mzj

and there is nothing to prove. If i /∈ Λ, then RΛ
i = IA2

WΛ
⊗ V Λ

i and the commutativity can be

read from the following:

W ∗
ΛV

Λ∗
i ∆Λ = W ∗

Λ∆ΛY
∗
i

= ∆ΛV
∗Y ∗i

= ∆ΛY
∗
i V
∗

= V Λ∗
i W ∗

Λ∆Λ.

This completes the proof.
We are now ready to prove the model for generalW-hypercontractive tuples. It is an exact

generalization of the model given in Theorem 2.8 in [14].

Theorem 4.6. Let T = (T1, . . . , Tn) be an W-hypercontraction on H for some multi-weight
sequence W. Then there exist ∆Λ ∈ B(H) corresponding to each subset Λ of I with EΛ =
ran∆Λ, an isometry

Π : H → K :=
⊕
Λ⊆I

A2
WΛ

(EΛ),

and an n-tuple of commuting contractions R = (R1, . . . , Rn) on K such that

ΠT ∗i = R∗iΠ (i = 1, . . . , n),

where with respect to the above decomposition of K

(4.3) Π =
⊕
Λ⊆I

ΠΛ and Ri =

(⊕
Λ⊆I

RΛ
i

)
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such that if Λ = {λ1, . . . , λm} then ΠΛ : H → A2
WΛ

(EΛ) is defined by

ΠΛh(z) =
∑
α∈Zm+

( 1

ω
(λ1)
α1 · · ·ω

(λm)
αm

∆ΛT
∗α
Λ h
)
zα

and

RΛ
i =

{
IA2
WΛ
⊗ V Λ

i if i /∈ Λ

Mzj if i = λj ∈ Λ

for some co-isometry V Λ
i on EΛ. Moreover, for every subset Λ = {λ1, . . . , λm} of I,

∆∗Λ∆Λ = SOT− lim
β→∞

T βΛcDWΛ,TΛ
(1, . . . , 1)T ∗βΛc

and for all i /∈ Λ, ∆ΛT
∗
i = (V Λ

i )∗∆Λ.

Proof. We prove the theorem by induction on n. For n = 1, if T is a ω-hypercontraction on

H then by Theorem 2.3 the result holds with E{1} = Dω,T , E∅ = QT , R
{1}
1 = Mz on A2

ω(Dω,T ),

R∅1 = U , ∆{1} = Dω,T , ∆∅ = QT and Π = Π{1} ⊕ Π{∅} with

Π{1}h(z) =
∑
k≥0

( 1

ωk
∆{1}T

∗kh
)
zk and Π{∅}h = QTh (h ∈ H, z ∈ D).

Now we assume that the result is true for n − 1. Let T = (T1, . . . , Tn) be an W-
hypercontraction. Suppose (Mz ⊕ U) on A2

ω1
(Dω1,T1) ⊕ QT1 is the dilation of T1 with the

canonical dilation map Πω1,T1 : H → A2
ω1

(Dω1,T1) ⊕ QT1 as obtained in Theorem 2.3. Then
applying Proposition 4.1 we get W[2-hypercontractions A = (A2, . . . , An) on Dω1,T1 and
X = (X2, . . . , Xn) on QT1 such that

Πω1,T1T
∗
i = V ∗i Πω1,T1 (i = 2, . . . , n),

where Vi = (IA2
ω1
⊗ Ai) ⊕Xi for all i = 2, . . . , n. We now apply the induction hypothesis to

both A and X.
Since A is an W[2-hypercontraction, then by the hypothesis we get Hilbert spaces E ′Λ =

ran∆
′
Λ for all subset Λ of {2, . . . , n}, an isometry

ΠA : Dω1,T1 → K′ :=
⊕

Λ⊆{2,...,n}

A2
(W[2)Λ

(E ′Λ) =
⊕

Λ⊆{2,...,n}

A2
WΛ

(E ′Λ),

where ΠA = ⊕Λ⊆{2,...,n}Π
A
Λ and for Λ = {λ2, . . . , λm}, ΠA

Λ : Dω1,T1 → A2
WΛ

(E ′Λ) is defined by

ΠA
Λh(z) =

∑
α∈Zm−1

+

( 1

ω
(λ2)
α2 · · ·ω

(λm)
αm

∆
′

ΛA
∗α
Λ h
)
zα

and ∆
′∗
Λ ∆

′
Λ = SOT − limβ→∞A

β
ΛcDWΛ,AΛ

(1, . . . , 1)A∗βΛc (β ∈ Z|Λ
c|

+ ). We also have an (n − 1)-
tuple of commuting contractions R′ = (R′2, . . . , R

′
n) on K having the structure as in (4.3) such

that ΠAA
∗
i = R

′∗
i ΠA.
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Once again applying the hypothesis to the W[2-hypercontraction X on QT1 we also get

Hilbert spaces E ′′Λ = ran∆
′′
Λ for all subset Λ of {2, . . . , n}, an isometry

ΠX : QT1 → K
′′

:=
⊕

Λ⊆{2,...,n}

A2
(W[2)Λ

(E ′′Λ) =
⊕

Λ⊆{2,...,n}

A2
WΛ

(E ′′Λ),

where ΠX = ⊕Λ⊆{2,...,n}Π
X
Λ and for Λ = {λ2, . . . , λm}, ΠX

Λ : QT1 → A2
WΛ

(E ′′Λ) is defined by

ΠX
Λ h(z) =

∑
α∈Zm−1

+

( 1

ω
(λ2)
α2 · · ·ω

(λm)
αm

∆
′′

ΛX
∗α
Λ h
)
zα

and ∆
′′∗
Λ ∆

′′
Λ = SOT− limβ→∞X

β
ΛcDWΛ,XΛ

(1, . . . , 1)X∗βΛc (β ∈ Z|Λ
c|

+ ). We also have an (n− 1)-
tuple of commuting contractions R

′′
= (R

′′
2 , . . . , R

′′
n) on K′′ having structure as in (4.3) such

that ΠXX
∗
i = R

′′∗
i ΠX . Since U is a co-isometry on QT1 which commutes with X, then by

Lemma 4.5 we get a co-isometry W on K′′ such that W commutes with R
′′

and ΠXU
∗ =

W ∗ΠX . We now have all the ingredient to construct the required dilation of T . For a subset
Λ of I, we set

EΛ :=

{
E ′Λ\{1} if 1 ∈ Λ

E ′′Λ otherwise
and K :=

⊕
Λ⊆I

A2
WΛ

(EΛ).

Then note that

A2
ω1
⊗K′ =

⊕
Λ⊆{2,...,n}

A2
ω1
⊗ A2

WΛ
(E ′Λ) =

⊕
Λ⊆I,1∈Λ

A2
WΛ

(EΛ) and K = (A2
ω1
⊗K′)⊕K′′ .

We consider the dilation map for T as

Π = ((IA2
ω1
⊗ ΠA)⊕ ΠX) ◦ Πω1,T1 : H →

⊕
Λ⊆{2,...,n}

A2
ω1
⊗ A2

WΛ
(E ′Λ)

⊕
Λ⊆{2,...,n}

A2
WΛ

(E ′′Λ) = K.

More explicitly, the dilation map has the following decomposition

Π =
⊕

Λ⊆{2,...,n}

(
(IA2

ω1
⊗ ΠA

Λ) ◦ πω1,T1

) ⊕
Λ⊆{2,...,n}

(
ΠX

Λ ◦QT1

)
=
⊕
Λ⊆I

ΠΛ,

where

ΠΛ :=

{
(IA2

ω1
⊗ ΠA

Λ\{1}) ◦ πω1,T1 if 1 ∈ Λ

ΠX
Λ ◦QT1 otherwise.

Moreover, for Λ ⊆ I with 1 ∈ Λ and h ∈ H,

(4.4) ΠΛh(z) =
∑
α∈Zm+

1

ω
(1)
α1

· · · 1

ω
(m)
αm

(
∆
′

Λ\{1}Dω1,T1T
∗αh
)
zα,

and for 1 /∈ Λ,

(4.5) ΠΛh(z) =
∑

α∈Zm−1
+

1

ω
(2)
α1

· · · 1

ω
(m)
α(m−1)

(
∆
′′

ΛQT1T
∗αh
)
zα.



28 BHATTACHARJEE, DAS, DEBNATH, AND PANJA

Here for the above description of the dilation map we have used the intertwining relations
A∗iDω1,T1=Dω1,T1T

∗
i and X∗iQT1 = QT1T

∗
i for all i = 2, . . . , n, which can be read from equa-

tions (4.1) and (4.2), respectively.
The dilating tuple of commuting contractions R = (R1, . . . , Rn) on K is defined with respect

to the decomposition K = (A2
ω1
⊗K′)⊕K′′ as

R1 = (Mz ⊗ IK′)⊕W and Ri = (IA2
ω1
⊗R′i)⊕R

′′

i (i = 2, . . . , n).

We now do a routine calculation to see that R is a dilation of T . First note that

ΠT ∗1 = ((IA2
ω1
⊗ ΠA)⊕ ΠX)(Mz ⊕ U)∗Πω1,T1

= ((IA2
ω1
⊗ ΠA)M∗

z ⊕ ΠXU
∗)Πω1,T1

= ((M∗
z ⊗ IK′)⊕W ∗)((IA2

ω1
⊗ ΠA)⊕ ΠX)Πω1,T1

= R∗1Π,

and similarly for all i = 2, . . . , n,

ΠT ∗i = ((IA2
ω1
⊗ ΠA)⊕ ΠX)(IA2

ω1
⊗ Ai ⊕Xi)

∗Πω1,T1

= ((IA2
ω1
⊗R′i)⊕R

′′

i )∗((IA2
ω1
⊗ ΠA)⊕ ΠX)Πω1,T1

= R∗iΠ.

We left it to the reader to check that each of the operator Ri has the form as in (4.3). To
complete the proof, we now need to construct ∆Λ ∈ B(H) corresponding to each subset Λ of
I which satisfies the moreover part of the theorem. To this end, we define

∆Λ :=

{
∆
′

Λ\{1}Dω1,T1 if 1 ∈ Λ

∆
′′
ΛQT1 otherwise.

Rest of the proof is divided into two cases.
Case I: 1 ∈ Λ. In this case, setting Γ := Λ \ {1}, we have

∆∗Λ∆Λ = Dω1,T1∆
′∗
Γ ∆

′

ΓDω1,T1

= SOT− lim
β→∞

Dω1,T1A
β
ΛcDWΓ,AΓ

(1, . . . , 1)A∗βΛcDω1,T1 (β ∈ Z|Λ
c|

+ )

= SOT− lim
β→∞

T βΛcDω1,T1DWΓ,AΓ
(1, . . . , 1)Dω1,T1T

∗β
Λc

= SOT− lim
β→∞

T βΛcDWΛ,TΛ
(1, . . . , 1)T ∗βΛc ( by part (i) of Lemma 4.3).

Also if i /∈ Λ then by construction ∆′ΓA
∗
i = (V

′Γ
i )∗∆′Γ, where V

′Γ
i is the co-isometry corre-

sponding to R
′Γ
i , that is, R

′Γ
i = IA2

WΓ
⊗ V ′Γi . Also since RΛ

i = IA2
ω1
⊗ R′Γi = IA2

WΛ
⊗ V ′Γi , the

co-isometries corresponding to RΛ
i and R

′Γ
i are the same, that is, V Λ

i = V
′Γ
i . Consequently,

∆ΛT
∗
i = ∆′ΓDω1,T1T

∗
i = ∆′ΓA

∗
iDω1,T1 = (V

′Γ
i )∗∆′ΓDω1,T1 = (V Λ

i )∗∆Λ.
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Case II: 1 /∈ Λ. In this case, setting Γ = Λ ∪ {1}, we have

∆∗Λ∆Λ = QT1∆
′′∗
Λ ∆

′′

ΛQT1

= SOT− lim
β→∞

QT1X
β
ΓcDWΛ,XΛ

(1, . . . , 1)X∗βΓcQT1 (β ∈ Z|Γ
c|

+ )

= SOT− lim
β→∞

T βΓcQT1DWΛ,XΛ
(1, . . . , 1)QT1T

∗β
Γc

= SOT− lim
β→∞

T βΛcDWΛ,TΛ
(1, . . . , 1)T ∗βΛc (by part (ii) of Lemma 4.3).

If i /∈ Λ and i ≥ 2 then by the hypothesis ∆
′′
ΛX

∗
i = (V

′′Λ
i )∗∆

′′
Λ, where V

′′Λ
i is the co-isometry

corresponding to R
′′Λ
i . In this case, by construction the co-isometry corresponding to RΛ

i and
R
′′Λ
i are the same, that is, V Λ

i = V
′′Λ
i . Consequently,

∆ΛT
∗
i = ∆

′′

ΛQT1T
∗
i = ∆

′′

ΛX
∗
i QT1 = V

′′Λ
i ∆

′′

ΛQT1 = V Λ
i ∆Λ.

Finally, for i = 1 the co-isometry corresponding to RΛ
1 is WΛ

1 and it follows from Lemma 4.5
that ∆

′′
ΛU
∗ = WΛ∗

1 ∆
′′Λ. Thus

∆ΛT
∗
1 = ∆

′′

ΛQT1T
∗
1 = ∆

′′

ΛU
∗QT1 = WΛ∗

1 ∆
′′

ΛQT1 = WΛ∗
1 ∆Λ.

This completes the proof.

5. Appendix

Let T be an W-hypercontraction corresponding to a multi-weight sequence W . Then for a
subset Λ = {λ1, . . . , λm} of I, consider the map f : (0, 1)m × Zn−m+ → B(H), defined by

f(r′, β) = T βΛcDWΛ,TΛ
(r′)T ∗βΛc ,

where r′ = (r1, . . . , rm) ∈ (0, 1)m and β = (β1, . . . , βn−m) ∈ Zn−m+ . We claim that SOT −
lim(r′,β)→(e′,∞) f(r′, β) exists, where e′ = (1, . . . , 1). Indeed, it is enough to show that for
r′ ≤ s′ and α ≤ β, f(s′, β) ≤ f(r′, α). Let j ∈ Λc and without any loss of generality
assume that λm < i. Then the multi-weight sequence W ′ = (WΛ,1) ∈ S(WΛ′), where
Λ′ = {λ1, . . . , λm, i}. Since TΛ′ is a WΛ′-hypercontraction, then for any r ∈ (0, 1)

DW ′,TΛ′
(r′, r) = DWΛ,TΛ

(r′)− rTiDWΛ,TΛ
(r′)T ∗i ≥ 0 (r ∈ (0, 1)).(5.1)

By Remark 3.5, taking limit as r → 1 in 5.1 we get

TiDWΛ,TΛ
(r′)T ∗i ≤ DWΛ,TΛ

(r′)

for all i ∈ Λc. Consequently, for any β = (β1, . . . , βn−m) ∈ Zn−m+ ,

T βΛcDWΛ,TΛ
(r′)T ∗βΛc ≤ DWΛ,TΛ

(r′).

Now, for α ≤ β,

TαΛcDWΛ,TΛ
(r′)T ∗αΛc − T

β
ΛcDWΛ,TΛ

(r′)T ∗βΛc = TαΛc
(
DWΛ,TΛ(r′)−Tβ−αΛc DWΛ,TΛ

(r′)T ∗β−αΛc

)
T ∗αΛc ≥ 0.

That is,

T βΛcDWΛ,TΛ
(r′)T ∗βΛc ≤ TαΛcDWΛ,TΛ

(r′)T ∗αΛc(5.2)
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for all α ≤ β. Finally, using Proposition 3.4 and the inequality 5.2, for r′ ≤ s′ and α ≤ β,

f(r′, α) = TαΛcDWΛ,TΛ
(r′)T ∗αΛc ≥ TαΛcDWΛ,TΛ

(s′)T ∗αΛc ≥ T βΛcDWΛ,TΛ
(s′)T ∗βΛc = f(s′, β).

This proves the claim.
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