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Ill-Posed Operator Equations

Let T : X → Y be a linear operator between normed linear spaces.

The problem of solving the operator equation

Tx = y (∗)

for y ∈ Y is said to be ill-posed if it does not have a unique
solution which depends continuosly on the data y .
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Theorem

If T is not bounded below, then (∗) is ill-posed.

In fact, if y ∈ R(T ) and Tx = y, then for every ε > 0, there exists
yε ∈ Y and xε ∈ X such that Txε = yε and

‖y − yε‖ ≤ ε

but

‖x − xε‖ ≥
1

ε
.

Given any sequence (αn) of poisitve real numbers such that
αn → 0 and n→∞, there there exists yn ∈ Y and xn ∈ X
such that Txn = yn and

‖y − yn‖ ≤ αn but ‖x − xε‖ ≥
1

αn

for all n ∈ N.
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Proof of the theorem.

Since T is not bounded below, for every ε > 0, there exists uε ∈ X
with ‖uε‖ = 1 such that

‖Tuε‖ < ε2‖uε‖ = ε.

Let

xε = x +
1

ε
uε, yε = Txε.

Then Txε = Tx + 1
εTuε so that

‖Txε − Tx‖ =
1

ε
‖Tuε‖ < ε.

Note that

‖xε − x‖ =
1

ε
‖uε‖ =

1

ε
.
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Corollary

If X is infinite dimensional and T is a compact operator, then (∗)
is ill-posed.

Proof.

A compact operator on an infinite dimensiional normed linear
space is not bounded below.

Recall that if k(·, ·) ∈ L2(Ω× Ω), where Ω is a bounded open
set in Rk , the operator T defined by

(Tx)(s) :=

∫
Ω

k(s, ζ)x(ζ)dζ, x ∈ L2(Ω),

is a compact operator from the infinite dimensional space
L2(Ω) into itself.
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An illustration

Let X and Y be Hilbert spaces and T : X → Y be a compact
operator of infinite rank. Let

Tx :=
∞∑
n=1

σn〈x , un〉vn, x ∈ X ,

be a singular value decompsotion1 of T .

Let y ∈ Y .

For y to be in R(T ), it is necessary that

∞∑
n=1

|〈y , vn〉|2

σ2
n

<∞

and in that case, Tx = y , where

x =
∞∑
n=1

〈y , vn〉
σn

un ∈ N(T )⊥.

1See M.T. Nair, Functional Analysis: A First Course, PHI-Learning.
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For k ∈ N, let xk = x + 1√
σk

uk . Then

‖Tx − Txk‖ =
1√
σk
‖Tuk‖ =

√
σk ,

but

‖x − xk‖ =
1√
σk
.

As k →∞,

‖Tx − Txk‖ → 0 but ‖x − xk‖ → ∞.
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Backward heat conduction problem

Find u(·, t) ∈ L2[0, `] such that

∂u

∂t
= c2∂

2u

∂x2
, 0 < x < `, 0 < t < τ, (1)

u(0, t) = 0 = u(`, t), (2)

from the knowledge of the final value

u(·, τ) := g .
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Recall:

For f ∈ L2[0, `],

u(x , t) =
∞∑
n=1

e−λ
2
nt〈f , ϕn〉ϕn(x), (∗)

with

λn :=
nπc

`
, ϕn(x) :=

√
2

`
sin
(nπ

`
x
)

satisfies the equations (1) and (2) and the initial condition

u(·, 0) = f .

Knowing f := u(·, 0), we otbain u(·, t) in a stable manner.
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Inverse problem

From the knowledge of g := u(·, τ), find f := u(·, t) for
0 ≤ t < τ .

From (∗),

u(x , τ) =
∞∑
n=1

e−λ
2
nτ 〈f , ϕn〉ϕn(x). (∗∗)

and
〈f , ϕn〉 = eλ

2
nt〈u(·, t), ϕn〉.

Hence, from (∗∗),

u(x , τ) =
∞∑
n=1

e−λ
2
n(τ−t)〈u(·, t), ϕn〉ϕn(x).
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This is same as solving the operator equation:

Af = g ,

where

Aϕ :=
∞∑
n=1

e−λ
2
n(τ−t)〈ϕ,ϕn〉ϕn.

Note that A is a compact, positive, self adjoint operator on L2[0, `]
with eigenvalues

µn := e−λ
2
n(τ−t).

µn → 0 exponentially!

The inverse problem is severly ill-posed!
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General case

Ω: bounded domain in Rk ;

∂u

∂t
= c2∆u, (x , t) ∈ Ω× [0, τ ],

u(x , t) = 0, x ∈ ∂Ω, t ∈ [0, τ).

In this case, u(·, 0) = f implies

u(x , t) =
∞∑
n=1

e−λ
2
nt〈f , ϕn〉ϕn(x), (∗)

with
−∆ϕn = λnϕn, n ∈ N;

and {ϕn : n ∈ N} is an orthonormal basis of L2(Ω).

BHCP: From the knowledge of g := u(·, τ) determine
f := u(·, t).
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Regularization - Stable approximation method

Since a compact operator equation is ill-posed,

Small error in the data can cause large deviation in the
solution.

One has to use some regularization method for obtaining
stable approximation methods.

We shall consider one such method, the so called, spectral cut-off
method.
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Spectral cut-off method:

Recall: If T : X → Y is a compact operator of infinite rank, and if

T =
∞∑
n=1

σn〈·, un〉vn

is an SVD of V , and if y ∈ R(T ), then

x :=
∞∑
n=1

〈y , vn〉
σn

un

belongs to N(T )⊥ and Tx = y .
A natural way of approximating x would be to take a k-th cut-off
of x :

xk :=
k∑

n=1

〈y , vn〉
σn

un.
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Clearly,

‖x − xk‖2 =
∞∑

n=k+1

|〈y , vn〉|2

σ2
n

→ 0

as k →∞.

Suppose the data y in noisy, i.e., we have ỹ in place of y . Then
one may take the approximation as

x̃k :=
k∑

n=1

〈ỹ , vn〉
σn

un.

Then

xk − x̃k =
k∑

n=1

〈y − ỹ , vn〉
σn

un.
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‖x − x̃k‖2 = ‖x − xk‖2 + ‖xk − x̃k‖2

= ‖x − xk‖2 +
k∑

n=1

|〈y − ỹ , vn〉|2

σ2
n

≥ ‖x − xk‖2 +
|〈y − ỹ , vk〉|2

σ2
k

.

Thus,

‖x − x̃k‖2 ≥ ‖x − xk‖2 +
|〈y − ỹ , vk〉|2

σ2
k

and

‖x − x̃k‖2 ≤ ‖x − xk‖2 +
δ2

σ2
k

.
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In particular, if ỹ := y + δvk , then ‖y − ỹ‖ = δ and

‖x − x̃k‖2 = ‖x − xk‖2 +
δ2

σ2
k

. (∗)

For fixed δ, ‖x − x̃k‖ can be large (for large k).

Rate of convergence cannot be assertained without having
source conditions on x :
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Estimate under source condition(s)

Recall

‖x − xk‖2 =
∞∑

n=k+1

|〈x , un〉|2.

Suppose:
x ∈ R(T ∗) so that x = T ∗u. (∗∗)

Then,

‖x − xk‖2 =
∞∑

n=k+1

|〈T ∗u, un〉|2 =
∞∑

n=k+1

|〈u,Tun〉|2

=
∞∑

n=k+1

σ2
n|〈u, vn〉|2 ≤ ‖u‖2σ2

k+1.

(∗) and (∗∗) imply:

‖x − x̃k‖2 ≤ ‖u‖2σ2
k+1 +

δ2

σ2
k+1
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Note that

x ∈ R(T ∗) ⇐⇒
∞∑
n=1

|〈x , un〉|2

σ2
n

<∞.

Theorem

Suppose x ∈ R(T ∗) with x = T ∗u and k is such that δ ≤ σ2
k+1,

then
‖x − x̃k‖2 ≤ (1 + ‖u‖2)σ2

k+1.

More generally:

Theorem

If x ∈ R((T ∗T )ν) and k is such that δ ≤ σ2ν+1
k+1 , then

‖x − x̃k‖2 = O(σ2ν+1
k+1 ).
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IVP for a Parabolic Problem

H: a Hilbert space;

A : D(A) ⊆ H: a densely defined positive self adjoint
unbounded operator.

Given ϕ0 ∈ H and f ∈ L1([0,∞),H), consider the initial value
problem (IVP):

d

dt
u(t) + Au(t) = f (t), u(0) = ϕ0. (1)

Known2:

u(t) = e−tAϕ0 +

∫ t

0
e−(t−s)Af (s)ds.

2See: A. Pazzy, Semigroups of Linear Operators and Applications to PDE,
Springer-Verlag, 1983
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Here, the operator e−tA is defined by

e−tAϕ :=

∫ ∞
0

e−tλdEλϕ.

where {Eλ : λ ≥ 0} is the resolution of identity of A.

‖e−tAϕ‖2 :=

∫ ∞
0

e−2tλd‖Eλϕ‖2 ≤
∫ ∞

0
d‖Eλϕ‖2 = ‖ϕ‖2.

Recall spectral theorem:

There exists a resolution of identity {Eλ : λ ≥ 0} such
that

Aϕ =

∫ ∞
0

λdEλϕ, ϕ ∈ D(A),

and in that case D(A) := {ϕ ∈ H :
∫∞

0 λ2d‖Eλϕ‖2}.
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For any continuous function g : [0,∞)→ R,

g(A)ϕ :=

∫ ∞
0

g(λ)dEλϕ, ϕ ∈ D(g(A))

is a self adjoint operator with

D(g(A)) := {ϕ ∈ H :

∫ ∞
0
|g(λ)|2d‖Eλϕ‖2}.

For ϕ ∈ D(g(A),

‖g(A)ϕ‖2 :=

∫ ∞
0
|g(λ)|2d‖Eλϕ‖2.
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In particular, we have the following:

For t ≥ 0

etAϕ :=

∫ ∞
0

etλdEλϕ, ϕ ∈ D(etA),

where

D(etA) := {ϕ ∈ H :

∫ ∞
0

e2tλd‖Eλϕ‖2}

and

‖etAϕ‖2 =

∫ ∞
0

e2tλd‖Eλϕ‖2} ≥ ‖ϕ‖2.

etA is one-one, onto (since self adjoint), and has bounded
inverse.

R(e−tA) = D(etA) ∀ t ≥ 0.
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Let
S(t) := e−tA, t ≥ 0.

Then

{S(t) : t ≥ 0} is a strongly continuous semigroup on H with∥∥∥S(t)ϕ− ϕ
t

+ Aϕ
∥∥∥→ 0 as t → 0.

−A is the infinitesimal generator of S, i.e.,

−Aϕ := lim
t→0

S(t)ϕ− ϕ
t

, ϕ ∈ D(−A)

where

D(−A) := {ϕ ∈ H : lim
t→0

S(t)ϕ− ϕ
t

exists}.
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Final value problem (FVP)

Let τ > 0, ϕτ ∈ H and f ∈ L1([0, τ ],H).

Consider the final value problem (FVP):

d

dt
u(t) + Au(t) = f (t), u(τ) = ϕτ . (2)

Suppose u is a solution of (2). Then

u(t) = e−tAϕ0 +

∫ t

0
e−(t−s)Af (s)ds, u(τ) = ϕτ ,

where ϕ0 := u(0). In particular,

ϕτ = u(τ) = e−τAϕ0 +

∫ τ

0
e−(τ−s)Af (s)ds.
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Theorem

Let ϕτ ∈ H and f ∈ L1([0, τ ],H). If the FVP (2) has a solution
u(·) with u(τ) = ϕτ , then

ψ(t) := ϕτ −
∫ τ

t
e−(τ−s)Af (s)ds

belongs to D(e(τ−t)A) and

u(t) = e(τ−t)Aψ(t).

In the above, if f = 0, then

u(t) = e(τ−t)Aϕτ .

Since A is an unbounded operator,

Small error in ϕτ can lead to larege error in the
solution.
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Proof of theorem.

Let ϕ0 := u(0). Then

u(t) = e−tAϕ0 +

∫ t

0
e−(t−s)Af (s)ds. (3)

In particular,

ϕτ = e−τAϕ0 +

∫ τ

0
e−(τ−s)Af (s)ds.

Since e−τAϕ0 ∈ D(eτA),

ϕτ −
∫ τ

0
e−(τ−s)Af (s)ds = e−τAϕ0 ∈ D(eτA).

Hence,

ϕ0 = eτA
(
ϕτ −

∫ τ

0
e−(τ−s)Af (s)ds

)
.
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Continues.

Therefore, (3) implies

u(t) = e−tAeτA
(
ϕτ −

∫ τ

0
e−(τ−s)Af (s)ds

)
+

∫ t

0
e−(t−s)Af (s)ds

= e(τ−t)A
(
ϕτ −

∫ τ

0
e−(τ−s)Af (s)ds

)
+

∫ t

0
e−(t−s)Af (s)ds.

That is,

e−(τ−t)Au(t) = (ϕτ −
∫ τ

0
e−(τ−s)Af (s)ds

)
+e−(τ−t)A

∫ t

0
e−(t−s)Af (s)ds

= ϕτ − e−(τ−t)A

∫ τ

0
e−(t−s)Af (s)ds

+e−(τ−t)A

∫ t

0
e−(t−s)Af (s)ds.
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Continues.

Hence,

e−(τ−t)Au(t) = ϕτ − e−(τ−t)A

∫ τ

t
e−(t−s)Af (s)ds.

Thus,

ϕτ −
∫ τ

t
e−(τ−s)Af (s)ds ∈ D(e(τ−t)A)

and

u(t) = e(τ−t)A
(
ϕτ −

∫ τ

t
e−(τ−s)Af (s)ds

)
.
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In view of the above theorem, we introdice the following definition.

Definition

If ϕτ ∈ H and f ∈ L1([0, τ ],H) are such that

ψ(t) := ϕτ −
∫ τ

t
e−(τ−s)Af (s)ds ∀ t ∈ [0, τ)

belongs to D(e(τ−t)A), then u(·) defined by

u(t) = e(τ−t)Aψ(t)

is called the mild solution of the FVP (2).
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FVP as operator equation

The problem of finding a mild solution u(·) of the FVP with
u(τ) = ϕτ can be posed as a problem of solving the operator
equation

Atu(t) = ψ(t), (4)

where
Atϕ := e−(τ−t)Aϕ, ϕ ∈ H,

ψ(t) := ϕτ −
∫ τ

t
e−(τ−s)Af (s)ds.

Note that:

At is an injective bounded self adjoint operator.

R(At) = D(e(τ−t)A) is dense in H.

A−1
t = e(τ−t)A : R(At)→ H is not continuous.

Hence, (4) is ill-posed.
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A mild solution is not necessary to be a solution of the FVP:

Theorem

Let ϕτ ∈ D(eτA) and let u : [0, τ ]→ H be defined by
u(t) = e(τ−t)Aϕτ , t ≥ 0. Then u is a solution of the FVP

ut + Au(t) = 0, u(τ) = ϕτ

if and only if ϕτ ∈ D(AeτA).
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Proof.

For t ≥ 0 and h > 0,

u(t + h)− u(t)

h
=

e(τ−t−h)Aϕτ − e(τ−t)Aϕτ
h

=
e−hAu(t)− u(t)

h
.

Since −A is the infinitesimal generator of the semigroup
{e−hA : h ≥ 0},

lim
h→0

u(t + h)− u(t)

h
exists ⇐⇒ u(t) ∈ D(−A)

⇐⇒ ϕτ ∈ D(AeτA).

Thus, u′(t) exists for every t ≥ 0 iff eτAϕτ ∈ D(−A) iff
ϕτ ∈ D(AeτA), and in that case u′(t) = −Au(t), u(τ) = ϕτ .
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Truncated spectral regularization (TRS)

Let ϕτ and f ∈ L1([0, τ ],H).

Recall that, the mild solution of the FVP is

u(t) = e(τ−t)Aψ(t) =

∫ ∞
0

e(τ−t)λdEλ(ψ(t)) (5)

whenever ψ(t) := ϕτ −
∫ τ
t e−(τ−s)Af (s)ds belongs to D(eτA).

Since small error in the data (ϕτ , f ) can lead to large
error in the solution u(·), we have to look for a
regularized solution which depends continuously on the
data (ϕτ , f ).
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Looking at the expression in (5) for the mild solution, we define
such a regularized solution as

uβ(t) =

∫ β

0
e(τ−t)λdEλ(ψ(t)) (6)

for each β > 0.

The following theorem shows that uβ(·) is an approximation of u(·)
for large β.
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Theorem

Under the assumption ψ(t) ∈ D(eτA),

‖u(t)− uβ(t)‖ → 0 as β →∞.

Proof.

Since

‖u(t)‖2 =

∫ ∞
0

e2(τ−t)λd‖Eλ(ψ(t))‖2 <∞,

we obtain

‖u(t)− uβ(t)‖2 =

∫ ∞
β

e2(τ−t)λd‖Eλ(ψ(t))‖2 → 0 as β →∞.
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Theorem

Under the assumption ψ(t) ∈ D(eτA),

‖u(t)− uβ(t)‖ → 0 as β →∞.

Proof.

Since

‖u(t)‖2 =

∫ ∞
0

e2(τ−t)λd‖Eλ(ψ(t))‖2 <∞,

we obtain

‖u(t)− uβ(t)‖2 =

∫ ∞
β

e2(τ−t)λd‖Eλ(ψ(t))‖2 → 0 as β →∞.
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Now, we show that

uβ(·) is stable under perturbations in the data (ϕτ , f ).

Suppose ϕ̃τ ∈ H and f̃ ∈ L1([0, τ ],H) are the noisy data, in place
of the actual data ϕτ and f , respectively.

Let

ũβ(t) =

∫ β

0
e(τ−t)λdEλ(ψ̃(t)),

where

ψ̃(t) := ϕ̃τ −
∫ τ

t
e−(τ−s)Af̃ (s)ds.
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Theorem

Let ϕτ , ϕ̃τ ∈ H and f , f̃ ∈ L1([0, τ ],H). The for each t ∈ [0, τ ]
and β > 0,

‖uβ(t)− ũβ(t)‖ ≤ e(τ−t)β‖ψ(t)− ψ̃(t)‖
≤ e(τ−t)β(‖ϕτ − ϕ̃τ‖+ ‖f − f̃ ‖1).

Suppose ‖ϕτ − ϕ̃τ‖+ ‖f − f̃ ‖1 ≤ δ for some δ > 0. Then we
obtain

‖uβ(t)− ũβ(t)‖ ≤ e(τ−t)βδ.

Observation:

For a fixed β > 0,

‖uβ(t)− ũβ(t)‖ → 0 as δ → 0.

uβ(t) is stable under perturbations in the data (ϕτ , f ).
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Convergence

From the above theorem we have

Theorem

Let ϕτ , ϕ̃τ ∈ H and f , f̃ ∈ L1([0, τ ],H) such that

‖ϕτ − ϕ̃τ‖+ ‖f − f̃ ‖1 ≤ δ

for some δ > 0. The for each t ∈ [0, τ ] and β > 0,

‖u(t)− ũβ(t)‖ ≤ ‖u(t)− uβ(t)‖+ e(τ−t)βδ.

β ≈ 1

τ − t
log
( 1

δp

)
, 0 < p < 1,

⇒
‖u(t)− ũβ(t)‖ = o(1) as δ → 0.
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Proof of Theorem.

We observe that

ψ(t)− ψ̃(t) = ϕt − ϕ̃τ )−
∫ τ

t
e−(τ−s)A(̃f (s)− f̃ (s))ds

and

uβ(t)− ũβ(t) =

∫ β

0
e(τ−t)λdEλ(ψ(t)− ψ̃(t)).

Note that

‖ψ(t)− ψ̃(t)‖ ≤ ‖ϕt − ϕ̃τ‖+

∫ τ

t
‖e−(τ−s)A‖ ‖f (s)− f̃ (s)‖ds

≤ ‖ϕt − ϕ̃τ‖+

∫ τ

t
‖f (s)− f̃ (s)‖ds

≤ ‖ϕt − ϕ̃τ‖+ ‖f − f̃ ‖1.
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Continues.

Hence,

‖uβ(t)− ũβ(t)‖2 =

∫ β

0
e2(τ−t)λdEλ‖ψ(t)− ψ̃(t)‖2

≤ e2(τ−t)β‖ψ(t)− ψ̃(t)‖2

Thus,

‖uβ(t)− ũβ(t)‖ ≤ e2(τ−t)β‖ψ(t)− ψ̃(t)‖
≤ e2(τ−t)β(‖ϕt − ϕ̃τ‖+ ‖f − f̃ ‖1).

Next we obtain an estimate for the error under an additional
smoothness assumption on u(·).
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Continues.

Hence,

‖uβ(t)− ũβ(t)‖2 =

∫ β

0
e2(τ−t)λdEλ‖ψ(t)− ψ̃(t)‖2

≤ e2(τ−t)β‖ψ(t)− ψ̃(t)‖2

Thus,

‖uβ(t)− ũβ(t)‖ ≤ e2(τ−t)β‖ψ(t)− ψ̃(t)‖
≤ e2(τ−t)β(‖ϕt − ϕ̃τ‖+ ‖f − f̃ ‖1).

Next we obtain an estimate for the error under an additional
smoothness assumption on u(·).
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Theorem

Suppose ϕτ ∈ H and f ∈ L1([0, τ ],H) are such that for each
t ∈ [0, τ), ψ(t) ∈ D(eτA) and there exists a monotonically
increasing continuous function ht()̇ : [0, τ ]→ [0,∞) such that

(i) ht(λ)→∞ as λ→∞,

(i) u(t) ∈ D(ht(A)),

(ii) ‖ht(A)u(t)‖ ≤ ρt for some ρt > 0.

Then
‖u(t)− uβ(t)‖ ≤ ρt

ht(β)
.
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Proof.

Recall that
u(t) = e(τ−t)Aψ(t).

Hence,

‖u(t)− uβ(t)‖2 =

∫ ∞
β

e2(τ−t)λd‖Eλ(ψ(t))‖2

=

∫ ∞
β

1

ht(λ)2
ht(λ)2e2(τ−t)λd‖Eλ(ψ(t))‖2

≤ 1

ht(β)2

∫ ∞
β

ht(λ)2e2(τ−t)λd‖Eλ(ψ(t))‖2
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Continues.

By the assumption,∫ ∞
0

ht(λ)e(τ−t)λd‖Eλ(ψ(t))‖2 = ‖ht(A)e(τ−t)Aψ(t)‖2

= ‖ht(A)u(t)‖2 ≤ ρ2
t .

Hence, we have

‖u(t)− uβ(t)‖ ≤ ρt/ht(β).
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Combining the last two theorems, we obtain the following.

Theorem

Suppose ϕ̃τ and f̃ are noisy data such that

‖ϕτ − ϕ̃τ‖+ ‖f − f̃ ‖1 ≤ δ

for some noise level δ > 0. Then

‖uβ(t)− ũβ(t)‖ ≤ e(τ−t)βδ.

If ρt > 0 and ht(·) are as in last theorem, then we have

‖u(t)− ũβ(t)‖ ≤ ρt
ht(β)

+ e(τ−t)βδ.

M. Thamban Nair Inverse Problem in PDE



Combining the last two theorems, we obtain the following.

Theorem

Suppose ϕ̃τ and f̃ are noisy data such that

‖ϕτ − ϕ̃τ‖+ ‖f − f̃ ‖1 ≤ δ
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Parameter choice strategy

Theorem

Let
ξt(λ) := ht(λ)e(τ−t)λ, λ > 0

and
β = βt := ξ−1

t (ρ/δ).

Then

‖u(t)− ũβ(t)‖ ≤ 2ρ

h(ξ−1
t (ρ/δ))

.

In particular,

‖u(t)− ũβ(t)‖ → 0 as δ → 0.
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Proof.

Note that

ρt
ht(β)

= e(τ−t)βδ ⇐⇒ ξt(β) := ht(β)e(τ−t)β =
ρt
δ

⇐⇒ β = ξ−1
t (ρt/δ).

Thus, for the choice of β = ξ−1
t (ρt/δ),

‖u(t)− ũβ(t)‖ ≤ ρt
ht(β)

+ e(τ−t)βδ

≤ 2ρ

h(ξ−1
t (ρ/δ))

Since h(ξ−1
t (ρt/))→∞ as → 0.

‖u(t)− ũβ(t)‖ → 0 as → 0.
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Remarks on optimality

Recall that the operator At : H → H defined by

Atϕ := e−(τ−t)Aϕ, ϕ ∈ H

is injective, continuous, self adjoint, with R(At) dense in H.

Therefore,

u(·) is a generalized solution

Atu(t) = ϕτ −
∫ τ

t
e−(τ−s)Af (s)ds (7)

if and only if it is a solution.

Let u(t) be the solution of (7) and let uL
α(·) be the Lavrentive

regularized solution, i.e.,

(At + αI )uL
α(t) = ψ(t) := ϕτ −

∫ τ

t
e−(τ−s)Af (s)ds.
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Then, from the standard theory, we know that

‖u(t)− uL
α(t)‖ → 0 as α→ 0

and

‖uL
α(t)− ũL

α(t)‖ ≤ δ

α
. (8)

Note that the estimate

‖uβ(t)− ũβ(t)‖ ≤ δe(τ−t)β

obtained eariler is same as (8) if we take β such that

e(τ−t)β =
1

α
.

That is,

β =
1

τ − t
ln
( 1

α

)
.
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Next, suppose

u(t) = Atv(t) with ‖v(t)‖ ≤ ρt , (9)

equivalently,

u(t) ∈ D(e(τ−t)A) with ‖e(τ−t)Au(t)‖ ≤ ρt . (10)

Then we have the estimate

‖u(t)− uL
α(t)‖ ≤ ρtα.

Under the choice β := 1
τ−t ln

(
1
α

)
, the above estimate takes the

form
‖u(t)− uL

α(t)‖ ≤ ρte−(τ−t)β. (11)

This is same as the estimate obtained earlier for ‖u(t)− uβ(t)‖
under the (10) .
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Thus, we can conclude:

If ht(λ) := e(τ−t)λ, then the the estimate obtained
under TSR is same as the order optimal rate possible
for the Lavrentive regularization for the source
condition (9), if

β =
1

τ − t
ln
( 1

α

)
and α =

√
δ/ρ,

that is, if

β :=
1

2(τ − t)
ln
(ρ
δ

)
.

Similar conclusion can be made for a general ht(·) as well.
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