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Monomial Edge Ideal

Rafael Villarreal defined edge ideals corresponding to a finite simple graph

(1990).

Let G be a finite simple graph on the vertex set {v1, . . . , vn}. Then the ideal

IG := 〈{xixj | {vi, vj} ∈ E(G)}〉 ⊂ K[x1, . . . , xn] is called the monomial

edge ideal of G.
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For the graph G,

IG = 〈x1x2, x2x3, x3x4, x4x5, x5x1〉.

IG is the Stanley-Reisner ideal of the corresponding indepenence complex of
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
EDGE IDEALS

(quadratic squarefree

monomial ideals)

 1−1↔


FINITE

SIMPLE

GRAPHS



Question
How do the invariants of finite simple graphs relate to the invariants of the

edge ideals, and vice versa?

One of the first such result in this direction is that a G graph is co-chordal if

and only if I(G) has linear resolution. (Fröberg, 1990)

A graph G is chordal if it has no induced cycle of length 4 or more and G is

said to be co-chordal if its complement is chordal.




EDGE IDEALS

(quadratic squarefree

monomial ideals)

 1−1↔


FINITE

SIMPLE

GRAPHS



Question
How do the invariants of finite simple graphs relate to the invariants of the

edge ideals, and vice versa?

One of the first such result in this direction is that a G graph is co-chordal if

and only if I(G) has linear resolution. (Fröberg, 1990)

A graph G is chordal if it has no induced cycle of length 4 or more and G is

said to be co-chordal if its complement is chordal.




EDGE IDEALS

(quadratic squarefree

monomial ideals)

 1−1↔


FINITE

SIMPLE

GRAPHS



Question
How do the invariants of finite simple graphs relate to the invariants of the

edge ideals, and vice versa?

One of the first such result in this direction is that a G graph is co-chordal if

and only if I(G) has linear resolution. (Fröberg, 1990)

A graph G is chordal if it has no induced cycle of length 4 or more and G is

said to be co-chordal if its complement is chordal.




EDGE IDEALS

(quadratic squarefree

monomial ideals)

 1−1↔


FINITE

SIMPLE

GRAPHS



Question
How do the invariants of finite simple graphs relate to the invariants of the

edge ideals, and vice versa?

One of the first such result in this direction is that a G graph is co-chordal if

and only if I(G) has linear resolution. (Fröberg, 1990)

A graph G is chordal if it has no induced cycle of length 4 or more and G is

said to be co-chordal if its complement is chordal.



Interplay between the Algebraic and Combinatorial Properties

A resolution of an ideal I is an exact sequence of the form

0→ Rβn → · · · → Rβ1 → Rβ0 → I → 0.

It is said to be linear if the j-the syzygy is generated in at most deg(I) + j

degrees.

An invariant that is read out from the resolution and which plays an important

role in understanding the algebraic and geometric properties is called the

Castelnuovo-Mumford regularity.

Let 0→ Fn → · · ·F1 → F0 →M → 0 be a minimal graded free resolution of

a graded R-module M . Let bj be the maximum of the degrees of generators

of Fj .

Then reg(M) := max{bj − j | j = 0, . . . , n}.
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Castelnuovo-Mumford regularity of edge ideals

Question
For a finite simple graph G, can one express the regularity of I(G) in terms of

combinatorial invariants of the graph G?

If G is a finite simple graph, then ν(G) + 1 ≤ reg(I(G)) ≤ co− chord(G) + 1.

The lower bound was proved by Katzman (2006) and the upper bound was

proved by Woodroofe (2014).

ν(G) - number of edges at a distance 3 or more, called induced matching

number.

co− chord(G) - minimum number of co-chordal subgraphs of G required to

cover all vertices and edges of G.
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Regularity of different classes

Nevo-Peeva; Dao-Huneke-Schweig (2013): I(G) has a linear presentation if

and only if ν(G) = 1.

Fröberg (1990) + Herzog-Hibi-Zheng (2004): If co− chord(G) = 1, then

I(G)s has a linear resolution for all s ≥ 1.

For several classes of graphs, the regularity is computed:

1 reg(I(Cn)) =

 ν(Cn) + 1 if n ≡ 2(mod 3);

ν(Cn) + 2 if n ≡ 0, 1(mod 3).

(Jacques, 2004).

2 G is unmixed bipartite⇒ reg(I(G)) = ν(G) + 1; (Kummini; 2009)

3 G is weakly chordal⇒ ν(G) = co− chord(G) (Busch-Dragan-Sritharan

(2010))⇒ reg(I(G)) = ν(G) + 1.
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Asymptotic linearity of regularity

If I ⊂ K[x1, . . . , xn] is an ideal generated by homogeneous polynomials,

then there exists P,Q ∈ Z such that for s� 0, reg(Is) = Ps+Q.

(Kodiyalam; Cutkosky-Herzog-Trung 1999).

There is a clear understanding of the leading coefficient P .

Question
1 Describe Q interms of known invariants associated with I?

2 Describe the stabilization index s0 = min{k | reg(Ik) = Pk +Q}.

There are no general answers known for these questions. In fact, finding an

explicit description of Q is a highly challenging task in general.
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Asymptotic linearity of regularity

Placing these questions in the context of Edge Ideals, one may ask:

Question
Describe the constant term and the stabilization index in terms of the

invariants associated with the corresponding graph.

If I is generated by homogeneous elements of same degree d, then P = d,

(Kodiyalam, 1999).

Therefore, if I = I(G) for some graph G, reg(I(G)s) = 2s+Q for s ≥ s0.

Fröberg (1990) + Herzog-Hibi-Zheng (2004): If co− chord(G) = 1, then

I(G)s has a linear resolution for all s ≥ 1 and hence reg(I(G)s) = 2s for all.
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Asymptotic linearity of regularity

If G is any graph, then for all s ≥ 1, 2s+ ν(G)− 1 ≤ reg(I(G)s),

Beyarslan-Hà-Trung 2015.

If G is a forest, then for all s ≥ 1, reg(I(G)s) = 2s+ ν(G)− 1.

Beyarslan-Hà-Trung 2015.

reg(I(Cn)
s) = 2s+ ν(Cn)− 1 for all s ≥ 2. Beyarslan-Hà-Trung 2015.

(J-Narayanan-Selvaraja 2016): If G is a bipartite graph, then for all s ≥ 1,

1 reg(I(G)s) ≤ 2s+ co− chord(G)− 1,

2 reg(I(G)s) ≤ 2s+ 1
2
(ν(G) +min{|X|, |Y |})− 1, where V (G) = X t Y is

a bipartition of G.
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Asymptotic linearity of regularity

(J-Narayanan-Selvaraja 2016): Let G be a bipartite graph. If G is unmixed,

whiskered, weakly chordal or P6-free, then reg(I(G)s) = 2s+ ν(G)− 1 for all

s ≥ 1.

As a consequence of the above result, we obtain the result of

Beyarslan-Hà-Trung that if G is a forest then reg(I(G)s) = 2s+ ν(G)− 1 for

all s ≥ 1.

We also have obtained some classes of graphs for which

reg(I(G)s) = 2s+ co− chord(G)− 1 for all s ≥ 1.
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A graph G is said to be very well-covered if ht(I(G)) = |V (G)|
2

.

A very well-covered graph has always 2h and there is a partition

V (G) = X t Y with |X| = h = |Y | and an ordering of the vertices such that

{xi, yi} ∈ E(G) for all i = 1, . . . , h.

(Crupi-Rinaldo-Terai, 2011) characterized very well-covered graphs in terms

of edge behaviour.

(Mahmoudi et al., 2011) proved that if G is a very well-covered graph, then

reg(I(G)) = ν(G) + 1.

(J-Selvaraja, 2018) proved that if G is a very well-covered graph, then for all

q ≥ 1, reg(I(G)q) = 2q + ν(G)− 1.
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Asymptotic upper bound

Alilooee et al. conjectured that for any graph G,

reg(I(G)q) ≤ 2q + reg(I(G))− 2 for all q ≥ 1.

This is known to be true for several classes of graphs such as bipartite

graphs, cycles, unicyclic graphs.

Question
Does there exists a combinatorial invariant ρ(G) such that for any graph G,

reg(I(G)q) ≤ 2q + ρ(G) for all q � 0.
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called star-packing number introduced by Hà and Woodroofe.
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where β(G) denotes the matching number of G.
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Thank you!


