# III-Posed Operaror Equations and an Inverse Problem in PDE 

M. Thamban Nair

Department of Mathematics
Indian Institute of Technology Madras
Chennai, India
Email: mtnair@iitm.ac.in
(Ph.D. IIT Bombay, 1986)

Diamond Jubily Symposium, IIT Bombay
4-6 January 2019

## III-Posed Operator Equations

Let $T: X \rightarrow Y$ be a linear operator between normed linear spaces.
The problem of solving the operator equation

$$
\begin{equation*}
T x=y \tag{*}
\end{equation*}
$$

for $y \in Y$ is said to be ill-posed if it does not have a unique solution which depends continuosly on the data $y$.

## Theorem

If $T$ is not bounded below, then $(*)$ is ill-posed.
In fact, if $y \in R(T)$ and $T x=y$, then for every $\varepsilon>0$, there exists $y_{\varepsilon} \in Y$ and $x_{\varepsilon} \in X$ such that $T x_{\varepsilon}=y_{\varepsilon}$ and

$$
\left\|y-y_{\varepsilon}\right\| \leq \varepsilon
$$

but

$$
\left\|x-x_{\varepsilon}\right\| \geq \frac{1}{\varepsilon}
$$

- Given any sequence $\left(\alpha_{n}\right)$ of poisitve real numbers such that $\alpha_{n} \rightarrow 0$ and $n \rightarrow \infty$, there there exists $y_{n} \in Y$ and $x_{n} \in X$ such that $T x_{n}=y_{n}$ and

$$
\left\|y-y_{n}\right\| \leq \alpha_{n} \quad \text { but } \quad\left\|x-x_{\varepsilon}\right\| \geq \frac{1}{\alpha_{n}}
$$

for all $n \in \mathbb{N}$.

## Proof of the theorem.

Since $T$ is not bounded below, for every $\varepsilon>0$, there exists $u_{\varepsilon} \in X$ with $\left\|u_{\varepsilon}\right\|=1$ such that

$$
\left\|T u_{\varepsilon}\right\|<\varepsilon^{2}\left\|u_{\varepsilon}\right\|=\varepsilon
$$

Let

$$
x_{\varepsilon}=x+\frac{1}{\varepsilon} u_{\varepsilon}, \quad y_{\varepsilon}=T x_{\varepsilon} .
$$

Then $T x_{\varepsilon}=T x+\frac{1}{\varepsilon} T u_{\varepsilon}$ so that

$$
\left\|T x_{\varepsilon}-T x\right\|=\frac{1}{\varepsilon}\left\|T u_{\varepsilon}\right\|<\varepsilon
$$

Note that

$$
\left\|x_{\varepsilon}-x\right\|=\frac{1}{\varepsilon}\left\|u_{\varepsilon}\right\|=\frac{1}{\varepsilon} .
$$

## Corollary

If $X$ is infinite dimensional and $T$ is a compact operator, then $(*)$ is ill-posed.

## Proof.

A compact operator on an infinite dimensiional normed linear space is not bounded below.

- Recall that if $k(\cdot, \cdot) \in L^{2}(\Omega \times \Omega)$, where $\Omega$ is a bounded open set in $\mathbb{R}^{k}$, the operator $T$ defined by

$$
(T x)(s):=\int_{\Omega} k(s, \zeta) x(\zeta) d \zeta, \quad x \in L^{2}(\Omega)
$$

is a compact operator from the infinite dimensional space $L^{2}(\Omega)$ into itself.

## An illustration

Let $X$ and $Y$ be Hilbert spaces and $T: X \rightarrow Y$ be a compact operator of infinite rank. Let

$$
T x:=\sum_{n=1}^{\infty} \sigma_{n}\left\langle x, u_{n}\right\rangle v_{n}, \quad x \in X
$$

be a singular value decompsotion ${ }^{1}$ of $T$.
Let $y \in Y$.

- For $y$ to be in $R(T)$, it is necessary that

$$
\sum_{n=1}^{\infty} \frac{\left|\left\langle y, v_{n}\right\rangle\right|^{2}}{\sigma_{n}^{2}}<\infty
$$

and in that case, $T x=y$, where

$$
x=\sum_{n=1}^{\infty} \frac{\left\langle y, v_{n}\right\rangle}{\sigma_{n}} u_{n} \in N(T)^{\perp}
$$

${ }^{1}$ See M.T. Nair, Functional Analysis: A First Course, PHI-Learning. छ

For $k \in \mathbb{N}$, let $x_{k}=x+\frac{1}{\sqrt{\sigma_{k}}} u_{k}$. Then

$$
\left\|T x-T x_{k}\right\|=\frac{1}{\sqrt{\sigma}_{k}}\left\|T u_{k}\right\|=\sqrt{\sigma}_{k}
$$

but

$$
\left\|x-x_{k}\right\|=\frac{1}{\sqrt{\sigma}_{k}}
$$

- As $k \rightarrow \infty$,

$$
\left\|T x-T x_{k}\right\| \rightarrow 0 \quad \text { but } \quad\left\|x-x_{k}\right\| \rightarrow \infty
$$

## Backward heat conduction problem

- Find $u(\cdot, t) \in L^{2}[0, \ell]$ such that

$$
\begin{gather*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\ell, \quad 0<t<\tau  \tag{1}\\
u(0, t)=0=u(\ell, t) \tag{2}
\end{gather*}
$$

from the knowledge of the final value

$$
u(\cdot, \tau):=g
$$

## Recall:

For $f \in L^{2}[0, \ell]$,

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2} t}\left\langle f, \varphi_{n}\right\rangle \varphi_{n}(x) \tag{*}
\end{equation*}
$$

with

$$
\lambda_{n}:=\frac{n \pi c}{\ell}, \quad \varphi_{n}(x):=\sqrt{\frac{2}{\ell}} \sin \left(\frac{n \pi}{\ell} x\right)
$$

satisfies the equations (1) and (2) and the initial condition

$$
u(\cdot, 0)=f
$$

- Knowing $f:=u(\cdot, 0)$, we otbain $u(\cdot, t)$ in a stable manner.


## Inverse problem

- From the knowledge of $g:=u(\cdot, \tau)$, find $f:=u(\cdot, t)$ for

$$
0 \leq t<\tau
$$

From (*),

$$
\begin{equation*}
u(x, \tau)=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2} \tau}\left\langle f, \varphi_{n}\right\rangle \varphi_{n}(x) \tag{**}
\end{equation*}
$$

and

$$
\left\langle f, \varphi_{n}\right\rangle=e^{\lambda_{n}^{2} t}\left\langle u(\cdot, t), \varphi_{n}\right\rangle
$$

Hence, from ( $* *$ ),

$$
u(x, \tau)=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle \varphi_{n}(x)
$$

This is same as solving the operator equation:

$$
A f=g
$$

where

$$
A \varphi:=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle\varphi, \varphi_{n}\right\rangle \varphi_{n}
$$

Note that $A$ is a compact, positive, self adjoint operator on $L^{2}[0, \ell]$ with eigenvalues

$$
\mu_{n}:=e^{-\lambda_{n}^{2}(\tau-t)}
$$

- $\mu_{n} \rightarrow 0$ exponentially!
- The inverse problem is severly ill-posed!


## General case

$\Omega$ : bounded domain in $\mathbb{R}^{k}$;

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=c^{2} \Delta u, & (x, t) \in \Omega \times[0, \tau] \\
u(x, t)=0, & x \in \partial \Omega, t \in[0, \tau)
\end{array}
$$

In this case, $u(\cdot, 0)=f$ implies

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2} t}\left\langle f, \varphi_{n}\right\rangle \varphi_{n}(x) \tag{*}
\end{equation*}
$$

with

$$
-\Delta \varphi_{n}=\lambda_{n} \varphi_{n}, \quad n \in \mathbb{N}
$$

and $\left\{\varphi_{n}: n \in \mathbb{N}\right\}$ is an orthonormal basis of $L^{2}(\Omega)$.

- BHCP: From the knowledge of $g:=u(\cdot, \tau)$ determine $f:=u(\cdot, t)$.


## Regularization - Stable approximation method

Since a compact operator equation is ill-posed, Small error in the data can cause large deviation in the solution.

- One has to use some regularization method for obtaining stable approximation methods.
We shall consider one such method, the so called, spectral cut-off method.


## Spectral cut-off method:

Recall: If $T: X \rightarrow Y$ is a compact operator of infinite rank, and if

$$
T=\sum_{n=1}^{\infty} \sigma_{n}\left\langle\cdot, u_{n}\right\rangle v_{n}
$$

is an SVD of $V$, and if $y \in R(T)$, then

$$
x:=\sum_{n=1}^{\infty} \frac{\left\langle y, v_{n}\right\rangle}{\sigma_{n}} u_{n}
$$

belongs to $N(T)^{\perp}$ and $T x=y$.
A natural way of approximating $x$ would be to take a $k$-th cut-off of $x$ :

$$
x_{k}:=\sum_{n=1}^{k} \frac{\left\langle y, v_{n}\right\rangle}{\sigma_{n}} u_{n}
$$

Clearly,

$$
\left\|x-x_{k}\right\|^{2}=\sum_{n=k+1}^{\infty} \frac{\left|\left\langle y, v_{n}\right\rangle\right|^{2}}{\sigma_{n}^{2}} \rightarrow 0
$$

as $k \rightarrow \infty$.
Suppose the data $y$ in noisy, i.e., we have $\tilde{y}$ in place of $y$. Then one may take the approximation as

$$
\tilde{x}_{k}:=\sum_{n=1}^{k} \frac{\left\langle\tilde{y}, v_{n}\right\rangle}{\sigma_{n}} u_{n}
$$

Then

$$
x_{k}-\tilde{x}_{k}=\sum_{n=1}^{k} \frac{\left\langle y-\tilde{y}, v_{n}\right\rangle}{\sigma_{n}} u_{n}
$$

$$
\begin{aligned}
\left\|x-\tilde{x}_{k}\right\|^{2} & =\left\|x-x_{k}\right\|^{2}+\left\|x_{k}-\tilde{x}_{k}\right\|^{2} \\
& =\left\|x-x_{k}\right\|^{2}+\sum_{n=1}^{k} \frac{\left|\left\langle y-\tilde{y}, v_{n}\right\rangle\right|^{2}}{\sigma_{n}^{2}} \\
& \geq\left\|x-x_{k}\right\|^{2}+\frac{\left|\left\langle y-\tilde{y}, v_{k}\right\rangle\right|^{2}}{\sigma_{k}^{2}}
\end{aligned}
$$

Thus,

$$
\left\|x-\tilde{x}_{k}\right\|^{2} \geq\left\|x-x_{k}\right\|^{2}+\frac{\left|\left\langle y-\tilde{y}, v_{k}\right\rangle\right|^{2}}{\sigma_{k}^{2}}
$$

and

$$
\left\|x-\tilde{x}_{k}\right\|^{2} \leq\left\|x-x_{k}\right\|^{2}+\frac{\delta^{2}}{\sigma_{k}^{2}}
$$

In particular, if $\tilde{y}:=y+\delta v_{k}$, then $\|y-\tilde{y}\|=\delta$ and

$$
\begin{equation*}
\left\|x-\tilde{x}_{k}\right\|^{2}=\left\|x-x_{k}\right\|^{2}+\frac{\delta^{2}}{\sigma_{k}^{2}} \tag{*}
\end{equation*}
$$

- For fixed $\delta,\left\|x-\tilde{x}_{k}\right\|$ can be large (for large $k$ ).
- Rate of convergence cannot be assertained without having source conditions on $x$ :


## Estimate under source condition(s)

Recall

$$
\left\|x-x_{k}\right\|^{2}=\sum_{n=k+1}^{\infty}\left|\left\langle x, u_{n}\right\rangle\right|^{2}
$$

Suppose:

$$
\begin{equation*}
x \in R\left(T^{*}\right) \text { so that } x=T^{*} u \tag{**}
\end{equation*}
$$

Then,

$$
\begin{aligned}
\left\|x-x_{k}\right\|^{2} & =\sum_{n=k+1}^{\infty}\left|\left\langle T^{*} u, u_{n}\right\rangle\right|^{2}=\sum_{n=k+1}^{\infty}\left|\left\langle u, T u_{n}\right\rangle\right|^{2} \\
& =\sum_{n=k+1}^{\infty} \sigma_{n}^{2}\left|\left\langle u, v_{n}\right\rangle\right|^{2} \leq\|u\|^{2} \sigma_{k+1}^{2}
\end{aligned}
$$

(*) and (**) imply:

$$
\left\|x-\tilde{x}_{k}\right\|^{2} \leq\|u\|^{2} \sigma_{k+1}^{2}+\frac{\delta^{2}}{\sigma_{k+1}^{2}}
$$

- Note that

$$
x \in R\left(T^{*}\right) \Longleftrightarrow \sum_{n=1}^{\infty} \frac{\left|\left\langle x, u_{n}\right\rangle\right|^{2}}{\sigma_{n}^{2}}<\infty
$$

## Theorem

Suppose $x \in R\left(T^{*}\right)$ with $x=T^{*} u$ and $k$ is such that $\delta \leq \sigma_{k+1}^{2}$, then

$$
\left\|x-\tilde{x}_{k}\right\|^{2} \leq\left(1+\|u\|^{2}\right) \sigma_{k+1}^{2}
$$

More generally:

## Theorem

If $x \in R\left(\left(T^{*} T\right)^{\nu}\right)$ and $k$ is such that $\delta \leq \sigma_{k+1}^{2 \nu+1}$, then

$$
\left\|x-\tilde{x}_{k}\right\|^{2}=O\left(\sigma_{k+1}^{2 \nu+1}\right)
$$

## IVP for a Parabolic Problem

- H: a Hilbert space;
- A : $D(A) \subseteq H$ : a densely defined positive self adjoint unbounded operator.

Given $\varphi_{0} \in H$ and $f \in L^{1}([0, \infty), H)$, consider the initial value problem (IVP):

$$
\begin{equation*}
\frac{d}{d t} u(t)+A u(t)=f(t), \quad u(0)=\varphi_{0} \tag{1}
\end{equation*}
$$

Known ${ }^{2}$ :

$$
u(t)=e^{-t A} \varphi_{0}+\int_{0}^{t} e^{-(t-s) A} f(s) d s
$$

${ }^{2}$ See: A. Pazzy, Semigroups of Linear Operators and Applications to PDE, Springer-Verlag, 1983

Here, the operator $e^{-t A}$ is defined by

$$
e^{-t A} \varphi:=\int_{0}^{\infty} e^{-t \lambda} d E_{\lambda} \varphi
$$

where $\left\{E_{\lambda}: \lambda \geq 0\right\}$ is the resolution of identity of $A$.

$$
\left\|e^{-t A} \varphi\right\|^{2}:=\int_{0}^{\infty} e^{-2 t \lambda} d\left\|E_{\lambda} \varphi\right\|^{2} \leq \int_{0}^{\infty} d\left\|E_{\lambda} \varphi\right\|^{2}=\|\varphi\|^{2}
$$

Recall spectral theorem:
There exists a resolution of identity $\left\{E_{\lambda}: \lambda \geq 0\right\}$ such that

$$
A \varphi=\int_{0}^{\infty} \lambda d E_{\lambda} \varphi, \quad \varphi \in D(A)
$$

and in that case $D(A):=\left\{\varphi \in H: \int_{0}^{\infty} \lambda^{2} d\left\|E_{\lambda} \varphi\right\|^{2}\right\}$.

- For any continuous function $g:[0, \infty) \rightarrow \mathbb{R}$,

$$
g(A) \varphi:=\int_{0}^{\infty} g(\lambda) d E_{\lambda} \varphi, \quad \varphi \in D(g(A))
$$

is a self adjoint operator with

$$
D(g(A)):=\left\{\varphi \in H: \int_{0}^{\infty}|g(\lambda)|^{2} d\left\|E_{\lambda} \varphi\right\|^{2}\right\}
$$

- For $\varphi \in D(g(A)$,

$$
\|g(A) \varphi\|^{2}:=\int_{0}^{\infty}|g(\lambda)|^{2} d\left\|E_{\lambda} \varphi\right\|^{2}
$$

In particular, we have the following:

- For $t \geq 0$

$$
e^{t A} \varphi:=\int_{0}^{\infty} e^{t \lambda} d E_{\lambda} \varphi, \quad \varphi \in D\left(e^{t A}\right)
$$

where

$$
D\left(e^{t A}\right):=\left\{\varphi \in H: \int_{0}^{\infty} e^{2 t \lambda} d\left\|E_{\lambda} \varphi\right\|^{2}\right\}
$$

and

$$
\left.\left\|e^{t A} \varphi\right\|^{2}=\int_{0}^{\infty} e^{2 t \lambda} d\left\|E_{\lambda} \varphi\right\|^{2}\right\} \geq\|\varphi\|^{2}
$$

- $e^{t A}$ is one-one, onto (since self adjoint), and has bounded inverse.
- $R\left(e^{-t A}\right)=D\left(e^{t A}\right) \quad \forall t \geq 0$.

Let

$$
S(t):=e^{-t A}, \quad t \geq 0
$$

Then

- $\{S(t): t \geq 0\}$ is a strongly continuous semigroup on $H$ with

$$
\left\|\frac{S(t) \varphi-\varphi}{t}+A \varphi\right\| \rightarrow 0 \quad \text { as } \quad t \rightarrow 0
$$

- $-A$ is the infinitesimal generator of $\mathcal{S}$, i.e.,

$$
-A \varphi:=\lim _{t \rightarrow 0} \frac{S(t) \varphi-\varphi}{t}, \quad \varphi \in D(-A)
$$

where

$$
D(-A):=\left\{\varphi \in H: \lim _{t \rightarrow 0} \frac{S(t) \varphi-\varphi}{t} \text { exists }\right\} .
$$

## Final value problem (FVP)

Let $\tau>0, \varphi_{\tau} \in H$ and $f \in L^{1}([0, \tau], H)$.
Consider the final value problem (FVP):

$$
\begin{equation*}
\frac{d}{d t} u(t)+A u(t)=f(t), \quad u(\tau)=\varphi_{\tau} . \tag{2}
\end{equation*}
$$

Suppose $u$ is a solution of (2). Then

$$
u(t)=e^{-t A} \varphi_{0}+\int_{0}^{t} e^{-(t-s) A} f(s) d s, \quad u(\tau)=\varphi_{\tau},
$$

where $\varphi_{0}:=u(0)$. In particular,

$$
\varphi_{\tau}=u(\tau)=e^{-\tau A} \varphi_{0}+\int_{0}^{\tau} e^{-(\tau-s) A} f(s) d s
$$

## Theorem

Let $\varphi_{\tau} \in H$ and $f \in L^{1}([0, \tau], H)$. If the $F V P$ (2) has a solution $u(\cdot)$ with $u(\tau)=\varphi_{\tau}$, then

$$
\psi(t):=\varphi_{\tau}-\int_{t}^{\tau} e^{-(\tau-s) A} f(s) d s
$$

belongs to $D\left(e^{(\tau-t) A}\right)$ and

$$
u(t)=e^{(\tau-t) A} \psi(t)
$$

In the above, if $f=0$, then

$$
u(t)=e^{(\tau-t) A} \varphi_{\tau}
$$

- Since $A$ is an unbounded operator,

Small error in $\varphi_{\tau}$ can lead to larege error in the solution.

Proof of theorem.
Let $\varphi_{0}:=u(0)$. Then

$$
\begin{equation*}
u(t)=e^{-t A} \varphi_{0}+\int_{0}^{t} e^{-(t-s) A} f(s) d s \tag{3}
\end{equation*}
$$

In particular,

$$
\varphi_{\tau}=e^{-\tau A} \varphi_{0}+\int_{0}^{\tau} e^{-(\tau-s) A} f(s) d s
$$

Since $e^{-\tau A} \varphi_{0} \in D\left(e^{\tau A}\right)$,

$$
\varphi_{\tau}-\int_{0}^{\tau} e^{-(\tau-s) A} f(s) d s=e^{-\tau A} \varphi_{0} \in D\left(e^{\tau A}\right)
$$

Hence,

$$
\varphi_{0}=e^{\tau A}\left(\varphi_{\tau}-\int_{0}^{\tau} e^{-(\tau-s) A} f(s) d s\right)
$$

## Continues.

Therefore, (3) implies

$$
\begin{aligned}
u(t) & =e^{-t A} e^{\tau A}\left(\varphi_{\tau}-\int_{0}^{\tau} e^{-(\tau-s) A} f(s) d s\right)+\int_{0}^{t} e^{-(t-s) A} f(s) d s \\
& =e^{(\tau-t) A}\left(\varphi_{\tau}-\int_{0}^{\tau} e^{-(\tau-s) A} f(s) d s\right)+\int_{0}^{t} e^{-(t-s) A} f(s) d s
\end{aligned}
$$

That is,

$$
\begin{aligned}
e^{-(\tau-t) A} u(t)= & \left(\varphi_{\tau}-\int_{0}^{\tau} e^{-(\tau-s) A} f(s) d s\right) \\
& +e^{-(\tau-t) A} \int_{0}^{t} e^{-(t-s) A} f(s) d s \\
= & \varphi_{\tau}-e^{-(\tau-t) A} \int_{0}^{\tau} e^{-(t-s) A} f(s) d s \\
& +e^{-(\tau-t) A} \int_{0}^{t} e^{-(t-s) A} f(s) d s
\end{aligned}
$$

## Continues.

Hence,

$$
e^{-(\tau-t) A} u(t)=\varphi_{\tau}-e^{-(\tau-t) A} \int_{t}^{\tau} e^{-(t-s) A} f(s) d s
$$

Thus,

$$
\varphi_{\tau}-\int_{t}^{\tau} e^{-(\tau-s) A} f(s) d s \in D\left(e^{(\tau-t) A}\right)
$$

and

$$
u(t)=e^{(\tau-t) A}\left(\varphi_{\tau}-\int_{t}^{\tau} e^{-(\tau-s) A} f(s) d s\right)
$$

In view of the above theorem, we introdice the following definition.

## Definition

If $\varphi_{\tau} \in H$ and $f \in L^{1}([0, \tau], H)$ are such that

$$
\psi(t):=\varphi_{\tau}-\int_{t}^{\tau} e^{-(\tau-s) A} f(s) d s \quad \forall t \in[0, \tau)
$$

belongs to $D\left(e^{(\tau-t) A}\right)$, then $u(\cdot)$ defined by

$$
u(t)=e^{(\tau-t) A} \psi(t)
$$

is called the mild solution of the FVP (2).

The problem of finding a mild solution $u(\cdot)$ of the FVP with $u(\tau)=\varphi_{\tau}$ can be posed as a problem of solving the operator equation

$$
\begin{equation*}
\mathcal{A}_{t} u(t)=\psi(t) \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathcal{A}_{t} \varphi:=e^{-(\tau-t) A} \varphi, \quad \varphi \in H \\
\psi(t):=\varphi_{\tau}-\int_{t}^{\tau} e^{-(\tau-s) A} f(s) d s
\end{gathered}
$$

Note that:

- $\mathcal{A}_{t}$ is an injective bounded self adjoint operator.
- $R\left(\mathcal{A}_{t}\right)=D\left(e^{(\tau-t) A}\right)$ is dense in $H$.
- $\mathcal{A}_{t}^{-1}=e^{(\tau-t) A}: R\left(\mathcal{A}_{t}\right) \rightarrow H$ is not continuous.

Hence, (4) is ill-posed.

- A mild solution is not necessary to be a solution of the FVP:


## Theorem

Let $\varphi_{\tau} \in D\left(e^{\tau A}\right)$ and let $u:[0, \tau] \rightarrow H$ be defined by $u(t)=e^{(\tau-t) A} \varphi_{\tau}, t \geq 0$. Then $u$ is a solution of the FVP

$$
u_{t}+A u(t)=0, \quad u(\tau)=\varphi_{\tau}
$$

if and only if $\varphi_{\tau} \in D\left(A e^{\tau A}\right)$.

## Proof.

For $t \geq 0$ and $h>0$,

$$
\frac{u(t+h)-u(t)}{h}=\frac{e^{(\tau-t-h) A} \varphi_{\tau}-e^{(\tau-t) A} \varphi_{\tau}}{h}=\frac{e^{-h A} u(t)-u(t)}{h}
$$

Since $-A$ is the infinitesimal generator of the semigroup $\left\{e^{-h A}: h \geq 0\right\}$,

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{u(t+h)-u(t)}{h} \text { exists } & \Longleftrightarrow u(t) \in D(-A) \\
& \Longleftrightarrow \varphi_{\tau} \in D\left(A e^{\tau A}\right)
\end{aligned}
$$

Thus, $u^{\prime}(t)$ exists for every $t \geq 0$ iff $e^{\tau A} \varphi_{\tau} \in D(-A)$ iff $\varphi_{\tau} \in D\left(A e^{\tau A}\right)$, and in that case $u^{\prime}(t)=-A u(t), u(\tau)=\varphi_{\tau}$.

## Truncated spectral regularization (TRS)

Let $\varphi_{\tau}$ and $f \in L^{1}([0, \tau], H)$.
Recall that, the mild solution of the FVP is

$$
\begin{equation*}
u(t)=e^{(\tau-t) A} \psi(t)=\int_{0}^{\infty} e^{(\tau-t) \lambda} d E_{\lambda}(\psi(t)) \tag{5}
\end{equation*}
$$

whenever $\psi(t):=\varphi_{\tau}-\int_{t}^{\tau} e^{-(\tau-s) A} f(s) d s$ belongs to $D\left(e^{\tau A}\right)$.
Since small error in the data $\left(\varphi_{\tau}, f\right)$ can lead to large error in the solution $u(\cdot)$, we have to look for a regularized solution which depends continuously on the data $\left(\varphi_{\tau}, f\right)$.

Looking at the expression in (5) for the mild solution, we define such a regularized solution as

$$
\begin{equation*}
u_{\beta}(t)=\int_{0}^{\beta} e^{(\tau-t) \lambda} d E_{\lambda}(\psi(t)) \tag{6}
\end{equation*}
$$

for each $\beta>0$.
The following theorem shows that $u_{\beta}(\cdot)$ is an approximation of $u(\cdot)$ for large $\beta$.

## Theorem

Under the assumption $\psi(t) \in D\left(e^{\tau A}\right)$,

$$
\left\|u(t)-u_{\beta}(t)\right\| \rightarrow 0 \quad \text { as } \quad \beta \rightarrow \infty .
$$

## Theorem

Under the assumption $\psi(t) \in D\left(e^{\tau A}\right)$,

$$
\left\|u(t)-u_{\beta}(t)\right\| \rightarrow 0 \quad \text { as } \quad \beta \rightarrow \infty .
$$

## Proof.

Since

$$
\|u(t)\|^{2}=\int_{0}^{\infty} e^{2(\tau-t) \lambda} d\left\|E_{\lambda}(\psi(t))\right\|^{2}<\infty
$$

we obtain

$$
\left\|u(t)-u_{\beta}(t)\right\|^{2}=\int_{\beta}^{\infty} e^{2(\tau-t) \lambda} d\left\|E_{\lambda}(\psi(t))\right\|^{2} \rightarrow 0 \quad \text { as } \quad \beta \rightarrow \infty
$$

Now, we show that

- $u_{\beta}(\cdot)$ is stable under perturbations in the data $\left(\varphi_{\tau}, f\right)$.

Suppose $\tilde{\varphi}_{\tau} \in H$ and $\tilde{f} \in L^{1}([0, \tau], H)$ are the noisy data, in place of the actual data $\varphi_{\tau}$ and $f$, respectively.

Let

$$
\tilde{u}_{\beta}(t)=\int_{0}^{\beta} e^{(\tau-t) \lambda} d E_{\lambda}(\tilde{\psi}(t))
$$

where

$$
\tilde{\psi}(t):=\tilde{\varphi}_{\tau}-\int_{t}^{\tau} e^{-(\tau-s) A} \tilde{f}(s) d s
$$

## Theorem

Let $\varphi_{\tau}, \tilde{\varphi}_{\tau} \in H$ and $f, \tilde{f} \in L^{1}([0, \tau], H)$. The for each $t \in[0, \tau]$ and $\beta>0$,

$$
\begin{aligned}
\left\|u_{\beta}(t)-\tilde{u}_{\beta}(t)\right\| & \leq e^{(\tau-t) \beta}\|\psi(t)-\tilde{\psi}(t)\| \\
& \leq e^{(\tau-t) \beta}\left(\left\|\varphi_{\tau}-\tilde{\varphi}_{\tau}\right\|+\|f-\tilde{f}\|_{1}\right) .
\end{aligned}
$$

Suppose $\left\|\varphi_{\tau}-\tilde{\varphi}_{\tau}\right\|+\|f-\tilde{f}\|_{1} \leq \delta$ for some $\delta>0$. Then we obtain

$$
\left\|u_{\beta}(t)-\tilde{u}_{\beta}(t)\right\| \leq e^{(\tau-t) \beta} \delta
$$

## Observation:

- For a fixed $\beta>0$,

$$
\left\|u_{\beta}(t)-\tilde{u}_{\beta}(t)\right\| \rightarrow 0 \quad \text { as } \quad \delta \rightarrow 0
$$

- $u_{\beta}(t)$ is stable under perturbations in the data $\left(\varphi_{\tau}, f\right)$.


## Convergence

From the above theorem we have

## Theorem

Let $\varphi_{\tau}, \tilde{\varphi}_{\tau} \in H$ and $f, \tilde{f} \in L^{1}([0, \tau], H)$ such that

$$
\left\|\varphi_{\tau}-\tilde{\varphi}_{\tau}\right\|+\|f-\tilde{f}\|_{1} \leq \delta
$$

for some $\delta>0$. The for each $t \in[0, \tau]$ and $\beta>0$,

$$
\left\|u(t)-\tilde{u}_{\beta}(t)\right\| \leq\left\|u(t)-u_{\beta}(t)\right\|+e^{(\tau-t) \beta} \delta
$$

$\Rightarrow$

$$
\beta \approx \frac{1}{\tau-t} \log \left(\frac{1}{\delta^{p}}\right), \quad 0<p<1
$$

$$
\left\|u(t)-\tilde{u}_{\beta}(t)\right\|=o(1) \quad \text { as } \quad \delta \rightarrow 0
$$

## Proof of Theorem.

We observe that

$$
\left.\left.\psi(t)-\tilde{\psi}(t)=\varphi_{t}-\tilde{\varphi}_{\tau}\right)-\int_{t}^{\tau} e^{-(\tau-s) A} \tilde{( } f(s)-\tilde{f}(s)\right) d s
$$

and

$$
u_{\beta}(t)-\tilde{u}_{\beta}(t)=\int_{0}^{\beta} e^{(\tau-t) \lambda} d E_{\lambda}(\psi(t)-\tilde{\psi}(t))
$$

Note that

$$
\begin{aligned}
\|\psi(t)-\tilde{\psi}(t)\| & \leq\left\|\varphi_{t}-\tilde{\varphi}_{\tau}\right\|+\int_{t}^{\tau}\left\|e^{-(\tau-s) A}\right\|\|f(s)-\tilde{f}(s)\| d s \\
& \leq\left\|\varphi_{t}-\tilde{\varphi}_{\tau}\right\|+\int_{t}^{\tau}\|f(s)-\tilde{f}(s)\| d s \\
& \leq\left\|\varphi_{t}-\tilde{\varphi}_{\tau}\right\|+\|f-\tilde{f}\|_{1} .
\end{aligned}
$$

## Continues.

Hence,

$$
\begin{aligned}
\left\|u_{\beta}(t)-\tilde{u}_{\beta}(t)\right\|^{2} & =\int_{0}^{\beta} e^{2(\tau-t) \lambda} d E_{\lambda}\|\psi(t)-\tilde{\psi}(t)\|^{2} \\
& \leq e^{2(\tau-t) \beta}\|\psi(t)-\tilde{\psi}(t)\|^{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left\|u_{\beta}(t)-\tilde{u}_{\beta}(t)\right\| & \leq e^{2(\tau-t) \beta}\|\psi(t)-\tilde{\psi}(t)\| \\
& \leq e^{2(\tau-t) \beta}\left(\left\|\varphi_{t}-\tilde{\varphi}_{\tau}\right\|+\|f-\tilde{f}\|_{1}\right) .
\end{aligned}
$$

## Continues.

Hence,

$$
\begin{aligned}
\left\|u_{\beta}(t)-\tilde{u}_{\beta}(t)\right\|^{2} & =\int_{0}^{\beta} e^{2(\tau-t) \lambda} d E_{\lambda}\|\psi(t)-\tilde{\psi}(t)\|^{2} \\
& \leq e^{2(\tau-t) \beta}\|\psi(t)-\tilde{\psi}(t)\|^{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left\|u_{\beta}(t)-\tilde{u}_{\beta}(t)\right\| & \leq e^{2(\tau-t) \beta}\|\psi(t)-\tilde{\psi}(t)\| \\
& \leq e^{2(\tau-t) \beta}\left(\left\|\varphi_{t}-\tilde{\varphi}_{\tau}\right\|+\|f-\tilde{f}\|_{1}\right) .
\end{aligned}
$$

Next we obtain an estimate for the error under an additional smoothness assumption on $u(\cdot)$.

## Theorem

Suppose $\varphi_{\tau} \in H$ and $f \in L^{1}([0, \tau], H)$ are such that for each $t \in[0, \tau), \psi(t) \in D\left(e^{\tau A}\right)$ and there exists a monotonically increasing continuous function $h_{t}():[0, \tau] \rightarrow[0, \infty)$ such that
(i) $h_{t}(\lambda) \rightarrow \infty$ as $\lambda \rightarrow \infty$,
(i) $u(t) \in D\left(h_{t}(A)\right)$,
(ii) $\left\|h_{t}(A) u(t)\right\| \leq \rho_{t}$ for some $\rho_{t}>0$.

Then

$$
\left\|u(t)-u_{\beta}(t)\right\| \leq \frac{\rho_{t}}{h_{t}(\beta)} .
$$

Proof.
Recall that

$$
u(t)=e^{(\tau-t) A} \psi(t)
$$

Hence,

$$
\begin{aligned}
\left\|u(t)-u_{\beta}(t)\right\|^{2} & =\int_{\beta}^{\infty} e^{2(\tau-t) \lambda} d\left\|E_{\lambda}(\psi(t))\right\|^{2} \\
& =\int_{\beta}^{\infty} \frac{1}{h_{t}(\lambda)^{2}} h_{t}(\lambda)^{2} e^{2(\tau-t) \lambda} d\left\|E_{\lambda}(\psi(t))\right\|^{2} \\
& \leq \frac{1}{h_{t}(\beta)^{2}} \int_{\beta}^{\infty} h_{t}(\lambda)^{2} e^{2(\tau-t) \lambda} d\left\|E_{\lambda}(\psi(t))\right\|^{2}
\end{aligned}
$$

Continues.
By the assumption,

$$
\begin{aligned}
\int_{0}^{\infty} h_{t}(\lambda) e^{(\tau-t) \lambda} d\left\|E_{\lambda}(\psi(t))\right\|^{2} & =\left\|h_{t}(A) e^{(\tau-t) A} \psi(t)\right\|^{2} \\
& =\left\|h_{t}(A) u(t)\right\|^{2} \leq \rho_{t}^{2}
\end{aligned}
$$

Hence, we have

$$
\left\|u(t)-u_{\beta}(t)\right\| \leq \rho_{t} / h_{t}(\beta) .
$$

## Combining the last two theorems, we obtain the following.

Combining the last two theorems, we obtain the following.

## Theorem

Suppose $\tilde{\varphi}_{\tau}$ and $\tilde{f}$ are noisy data such that

$$
\left\|\varphi_{\tau}-\tilde{\varphi}_{\tau}\right\|+\|f-\tilde{f}\|_{1} \leq \delta
$$

for some noise level $\delta>0$. Then

$$
\left\|u_{\beta}(t)-\tilde{u}_{\beta}(t)\right\| \leq e^{(\tau-t) \beta} \delta
$$

If $\rho_{t}>0$ and $h_{t}(\cdot)$ are as in last theorem, then we have

$$
\left\|u(t)-\tilde{u}_{\beta}(t)\right\| \leq \frac{\rho_{t}}{h_{t}(\beta)}+e^{(\tau-t) \beta} \delta .
$$

## Parameter choice strategy

## Theorem

Let

$$
\xi_{t}(\lambda):=h_{t}(\lambda) e^{(\tau-t) \lambda}, \quad \lambda>0
$$

and

$$
\beta=\beta_{t}:=\xi_{t}^{-1}(\rho / \delta) .
$$

Then

$$
\left\|u(t)-\tilde{u}_{\beta}(t)\right\| \leq \frac{2 \rho}{h\left(\xi_{t}^{-1}(\rho / \delta)\right)}
$$

In particular,

$$
\left\|u(t)-\tilde{u}_{\beta}(t)\right\| \rightarrow 0 \quad \text { as } \quad \delta \rightarrow 0
$$

## Proof.

Note that

$$
\begin{aligned}
\frac{\rho_{t}}{h_{t}(\beta)}=e^{(\tau-t) \beta} \delta & \Longleftrightarrow \xi_{t}(\beta):=h_{t}(\beta) e^{(\tau-t) \beta}=\frac{\rho_{t}}{\delta} \\
& \Longleftrightarrow \beta=\xi_{t}^{-1}\left(\rho_{t} / \delta\right) .
\end{aligned}
$$

Thus, for the choice of $\beta=\xi_{t}^{-1}\left(\rho_{t} / \delta\right)$,

$$
\begin{aligned}
\left\|u(t)-\tilde{u}_{\beta}(t)\right\| & \leq \frac{\rho_{t}}{h_{t}(\beta)}+e^{(\tau-t) \beta} \delta \\
& \leq \frac{2 \rho}{h\left(\xi_{t}^{-1}(\rho / \delta)\right)}
\end{aligned}
$$

Since $h\left(\xi_{t}^{-1}\left(\rho_{t} /\right)\right) \rightarrow \infty$ as $\rightarrow 0$.

$$
\left\|u(t)-\tilde{u}_{\beta}(t)\right\| \rightarrow 0 \quad \text { as } \quad \rightarrow 0
$$

## Remarks on optimality

Recall that the operator $\mathcal{A}_{t}: H \rightarrow H$ defined by

$$
\mathcal{A}_{t} \varphi:=e^{-(\tau-t) A} \varphi, \quad \varphi \in H
$$

is injective, continuous, self adjoint, with $R\left(\mathcal{A}_{t}\right)$ dense in $H$.
Therefore,

- $u(\cdot)$ is a generalized solution

$$
\begin{equation*}
\mathcal{A}_{t} u(t)=\varphi_{\tau}-\int_{t}^{\tau} e^{-(\tau-s) A} f(s) d s \tag{7}
\end{equation*}
$$

if and only if it is a solution.
Let $u(t)$ be the solution of (7) and let $u_{\alpha}^{L}(\cdot)$ be the Lavrentive regularized solution, i.e.,

$$
\left(\mathcal{A}_{t}+\alpha I\right) u_{\alpha}^{L}(t)=\psi(t):=\varphi_{\tau}-\int_{t}^{\tau} e^{-(\tau-s) A} f(s) d s
$$

Then, from the standard theory, we know that

$$
\left\|u(t)-u_{\alpha}^{L}(t)\right\| \rightarrow 0 \quad \text { as } \quad \alpha \rightarrow 0
$$

and

$$
\begin{equation*}
\left\|u_{\alpha}^{L}(t)-\tilde{u}_{\alpha}^{L}(t)\right\| \leq \frac{\delta}{\alpha} \tag{8}
\end{equation*}
$$

Note that the estimate

$$
\left\|u_{\beta}(t)-\tilde{u}_{\beta}(t)\right\| \leq \delta e^{(\tau-t) \beta}
$$

obtained eariler is same as (8) if we take $\beta$ such that

$$
e^{(\tau-t) \beta}=\frac{1}{\alpha}
$$

That is,

$$
\beta=\frac{1}{\tau-t} \ln \left(\frac{1}{\alpha}\right) .
$$

Next, suppose

$$
\begin{equation*}
u(t)=\mathcal{A}_{t} v(t) \quad \text { with } \quad\|v(t)\| \leq \rho_{t} \tag{9}
\end{equation*}
$$

equivalently,

$$
\begin{equation*}
u(t) \in D\left(e^{(\tau-t) A}\right) \quad \text { with } \quad\left\|e^{(\tau-t) A} u(t)\right\| \leq \rho_{t} \tag{10}
\end{equation*}
$$

Then we have the estimate

$$
\left\|u(t)-u_{\alpha}^{L}(t)\right\| \leq \rho_{t} \alpha
$$

Under the choice $\beta:=\frac{1}{\tau-t} \ln \left(\frac{1}{\alpha}\right)$, the above estimate takes the form

$$
\begin{equation*}
\left\|u(t)-u_{\alpha}^{L}(t)\right\| \leq \rho_{t} e^{-(\tau-t) \beta} \tag{11}
\end{equation*}
$$

This is same as the estimate obtained earlier for $\left\|u(t)-u_{\beta}(t)\right\|$ under the (10).

Thus, we can conclude:
If $h_{t}(\lambda):=e^{(\tau-t) \lambda}$, then the the estimate obtained under TSR is same as the order optimal rate possible for the Lavrentive regularization for the source condition (9), if

$$
\beta=\frac{1}{\tau-t} \ln \left(\frac{1}{\alpha}\right) \quad \text { and } \quad \alpha=\sqrt{\delta / \rho}
$$

that is, if

$$
\beta:=\frac{1}{2(\tau-t)} \ln \left(\frac{\rho}{\delta}\right) .
$$

Similar conclusion can be made for a general $h_{t}(\cdot)$ as well.
(1) A. Jana, Regularization of III-Posed Nonhomogeneous Parabolic Problems, Ph.D. Thesis, IIT Madras, August, 2018.
(2) M.T. Nair, Functional Analysis: A First Course, Prentice-Hall of India, New Delhi, 2002 (Fourth Print: 2014).
(3) M.T. Nair, Linear Operator Equations: Approximation and Regularization World Scientific, Singapore, New York, 2009.
(1) A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer - Verlag, New York, 1983.

## Thank you for your attention

