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Theme of this talk

Given a graded k-algebra, (k is a field), e.g.

I k[x1, . . . , xn]

I k[x1, . . . , xn]/(f1, . . . , fm)

I One study their (commutative) algebraic properties.

Some algebraic objects have natually bigraded structure,

I Associate to it graded algebras (diagonal subalgebras) via a
diagonal functor.

I Study their (commutative) algebraic properties.
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Part I - Diagonal subalgebras



Diagonal subalgebras

i) c and e denote positive integers,

ii) ∆ = {(ci, ei) | i ∈ Z} is the (c , e)-diagonal of Z2.

iii) Let R = ⊕(i,j)∈Z2R(i,j) be a standard bigraded k-algebra,

iv) The (c , e)-diagonal subalgebra of R is R∆ =
⊕

i≥0 R(ci,ei).

Example

v) S = k[x1, . . . , xn, y1, . . . , ym] is standard bigraded k-algebra with
deg xi = (1, 0) and deg yj = (0, 1). The (1, 1)-diagonal subalgebra of S is

S∆ = k[xiyj | 1 ≤ i ≤ n, 1 ≤ j ≤ m].

Main results of this talk:.

I Koszul property of the (c , e)-diagonal subalgebra R∆.

I Cohen-Macaulay property of the (c , e)-diagonal subalgebra R∆.
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Diagonal subalgebras of Rees algebra

i) S = k[x1, . . . , xn], and I = 〈f1, . . . , fr 〉 an ideal of S generated by
homogeneous (homog.) polynomials of same degree.

ii) The Rees algebra of I is the subalgebra of k[x1, . . . , xn, t] defined as

R(I ) = k[x1, . . . , xn, f1t, . . . , fr t].

iii) R(I ) is standard bigraded, deg xi = (1, 0) and deg fj t = (0, 1)

Example

i) I = (x3
1 , x

3
2 ) ⊂ S = k[x1, x2].

ii) The Rees algebra of I is R(I ) = k[x1, x2, x
3
1 t, x

3
2 t].

iii) Let 4 = (1, 1), then R(I )∆ is ?

Remark. R(I )∆ is the homogeneous co-ordinate ring of the twisted quartic
curve in the projective space P3.
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An example of Diagonal subalgebra of Rees algebra

Proof of Remark.

i) R(I ) = k[x1, x2, x
3
1 t, x

3
2 t] ∼= k[x1, x2, y1, y2]/(x3

1 y2 − x3
2 y1) = B/K .

ii) R(I )∆ = B4/K4, where B4 = k[x1y1, x1y2, x2y1, x2y2] and K4 is(
(x1y1)

2(x1y2)− (x2y1)
3, (x2y1)(x2y2)

2 − (x1y2)
3, (x1y1)(x1y2)

2 − (x2y1)
2(x2y2)

)
.

iii) Define z0 7→ x1y1, z1 7→ x1y2, z2 7→ x2y1, z3 7→ x2y2, then

k[z0, . . . , z3]

(z1z2 − z0z3)
∼= k[x1y1, x1y2, x2y1, x2y2] = B4

iv) We can describe

R(I )∆ =
k[z0, . . . , z3]

(z1z2 − z0z3, z3
1 − z2z2

3 , z
3
2 − z2

0 z1, z0z2
1 − z2

2 z3)
.

v) The vanishing locus of a twisted quartic curve defined from P −→ P3 by
the map [x0, x1] 7→ [x4

0 , x
3
0 x1, x

2
0 x

2
1 , x0x

3
1 , x

4
1 ] are the polynomials

z1z2 − z0z3, z
3
1 − z2z

2
3 , z

3
2 − z2

0 z1, z0z
2
1 − z2

2 z3.
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More on diagonal subalgebras

i) R is a (standard) graded commutative ring with 1.

ii) The Symmetric algebra of Rm is Sym(Rm) = R[t1, . . . , tm].

iii) Sym(Rm) is standard bigraded.

iv) S = k[x1, . . . , xn], and I = 〈f1, . . . , fr 〉 an ideal of S generated by
homogeneous (homog.) polynomials of same degree.

v) The Symmetric algebra of I is

Sym(I ) =
S [t1, . . . , tr ]

Jφ
, where Jφ =

( [
t1 t2 . . . tr

]
· φ
)

and φ is the presentation matrix of I , i.e., Sp φ−→ S r −→ I −→ 0.

vi) Sym(Rm)∆ and Sym(I )∆ are diagonal subalgebras.
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Part II - Cohen-Macaulay and Koszul properties



Linear Algebra and Commutative Algebra

Finitely generated (f.g.) module over a ring ←→ f.g. vector space over a ring.

Usually f.g. modules have generators and relations among them instead of
having basis as in Linear algebra.

Let R be any commutative ring with 1. Then Rn is a vector space of rank n
over R with basis e1, e2, . . . , en. We say Rn is a free R-module. Modules
having basis are rare.

Example. Let R = k[x , y ]/(x2, y3). Then R is a module over k[x , y ] with
generators x , y and relations x2 = 0, y3 = 0 and fx2 + gy3 = 0 for some f , g in

k[x , y ]. (For instance, take f = y3 and g = −x2).

Free modules are most fundamental (in other words, most elementary) objects
in the theory of modules in commutative algebra.



Linear Algebra and Commutative Algebra

Finitely generated (f.g.) module over a ring ←→ f.g. vector space over a ring.

Usually f.g. modules have generators and relations among them instead of
having basis as in Linear algebra.

Let R be any commutative ring with 1. Then Rn is a vector space of rank n
over R with basis e1, e2, . . . , en. We say Rn is a free R-module. Modules
having basis are rare.

Example. Let R = k[x , y ]/(x2, y3). Then R is a module over k[x , y ] with
generators x , y and relations x2 = 0, y3 = 0 and fx2 + gy3 = 0 for some f , g in

k[x , y ]. (For instance, take f = y3 and g = −x2).

Free modules are most fundamental (in other words, most elementary) objects
in the theory of modules in commutative algebra.



Linear Algebra and Commutative Algebra

Finitely generated (f.g.) module over a ring ←→ f.g. vector space over a ring.

Usually f.g. modules have generators and relations among them instead of
having basis as in Linear algebra.

Let R be any commutative ring with 1. Then Rn is a vector space of rank n
over R with basis e1, e2, . . . , en. We say Rn is a free R-module. Modules
having basis are rare.

Example. Let R = k[x , y ]/(x2, y3). Then R is a module over k[x , y ] with
generators x , y and relations x2 = 0, y3 = 0 and fx2 + gy3 = 0 for some f , g in

k[x , y ]. (For instance, take f = y3 and g = −x2).

Free modules are most fundamental (in other words, most elementary) objects
in the theory of modules in commutative algebra.



Free resolution

I Let R = k[x1, . . . , xn] be a polynomial ring and M a f.g. R-module.

D. Hilbert (1890): Used generators of module M and relations among them to
describe the properties of module M, by approximating it with free R-modules.
This process of approximation by free module is known as free resolution.

Free resolution of M over R:

· · · → Rβ2

∂2=

(
relations on
the relations

in ∂1

)
−−−−−−−−−−−−→ Rβ1

∂1=

(
relations on

the generators
of M

)
−−−−−−−−−−−−−→ R#M

(
generators

of M

)
−−−−−−−→ M → 0,

where β1 is the minimal number of relations on the generators of M, and so on.

I Poincaré-Betti series of M is PR
M(t) =

∑
i≥0 βi · ti

(Assuming that free resolution is minimal).

I Hilbert series of M is HR
M(t) =

∑
i≥0 dimR Mi · ti.
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Free resolution of M over R:

· · · → Rβ2

∂2=

(
relations on
the relations

in ∂1

)
−−−−−−−−−−−−→ Rβ1

∂1=

(
relations on

the generators
of M

)
−−−−−−−−−−−−−→ R#M

(
generators

of M

)
−−−−−−−→ M → 0,

where β1 is the minimal number of relations on the generators of M, and so on.

I Poincaré-Betti series of M is PR
M(t) =

∑
i≥0 βi · ti

(Assuming that free resolution is minimal).

I Hilbert series of M is HR
M(t) =

∑
i≥0 dimR Mi · ti.



Koszul algebras

I R = ⊕i≥0Ri is a graded ring with R0 = k (e.g. R = S/I ).

I Let mR = ⊕i≥1Ri be the unique homogeneous maximal ideal of R.

I R is standard graded if mR is generated by R1.

Let F be the minimal graded free resolution of k = R/mR over R:

F · · · → Rβi
∂i−→ Rβi−1 → · · · ∂2−→ Rβ1 ∂1−→ Rβ0 → 0,

Let Xi be the matrix corresponding to the map ∂i.

Priddy (1970): R is Koszul if all the non-zero entries of Xi are in degree one,

Xi =


? 0 · · · ?
? ? · · · 0
...

... · · ·
...

0 ? · · · ?

 .

Using Mumford (1966) definition of regularity, R is Koszul if

regR(k) := sup
i∈N
{j − i : dimk Tor

R
i (k, k)j 6= 0} = 0.

Löfwall (1983): R is Koszul if and only if HR(t) · PR
k (−t) = 1.
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Few definitions and facts

I S = k[x1, . . . , xn] be a polynomial ring over a field k.

I I = (f1, f2, . . . , fr ) ⊂ S , where fi ’s are homogeneous polynomials.

I R = S/I is Quadratic if deg(fi ) = 2 for all i .

I R = S/I is defined by Gröbner basis of quadrics, if w.r.t some coordinate
system of S1 and some term order τ on S , I can be deformed to an ideal
generated by monomials of degree 2 without changing the Hilbert series
of R.

I I = (f1, f2, . . . , fr ) ⊂ S is generated by regular sequence if for each i , the
image of fi+1 is a nonzero divisor in S/(f1, . . . , fi ).

I R = S/I is complete interection if I is generated by regular sequence.

I We say R is Cohen-Macaulay if the length of maximal regular sequence in
R is same as the dimension of R, i.e., dimR = depthR.
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Motivation for studying Koszul algebras

i) Mumford (1969) - Any projective variety X ⊂ Pn, its Veronese embedding
vd0 (X ) ⊂ PN0 is cut out by quadrics, for d0 � 0.

ii) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring
R(d1) is even Koszul, for d1 ≥ d0 � 0.

iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring R(d2)

is defined by Gröbner basis of quadrics, for d2 ≥ d1 � 0.

Gröbner basis of quadrics ⇒ Koszul ⇒ Quadratic

⇑
c.i. quadratic

(a) Kaplansky (1957), Serre (1965) - Whether Poincaré-Betti series Pk(R) is
rational? (Motivated by Tate’s (1957) construction of free resolution).

(b) Fröberg (1975) - Poincaré-Betti series is rational for Koszul algebras.

(c) Anick (1980), Roos and Sturmfels (1998) - Poincaré series can be irrational.
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(b) Fröberg (1975) - Poincaré-Betti series is rational for Koszul algebras.

(c) Anick (1980), Roos and Sturmfels (1998) - Poincaré series can be irrational.
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Results

i) S = k[x1, . . . , xn], and I = 〈f1, f2, f3〉 an ideal of S generated by
homogeneous (homog.) polynomials of same degree d .

ii) The Rees algebra of I is R(I ) = k[x1, . . . , xn, f1t, f2t, f3t].

iii) Let ∆ = (c , e).

Theorem (Kumar (2014)). R(I )∆ is Koszul if c ≥ d
2 and e > 0.

Known results

Theorem (Conca, Herzog, Trung, and Valla (1997)). R(I )∆ is Koszul if c ≥ 2d
3

and e > 0.
Theorem (Caviglia (2009)). Let ∆ = (1, 1) and I = 〈x2

1 , x
2
2 , x

2
3 〉, then R(I )∆ is

Koszul.
Theorem (Conca, Caviglia (2013)). Let ∆ = (1, 1) and I = 〈f1, f2, f3〉 with
deg fi = 2 , then R(I )∆ is Koszul.
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Residual Intersections

1) Artin and Nagata (1972): An ideal J of Noetherian ring R is an s-residual
intersection of I if there exists an ideal K = (g1, . . . , gs) ⊂ I such that
J = K : I and ht J ≥ s.

2) Huneke and Ulrich (1982): An ideal J ⊂ R is a geometric s-residual
intersection of I if J is an s-residual intersection of I and ht(I + J) ≥ s + 1.

Bruns, Kustin and Miller (1990):

I Let φ be an n ×m matrix (m ≥ n) with linear entries in y1, . . . , yp.

I Let R = S [y1, y2, . . . , yp] be a polynomial ring over S = k[x1, . . . , xn], and
mS = (x1, . . . , xn).

I R is bigraded with deg(xi ) = (1, 0), deg(yj) = (0, 1).

I Consider an ideal J = (z1, . . . zm) + In(φ), where[
z1 z2 . . . zm

]
=
[
x1 x2 . . . xn

]
· φ

and In(φ) is the ideal generated by maximal minors of φ.

Then J ⊂ R is geometric m-residual intersection of mS , if ht(J) ≥ m, and

ht(In(φ)) ≥ m − n + 1.
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Diagonal Subalgebras of Residual Intersections

Ananthnarayan, Kumar and Mukundan (2018):

We describe the bigraded resolution and compute the homological invariants
depth and regularity of modules in the bigraded resolution of geometric
m-residual intersection ring R/J:

i) (R/J)∆ is Koszul for all c ≥ 1 and e ≥ n
2 .

ii) Suppose p > m, then depth(R/J)∆ ≥ p + n − (m + 1) for all ∆.

iii) If p = m + 1, then (R/J)∆ is Cohen-Macaulay for all ∆.

Conca, Herzog, Trung, and Valla (1997): If p = m + 1, then (R/J)∆ is
Cohen-Macaulay for large ∆.
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Diagonal Subalgebras of Residual Intersections

Ananthnarayan, Kumar and Mukundan (2018):

We describe the bigraded resolution and compute the homological invariants
depth and regularity of modules in the bigraded resolution of geometric
m-residual intersection ring R/J:

i) (R/J)∆ is Koszul for all c ≥ 1 and e ≥ n
2 .

ii) Suppose p > m, then depth(R/J)∆ ≥ p + n − (m + 1) for all ∆.

iii) If p = m + 1, then (R/J)∆ is Cohen-Macaulay for all ∆.

Conca, Herzog, Trung, and Valla (1997): If p = m + 1, then (R/J)∆ is
Cohen-Macaulay for large ∆.



Thank you for your attention!


