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lll-Posed Operator Equations

Let T : X — Y be a linear operator between normed linear spaces.

The problem of solving the operator equation
Tx =y (*)

for y € Y is said to be ill-posed if it does not have a unique
solution which depends continuosly on the data y.
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Theorem
If T is not bounded below, then (x) is ill-posed.

In fact, if y € R(T) and Tx =y, then for every ¢ > 0, there exists
Y. € Y and x. € X such that Tx. = y. and

but

ly —yell <€
1
[Ix =l = =
€

e Given any sequence («,) of poisitve real numbers such that

an, — 0 and n — oo, there there exists y, € Y and x, € X
such that Tx, = y, and

1
ly = yall S an but lx —x[| > =

n

for all n € N.
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Proof of the theorem.

Since T is not bounded below, for every € > 0, there exists u. € X
with ||uz|| = 1 such that

I Tue|l < €¥luell = e.

Let

Xe = X+ gug, Ve = TX.

Then Tx. = Tx + %Tue so that

1
| Tx: — Tx|| = EHTUSH < e.

Note that
1 1

e = xl = <] = <.
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If X is infinite dimensional and T is a compact operator, then (x)
is ill-posed.

A compact operator on an infinite dimensiional normed linear
space is not bounded below. [

o Recall that if k(-,-) € L?(Q2 x ), where Q is a bounded open
set in RX, the operator T defined by

(Tx)(s) = /Q k(s OX(QO)dC,  x € 12(Q),

is a compact operator from the infinite dimensional space
L2(Q) into itself.
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An illustration

Let X and Y be Hilbert spaces and T : X — Y be a compact
operator of infinite rank. Let

oo
Tx := ZU,,(X, Up)Vn, X E X,

n=1
be a singular value decompsotion! of T.

LetyeY.
@ For y to be in R(T), it is necessary that

00 2
Z I(y, ‘;n>| < 00
n=1 Thn

and in that case, Tx = y, where

o0

X = Z s va) u, € N(T)*.

On

n=1

!See M.T. Nair, Functional Analysis: A First Course, PHl=Learning.
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For k e N, let x, = x + fikuk. Then

1
Tx — T = — || Tu =
” X Xk” \/EkH ukH \/gk7

but
Ix = il = —
el = L
Vo
o As k — oo,

| Tx — Txk|| =0 but |[x — xg|| — oo.
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Backward heat conduction problem

e Find u(-,t) € L2[0,/] such that

ou  ,0%u
Eicﬁ’ O<x<t, O0<t<m, (1)
u(0,t) =0=u(l,t), (2)

from the knowledge of the final value

u(-,7):=g.
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Recall:

For f € L2[0, 4],

=" e on)pn(x), ()

n=1

nmc 2 nm
Ap 1= R on(x) = \/;sm ( 7 x)

satisfies the equations (1) and (2) and the initial condition

with

u(-,0)=f.

e Knowing f := u(-,0), we otbain u(-, t) in a stable manner.
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Inverse problem

e From the knowledge of g := u(-,7), find f := u(-, t) for
0<t<T.

From (x),
XT)—ZG M7, om)on(x): (+%)

and ,
<f7 90n> = e/\"t<u(‘7 t)790n>'

Hence, from (xx),

Ze—* " (-, t), n)pn(X).
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This is same as solving the operator equation:
Af = g,

where -
C2(r—
Ap = e (o oo},
n=1

Note that A is a compact, positive, self adjoint operator on L2[0, /]

with eigenvalues ,
fhn 1= e MnlT=t),

@ p — 0 exponentially!
@ The inverse problem is severly ill-posed!
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General case

Q: bounded domain in RX:

% =c2Au, (x,t) € Qx]0,7],

u(x,t)=0, xe€0Q,tel0,r1).

In this case, u(-,0) = f implies

=" e on)pn(x), ()

n=1

with
—Apn = Apn, neN;

and {¢, : n € N} is an orthonormal basis of L2(Q).

@ BHCP: From the knowledge of g := u(-, ) determine
f:=u(,t).
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Regularization - Stable approximation method

Since a compact operator equation is ill-posed,

Small error in the data can cause large deviation in the
solution.

@ One has to use some regularization method for obtaining
stable approximation methods.

We shall consider one such method, the so called, spectral cut-off
method.
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Spectral cut-off method:

Recall: If T : X — Y is a compact operator of infinite rank, and if
T = Zan<'a Un>Vn
n=1

is an SVD of V, and if y € R(T), then

belongs to N(T)* and Tx = y.
A natural way of approximating x would be to take a k-th cut-off

of x:
Zk (¥ Vn)
L s Yn
Xk - 2 o unp.
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Clearly,

0 2
HX_XkH2: 2: ’<y7\;n>‘ =0
o
n=k+1 n

as k — oo.

Suppose the data y in noisy, i.e., we have ¥ in place of y. Then
one may take the approximation as

Then

M. Thamban Nair Inverse Problem in PDE



Ix = %ll> = Ix = xell® + [Ixk — %l
V,
— ”X—Xk||2+z|y )/a n

’<y_y7 Vk>|
Lt Am AL
Ok

A\

Ix =

Thus,

~ 2
s Y =Y, Vk
I = %l 2 2+ =T 0l

k

and
2

- )
I = 5l < llx = el + .
Ok
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In particular, if ¥ :==y + dvg, then ||y — ¥|| = ¢ and

2 2, 0°
I = Rl = llx = x| + - (%)
g
k
e For fixed 0, ||x — Xk|| can be large (for large k).

@ Rate of convergence cannot be assertained without having
source conditions on Xx:
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Estimate under source condition(s)

Recall
o0
Ix = x> = [(x, un)?
n=k+1
Suppose:
x € R(T*) sothat x= T"u. ()
Then,
o
Ix = xl® = Z (T u,un)? = Y [y, Tu)f?
n=k+1 n=k+1
o
= ) oal{u,va)? < |ullPotyy.
n=k+1
(x) and (xx) imply:
2 2 2 §
I =%l < Nulloiess + —5—
k41
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@ Note that

Suppose x € R(T*) with x = T*u and k is such that § < o3,
then
I — %el® < (1+ [[ull®) o4

More generally:

If x € R((T*T)") and k is such that § < aiﬁl, then

s 2v+1
Ix = %|* = 0o 1)
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I[VP for a Parabolic Problem

e H: a Hilbert space;

e A: D(A) C H: a densely defined positive self adjoint
unbounded operator.

Given g € H and f € L1(]0,00), H), consider the initial value
problem (IVP):

%u(t) + Au(t) = f(t), u(0) = po. (1)

Known?:

t
u(t) = e My —i—/ e (=94 (5)ds.
0

2See: A. Pazzy, Semigroups of Linear Operators and Applications to PDE,
Springer-Verlag, 1983
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Here, the operator e~ ™A is defined by

o
e My ::/ e NdEye.
0

where {E) : A > 0} is the resolution of identity of A.

o0 o0
o eyl = /O e | Exg|? < /0 dl|Exell? = [l

Recall spectral theorem:

There exists a resolution of identity {Ex : A > 0} such
that

Ap = / MdErp, ¢ € D(A),
JO

and in that case D(A) :={p € H : fooo M| Exe|?}.
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e For any continuous function g : [0,00) — R,

g(A)p = /O T e dErg. ¢ € D(g(A))

is a self adjoint operator with

D(g(A) = {p e H- /0 ()P Exel?).

e For v € D(g(A),

lg(A)l? = /0 " le(0)Pd| Exel.
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In particular, we have the following:

@ Fort>0
o0
ey :—/ e dEyp, € D(e?),
0
where -
D(e) = o e H: [ d|ElP)
0
and

o0
el = /0 2| Exgl?} > 1ol

o e is one-one, onto (since self adjoint), and has bounded
inverse.

o R(e7t) = D(et?) Vt>0.
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Let

Then
e {5(t):t >0} is a strongly continuous semigroup on H with
S(t)p —
HW%—AwH —0 as t—0.

@ —A is the infinitesimal generator of S, i.e.,

—Agp = lim M’ ¢ € D(—A)
t—0 t
where
t —
D(~A):={pecH: lms()‘f‘o exists}.
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Final value problem (FVP)

Let 7 >0, ¢, € H and f € LY([0, 7], H).
Consider the final value problem (FVP):

%u(t) + Au(t) = f(t), u(T)=¢r. (2)
Suppose u is a solution of (2). Then
u(t) = e Mo + /0 t e I)Af(s)ds,  u(r) = s,
where ¢ := u(0). In particular,

or = u(r) = e o +/ e =941 (s)ds.
0
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Theorem

Let o, € H and f € L1([0, 7], H). If the FVP (2) has a solution
u(-) with u(1) = ¢,, then

P(t) = @r — /T e*(T*S)Af(s)ds

t

belongs to D(e("=94) and

In the above, if f =0, then

u(t) = e,

@ Since A is an unbounded operator,

Small error in @, can lead to larege error in the
solution.
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Proof of theorem.
Let ¢o := u(0). Then

t
u(t) = e My + / e (t=9)Af(s)ds. (3)
0

In particular,

0, = e Ay +/ e (T=9)Af(s)ds.
0

Since e ™Ay € D(e™),
Or — / e*(T*S)Af(s)ds = e*TAgoo S D(eTA).
0

Hence,

po =e™ (907 — /T e_(T_S)Af(s)ds>.
0
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Continues.
Therefore, (3) implies

T t
u(t) = etAeTA(goT—/ e(Ts)Af(S)dS)—i-/ e (=)Af(5)ds
0 0
- t
e(T—t)A(goT—/ e_(T_s)Af(S)ds> +/ e (A1 (s)ds.
0 0
That is,
M) = (pr— [ e CIA(5)as)
0
t
Lo (DA / e~ (=9Af(5)ds
0
_ sOT_e(Tt)A/ e~(=)AF(5)ds
0

t
e (T7DA / e (t=9)A1(5)ds.
0
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Continues.

Hence,

t

Thus, .
©or —/ e (=941 (s)ds € D(el""D4)
t

and

u(t) = elT"9A (gaT —/ e’(T*S)Af(s)ds).
t
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In view of the above theorem, we introdice the following definition.

Definition
If o, € H and f € L1([0, 7], H) are such that

W(t) = oy — / ’ e =A% (s)ds Vtelo,7)

belongs to D(e(T=14), then u(-) defined by

u(t) = 7y (1)

is called the mild solution of the FVP (2).
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FVP as operator equation

The problem of finding a mild solution u(-) of the FVP with
u(T) = ¢ can be posed as a problem of solving the operator

equation
Aeu(t) = (1), (4)
where
Avp=e D4 e H,
W(t) = or — / e~ ("=AF(5)ds.
t
Note that:

o A; is an injective bounded self adjoint operator.
o R(A;) = D(el™t4) is dense in H.
o A7l = e84 R(A;) — H is not continuous.

Hence, (4) is ill-posed.
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@ A mild solution is not necessary to be a solution of the FVP:

Theorem

Let ¢, € D(e™) and let u : [0,7] — H be defined by
u(t) = e™=Ap_ t > 0. Then u is a solution of the FVP

ue+Au(t) =0, u(r) = ¢,

if and only if o, € D(Ae™).
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Proof.
For t >0 and h > 0,

u(t+h) —u(t) e tMAG — DA, ehAy(t) — u(t)

h h h

Since —A is the infinitesimal generator of the semigroup
{e=" : h >0},

im u(t + h) — u(t)

lim " exists <= u(t) € D(—A)

— ¢, € D(Ae™).

Thus, u/(t) exists for every t > 0 iff e™Ap, € D(—A) iff
©r € D(Ae™), and in that case u/(t) = —Au(t), u(r) =¢,. O
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Truncated spectral regularization (TRS)

Let ¢, and f € L1([0, 7], H).

Recall that, the mild solution of the FVP is

u(t) = e My(r) = / T el B (4(1) (5)

0
whenever ¢(t) == ¢, — [] e~ (T=9)Af(s5)ds belongs to D(e™).
Since small error in the data (¢-, ) can lead to large
error in the solution u(-), we have to look for a

regularized solution which depends continuously on the
data (or,f).
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Looking at the expression in (5) for the mild solution, we define
such a regularized solution as

B
(6) = [ el (0(0) ©)
for each 5 > 0.

The following theorem shows that ug(-) is an approximation of u(-)
for large 5.
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Under the assumption 1)(t) € D(e™),

lu(t) — us(t)]| =0 as S — oo.
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Under the assumption (t) € D(e™),

lu(t) — us(t)]| =0 as S — oo.

Since -
me=A 7| Ex(1(1))]2 < oo,
we obtain

|Mn—wmwzé SN E\ ()P =0 as B oo

O

v
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Now, we show that

@ ug(-) is stable under perturbations in the data (¢, f).

Suppose @, € H and f € L1(]0, 7], H) are the noisy data, in place
of the actual data ¢, and f, respectively.

Let
() = / e -ONE, (§(1)),

where
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Theorem

Let o,, 3, € H and f,f € LX([0, 7], H). The for each t € [0, 7]
and 8 > 0,

lug(t) — s (2) e(T’t)ﬁllw(t) — (1)l

T8 (lor — @)l + [IF = Flln)-

<
<

Suppose |y — @7 || + ||f — F||1 < & for some § > 0. Then we
obtain
lug(t) — Gs(e)] < &7~

Observation:
@ For a fixed g > 0,

lus(t) — Gs(t)]| -0 as & — 0.

@ ug(t) is stable under perturbations in the data (¢, f).

M. Thamban Nair Inverse Problem in PDE



Convergence

From the above theorem we have

Let ., 3. € H and f,f € L}([0,7], H) such that

lor — B+ I1f = Fll1 <6

for some § > 0. The for each t € [0, 7] and 5 > 0,

lu(t) - Gs(e)]) < llue) — us()]| + 9%,

1

1
~ | (7) 0 1,
St AV sP=

lu(t) — Gs(t)] = o(1) as & — 0.
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Proof of Theorem.
We observe that

and
B .
us(t) — p(t) = /0 TN dE, (5(t) — (1)),
Note that

lo(e) = DO < llpe — -l + / "l A [1F(s) — F(s)ds
ot — .l + / "IF(s) - F(s)l|ds

llpe = @ell + IIf = Flla.

IA

IA
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Continues.

Hence,
B8 -
lus(e) — Bs(0)]2 = /0 2N E, [(t) — (1)
< () — G(0)|P
Thus,
lus(t) — Bs(t)]| < “-”W(t) 50
< 298(||p, — 31|+ If = Fll).
]
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Continues
Hence,

B -
lus() — Bo(1)]2 = /0 TONE, [(1) — G(1)]?
< ET03y(1) — (1))

Thus,

2(T_t)ﬁ\lw(t)— (1)l
T (lor = @oll + I = Flla)-

[ug(t) — s (2)]

IN A

Next we obtain an estimate for the error under an additional
smoothness assumption on u(-).
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Theorem

Suppose ¢, € H and f € L*([0, 7], H) are such that for each
t € [0,7), ¥(t) € D(e™) and there exists a monotonically
increasing continuous function h:() : [0, 7] — [0, 00) such that

(i) he(A) = 00 as A — oo,

(i) u(t) € D(h:(A)),
(ii) |[he(A)u(t)|| < pt for some py > 0.
Then

—~~

[u(t) = us(B)]| <

ht(ﬁ)
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Recall that
u(t) = eT"DAY(1).

Hence,

lu(t) - us(t)2 = /ﬁ PO B (1) 2

1

_ /: Whtmzezv—mduEA(w(th

# o0 2e2(7—_t))\ 5
he(B) //3 he(A) d|IE((®))]

Ol

.
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Continues.

By the assumption,
/o he (Ve[ Ex(()IIP = [he(A)eT (1))
= [[h(A)u(®)|* < pE.
Hence, we have

lu(t) = up(B)l| < pe/he(B).
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Combining the last two theorems, we obtain the following.

M. Thamban Nair Inverse Problem in PDE



Combining the last two theorems, we obtain the following.

Theorem

Suppose ¢, and fare noisy data such that
lor = @ell + 1 = Flla < 6
for some noise level 6 > 0. Then
lus(t) - Bs(0)]| < el=97%.

If p > 0 and h¢(-) are as in last theorem, then we have

Ju() = A1) < 3155 + €770
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Parameter choice strategy

Let
&(N) == he(\)elm* x>0
and
B =B =& (p/9).
Then 2
= t
Ju(t) — dg(t)]] < (o)

In particular,

lu(t) — bs(t)| =0 as d—0.
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Note that

Pt (r—t)B — (r—t)8 _ Pt
ht(ﬁ) =¢€ d = gt(ﬁ) T ht(ﬁ)e - )
= B=¢&"(pe/9).

Thus, for the choice of 8 = & (p:/9),

Ju(t) = Gp(t)l| < htp(tﬁ) + (7885

2p
h(&rH(p/9))
Since h(&; 1 (pt/)) — oo as — 0.

lu(t) — Gs(t)] >0 as — 0.
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Remarks on optimality

Recall that the operator A; : H — H defined by
Ao =e T4 peH
is injective, continuous, self adjoint, with R(.A;) dense in H.

Therefore,

@ u(-) is a generalized solution

Acult) = ¢o = [ e Ne(5)ds (7)

if and only if it is a solution.

Let u(t) be the solution of (7) and let u5(-) be the Lavrentive
regularized solution, i.e.,

(Ae + al)ul(t) = (1) == ¢ — / e (T=9)Af(s)ds.

t
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Then, from the standard theory, we know that

lu(t) — ut(t)]| =0 as a—0
and 5
Job(e) ~ gt (o)) < .

Note that the estimate
lug(t) — tig(t)]| < 5e(7=17

obtained eariler is same as (8) if we take 8 such that

1
e(Tft)IB = —,
«
That is, ) )
5 - T—t In <a)
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Next, suppose
u(t) = Arv(t) with [v(t)[} < pe, (9)
equivalently,
u(t) € D(eDAY  with  [|eDAu(t)|| < pe. (10)
Then we have the estimate
lu(t) = ug (D) < pra.
Under the choice 5 := i In (é) the above estimate takes the
form
lu(t) = ug(2)]] < pee™ 7707 (11)

This is same as the estimate obtained earlier for ||u(t) — ug(t)||
under the (10) .
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Thus, we can conclude:

If he()\) := e(7=9A then the the estimate obtained
under TSR is same as the order optimal rate possible

for the Lavrentive regularization for the source
condition (9), if

1

T—1

8=

1
In (&) and a=+/d/p,
that is, if

5:22(7_1_t)ln(§).

Similar conclusion can be made for a general h(-) as well.
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