Edge Ideals: Their algebraic and combinatorial invariants

Jayanthan A V

Indian Institute of Technology Madras, Chennai, India.

Diamond Jubilee Symposium, IIT Bombay

Monomial Edge Ideal

Rafael Villarreal defined edge ideals corresponding to a finite simple graph (1990).

Monomial Edge Ideal

Rafael Villarreal defined edge ideals corresponding to a finite simple graph (1990).

Let G be a finite simple graph on the vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$. Then the ideal $I_{G}:=\left\langle\left\{x_{i} x_{j} \mid\left\{v_{i}, v_{j}\right\} \in E(G)\right\}\right\rangle \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called the monomial edge ideal of G.

Monomial Edge Ideal

Rafael Villarreal defined edge ideals corresponding to a finite simple graph (1990).

Let G be a finite simple graph on the vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$. Then the ideal $I_{G}:=\left\langle\left\{x_{i} x_{j} \mid\left\{v_{i}, v_{j}\right\} \in E(G)\right\}\right\rangle \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called the monomial edge ideal of G.

For the graph G,

$$
I_{G}=\left\langle x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}, x_{5} x_{1}\right\rangle
$$

G

Monomial Edge Ideal

Rafael Villarreal defined edge ideals corresponding to a finite simple graph (1990).

Let G be a finite simple graph on the vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$. Then the ideal $I_{G}:=\left\langle\left\{x_{i} x_{j} \mid\left\{v_{i}, v_{j}\right\} \in E(G)\right\}\right\rangle \subset K\left[x_{1}, \ldots, x_{n}\right]$ is called the monomial edge ideal of G.

For the graph G,

$$
I_{G}=\left\langle x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}, x_{5} x_{1}\right\rangle
$$

G
I_{G} is the Stanley-Reisner ideal of the corresponding indepenence complex of G.

$$
\left\{\begin{array}{c}
E D G E \text { IDEALS } \\
(\text { quadratic squarefree } \\
\text { monomial ideals })
\end{array}\right\} \stackrel{1-1}{\leftrightarrow}\left\{\begin{array}{c}
\text { FINITE } \\
S I M P L E \\
\text { GRAPHS }
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
E D G E \text { IDEALS } \\
(\text { quadratic squarefree } \\
\text { monomial ideals })
\end{array}\right\} \stackrel{1-1}{\leftrightarrow}\left\{\begin{array}{c}
\text { FINITE } \\
S I M P L E \\
G R A P H S
\end{array}\right\}
$$

Question

How do the invariants of finite simple graphs relate to the invariants of the edge ideals, and vice versa?

$$
\left\{\begin{array}{c}
\text { EDGE IDEALS } \\
(\text { quadratic squarefree } \\
\text { monomial ideals })
\end{array}\right\} \stackrel{1-1}{\leftrightarrow}\left\{\begin{array}{c}
\text { FINITE } \\
S I M P L E \\
G R A P H S
\end{array}\right\}
$$

Question

How do the invariants of finite simple graphs relate to the invariants of the edge ideals, and vice versa?

One of the first such result in this direction is that a G graph is co-chordal if and only if $I(G)$ has linear resolution. (Fröberg, 1990)

$$
\left\{\begin{array}{c}
E D G E \text { IDEALS } \\
(\text { quadratic squarefree } \\
\text { monomial ideals })
\end{array}\right\} \stackrel{1-1}{\leftrightarrow}\left\{\begin{array}{c}
F I N I T E \\
S I M P L E \\
G R A P H S
\end{array}\right\}
$$

Question

How do the invariants of finite simple graphs relate to the invariants of the edge ideals, and vice versa?

One of the first such result in this direction is that a G graph is co-chordal if and only if $I(G)$ has linear resolution. (Fröberg, 1990)

A graph G is chordal if it has no induced cycle of length 4 or more and G is said to be co-chordal if its complement is chordal.

Interplay between the Algebraic and Combinatorial Properties

A resolution of an ideal I is an exact sequence of the form

$$
0 \rightarrow R^{\beta_{n}} \rightarrow \cdots \rightarrow R^{\beta_{1}} \rightarrow R^{\beta_{0}} \rightarrow I \rightarrow 0 .
$$

It is said to be linear if the j-the syzygy is generated in at most $\operatorname{deg}(I)+j$ degrees.

Interplay between the Algebraic and Combinatorial Properties

A resolution of an ideal I is an exact sequence of the form

$$
0 \rightarrow R^{\beta_{n}} \rightarrow \cdots \rightarrow R^{\beta_{1}} \rightarrow R^{\beta_{0}} \rightarrow I \rightarrow 0 .
$$

It is said to be linear if the j-the syzygy is generated in at most $\operatorname{deg}(I)+j$ degrees.

An invariant that is read out from the resolution and which plays an important role in understanding the algebraic and geometric properties is called the Castelnuovo-Mumford regularity.

Interplay between the Algebraic and Combinatorial Properties

A resolution of an ideal I is an exact sequence of the form

$$
0 \rightarrow R^{\beta_{n}} \rightarrow \cdots \rightarrow R^{\beta_{1}} \rightarrow R^{\beta_{0}} \rightarrow I \rightarrow 0 .
$$

It is said to be linear if the j-the syzygy is generated in at most $\operatorname{deg}(I)+j$ degrees.

An invariant that is read out from the resolution and which plays an important role in understanding the algebraic and geometric properties is called the Castelnuovo-Mumford regularity.

Let $0 \rightarrow F_{n} \rightarrow \cdots F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ be a minimal graded free resolution of a graded R-module M. Let b_{j} be the maximum of the degrees of generators of F_{j}.

Interplay between the Algebraic and Combinatorial Properties

A resolution of an ideal I is an exact sequence of the form

$$
0 \rightarrow R^{\beta_{n}} \rightarrow \cdots \rightarrow R^{\beta_{1}} \rightarrow R^{\beta_{0}} \rightarrow I \rightarrow 0 .
$$

It is said to be linear if the j-the syzygy is generated in at most $\operatorname{deg}(I)+j$ degrees.

An invariant that is read out from the resolution and which plays an important role in understanding the algebraic and geometric properties is called the Castelnuovo-Mumford regularity.

Let $0 \rightarrow F_{n} \rightarrow \cdots F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ be a minimal graded free resolution of a graded R-module M. Let b_{j} be the maximum of the degrees of generators of F_{j}.

Then $\operatorname{reg}(M):=\max \left\{b_{j}-j \mid j=0, \ldots, n\right\}$.

Castelnuovo-Mumford regularity of edge ideals

Question

For a finite simple graph G, can one express the regularity of $I(G)$ in terms of combinatorial invariants of the graph G ?

CasteInuovo-Mumford regularity of edge ideals

Question

For a finite simple graph G, can one express the regularity of $I(G)$ in terms of combinatorial invariants of the graph G ?

If G is a finite simple graph, then $\nu(G)+1 \leq \operatorname{reg}(I(G)) \leq \operatorname{co}-\operatorname{chord}(G)+1$.

CasteInuovo-Mumford regularity of edge ideals

Question

For a finite simple graph G, can one express the regularity of $I(G)$ in terms of combinatorial invariants of the graph G ?

If G is a finite simple graph, then $\nu(G)+1 \leq \operatorname{reg}(I(G)) \leq \operatorname{co}-\operatorname{chord}(G)+1$.
The lower bound was proved by Katzman (2006) and the upper bound was proved by Woodroofe (2014).

CasteInuovo-Mumford regularity of edge ideals

Question

For a finite simple graph G, can one express the regularity of $I(G)$ in terms of combinatorial invariants of the graph G ?

If G is a finite simple graph, then $\nu(G)+1 \leq \operatorname{reg}(I(G)) \leq \operatorname{co}-\operatorname{chord}(G)+1$.
The lower bound was proved by Katzman (2006) and the upper bound was proved by Woodroofe (2014).
$\nu(G)$ - number of edges at a distance 3 or more, called induced matching number.

CasteInuovo-Mumford regularity of edge ideals

Question

For a finite simple graph G, can one express the regularity of $I(G)$ in terms of combinatorial invariants of the graph G ?

If G is a finite simple graph, then $\nu(G)+1 \leq \operatorname{reg}(I(G)) \leq \operatorname{co}-\operatorname{chord}(G)+1$.
The lower bound was proved by Katzman (2006) and the upper bound was proved by Woodroofe (2014).
$\nu(G)$ - number of edges at a distance 3 or more, called induced matching number.
co - $\operatorname{chord}(G)$ - minimum number of co-chordal subgraphs of G required to cover all vertices and edges of G.

Regularity of different classes

Nevo-Peeva; Dao-Huneke-Schweig (2013): $I(G)$ has a linear presentation if and only if $\nu(G)=1$.

Regularity of different classes

Nevo-Peeva; Dao-Huneke-Schweig (2013): $I(G)$ has a linear presentation if and only if $\nu(G)=1$.

Fröberg (1990) + Herzog-Hibi-Zheng (2004): If $c o-\operatorname{chord}(G)=1$, then $I(G)^{s}$ has a linear resolution for all $s \geq 1$.

Regularity of different classes

Nevo-Peeva; Dao-Huneke-Schweig (2013): $I(G)$ has a linear presentation if and only if $\nu(G)=1$.

Fröberg (1990) + Herzog-Hibi-Zheng (2004): If $c o-\operatorname{chord}(G)=1$, then $I(G)^{s}$ has a linear resolution for all $s \geq 1$.

For several classes of graphs, the regularity is computed:
(c) $\operatorname{reg}\left(I\left(C_{n}\right)\right)= \begin{cases}\nu\left(C_{n}\right)+1 & \text { if } n \equiv 2(\bmod 3) ; \\ \nu\left(C_{n}\right)+2 & \text { if } n \equiv 0,1(\bmod 3) \text {. }\end{cases}$ (Jacques, 2004).

Regularity of different classes

Nevo-Peeva; Dao-Huneke-Schweig (2013): $I(G)$ has a linear presentation if and only if $\nu(G)=1$.

Fröberg (1990) + Herzog-Hibi-Zheng (2004): If $c o-\operatorname{chord}(G)=1$, then $I(G)^{s}$ has a linear resolution for all $s \geq 1$.

For several classes of graphs, the regularity is computed:
(c) $\operatorname{reg}\left(I\left(C_{n}\right)\right)= \begin{cases}\nu\left(C_{n}\right)+1 & \text { if } n \equiv 2(\bmod 3) ; \\ \nu\left(C_{n}\right)+2 & \text { if } n \equiv 0,1(\bmod 3) \text {. }\end{cases}$ (Jacques, 2004).
(2) G is unmixed bipartite $\Rightarrow \operatorname{reg}(I(G))=\nu(G)+1$; (Kummini; 2009)

Regularity of different classes

Nevo-Peeva; Dao-Huneke-Schweig (2013): $I(G)$ has a linear presentation if and only if $\nu(G)=1$.

Fröberg (1990) + Herzog-Hibi-Zheng (2004): If $c o-\operatorname{chord}(G)=1$, then $I(G)^{s}$ has a linear resolution for all $s \geq 1$.

For several classes of graphs, the regularity is computed:
(c) $\operatorname{reg}\left(I\left(C_{n}\right)\right)= \begin{cases}\nu\left(C_{n}\right)+1 & \text { if } n \equiv 2(\bmod 3) ; \\ \nu\left(C_{n}\right)+2 & \text { if } n \equiv 0,1(\bmod 3) \text {. }\end{cases}$ (Jacques, 2004).
(2) G is unmixed bipartite $\Rightarrow \operatorname{reg}(I(G))=\nu(G)+1$; (Kummini; 2009)
(3) G is weakly chordal $\Rightarrow \nu(G)=c o-\operatorname{chord}(G)$ (Busch-Dragan-Sritharan $(2010)) \Rightarrow \operatorname{reg}(I(G))=\nu(G)+1$.

Asymptotic linearity of regularity

If $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal generated by homogeneous polynomials, then there exists $P, Q \in \mathbb{Z}$ such that for $s \gg 0, \operatorname{reg}\left(I^{s}\right)=P s+Q$.
(Kodiyalam; Cutkosky-Herzog-Trung 1999).

Asymptotic linearity of regularity

If $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal generated by homogeneous polynomials, then there exists $P, Q \in \mathbb{Z}$ such that for $s \gg 0, \operatorname{reg}\left(I^{s}\right)=P s+Q$.
(Kodiyalam; Cutkosky-Herzog-Trung 1999).

There is a clear understanding of the leading coefficient P.

Asymptotic linearity of regularity

If $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal generated by homogeneous polynomials, then there exists $P, Q \in \mathbb{Z}$ such that for $s \gg 0, \operatorname{reg}\left(I^{s}\right)=P s+Q$.
(Kodiyalam; Cutkosky-Herzog-Trung 1999).

There is a clear understanding of the leading coefficient P.

Question

(1) Describe Q interms of known invariants associated with I?

Asymptotic linearity of regularity

If $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal generated by homogeneous polynomials, then there exists $P, Q \in \mathbb{Z}$ such that for $s \gg 0, \operatorname{reg}\left(I^{s}\right)=P s+Q$.
(Kodiyalam; Cutkosky-Herzog-Trung 1999).

There is a clear understanding of the leading coefficient P.

Question

(1) Describe Q interms of known invariants associated with I?
(2) Describe the stabilization index $s_{0}=\min \left\{k \mid \operatorname{reg}\left(I^{k}\right)=P k+Q\right\}$.

Asymptotic linearity of regularity

If $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal generated by homogeneous polynomials, then there exists $P, Q \in \mathbb{Z}$ such that for $s \gg 0, \operatorname{reg}\left(I^{s}\right)=P s+Q$.
(Kodiyalam; Cutkosky-Herzog-Trung 1999).
There is a clear understanding of the leading coefficient P.

Question

(1) Describe Q interms of known invariants associated with I ?
(2) Describe the stabilization index $s_{0}=\min \left\{k \mid \operatorname{reg}\left(I^{k}\right)=P k+Q\right\}$.

There are no general answers known for these questions. In fact, finding an explicit description of Q is a highly challenging task in general.

Asymptotic linearity of regularity

Placing these questions in the context of Edge Ideals, one may ask:

Question

Describe the constant term and the stabilization index in terms of the invariants associated with the corresponding graph.

Asymptotic linearity of regularity

Placing these questions in the context of Edge Ideals, one may ask:

Question

Describe the constant term and the stabilization index in terms of the invariants associated with the corresponding graph.

If I is generated by homogeneous elements of same degree d, then $P=d$, (Kodiyalam, 1999).

Asymptotic linearity of regularity

Placing these questions in the context of Edge Ideals, one may ask:

Question

Describe the constant term and the stabilization index in terms of the invariants associated with the corresponding graph.

If I is generated by homogeneous elements of same degree d, then $P=d$, (Kodiyalam, 1999).

Therefore, if $I=I(G)$ for some $\operatorname{graph} G, \operatorname{reg}\left(I(G)^{s}\right)=2 s+Q$ for $s \geq s_{0}$.

Asymptotic linearity of regularity

Placing these questions in the context of Edge Ideals, one may ask:

Question

Describe the constant term and the stabilization index in terms of the invariants associated with the corresponding graph.

If I is generated by homogeneous elements of same degree d, then $P=d$, (Kodiyalam, 1999).

Therefore, if $I=I(G)$ for some graph $G, \operatorname{reg}\left(I(G)^{s}\right)=2 s+Q$ for $s \geq s_{0}$.
Fröberg (1990) + Herzog-Hibi-Zheng (2004): If $c o-\operatorname{chord}(G)=1$, then
$I(G)^{s}$ has a linear resolution for all $s \geq 1$ and hence $\operatorname{reg}\left(I(G)^{s}\right)=2 s$ for all.

Asymptotic linearity of regularity

If G is any graph, then for all $s \geq 1,2 s+\nu(G)-1 \leq \operatorname{reg}\left(I(G)^{s}\right)$, Beyarslan-Hà-Trung 2015.

Asymptotic linearity of regularity

If G is any graph, then for all $s \geq 1,2 s+\nu(G)-1 \leq \operatorname{reg}\left(I(G)^{s}\right)$, Beyarslan-Hà-Trung 2015.

If G is a forest, then for all $s \geq 1, \operatorname{reg}\left(I(G)^{s}\right)=2 s+\nu(G)-1$. Beyarslan-Hà-Trung 2015.

Asymptotic linearity of regularity

If G is any graph, then for all $s \geq 1,2 s+\nu(G)-1 \leq \operatorname{reg}\left(I(G)^{s}\right)$, Beyarslan-Hà-Trung 2015.

If G is a forest, then for all $s \geq 1, \operatorname{reg}\left(I(G)^{s}\right)=2 s+\nu(G)-1$. Beyarslan-Hà-Trung 2015.
$\operatorname{reg}\left(I\left(C_{n}\right)^{s}\right)=2 s+\nu\left(C_{n}\right)-1$ for all $s \geq 2$. Beyarslan-Hà-Trung 2015.

Asymptotic linearity of regularity

If G is any graph, then for all $s \geq 1,2 s+\nu(G)-1 \leq \operatorname{reg}\left(I(G)^{s}\right)$, Beyarslan-Hà-Trung 2015.

If G is a forest, then for all $s \geq 1, \operatorname{reg}\left(I(G)^{s}\right)=2 s+\nu(G)-1$. Beyarslan-Hà-Trung 2015.
$\operatorname{reg}\left(I\left(C_{n}\right)^{s}\right)=2 s+\nu\left(C_{n}\right)-1$ for all $s \geq 2$. Beyarslan-Hà-Trung 2015.
(J-Narayanan-Selvaraja 2016): If G is a bipartite graph, then for all $s \geq 1$,
(1) $\operatorname{reg}\left(I(G)^{s}\right) \leq 2 s+\operatorname{co}-\operatorname{chord}(G)-1$,

Asymptotic linearity of regularity

If G is any graph, then for all $s \geq 1,2 s+\nu(G)-1 \leq \operatorname{reg}\left(I(G)^{s}\right)$,
Beyarslan-Hà-Trung 2015.
If G is a forest, then for all $s \geq 1, \operatorname{reg}\left(I(G)^{s}\right)=2 s+\nu(G)-1$. Beyarslan-Hà-Trung 2015.
$\operatorname{reg}\left(I\left(C_{n}\right)^{s}\right)=2 s+\nu\left(C_{n}\right)-1$ for all $s \geq 2$. Beyarslan-Hà-Trung 2015.
(J-Narayanan-Selvaraja 2016): If G is a bipartite graph, then for all $s \geq 1$,
(1) $\operatorname{reg}\left(I(G)^{s}\right) \leq 2 s+\operatorname{co}-\operatorname{chord}(G)-1$,
(2) $\operatorname{reg}\left(I(G)^{s}\right) \leq 2 s+\frac{1}{2}(\nu(G)+\min \{|X|,|Y|\})-1$, where $V(G)=X \sqcup Y$ is a bipartition of G.

Asymptotic linearity of regularity

(J-Narayanan-Selvaraja 2016): Let G be a bipartite graph. If G is unmixed, whiskered, weakly chordal or P_{6}-free, then $\operatorname{reg}\left(I(G)^{s}\right)=2 s+\nu(G)-1$ for all $s \geq 1$.

Asymptotic linearity of regularity

(J-Narayanan-Selvaraja 2016): Let G be a bipartite graph. If G is unmixed, whiskered, weakly chordal or P_{6}-free, then $\operatorname{reg}\left(I(G)^{s}\right)=2 s+\nu(G)-1$ for all $s \geq 1$.

As a consequence of the above result, we obtain the result of Beyarslan-Hà-Trung that if G is a forest then $\operatorname{reg}\left(I(G)^{s}\right)=2 s+\nu(G)-1$ for all $s \geq 1$.

Asymptotic linearity of regularity

(J-Narayanan-Selvaraja 2016): Let G be a bipartite graph. If G is unmixed, whiskered, weakly chordal or P_{6}-free, then $\operatorname{reg}\left(I(G)^{s}\right)=2 s+\nu(G)-1$ for all $s \geq 1$.

As a consequence of the above result, we obtain the result of Beyarslan-Hà-Trung that if G is a forest then $\operatorname{reg}\left(I(G)^{s}\right)=2 s+\nu(G)-1$ for all $s \geq 1$.

We also have obtained some classes of graphs for which $\operatorname{reg}\left(I(G)^{s}\right)=2 s+c o-\operatorname{chord}(G)-1$ for all $s \geq 1$.

Asymptotic linearity of regularity

A graph G is said to be very well-covered if $\mathrm{ht}(I(G))=\frac{|V(G)|}{2}$.

Asymptotic linearity of regularity

A graph G is said to be very well-covered if $h t(I(G))=\frac{|V(G)|}{2}$.
A very well-covered graph has always $2 h$ and there is a partition
$V(G)=X \sqcup Y$ with $|X|=h=|Y|$ and an ordering of the vertices such that $\left\{x_{i}, y_{i}\right\} \in E(G)$ for all $i=1, \ldots, h$.

Asymptotic linearity of regularity

A graph G is said to be very well-covered if $\mathrm{ht}(I(G))=\frac{|V(G)|}{2}$.
A very well-covered graph has always $2 h$ and there is a partition
$V(G)=X \sqcup Y$ with $|X|=h=|Y|$ and an ordering of the vertices such that $\left\{x_{i}, y_{i}\right\} \in E(G)$ for all $i=1, \ldots, h$.
(Crupi-Rinaldo-Terai, 2011) characterized very well-covered graphs in terms of edge behaviour.

Asymptotic linearity of regularity

A graph G is said to be very well-covered if $\mathrm{ht}(I(G))=\frac{|V(G)|}{2}$.
A very well-covered graph has always $2 h$ and there is a partition
$V(G)=X \sqcup Y$ with $|X|=h=|Y|$ and an ordering of the vertices such that $\left\{x_{i}, y_{i}\right\} \in E(G)$ for all $i=1, \ldots, h$.
(Crupi-Rinaldo-Terai, 2011) characterized very well-covered graphs in terms of edge behaviour.
(Mahmoudi et al., 2011) proved that if G is a very well-covered graph, then

$$
\operatorname{reg}(I(G))=\nu(G)+1
$$

Asymptotic linearity of regularity

A graph G is said to be very well-covered if $\mathrm{ht}(I(G))=\frac{|V(G)|}{2}$.
A very well-covered graph has always $2 h$ and there is a partition
$V(G)=X \sqcup Y$ with $|X|=h=|Y|$ and an ordering of the vertices such that $\left\{x_{i}, y_{i}\right\} \in E(G)$ for all $i=1, \ldots, h$.
(Crupi-Rinaldo-Terai, 2011) characterized very well-covered graphs in terms of edge behaviour.
(Mahmoudi et al., 2011) proved that if G is a very well-covered graph, then $\operatorname{reg}(I(G))=\nu(G)+1$.
(J-Selvaraja, 2018) proved that if G is a very well-covered graph, then for all $q \geq 1, \operatorname{reg}\left(I(G)^{q}\right)=2 q+\nu(G)-1$.

Asymptotic upper bound

Alilooee et al. conjectured that for any graph G,
$\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\operatorname{reg}(I(G))-2$ for all $q \geq 1$.

Asymptotic upper bound

Alilooee et al. conjectured that for any graph G,
$\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\operatorname{reg}(I(G))-2$ for all $q \geq 1$.
This is known to be true for several classes of graphs such as bipartite graphs, cycles, unicyclic graphs.

Asymptotic upper bound

Alilooee et al. conjectured that for any graph G,
$\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\operatorname{reg}(I(G))-2$ for all $q \geq 1$.
This is known to be true for several classes of graphs such as bipartite graphs, cycles, unicyclic graphs.

Question

Does there exists a combinatorial invariant $\rho(G)$ such that for any graph G, $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\rho(G)$ for all $q \gg 0$.

Asymptotic upper bound

(J-Selvaraja, 2018) $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\zeta(G)-1$ for all $q \geq 1$, where $\zeta(G)$ is called star-packing number introduced by Hà and Woodroofe.

Asymptotic upper bound

(J-Selvaraja, 2018) $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\zeta(G)-1$ for all $q \geq 1$, where $\zeta(G)$ is called star-packing number introduced by Hà and Woodroofe.
(Banerjee-Bayerslan-Hà, 2018) $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\beta(G)-1$ for all $q \geq 1$, where $\beta(G)$ denotes the matching number of G.

Asymptotic upper bound

(J-Selvaraja, 2018) $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\zeta(G)-1$ for all $q \geq 1$, where $\zeta(G)$ is called star-packing number introduced by Hà and Woodroofe.
(Banerjee-Bayerslan-Hà, 2018) $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\beta(G)-1$ for all $q \geq 1$, where $\beta(G)$ denotes the matching number of G.
(Sayed Fakhari-Yassemi, 2018) $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\operatorname{co}-\operatorname{chord}(G)-1$ for all $q \geq 1$.

Asymptotic upper bound

(J-Selvaraja, 2018) $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\zeta(G)-1$ for all $q \geq 1$, where $\zeta(G)$ is called star-packing number introduced by Hà and Woodroofe.
(Banerjee-Bayerslan-Hà, 2018) $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\beta(G)-1$ for all $q \geq 1$, where $\beta(G)$ denotes the matching number of G.
(Sayed Fakhari-Yassemi, 2018) $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+c o-\operatorname{chord}(G)-1$ for all $q \geq 1$.
(J-Selvaraja, Banerjee-Bayerslan-Hà, 2018) If G is vertex decomposable, then $\operatorname{reg}\left(I(G)^{q}\right) \leq 2 q+\operatorname{reg}(I(G))-2$ for all $q \geq 1$.

Thank you!

