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Given a graded k-algebra, (k is a field), e.g.

> klx1,...,xn]

> K[x1, ... xn]/(f1y. ey fm)

> One study their (commutative) algebraic properties.

Some algebraic objects have natually bigraded structure,

» Associate to it graded algebras (diagonal subalgebras) via a
diagonal functor.

» Study their (commutative) algebraic properties.
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Diagonal subalgebras

i) ¢ and e denote positive integers,
i) A={(ci,ei)|iecZ}is the (c,e)-diagonal of Z2.

iii) Let R = ®(; j)ez2R(i,;) be a standard bigraded k-algebra,
)

iv) The (c, e)-diagonal subalgebra of R is Ra = @z‘zo Rici,ei)-

Example
v) S =K[x1,...,Xn, Y1, -, Vm] is standard bigraded k-algebra with
degx; = (1,0) and degy; = (0,1). The (1,1)-diagonal subalgebra of S is

Sa=k[xy; |[1<i<nl1<j<m)].

Main results of this talk:.
> Koszul property of the (c, e)-diagonal subalgebra Ra.
> Cohen-Macaulay property of the (c, e)-diagonal subalgebra Rn.
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Diagonal subalgebras of Rees algebra

i) S=Kk[x1,...,xp], and | = (f1,...,f,) an ideal of S generated by
homogeneous (homog.) polynomials of same degree.
ii) The Rees algebra of | is the subalgebra of k[xi, ..., x,, t] defined as
RN =K[x1, ..y Xny ity ..., 1]
i) R(/) is standard bigraded, deg x; = (1,0) and deg fit = (0, 1)

Example

) I =(03,53) C S =Kkxi,x)].

i) The Rees algebra of | is R(I) = k[x1, x2, x; t, X5t].
i) Let A =(1,1), then R(/)a is ?

Remark. R(/)a is the homogeneous co-ordinate ring of the twisted quartic
curve in the projective space P3.
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An example of Diagonal subalgebra of Rees algebra

Proof of Remark.
i) R(I) = k[x1, x2, 3 t, x3t] = K[x1, x2, 1, y2]/(By2 — X3y1) = B/K.
i) R(a = Ba/Kna, where BA = k[x1y1, x1¥2, Xoy1, X2y2] and Ka is

(Gann)*Gaye) = Gan)’, Gan) Gaya)’ = Gar)’, Gan)(xya)’ = Gan ) Gaye) ) -

iii) Define zg — x1y1, z1 — X1Y2, Z2 —> Xay1, Z3 > Xa2Y2, then

k[Zo, e ,23]

= k[xiy1, x1y2, Xoy1, X2 2] = Ba
(2122 - 2023)

iv) We can describe
k[Zo, ‘e ,23]

R(Na =
3 2 3_ 2 2_ 2.
(2120 — 2023, 2 — 2225, 23 — 2571, Z0Zf — 2523)
v) The vanishing locus of a twisted quartic curve defined from P — P3 by
the map [xo, x1] = [x, x3x1, x2x2, x0x3, x{] are the polynomials
2
212 — ZpZ3, Zl — 2223,22 — ZO Z1, Z()Zl — 2223.



More on diagonal subalgebras

i) Ris a (standard) graded commutative ring with 1.



More on diagonal subalgebras

i) Ris a (standard) graded commutative ring with 1.

i) The Symmetric algebra of R™ is Sym(R™) = R|[ty,. ..

iii) Sym(R™) is standard bigraded.



More on diagonal subalgebras

i) Ris a (standard) graded commutative ring with 1.
i) The Symmetric algebra of R™ is Sym(R™) = R[t1, ..., tm].
iii) Sym(R™) is standard bigraded.

iv) S =K[x1,...,xs], and I = (f1,...,f;) an ideal of S generated by
homogeneous (homog.) polynomials of same degree.



More on diagonal subalgebras

i) Ris a (standard) graded commutative ring with 1.
i) The Symmetric algebra of R™ is Sym(R™) = R[t1, ..., tm].
iii) Sym(R™) is standard bigraded.

iv) S =K[x1,...,xs], and I = (f1,...,f;) an ideal of S generated by
homogeneous (homog.) polynomials of same degree.

v) The Symmetric algebra of | is

Sym(l) = S[thj(b’tr], where Jy = ([0 & ... t]-¢)

and ¢ is the presentation matrix of /, i.e., SP i> S"— | —0.
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i) Ris a (standard) graded commutative ring with 1.
i) The Symmetric algebra of R™ is Sym(R™) = R[t1, ..., tm].
iii) Sym(R™) is standard bigraded.

iv) S =K[x1,...,xs], and I = (f1,...,f;) an ideal of S generated by
homogeneous (homog.) polynomials of same degree.

v) The Symmetric algebra of | is

Sym(l) = S[thj(b’tr], where Jy = ([0 & ... t]-¢)

and ¢ is the presentation matrix of /, i.e., SP i> S"— | —0.

vi) Sym(R™)a and Sym(/)a are diagonal subalgebras.
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Finitely generated (f.g.) module over a ring «— f.g. vector space over a ring.

Usually f.g. modules have generators and relations among them instead of
having basis as in Linear algebra.

Let R be any commutative ring with 1. Then R" is a vector space of rank n
over R with basis ej, e5,...,¢e,. We say R" is a free R-module. Modules
having basis are rare.

Example. Let R = k[x,y]/(x?,y3). Then R is a module over k[x, y] with
generators x, y and relations x?> =0,y =0and &? + gy> = 0 for some f, g in
k[x,y]. (For instance, take f = y* and g = —x?).

Free modules are most fundamental (in other words, most elementary) objects
in the theory of modules in commutative algebra.
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> Let R =k[xq,...,x,] be a polynomial ring and M a f.g. R-module.

D. Hilbert (1890): Used generators of module M and relations among them to
describe the properties of module M, by approximating it with free R-modules.
This process of approximation by free module is known as free resolution.

Free resolution of M over R:

relations on
0=/ the relations
in 01

relations on
1= the generators generators
B1

R of M ) R#M of M M—)O,

_>R52

where (7 is the minimal number of relations on the generators of M, and so on.

L o DRy i
> Poincaré-Betti series of M is Py(t) = > ;50 5 -
(Assuming that free resolution is minimal).

> Hilbert series of M is H(t) = > isodimr M; .
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Koszul algebras

> R =®i>oR; is a graded ring with Ry =k (e.g. R=S5/I).
> Let mg = @;>1R; be the unique homogeneous maximal ideal of R.
> R is standard graded if mg is generated by R;.
Let F be the minimal graded free resolution of k = R/mg over R:
F oo o RP 2R 2 pP 9 pbo
Let X; be the matrix corresponding to the map ;.
Priddy (1970): R is Koszul if all the non-zero entries of X; are in degree one,

* 0 --- *

* % 0
Xi =

0 x --- *

Using Mumford (1966) definition of regularity, R is Koszul if
regp(k) :=sup {j —i : dim, Torf(k,k); # 0} = 0.
ieN

Lofwall (1983): R is Koszul if and only if Hg(t) - PR(—t) = 1.
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Few definitions and facts

v

v

S =K[xi,...,x,] be a polynomial ring over a field k.
I =(f,f,...,f,) CS, where f;'s are homogeneous polynomials.
R = S/I is Quadratic if deg(f;) = 2 for all i.

R = S/I is defined by Grébner basis of quadrics, if w.r.t some coordinate
system of S; and some term order 7 on S, | can be deformed to an ideal
generated by monomials of degree 2 without changing the Hilbert series
of R.

I =(f,f,...,f,) CSis generated by regular sequence if for each i, the
image of fi11 is a nonzero divisor in S/(f1,...,f).
R =S/l is complete interection if / is generated by regular sequence.

We say R is Cohen-Macaulay if the length of maximal regular sequence in
R is same as the dimension of R, i.e., dim R = depth R.



Motivation for studying Koszul algebras

i) Mumford (1969) - Any projective variety X C P”, its Veronese embedding
Vay (X) C PN is cut out by quadrics, for do > 0.

i) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring
R(4) is even Koszul, for di > dy > 0.

iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring R(¢)
is defined by Grobner basis of quadrics, for d, > d; > 0.



Motivation for studying Koszul algebras

i) Mumford (1969) - Any projective variety X C P”, its Veronese embedding
Vay (X) C PN is cut out by quadrics, for do > 0.

i) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring
R(4) is even Koszul, for di > dy > 0.

iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring R(¢)
is defined by Grobner basis of quadrics, for d, > d; > 0.

Grobner basis of quadrics = Koszul = Quadratic

TT

c.i. quadratic



Motivation for studying Koszul algebras

i) Mumford (1969) - Any projective variety X C P”, its Veronese embedding
Vay (X) C PN is cut out by quadrics, for do > 0.

i) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring
R(4) is even Koszul, for di > dy > 0.

iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring R(¢)
is defined by Grobner basis of quadrics, for d, > d; > 0.

Grobner basis of quadrics = Koszul = Quadratic

TT

c.i. quadratic

(a) Kaplansky (1957), Serre (1965) - Whether Poincaré-Betti series P (R) is
rational? (Motivated by Tate's (1957) construction of free resolution).



Motivation for studying Koszul algebras

i) Mumford (1969) - Any projective variety X C P”, its Veronese embedding
Vay (X) C PN is cut out by quadrics, for do > 0.

i) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring
R(4) is even Koszul, for di > dy > 0.

iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring R(¢)
is defined by Grobner basis of quadrics, for d, > d; > 0.

Grobner basis of quadrics = Koszul = Quadratic

TT

c.i. quadratic

(a) Kaplansky (1957), Serre (1965) - Whether Poincaré-Betti series P (R) is
rational? (Motivated by Tate's (1957) construction of free resolution).

(b) Froberg (1975) - Poincaré-Betti series is rational for Koszul algebras.



Motivation for studying Koszul algebras

i) Mumford (1969) - Any projective variety X C P”, its Veronese embedding
Vay (X) C PN is cut out by quadrics, for do > 0.

i) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring
R(4) is even Koszul, for di > dy > 0.

iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring R(¢)
is defined by Grobner basis of quadrics, for d, > d; > 0.

Grobner basis of quadrics = Koszul = Quadratic

TT

c.i. quadratic

(a) Kaplansky (1957), Serre (1965) - Whether Poincaré-Betti series P (R) is
rational? (Motivated by Tate's (1957) construction of free resolution).

(b) Froberg (1975) - Poincaré-Betti series is rational for Koszul algebras.

(c) Anick (1980), Roos and Sturmfels (1998) - Poincaré series can be irrational.
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i) S=Kk[x1,...,xn], and | = (f1, fo, f3) an ideal of S generated by
homogeneous (homog.) polynomials of same degree d.

ii) The Rees algebra of | is R(l) = k[x1,...,xn, fAit, hrt, fzt].
i) Let A =(c,e).

Theorem (Kumar (2014)). R(/)a is Koszul if c > & and e > 0.

Known results

Theorem (Conca, Herzog, Trung, and Valla (1997)). R(/)a is Koszul if ¢ > %
and e > 0.

Theorem (Caviglia (2009)). Let A = (1,1) and | = (x%, x3, x3), then R(/)a is
Koszul.

Theorem (Conca, Caviglia (2013)). Let A =(1,1) and | = (£, f», 5) with
degfi =2, then R(/)a is Koszul.
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J=K:land htJ>s.

2) Huneke and Ulrich (1982): An ideal J C R is a geometric s-residual
intersection of | if J is an s-residual intersection of / and ht(/ +J) > s+ 1.

Bruns, Kustin and Miller (1990):
> Let ¢ be an n x m matrix (m > n) with linear entries in y1,..., y,.

> Let R = S[y1,¥2,...,¥p| be a polynomial ring over S = k[xi, ..., Xs], and
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> Consider an ideal J = (z1,...2zm) + In(¢), where
[21 Z ... zm] = [xl Xo ... x,,} 0]

and /I,(®) is the ideal generated by maximal minors of ¢.
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intersection of | if there exists an ideal K = (g1,...,8s) C I such that
J=K:land htJ>s.

2) Huneke and Ulrich (1982): An ideal J C R is a geometric s-residual
intersection of | if J is an s-residual intersection of / and ht(/ +J) > s+ 1.

Bruns, Kustin and Miller (1990):
> Let ¢ be an n x m matrix (m > n) with linear entries in y1,..., y,.

> Let R = S[y1,¥2,...,¥p| be a polynomial ring over S = k[xi, ..., Xs], and
ms = (Xq,...,Xn)-

> R is bigraded with deg(x;) = (1,0),deg(y;) = (0, 1).
> Consider an ideal J = (z1,...2zm) + In(¢), where
[21 Z ... zm] = [xl Xo ... x,,} 0]
and /I,(®) is the ideal generated by maximal minors of ¢.

Then J C R is geometric m-residual intersection of mg, if ht(J) > m, and
ht(l,(¢)) > m—n+1.
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Diagonal Subalgebras of Residual Intersections

Ananthnarayan, Kumar and Mukundan (2018):

We describe the bigraded resolution and compute the homological invariants
depth and regularity of modules in the bigraded resolution of geometric
m-residual intersection ring R/J:

i) (R/J)a is Koszul forall ¢ > 1 and e > 7.

i) Suppose p > m, then depth(R/J)a > p+n— (m+1) for all A.

i) If p=m+1, then (R/J)a is Cohen-Macaulay for all A.

Conca, Herzog, Trung, and Valla (1997): If p=m+1, then (R/J)a is
Cohen-Macaulay for large A.



Thank you for your attention!



