Diagonal subalgebras of bigraded algebras

Neeraj Kumar

Indian Institute of Technology Bombay

Joint work with H. Ananthnarayan and Vivek Mukundan

© Diamond Jubilee Symposium of IIT Bombay, January 4-6, 2019 Given a graded k-algebra, (k is a field), e.g.

Theme of this talk

Given a graded k-algebra, (k is a field), e.g.

- $k[x_1,\ldots,x_n]$
- $\blacktriangleright k[x_1,\ldots,x_n]/(f_1,\ldots,f_m)$
 - One study their (commutative) algebraic properties.

Theme of this talk

Given a graded k-algebra, (k is a field), e.g.

- $k[x_1,\ldots,x_n]$
- $\blacktriangleright k[x_1,\ldots,x_n]/(f_1,\ldots,f_m)$
 - One study their (commutative) algebraic properties.

Some algebraic objects have natually bigraded structure,

Theme of this talk

Given a graded k-algebra, (k is a field), e.g.

- $k[x_1,\ldots,x_n]$
- $\blacktriangleright k[x_1,\ldots,x_n]/(f_1,\ldots,f_m)$
 - One study their (commutative) algebraic properties.

Some algebraic objects have natually bigraded structure,

- Associate to it graded algebras (diagonal subalgebras) via a diagonal functor.
 - Study their (commutative) algebraic properties.

Part I - Diagonal subalgebras

- i) c and e denote positive integers,
- ii) $\Delta = \{(ci, ei) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^2 .

- i) c and e denote positive integers,
- ii) $\Delta = \{(ci, ei) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^2 .
- iii) Let $R = \bigoplus_{(i,j) \in \mathbb{Z}^2} R_{(i,j)}$ be a standard bigraded k-algebra,

- i) c and e denote positive integers,
- ii) $\Delta = \{(ci, ei) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^2 .
- iii) Let $R = \bigoplus_{(i,j) \in \mathbb{Z}^2} R_{(i,j)}$ be a standard bigraded k-algebra,
- iv) The (c, e)-diagonal subalgebra of R is $R_{\Delta} = \bigoplus_{i \ge 0} R_{(ci, ei)}$.

- i) c and e denote positive integers,
- ii) $\Delta = \{(ci, ei) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^2 .
- iii) Let $R = \bigoplus_{(i,j) \in \mathbb{Z}^2} R_{(i,j)}$ be a standard bigraded k-algebra,
- iv) The (c, e)-diagonal subalgebra of R is $R_{\Delta} = \bigoplus_{i \ge 0} R_{(ci, ei)}$.

Example

v) $S = k[x_1, \dots, x_n, y_1, \dots, y_m]$ is standard bigraded k-algebra with deg $x_i = (1, 0)$ and deg $y_j = (0, 1)$.

- i) c and e denote positive integers,
- ii) $\Delta = \{(ci, ei) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^2 .
- iii) Let $R = \oplus_{(i,j) \in \mathbb{Z}^2} R_{(i,j)}$ be a standard bigraded k-algebra,
- iv) The (c, e)-diagonal subalgebra of R is $R_{\Delta} = \bigoplus_{i \ge 0} R_{(ci, ei)}$.

Example

v) $S = k[x_1, \dots, x_n, y_1, \dots, y_m]$ is standard bigraded k-algebra with deg $x_i = (1, 0)$ and deg $y_j = (0, 1)$. The (1, 1)-diagonal subalgebra of S is $S_{\Delta} = k[x_i y_j \mid 1 \le i \le n, 1 \le j \le m]$.

- i) c and e denote positive integers,
- ii) $\Delta = \{(ci, ei) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^2 .
- iii) Let $R = \oplus_{(i,j) \in \mathbb{Z}^2} R_{(i,j)}$ be a standard bigraded k-algebra,
- iv) The (c, e)-diagonal subalgebra of R is $R_{\Delta} = \bigoplus_{i \ge 0} R_{(ci, ei)}$.

Example

v) $S = k[x_1, \dots, x_n, y_1, \dots, y_m]$ is standard bigraded k-algebra with deg $x_i = (1, 0)$ and deg $y_j = (0, 1)$. The (1, 1)-diagonal subalgebra of S is $S_{\Delta} = k[x_i y_j \mid 1 \le i \le n, 1 \le j \le m]$.

Main results of this talk:.

- i) c and e denote positive integers,
- ii) $\Delta = \{(ci, ei) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^2 .
- iii) Let $R = \oplus_{(i,j) \in \mathbb{Z}^2} R_{(i,j)}$ be a standard bigraded k-algebra,
- iv) The (c, e)-diagonal subalgebra of R is $R_{\Delta} = \bigoplus_{i \ge 0} R_{(ci, ei)}$.

Example

v) $S = k[x_1, \dots, x_n, y_1, \dots, y_m]$ is standard bigraded k-algebra with deg $x_i = (1, 0)$ and deg $y_j = (0, 1)$. The (1, 1)-diagonal subalgebra of S is $S_{\Delta} = k[x_i y_j \mid 1 \le i \le n, 1 \le j \le m]$.

Main results of this talk:.

- Koszul property of the (c, e)-diagonal subalgebra R_{Δ} .
- Cohen-Macaulay property of the (c, e)-diagonal subalgebra R_{Δ} .

i) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, ..., f_r \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.

- i) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, ..., f_r \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
- ii) The *Rees algebra* of *I* is the subalgebra of $k[x_1, \ldots, x_n, t]$ defined as

$$\mathcal{R}(I) = \mathsf{k}[x_1, \ldots, x_n, f_1 t, \ldots, f_r t].$$

- i) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, ..., f_r \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
- ii) The *Rees algebra* of *I* is the subalgebra of $k[x_1, \ldots, x_n, t]$ defined as

$$\mathcal{R}(I) = \mathsf{k}[x_1, \ldots, x_n, f_1 t, \ldots, f_r t].$$

iii) $\mathcal{R}(I)$ is standard bigraded, deg $x_i = (1,0)$ and deg $f_j t = (0,1)$

- i) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, ..., f_r \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
- ii) The *Rees algebra* of *I* is the subalgebra of $k[x_1, \ldots, x_n, t]$ defined as

$$\mathcal{R}(I) = \mathsf{k}[x_1, \ldots, x_n, f_1 t, \ldots, f_r t].$$

iii) $\mathcal{R}(I)$ is standard bigraded, deg $x_i = (1, 0)$ and deg $f_j t = (0, 1)$ Example

- i) $I = (x_1^3, x_2^3) \subset S = k[x_1, x_2].$
- ii) The *Rees algebra* of *I* is $\mathcal{R}(I) = k[x_1, x_2, x_1^3 t, x_2^3 t]$.
- iii) Let $\triangle = (1, 1)$, then $\mathcal{R}(I)_{\Delta}$ is ?

- i) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, ..., f_r \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
- ii) The *Rees algebra* of *I* is the subalgebra of $k[x_1, \ldots, x_n, t]$ defined as

$$\mathcal{R}(I) = \mathsf{k}[x_1, \ldots, x_n, f_1 t, \ldots, f_r t].$$

iii) $\mathcal{R}(I)$ is standard bigraded, deg $x_i = (1,0)$ and deg $f_j t = (0,1)$ Example

i)
$$I = (x_1^3, x_2^3) \subset S = k[x_1, x_2].$$

- ii) The *Rees algebra* of *I* is $\mathcal{R}(I) = k[x_1, x_2, x_1^3 t, x_2^3 t]$.
- iii) Let $\triangle = (1, 1)$, then $\mathcal{R}(I)_{\Delta}$ is ?

Remark. $\mathcal{R}(I)_{\Delta}$ is the homogeneous co-ordinate ring of the twisted quartic curve in the projective space \mathbb{P}^3 .

An example of Diagonal subalgebra of Rees algebra

Proof of Remark.

i)
$$\mathcal{R}(I) = k[x_1, x_2, x_1^3 t, x_2^3 t] \cong k[x_1, x_2, y_1, y_2]/(x_1^3 y_2 - x_2^3 y_1) = B/K.$$

An example of Diagonal subalgebra of Rees algebra

Proof of Remark.

i)
$$\mathcal{R}(I) = k[x_1, x_2, x_1^3 t, x_2^3 t] \cong k[x_1, x_2, y_1, y_2]/(x_1^3 y_2 - x_2^3 y_1) = B/K.$$

ii) $\mathcal{R}(I)_{\Delta} = B_{\triangle}/K_{\triangle}$, where $B_{\triangle} = k[x_1y_1, x_1y_2, x_2y_1, x_2y_2]$ and K_{\triangle} is
 $((x_1y_1)^2(x_1y_2) - (x_2y_1)^3, (x_2y_1)(x_2y_2)^2 - (x_1y_2)^3, (x_1y_1)(x_1y_2)^2 - (x_2y_1)^2(x_2y_2)).$

iii) Define $z_0 \mapsto x_1y_1, \ z_1 \mapsto x_1y_2, \ z_2 \mapsto x_2y_1, \ z_3 \mapsto x_2y_2$, then

$$\frac{\mathsf{k}[z_0,\ldots,z_3]}{(z_1z_2-z_0z_3)} \cong \mathsf{k}[x_1y_1,x_1y_2,x_2y_1,x_2y_2] = B_{\triangle}$$

iv) We can describe

$$\mathcal{R}(I)_{\Delta} = \frac{\mathsf{k}[z_0,\ldots,z_3]}{(z_1z_2 - z_0z_3, z_1^3 - z_2z_3^2, \ z_2^3 - z_0^2z_1, \ z_0z_1^2 - z_2^2z_3)}.$$

An example of Diagonal subalgebra of Rees algebra

Proof of Remark.

i)
$$\mathcal{R}(I) = k[x_1, x_2, x_1^3 t, x_2^3 t] \cong k[x_1, x_2, y_1, y_2]/(x_1^3 y_2 - x_2^3 y_1) = B/K.$$

ii) $\mathcal{R}(I)_{\Delta} = B_{\Delta}/K_{\Delta}$, where $B_{\Delta} = k[x_1y_1, x_1y_2, x_2y_1, x_2y_2]$ and K_{Δ} is
 $((x_1y_1)^2(x_1y_2) - (x_2y_1)^3, (x_2y_1)(x_2y_2)^2 - (x_1y_2)^3, (x_1y_1)(x_1y_2)^2 - (x_2y_1)^2(x_2y_2)).$

iii) Define $z_0 \mapsto x_1y_1$, $z_1 \mapsto x_1y_2$, $z_2 \mapsto x_2y_1$, $z_3 \mapsto x_2y_2$, then

$$\frac{\mathsf{k}[z_0,\ldots,z_3]}{(z_1z_2-z_0z_3)} \cong \mathsf{k}[x_1y_1,x_1y_2,x_2y_1,x_2y_2] = B_{\triangle}$$

iv) We can describe

$$\mathcal{R}(I)_{\Delta} = \frac{\mathsf{k}[z_0, \ldots, z_3]}{(z_1 z_2 - z_0 z_3, z_1^3 - z_2 z_3^2, \ z_2^3 - z_0^2 z_1, \ z_0 z_1^2 - z_2^2 z_3)}.$$

v) The vanishing locus of a twisted quartic curve defined from $\mathbb{P} \longrightarrow \mathbb{P}^3$ by the map $[x_0, x_1] \mapsto [x_0^4, x_0^3 x_1, x_0^2 x_1^2, x_0 x_1^3, x_1^4]$ are the polynomials $z_1 z_2 - z_0 z_3, z_1^3 - z_2 z_3^2, z_2^3 - z_0^2 z_1, z_0 z_1^2 - z_2^2 z_3.$

i) R is a (standard) graded commutative ring with 1.

- i) R is a (standard) graded commutative ring with 1.
- ii) The *Symmetric algebra* of R^m is $Sym(R^m) = R[t_1, ..., t_m]$.
- iii) Sym (R^m) is standard bigraded.

- i) R is a (standard) graded commutative ring with 1.
- ii) The Symmetric algebra of R^m is $Sym(R^m) = R[t_1, ..., t_m]$.
- iii) Sym (R^m) is standard bigraded.
- iv) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, ..., f_r \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.

- i) R is a (standard) graded commutative ring with 1.
- ii) The Symmetric algebra of R^m is $Sym(R^m) = R[t_1, ..., t_m]$.
- iii) Sym (R^m) is standard bigraded.
- iv) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, ..., f_r \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
- v) The Symmetric algebra of I is

$$\mathsf{Sym}(I) = \frac{S[t_1, \ldots, t_r]}{J_{\phi}}, \text{ where } J_{\phi} = \left(\begin{bmatrix} t_1 & t_2 & \ldots & t_r \end{bmatrix} \cdot \phi \right)$$

and ϕ is the presentation matrix of I, i.e., $S^p \xrightarrow{\phi} S^r \longrightarrow I \longrightarrow 0$.

- i) R is a (standard) graded commutative ring with 1.
- ii) The Symmetric algebra of R^m is $Sym(R^m) = R[t_1, ..., t_m]$.
- iii) Sym (R^m) is standard bigraded.
- iv) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, ..., f_r \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
- v) The Symmetric algebra of I is

$$\mathsf{Sym}(I) = \frac{S[t_1, \ldots, t_r]}{J_{\phi}}, \text{ where } J_{\phi} = \left(\begin{bmatrix} t_1 & t_2 & \ldots & t_r \end{bmatrix} \cdot \phi \right)$$

and ϕ is the presentation matrix of I, i.e., $S^p \xrightarrow{\phi} S^r \longrightarrow I \longrightarrow 0$. vi) Sym $(R^m)_{\Delta}$ and Sym $(I)_{\Delta}$ are diagonal subalgebras.

Part II - Cohen-Macaulay and Koszul properties

Linear Algebra and Commutative Algebra

Finitely generated (f.g.) module over a ring \leftrightarrow f.g. vector space over a ring.

Usually f.g. modules have generators and relations among them instead of having basis as in Linear algebra.

Let *R* be any commutative ring with 1. Then R^n is a vector space of rank *n* over *R* with basis e_1, e_2, \ldots, e_n . We say R^n is a free *R*-module. Modules having basis are rare.

Linear Algebra and Commutative Algebra

Finitely generated (f.g.) module over a ring \leftrightarrow f.g. vector space over a ring.

Usually f.g. modules have generators and relations among them instead of having basis as in Linear algebra.

Let *R* be any commutative ring with 1. Then R^n is a vector space of rank *n* over *R* with basis e_1, e_2, \ldots, e_n . We say R^n is a free *R*-module. Modules having basis are rare.

Example. Let $R = k[x, y]/(x^2, y^3)$. Then R is a module over k[x, y] with generators $\underline{x}, \underline{y}$ and relations $x^2 = 0, y^3 = 0$ and $fx^2 + gy^3 = 0$ for some f, g in k[x, y]. (For instance, take $f = y^3$ and $g = -x^2$).

Linear Algebra and Commutative Algebra

Finitely generated (f.g.) module over a ring \leftrightarrow f.g. vector space over a ring.

Usually f.g. modules have generators and relations among them instead of having basis as in Linear algebra.

Let *R* be any commutative ring with 1. Then R^n is a vector space of rank *n* over *R* with basis e_1, e_2, \ldots, e_n . We say R^n is a free *R*-module. Modules having basis are rare.

Example. Let $R = k[x, y]/(x^2, y^3)$. Then R is a module over k[x, y] with generators $\underline{x}, \underline{y}$ and relations $x^2 = 0, y^3 = 0$ and $fx^2 + gy^3 = 0$ for some f, g in k[x, y]. (For instance, take $f = y^3$ and $g = -x^2$).

Free modules are most fundamental (in other words, most elementary) objects in the theory of modules in commutative algebra.

Free resolution

• Let $R = k[x_1, ..., x_n]$ be a polynomial ring and M a f.g. R-module.

D. Hilbert (1890): Used generators of module M and relations among them to describe the properties of module M, by approximating it with free R-modules. This process of approximation by free module is known as free resolution.

Free resolution

• Let $R = k[x_1, ..., x_n]$ be a polynomial ring and M a f.g. R-module.

D. Hilbert (1890): Used generators of module M and relations among them to describe the properties of module M, by approximating it with free R-modules. This process of approximation by free module is known as free resolution.

Free resolution of M over R:

$$\cdots \to R^{\beta_2} \xrightarrow[\text{in } \partial_1]{\partial_2 = \begin{pmatrix} \text{ relations on} \\ \text{the relations} \\ \text{in } \partial_1 \end{pmatrix}} R^{\beta_1} \xrightarrow[\text{of } M]{\partial_1 = \begin{pmatrix} \text{ relations on} \\ \text{the generators} \\ \text{of } M \end{pmatrix}} R^{\#M} \xrightarrow[\text{of } M]{\partial_1 = \begin{pmatrix} \text{generators} \\ \text{of } M \end{pmatrix}} M \to 0,$$

where β_1 is the minimal number of relations on the generators of M, and so on.

Free resolution

• Let $R = k[x_1, ..., x_n]$ be a polynomial ring and M a f.g. R-module.

D. Hilbert (1890): Used generators of module M and relations among them to describe the properties of module M, by approximating it with free R-modules. This process of approximation by free module is known as free resolution.

Free resolution of M over R:

$$\cdots \to R^{\beta_2} \xrightarrow[\text{in } \partial_1]{\partial_2 = \begin{pmatrix} \text{ relations on} \\ \text{the relations} \\ \text{in } \partial_1 \end{pmatrix}} R^{\beta_1} \xrightarrow[\text{of } M]{\partial_1 = \begin{pmatrix} \text{ relations on} \\ \text{the generators} \\ \text{of } M \end{pmatrix}} R^{\#M} \xrightarrow[\text{of } M]{\partial_1 = \begin{pmatrix} \text{generators} \\ \text{of } M \end{pmatrix}} M \to 0,$$

where β_1 is the minimal number of relations on the generators of M, and so on.

- Poincaré-Betti series of M is P^R_M(t) = ∑_{i≥0} β_i ⋅ tⁱ (Assuming that free resolution is minimal).
- Hilbert series of M is $H^{R}_{M}(t) = \sum_{i \ge 0} \dim_{R} M_{i} \cdot t^{i}$.

- $R = \bigoplus_{i \ge 0} R_i$ is a graded ring with $R_0 = k$ (e.g. R = S/I).
- Let $\mathfrak{m}_R = \bigoplus_{i \ge 1} R_i$ be the unique homogeneous maximal ideal of R.
- *R* is standard graded if \mathfrak{m}_R is generated by R_1 .

- $R = \bigoplus_{i \ge 0} R_i$ is a graded ring with $R_0 = k$ (e.g. R = S/I).
- Let $\mathfrak{m}_R = \bigoplus_{i \ge 1} R_i$ be the unique homogeneous maximal ideal of R.
- *R* is standard graded if \mathfrak{m}_R is generated by R_1 .

Let **F** be the minimal graded free resolution of $k = R/\mathfrak{m}_R$ over R:

$$\mathbf{F} \quad \cdots \to R^{\beta_i} \xrightarrow{\partial_i} R^{\beta_{i-1}} \to \cdots \xrightarrow{\partial_2} R^{\beta_1} \xrightarrow{\partial_1} R^{\beta_0} \to 0,$$

Let X_i be the matrix corresponding to the map ∂_i . Priddy (1970): R is Koszul if all the non-zero entries of X_i are in degree one,

- $R = \bigoplus_{i \ge 0} R_i$ is a graded ring with $R_0 = k$ (e.g. R = S/I).
- Let $\mathfrak{m}_R = \bigoplus_{i \ge 1} R_i$ be the unique homogeneous maximal ideal of R.
- *R* is standard graded if \mathfrak{m}_R is generated by R_1 .
- Let **F** be the minimal graded free resolution of $k = R/\mathfrak{m}_R$ over R:

$$\mathbf{F} \quad \cdots \to R^{\beta_i} \xrightarrow{\partial_i} R^{\beta_{i-1}} \to \cdots \xrightarrow{\partial_2} R^{\beta_1} \xrightarrow{\partial_1} R^{\beta_0} \to 0,$$

Let X_i be the matrix corresponding to the map ∂_i .

Priddy (1970): R is Koszul if all the non-zero entries of X_i are in degree one,

$$X_i = \begin{pmatrix} \star & 0 & \cdots & \star \\ \star & \star & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \star & \cdots & \star \end{pmatrix}.$$

Using Mumford (1966) definition of regularity, R is Koszul if

$$\operatorname{reg}_{R}(\mathsf{k}) := \sup_{i \in \mathbb{N}} \{j - i : \dim_{\mathsf{k}} \operatorname{Tor}_{i}^{R}(\mathsf{k}, \mathsf{k})_{j} \neq 0\} = 0.$$

- $R = \bigoplus_{i \ge 0} R_i$ is a graded ring with $R_0 = k$ (e.g. R = S/I).
- Let $\mathfrak{m}_R = \bigoplus_{i \ge 1} R_i$ be the unique homogeneous maximal ideal of R.
- *R* is standard graded if \mathfrak{m}_R is generated by R_1 .
- Let **F** be the minimal graded free resolution of $k = R/\mathfrak{m}_R$ over R:

$$\mathbf{F} \quad \cdots \to R^{\beta_i} \xrightarrow{\partial_i} R^{\beta_{i-1}} \to \cdots \xrightarrow{\partial_2} R^{\beta_1} \xrightarrow{\partial_1} R^{\beta_0} \to 0,$$

Let X_i be the matrix corresponding to the map ∂_i .

Priddy (1970): R is Koszul if all the non-zero entries of X_i are in degree one,

$$X_i = \begin{pmatrix} \star & 0 & \cdots & \star \\ \star & \star & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \star & \cdots & \star \end{pmatrix}.$$

Using Mumford (1966) definition of regularity, R is Koszul if

$$\operatorname{reg}_{R}(\mathsf{k}) := \sup_{i \in \mathbb{N}} \{j - i : \dim_{\mathsf{k}} \operatorname{Tor}_{i}^{R}(\mathsf{k}, \mathsf{k})_{j} \neq 0\} = 0.$$

Löfwall (1983): *R* is Koszul if and only if $H_R(t) \cdot P_k^R(-t) = 1$.

- $S = k[x_1, \ldots, x_n]$ be a polynomial ring over a field k.
- ▶ $I = (f_1, f_2, ..., f_r) \subset S$, where f_i 's are homogeneous polynomials.
- R = S/I is Quadratic if deg $(f_i) = 2$ for all *i*.

- $S = k[x_1, ..., x_n]$ be a polynomial ring over a field k.
- ▶ $I = (f_1, f_2, ..., f_r) \subset S$, where f_i 's are homogeneous polynomials.
- R = S/I is Quadratic if deg $(f_i) = 2$ for all *i*.
- ▶ R = S/I is defined by Gröbner basis of quadrics, if w.r.t some coordinate system of S_1 and some term order τ on S, I can be deformed to an ideal generated by monomials of degree 2 without changing the Hilbert series of R.

- $S = k[x_1, ..., x_n]$ be a polynomial ring over a field k.
- ▶ $I = (f_1, f_2, ..., f_r) \subset S$, where f_i 's are homogeneous polynomials.
- R = S/I is Quadratic if deg $(f_i) = 2$ for all *i*.
- ▶ R = S/I is defined by Gröbner basis of quadrics, if w.r.t some coordinate system of S_1 and some term order τ on S, I can be deformed to an ideal generated by monomials of degree 2 without changing the Hilbert series of R.
- I = (f₁, f₂,..., f_r) ⊂ S is generated by regular sequence if for each i, the image of f_{i+1} is a nonzero divisor in S/(f₁,..., f_i).
- R = S/I is complete interection if I is generated by regular sequence.

- $S = k[x_1, ..., x_n]$ be a polynomial ring over a field k.
- ▶ $I = (f_1, f_2, ..., f_r) \subset S$, where f_i 's are homogeneous polynomials.
- R = S/I is Quadratic if deg $(f_i) = 2$ for all *i*.
- ▶ R = S/I is defined by Gröbner basis of quadrics, if w.r.t some coordinate system of S_1 and some term order τ on S, I can be deformed to an ideal generated by monomials of degree 2 without changing the Hilbert series of R.
- I = (f₁, f₂,..., f_r) ⊂ S is generated by regular sequence if for each i, the image of f_{i+1} is a nonzero divisor in S/(f₁,..., f_i).
- R = S/I is complete interection if I is generated by regular sequence.
- ▶ We say *R* is Cohen-Macaulay if the length of maximal regular sequence in *R* is same as the dimension of *R*, i.e., dim *R* = depth *R*.

- i) Mumford (1969) Any projective variety $X \subset \mathbb{P}^n$, its Veronese embedding $v_{d_0}(X) \subset \mathbb{P}^{N_0}$ is cut out by quadrics, for $d_0 \gg 0$.
- ii) Backlin (1986) If R is any standard graded k-algebra, then Veronese ring $R^{(d_1)}$ is even Koszul, for $d_1 \ge d_0 \gg 0$.
- iii) Eisenbud, Reeves and Totaro (1994) Sufficiently high Veronese ring $R^{(d_2)}$ is defined by Gröbner basis of quadrics, for $d_2 \ge d_1 \gg 0$.

- i) Mumford (1969) Any projective variety $X \subset \mathbb{P}^n$, its Veronese embedding $v_{d_0}(X) \subset \mathbb{P}^{N_0}$ is cut out by quadrics, for $d_0 \gg 0$.
- ii) Backlin (1986) If R is any standard graded k-algebra, then Veronese ring $R^{(d_1)}$ is even Koszul, for $d_1 \ge d_0 \gg 0$.
- iii) Eisenbud, Reeves and Totaro (1994) Sufficiently high Veronese ring $R^{(d_2)}$ is defined by Gröbner basis of quadrics, for $d_2 \ge d_1 \gg 0$.

Gröbner basis of quadrics ⇒ Koszul ⇒ Quadratic

↑
c.i. quadratic

- i) Mumford (1969) Any projective variety $X \subset \mathbb{P}^n$, its Veronese embedding $v_{d_0}(X) \subset \mathbb{P}^{N_0}$ is cut out by quadrics, for $d_0 \gg 0$.
- ii) Backlin (1986) If R is any standard graded k-algebra, then Veronese ring $R^{(d_1)}$ is even Koszul, for $d_1 \ge d_0 \gg 0$.
- iii) Eisenbud, Reeves and Totaro (1994) Sufficiently high Veronese ring $R^{(d_2)}$ is defined by Gröbner basis of quadrics, for $d_2 \ge d_1 \gg 0$.

Gröbner basis of quadrics ⇒ Koszul ⇒ Quadratic ↑ c.i. quadratic

 (a) Kaplansky (1957), Serre (1965) - Whether Poincaré-Betti series P_k(R) is rational? (Motivated by Tate's (1957) construction of free resolution).

- i) Mumford (1969) Any projective variety $X \subset \mathbb{P}^n$, its Veronese embedding $v_{d_0}(X) \subset \mathbb{P}^{N_0}$ is cut out by quadrics, for $d_0 \gg 0$.
- ii) Backlin (1986) If R is any standard graded k-algebra, then Veronese ring $R^{(d_1)}$ is even Koszul, for $d_1 \ge d_0 \gg 0$.
- iii) Eisenbud, Reeves and Totaro (1994) Sufficiently high Veronese ring $R^{(d_2)}$ is defined by Gröbner basis of quadrics, for $d_2 \ge d_1 \gg 0$.

Gröbner basis of quadrics ⇒ Koszul ⇒ Quadratic ↑ c.i. quadratic

- (a) Kaplansky (1957), Serre (1965) Whether Poincaré-Betti series P_k(R) is rational? (Motivated by Tate's (1957) construction of free resolution).
- (b) Fröberg (1975) Poincaré-Betti series is rational for Koszul algebras.

- i) Mumford (1969) Any projective variety $X \subset \mathbb{P}^n$, its Veronese embedding $v_{d_0}(X) \subset \mathbb{P}^{N_0}$ is cut out by quadrics, for $d_0 \gg 0$.
- ii) Backlin (1986) If R is any standard graded k-algebra, then Veronese ring $R^{(d_1)}$ is even Koszul, for $d_1 \ge d_0 \gg 0$.
- iii) Eisenbud, Reeves and Totaro (1994) Sufficiently high Veronese ring $R^{(d_2)}$ is defined by Gröbner basis of quadrics, for $d_2 \ge d_1 \gg 0$.

Gröbner basis of quadrics \Rightarrow Koszul \Rightarrow Quadratic \uparrow c.i. quadratic

- (a) Kaplansky (1957), Serre (1965) Whether Poincaré-Betti series P_k(R) is rational? (Motivated by Tate's (1957) construction of free resolution).
- (b) Fröberg (1975) Poincaré-Betti series is rational for Koszul algebras.
- (c) Anick (1980), Roos and Sturmfels (1998) Poincaré series can be irrational.

- i) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, f_2, f_3 \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree d.
- ii) The *Rees algebra* of *I* is $\mathcal{R}(I) = k[x_1, \ldots, x_n, f_1t, f_2t, f_3t]$.

- i) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, f_2, f_3 \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree d.
- ii) The *Rees algebra* of *I* is $\mathcal{R}(I) = k[x_1, \ldots, x_n, f_1t, f_2t, f_3t]$.

iii) Let $\Delta = (c, e)$.

Theorem (Kumar (2014)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{d}{2}$ and e > 0.

- i) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, f_2, f_3 \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree d.
- ii) The *Rees algebra* of *I* is $\mathcal{R}(I) = k[x_1, \ldots, x_n, f_1t, f_2t, f_3t]$.

iii) Let $\Delta = (c, e)$.

Theorem (Kumar (2014)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{d}{2}$ and e > 0.

Known results

Theorem (Conca, Herzog, Trung, and Valla (1997)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{2d}{3}$ and e > 0.

- i) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, f_2, f_3 \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree d.
- ii) The *Rees algebra* of *I* is $\mathcal{R}(I) = k[x_1, \ldots, x_n, f_1t, f_2t, f_3t]$.

iii) Let $\Delta = (c, e)$.

Theorem (Kumar (2014)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{d}{2}$ and e > 0.

Known results

Theorem (Conca, Herzog, Trung, and Valla (1997)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{2d}{3}$ and e > 0. Theorem (Caviglia (2009)). Let $\Delta = (1, 1)$ and $I = \langle x_1^2, x_2^2, x_3^2 \rangle$, then $\mathcal{R}(I)_{\Delta}$ is Koszul.

- i) $S = k[x_1, ..., x_n]$, and $I = \langle f_1, f_2, f_3 \rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree d.
- ii) The *Rees algebra* of *I* is $\mathcal{R}(I) = k[x_1, \ldots, x_n, f_1t, f_2t, f_3t]$.

iii) Let $\Delta = (c, e)$.

Theorem (Kumar (2014)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{d}{2}$ and e > 0.

Known results

Theorem (Conca, Herzog, Trung, and Valla (1997)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{2d}{3}$ and e > 0. Theorem (Caviglia (2009)). Let $\Delta = (1, 1)$ and $I = \langle x_1^2, x_2^2, x_3^2 \rangle$, then $\mathcal{R}(I)_{\Delta}$ is Koszul

Theorem (Conca, Caviglia (2013)). Let $\Delta = (1,1)$ and $I = \langle f_1, f_2, f_3 \rangle$ with deg $f_i = 2$, then $\mathcal{R}(I)_{\Delta}$ is Koszul.

Artin and Nagata (1972): An ideal J of Noetherian ring R is an s-residual intersection of I if there exists an ideal K = (g₁,...,g_s) ⊂ I such that J = K : I and ht J ≥ s.

- Artin and Nagata (1972): An ideal J of Noetherian ring R is an s-residual intersection of I if there exists an ideal K = (g₁,...,g_s) ⊂ I such that J = K : I and ht J ≥ s.
- Huneke and Ulrich (1982): An ideal J ⊂ R is a geometric s-residual intersection of I if J is an s-residual intersection of I and ht(I + J) ≥ s + 1.

- Artin and Nagata (1972): An ideal J of Noetherian ring R is an s-residual intersection of I if there exists an ideal K = (g₁,...,g_s) ⊂ I such that J = K : I and ht J ≥ s.
- Huneke and Ulrich (1982): An ideal J ⊂ R is a geometric s-residual intersection of I if J is an s-residual intersection of I and ht(I + J) ≥ s + 1.

Bruns, Kustin and Miller (1990):

- Let ϕ be an $n \times m$ matrix $(m \ge n)$ with linear entries in y_1, \ldots, y_p .
- Let $R = S[y_1, y_2, \dots, y_p]$ be a polynomial ring over $S = k[x_1, \dots, x_n]$, and $\mathfrak{m}_S = (x_1, \dots, x_n)$.
- *R* is bigraded with $\deg(x_i) = (1,0), \deg(y_j) = (0,1)$.
- Consider an ideal $J = (z_1, \dots, z_m) + I_n(\phi)$, where $\begin{bmatrix} z_1 & z_2 & \dots & z_m \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \cdot \phi$ and $I_n(\phi)$ is the ideal generated by maximal minors of ϕ .

- Artin and Nagata (1972): An ideal J of Noetherian ring R is an s-residual intersection of I if there exists an ideal K = (g₁,...,g_s) ⊂ I such that J = K : I and ht J ≥ s.
- Huneke and Ulrich (1982): An ideal J ⊂ R is a geometric s-residual intersection of I if J is an s-residual intersection of I and ht(I + J) ≥ s + 1.

Bruns, Kustin and Miller (1990):

- Let ϕ be an $n \times m$ matrix $(m \ge n)$ with linear entries in y_1, \ldots, y_p .
- Let $R = S[y_1, y_2, \dots, y_p]$ be a polynomial ring over $S = k[x_1, \dots, x_n]$, and $\mathfrak{m}_S = (x_1, \dots, x_n)$.
- *R* is bigraded with $\deg(x_i) = (1,0), \deg(y_j) = (0,1)$.
- Consider an ideal $J = (z_1, \dots, z_m) + I_n(\phi)$, where $\begin{bmatrix} z_1 & z_2 & \dots & z_m \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \cdot \phi$

and $I_n(\phi)$ is the ideal generated by maximal minors of ϕ .

Then $J \subset R$ is geometric *m*-residual intersection of \mathfrak{m}_S , if $ht(J) \ge m$, and $ht(I_n(\phi)) \ge m - n + 1$.

We describe the bigraded resolution and compute the homological invariants depth and regularity of modules in the bigraded resolution of geometric m-residual intersection ring R/J:

We describe the bigraded resolution and compute the homological invariants depth and regularity of modules in the bigraded resolution of geometric *m*-residual intersection ring R/J:

i) $(R/J)_{\Delta}$ is Koszul for all $c \ge 1$ and $e \ge \frac{n}{2}$.

We describe the bigraded resolution and compute the homological invariants depth and regularity of modules in the bigraded resolution of geometric m-residual intersection ring R/J:

- i) $(R/J)_{\Delta}$ is Koszul for all $c \ge 1$ and $e \ge \frac{n}{2}$.
- ii) Suppose p > m, then depth $(R/J)_{\Delta} \ge p + n (m+1)$ for all Δ .

We describe the bigraded resolution and compute the homological invariants depth and regularity of modules in the bigraded resolution of geometric m-residual intersection ring R/J:

- i) $(R/J)_{\Delta}$ is Koszul for all $c \ge 1$ and $e \ge \frac{n}{2}$.
- ii) Suppose p > m, then depth $(R/J)_{\Delta} \ge p + n (m+1)$ for all Δ .
- iii) If p = m + 1, then $(R/J)_{\Delta}$ is Cohen-Macaulay for all Δ .

We describe the bigraded resolution and compute the homological invariants depth and regularity of modules in the bigraded resolution of geometric m-residual intersection ring R/J:

- i) $(R/J)_{\Delta}$ is Koszul for all $c \ge 1$ and $e \ge \frac{n}{2}$.
- ii) Suppose p > m, then depth $(R/J)_{\Delta} \ge p + n (m+1)$ for all Δ .
- iii) If p = m + 1, then $(R/J)_{\Delta}$ is Cohen-Macaulay for all Δ .

Conca, Herzog, Trung, and Valla (1997): If p = m + 1, then $(R/J)_{\Delta}$ is Cohen-Macaulay for large Δ .

Thank you for your attention!