Diagonal subalgebras of bigraded algebras

Neeraj Kumar
Indian Institute of Technology Bombay

Joint work with H. Ananthnarayan and Vivek Mukundan
@ Diamond Jubilee Symposium of IIT Bombay, January 4-6, 2019

Theme of this talk

Given a graded k-algebra, (k is a field), e.g.

Theme of this talk

Given a graded k-algebra, (k is a field), e.g.

- $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right)$
- One study their (commutative) algebraic properties.

Theme of this talk

Given a graded k-algebra, (k is a field), e.g.

- $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right)$
- One study their (commutative) algebraic properties.

Some algebraic objects have natually bigraded structure,

Theme of this talk

Given a graded k-algebra, (k is a field), e.g.

- $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right)$
- One study their (commutative) algebraic properties.

Some algebraic objects have natually bigraded structure,

- Associate to it graded algebras (diagonal subalgebras) via a diagonal functor.
- Study their (commutative) algebraic properties.

Part I - Diagonal subalgebras

Diagonal subalgebras

i) c and e denote positive integers,
ii) $\Delta=\{(c i, e i) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^{2}.

Diagonal subalgebras

i) c and e denote positive integers,
ii) $\Delta=\{(c i, e i) \mid i \in \mathbb{Z}\}$ is the ($c, e)$-diagonal of \mathbb{Z}^{2}.
iii) Let $R=\oplus_{(i, j) \in \mathbb{Z}^{2}} R_{(i, j)}$ be a standard bigraded k-algebra,

Diagonal subalgebras

i) c and e denote positive integers,
ii) $\Delta=\{(c i, e i) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^{2}.
iii) Let $R=\oplus_{(i, j) \in \mathbb{Z}^{2}} R_{(i, j)}$ be a standard bigraded k-algebra,
iv) The (c,e)-diagonal subalgebra of R is $R_{\Delta}=\bigoplus_{i \geq 0} R_{(c i, e i)}$.

Diagonal subalgebras

i) c and e denote positive integers,
ii) $\Delta=\{(c i, e i) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^{2}.
iii) Let $R=\oplus_{(i, j) \in \mathbb{Z}^{2}} R_{(i, j)}$ be a standard bigraded k-algebra,
iv) The (c, e)-diagonal subalgebra of R is $R_{\Delta}=\bigoplus_{i \geq 0} R_{(c i, e i)}$.

Example

v) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ is standard bigraded k -algebra with $\operatorname{deg} x_{i}=(1,0)$ and $\operatorname{deg} y_{j}=(0,1)$.

Diagonal subalgebras

i) c and e denote positive integers,
ii) $\Delta=\{(c i, e i) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^{2}.
iii) Let $R=\oplus_{(i, j) \in \mathbb{Z}^{2}} R_{(i, j)}$ be a standard bigraded k-algebra,
iv) The (c, e)-diagonal subalgebra of R is $R_{\Delta}=\bigoplus_{i \geq 0} R_{(c i, e i)}$.

Example

v) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ is standard bigraded k -algebra with $\operatorname{deg} x_{i}=(1,0)$ and $\operatorname{deg} y_{j}=(0,1)$. The (1,1)-diagonal subalgebra of S is

$$
S_{\Delta}=\mathrm{k}\left[x_{i} y_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right] .
$$

Diagonal subalgebras

i) c and e denote positive integers,
ii) $\Delta=\{(c i, e i) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^{2}.
iii) Let $R=\oplus_{(i, j) \in \mathbb{Z}^{2}} R_{(i, j)}$ be a standard bigraded k-algebra,
iv) The (c,e)-diagonal subalgebra of R is $R_{\Delta}=\bigoplus_{i \geq 0} R_{(c i, e i)}$.

Example

v) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ is standard bigraded k -algebra with $\operatorname{deg} x_{i}=(1,0)$ and $\operatorname{deg} y_{j}=(0,1)$. The (1,1)-diagonal subalgebra of S is

$$
S_{\Delta}=\mathrm{k}\left[x_{i} y_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right] .
$$

Main results of this talk:.

Diagonal subalgebras

i) c and e denote positive integers,
ii) $\Delta=\{(c i, e i) \mid i \in \mathbb{Z}\}$ is the (c, e)-diagonal of \mathbb{Z}^{2}.
iii) Let $R=\oplus_{(i, j) \in \mathbb{Z}^{2}} R_{(i, j)}$ be a standard bigraded k-algebra,
iv) The (c, e)-diagonal subalgebra of R is $R_{\Delta}=\bigoplus_{i \geq 0} R_{(c i, e i)}$.

Example

v) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ is standard bigraded k-algebra with $\operatorname{deg} x_{i}=(1,0)$ and $\operatorname{deg} y_{j}=(0,1)$. The (1,1)-diagonal subalgebra of S is

$$
S_{\Delta}=\mathrm{k}\left[x_{i} y_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right] .
$$

Main results of this talk:.

- Koszul property of the (c, e) -diagonal subalgebra R_{Δ}.
- Cohen-Macaulay property of the (c, e)-diagonal subalgebra R_{Δ}.

Diagonal subalgebras of Rees algebra

i) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.

Diagonal subalgebras of Rees algebra

i) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
ii) The Rees algebra of I is the subalgebra of $\mathrm{k}\left[x_{1}, \ldots, x_{n}, t\right]$ defined as

$$
\mathcal{R}(I)=\mathrm{k}\left[x_{1}, \ldots, x_{n}, f_{1} t, \ldots, f_{r} t\right] .
$$

Diagonal subalgebras of Rees algebra

i) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
ii) The Rees algebra of I is the subalgebra of $\mathrm{k}\left[x_{1}, \ldots, x_{n}, t\right]$ defined as

$$
\mathcal{R}(I)=\mathrm{k}\left[x_{1}, \ldots, x_{n}, f_{1} t, \ldots, f_{r} t\right] .
$$

iii) $\mathcal{R}(I)$ is standard bigraded, $\operatorname{deg} x_{i}=(1,0)$ and $\operatorname{deg} f_{j} t=(0,1)$

Diagonal subalgebras of Rees algebra

i) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
ii) The Rees algebra of I is the subalgebra of $\mathrm{k}\left[x_{1}, \ldots, x_{n}, t\right]$ defined as

$$
\mathcal{R}(I)=\mathrm{k}\left[x_{1}, \ldots, x_{n}, f_{1} t, \ldots, f_{r} t\right] .
$$

iii) $\mathcal{R}(I)$ is standard bigraded, $\operatorname{deg} x_{i}=(1,0)$ and $\operatorname{deg} f_{j} t=(0,1)$

Example

i) $I=\left(x_{1}^{3}, x_{2}^{3}\right) \subset S=\mathrm{k}\left[x_{1}, x_{2}\right]$.
ii) The Rees algebra of I is $\mathcal{R}(I)=\mathrm{k}\left[x_{1}, x_{2}, x_{1}^{3} t, x_{2}^{3} t\right]$.
iii) Let $\Delta=(1,1)$, then $\mathcal{R}(I)_{\Delta}$ is?

Diagonal subalgebras of Rees algebra

i) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
ii) The Rees algebra of I is the subalgebra of $\mathrm{k}\left[x_{1}, \ldots, x_{n}, t\right]$ defined as

$$
\mathcal{R}(I)=\mathrm{k}\left[x_{1}, \ldots, x_{n}, f_{1} t, \ldots, f_{r} t\right] .
$$

iii) $\mathcal{R}(I)$ is standard bigraded, $\operatorname{deg} x_{i}=(1,0)$ and $\operatorname{deg} f_{j} t=(0,1)$

Example
i) $I=\left(x_{1}^{3}, x_{2}^{3}\right) \subset S=\mathrm{k}\left[x_{1}, x_{2}\right]$.
ii) The Rees algebra of I is $\mathcal{R}(I)=\mathrm{k}\left[x_{1}, x_{2}, x_{1}^{3} t, x_{2}^{3} t\right]$.
iii) Let $\Delta=(1,1)$, then $\mathcal{R}(I)_{\Delta}$ is?

Remark. $\mathcal{R}(I)_{\Delta}$ is the homogeneous co-ordinate ring of the twisted quartic curve in the projective space \mathbb{P}^{3}.

An example of Diagonal subalgebra of Rees algebra
Proof of Remark.
i) $\mathcal{R}(I)=\mathrm{k}\left[x_{1}, x_{2}, x_{1}^{3} t, x_{2}^{3} t\right] \cong \mathrm{k}\left[x_{1}, x_{2}, y_{1}, y_{2}\right] /\left(x_{1}^{3} y_{2}-x_{2}^{3} y_{1}\right)=B / K$.

An example of Diagonal subalgebra of Rees algebra

Proof of Remark.
i) $\mathcal{R}(I)=\mathrm{k}\left[x_{1}, x_{2}, x_{1}^{3} t, x_{2}^{3} t\right] \cong \mathrm{k}\left[x_{1}, x_{2}, y_{1}, y_{2}\right] /\left(x_{1}^{3} y_{2}-x_{2}^{3} y_{1}\right)=B / K$.
ii) $\mathcal{R}(I)_{\Delta}=B_{\Delta} / K_{\Delta}$, where $B_{\Delta}=\mathrm{k}\left[x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right]$ and K_{Δ} is

$$
\left(\left(x_{1} y_{1}\right)^{2}\left(x_{1} y_{2}\right)-\left(x_{2} y_{1}\right)^{3},\left(x_{2} y_{1}\right)\left(x_{2} y_{2}\right)^{2}-\left(x_{1} y_{2}\right)^{3},\left(x_{1} y_{1}\right)\left(x_{1} y_{2}\right)^{2}-\left(x_{2} y_{1}\right)^{2}\left(x_{2} y_{2}\right)\right) .
$$

iii) Define $z_{0} \mapsto x_{1} y_{1}, z_{1} \mapsto x_{1} y_{2}, z_{2} \mapsto x_{2} y_{1}, z_{3} \mapsto x_{2} y_{2}$, then

$$
\frac{\mathrm{k}\left[z_{0}, \ldots, z_{3}\right]}{\left(z_{1} z_{2}-z_{0} z_{3}\right)} \cong \mathrm{k}\left[x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right]=B_{\triangle}
$$

iv) We can describe

$$
\mathcal{R}(I)_{\Delta}=\frac{\mathrm{k}\left[z_{0}, \ldots, z_{3}\right]}{\left(z_{1} z_{2}-z_{0} z_{3}, z_{1}^{3}-z_{2} z_{3}^{2}, z_{2}^{3}-z_{0}^{2} z_{1}, z_{0} z_{1}^{2}-z_{2}^{2} z_{3}\right)}
$$

An example of Diagonal subalgebra of Rees algebra

Proof of Remark.
i) $\mathcal{R}(I)=\mathrm{k}\left[x_{1}, x_{2}, x_{1}^{3} t, x_{2}^{3} t\right] \cong \mathrm{k}\left[x_{1}, x_{2}, y_{1}, y_{2}\right] /\left(x_{1}^{3} y_{2}-x_{2}^{3} y_{1}\right)=B / K$.
ii) $\mathcal{R}(I)_{\Delta}=B_{\Delta} / K_{\Delta}$, where $B_{\Delta}=\mathrm{k}\left[x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right]$ and K_{Δ} is

$$
\left(\left(x_{1} y_{1}\right)^{2}\left(x_{1} y_{2}\right)-\left(x_{2} y_{1}\right)^{3},\left(x_{2} y_{1}\right)\left(x_{2} y_{2}\right)^{2}-\left(x_{1} y_{2}\right)^{3},\left(x_{1} y_{1}\right)\left(x_{1} y_{2}\right)^{2}-\left(x_{2} y_{1}\right)^{2}\left(x_{2} y_{2}\right)\right) .
$$

iii) Define $z_{0} \mapsto x_{1} y_{1}, z_{1} \mapsto x_{1} y_{2}, z_{2} \mapsto x_{2} y_{1}, z_{3} \mapsto x_{2} y_{2}$, then

$$
\frac{\mathrm{k}\left[z_{0}, \ldots, z_{3}\right]}{\left(z_{1} z_{2}-z_{0} z_{3}\right)} \cong \mathrm{k}\left[x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right]=B_{\triangle}
$$

iv) We can describe

$$
\mathcal{R}(I)_{\Delta}=\frac{\mathrm{k}\left[z_{0}, \ldots, z_{3}\right]}{\left(z_{1} z_{2}-z_{0} z_{3}, z_{1}^{3}-z_{2} z_{3}^{2}, z_{2}^{3}-z_{0}^{2} z_{1}, z_{0} z_{1}^{2}-z_{2}^{2} z_{3}\right)} .
$$

v) The vanishing locus of a twisted quartic curve defined from $\mathbb{P} \longrightarrow \mathbb{P}^{3}$ by the map $\left[x_{0}, x_{1}\right] \mapsto\left[x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0} x_{1}^{3}, x_{1}^{4}\right]$ are the polynomials $z_{1} z_{2}-z_{0} z_{3}, z_{1}^{3}-z_{2} z_{3}^{2}, z_{2}^{3}-z_{0}^{2} z_{1}, z_{0} z_{1}^{2}-z_{2}^{2} z_{3}$.

More on diagonal subalgebras
i) R is a (standard) graded commutative ring with 1.

More on diagonal subalgebras
i) R is a (standard) graded commutative ring with 1.
ii) The Symmetric algebra of R^{m} is $\operatorname{Sym}\left(R^{m}\right)=R\left[t_{1}, \ldots, t_{m}\right]$.
iii) $\operatorname{Sym}\left(R^{m}\right)$ is standard bigraded.
i) R is a (standard) graded commutative ring with 1.
ii) The Symmetric algebra of R^{m} is $\operatorname{Sym}\left(R^{m}\right)=R\left[t_{1}, \ldots, t_{m}\right]$.
iii) $\operatorname{Sym}\left(R^{m}\right)$ is standard bigraded.
iv) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
i) R is a (standard) graded commutative ring with 1.
ii) The Symmetric algebra of R^{m} is $\operatorname{Sym}\left(R^{m}\right)=R\left[t_{1}, \ldots, t_{m}\right]$.
iii) $\operatorname{Sym}\left(R^{m}\right)$ is standard bigraded.
iv) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
v) The Symmetric algebra of I is

$$
\operatorname{Sym}(I)=\frac{S\left[t_{1}, \ldots, t_{r}\right]}{J_{\phi}}, \text { where } J_{\phi}=\left(\begin{array}{llll}
{\left[\begin{array}{llll}
t_{1} & t_{2} & \ldots & t_{r}
\end{array}\right] \cdot \phi}
\end{array}\right)
$$

and ϕ is the presentation matrix of I, i.e., $S^{P} \xrightarrow{\phi} S^{r} \longrightarrow I \longrightarrow 0$.
i) R is a (standard) graded commutative ring with 1.
ii) The Symmetric algebra of R^{m} is $\operatorname{Sym}\left(R^{m}\right)=R\left[t_{1}, \ldots, t_{m}\right]$.
iii) $\operatorname{Sym}\left(R^{m}\right)$ is standard bigraded.
iv) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree.
v) The Symmetric algebra of I is

$$
\operatorname{Sym}(I)=\frac{S\left[t_{1}, \ldots, t_{r}\right]}{J_{\phi}}, \text { where } J_{\phi}=\left(\begin{array}{llll}
{\left[\begin{array}{llll}
t_{1} & t_{2} & \ldots & t_{r}
\end{array}\right] \cdot \phi}
\end{array}\right)
$$

and ϕ is the presentation matrix of I, i.e., $S^{p} \xrightarrow{\phi} S^{r} \longrightarrow I \longrightarrow 0$.
vi) $\operatorname{Sym}\left(R^{m}\right)_{\Delta}$ and $\operatorname{Sym}(I)_{\Delta}$ are diagonal subalgebras.

Part II - Cohen-Macaulay and Koszul properties

Linear Algebra and Commutative Algebra

Finitely generated (f.g.) module over a ring \longleftrightarrow f.g. vector space over a ring.
Usually f.g. modules have generators and relations among them instead of having basis as in Linear algebra.

Let R be any commutative ring with 1 . Then R^{n} is a vector space of rank n over R with basis $e_{1}, e_{2}, \ldots, e_{n}$. We say R^{n} is a free R-module. Modules having basis are rare.

Linear Algebra and Commutative Algebra

Finitely generated (f.g.) module over a ring \longleftrightarrow f.g. vector space over a ring.
Usually f.g. modules have generators and relations among them instead of having basis as in Linear algebra.

Let R be any commutative ring with 1 . Then R^{n} is a vector space of rank n over R with basis $e_{1}, e_{2}, \ldots, e_{n}$. We say R^{n} is a free R-module. Modules having basis are rare.

Example. Let $R=\mathrm{k}[x, y] /\left(x^{2}, y^{3}\right)$. Then R is a module over $\mathrm{k}[x, y]$ with generators $\underline{x}, \underline{y}$ and relations $x^{2}=0, y^{3}=0$ and $f x^{2}+g y^{3}=0$ for some f, g in $\mathrm{k}[x, y]$. (For instance, take $f=y^{3}$ and $g=-x^{2}$).

Linear Algebra and Commutative Algebra

Finitely generated (f.g.) module over a ring \longleftrightarrow f.g. vector space over a ring.
Usually f.g. modules have generators and relations among them instead of having basis as in Linear algebra.

Let R be any commutative ring with 1 . Then R^{n} is a vector space of rank n over R with basis $e_{1}, e_{2}, \ldots, e_{n}$. We say R^{n} is a free R-module. Modules having basis are rare.

Example. Let $R=\mathrm{k}[x, y] /\left(x^{2}, y^{3}\right)$. Then R is a module over $\mathrm{k}[x, y]$ with generators $\underline{x}, \underline{y}$ and relations $x^{2}=0, y^{3}=0$ and $f x^{2}+g y^{3}=0$ for some f, g in $\mathrm{k}[x, y]$. (For instance, take $f=y^{3}$ and $g=-x^{2}$).

Free modules are most fundamental (in other words, most elementary) objects in the theory of modules in commutative algebra.

Free resolution

- Let $R=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring and M a f.g. R-module.
D. Hilbert (1890): Used generators of module M and relations among them to describe the properties of module M, by approximating it with free R-modules. This process of approximation by free module is known as free resolution.

Free resolution

- Let $R=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring and M a f.g. R-module.
D. Hilbert (1890): Used generators of module M and relations among them to describe the properties of module M, by approximating it with free R-modules. This process of approximation by free module is known as free resolution.
Free resolution of M over R :
$\cdots \rightarrow R^{\beta_{2}} \xrightarrow{\begin{array}{c}\partial_{2}=\left(\begin{array}{c}\text { relations on } \\ \text { the relations } \\ \text { in } \partial_{1}\end{array}\right)\end{array} R^{\beta_{1}} \xrightarrow{\partial_{1}=\left(\begin{array}{c}\text { relations on } \\ \text { the generators } \\ \text { of } M\end{array}\right.}} R^{\# M} \xrightarrow{\begin{array}{c}\text { generators } \\ \text { of } M\end{array}} M \rightarrow 0$,
where β_{1} is the minimal number of relations on the generators of M, and so on.

Free resolution

- Let $R=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring and M a f.g. R-module.
D. Hilbert (1890): Used generators of module M and relations among them to describe the properties of module M, by approximating it with free R-modules. This process of approximation by free module is known as free resolution.

Free resolution of M over R :
$\cdots \rightarrow R^{\beta_{2}} \xrightarrow{\begin{array}{c}\partial_{2}=\left(\begin{array}{c}\text { relations on } \\ \text { the relations } \\ \text { in } \partial_{1}\end{array}\right)\end{array} R^{\beta_{1}} \xrightarrow{\partial_{1}=\left(\begin{array}{c}\text { relations on } \\ \text { the generators } \\ \text { of } M\end{array}\right.}} R^{\# M} \xrightarrow{\begin{array}{c}\text { generators } \\ \text { of } M\end{array}} M \rightarrow 0$,
where β_{1} is the minimal number of relations on the generators of M, and so on.

- Poincaré-Betti series of M is $P_{M}^{R}(t)=\sum_{i \geq 0} \beta_{\mathrm{i}} \cdot \mathrm{t}^{\mathrm{i}}$
(Assuming that free resolution is minimal).
- Hilbert series of M is $H_{M}^{R}(t)=\sum_{i \geq 0} \operatorname{dim}_{R} M_{i} \cdot t^{i}$.
- $R=\oplus_{i \geq 0} R_{i}$ is a graded ring with $R_{0}=\mathrm{k}$ (e.g. $\left.R=S / I\right)$.
- Let $\mathfrak{m}_{R}=\oplus_{i \geq 1} R_{i}$ be the unique homogeneous maximal ideal of R.
- R is standard graded if \mathfrak{m}_{R} is generated by R_{1}.
- $R=\oplus_{i \geq 0} R_{i}$ is a graded ring with $R_{0}=\mathrm{k}$ (e.g. $\left.R=S / I\right)$.
- Let $\mathfrak{m}_{R}=\oplus_{i} \geq 1$ R R_{i} be the unique homogeneous maximal ideal of R.
- R is standard graded if \mathfrak{m}_{R} is generated by R_{1}.

Let \mathbf{F} be the minimal graded free resolution of $\mathrm{k}=R / \mathfrak{m}_{R}$ over R :

$$
\text { F } \quad \cdots \rightarrow R^{\beta_{i}} \xrightarrow{\partial_{i}} R^{\beta_{i-1}} \rightarrow \cdots \xrightarrow{\partial_{2}} R^{\beta_{1}} \xrightarrow{\partial_{1}} R^{\beta_{0}} \rightarrow 0,
$$

Let X_{i} be the matrix corresponding to the map ∂_{i}.
Priddy (1970): R is Koszul if all the non-zero entries of X_{i} are in degree one,

- $R=\oplus_{i \geq 0} R_{i}$ is a graded ring with $R_{0}=\mathrm{k}$ (e.g. $\left.R=S / I\right)$.
- Let $\mathfrak{m}_{R}=\oplus_{i \geq 1} R_{i}$ be the unique homogeneous maximal ideal of R.
- R is standard graded if \mathfrak{m}_{R} is generated by R_{1}.

Let \mathbf{F} be the minimal graded free resolution of $\mathrm{k}=R / \mathfrak{m}_{R}$ over R :

$$
\text { F } \quad \cdots \rightarrow R^{\beta_{i}} \xrightarrow{\partial_{i}} R^{\beta_{i-1}} \rightarrow \cdots \xrightarrow{\partial_{2}} R^{\beta_{1}} \xrightarrow{\partial_{1}} R^{\beta_{0}} \rightarrow 0,
$$

Let X_{i} be the matrix corresponding to the map ∂_{i}.
Priddy (1970): R is Koszul if all the non-zero entries of X_{i} are in degree one,

$$
X_{i}=\left(\begin{array}{cccc}
\star & 0 & \cdots & \star \\
\star & \star & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & \star & \cdots & \star
\end{array}\right) .
$$

Using Mumford (1966) definition of regularity, R is Koszul if

$$
\operatorname{reg}_{R}(\mathrm{k}):=\sup _{i \in \mathbb{N}}\left\{j-i: \operatorname{dim}_{\mathrm{k}} \operatorname{Tor}_{i}^{R}(\mathrm{k}, \mathrm{k})_{j} \neq 0\right\}=0
$$

- $R=\oplus_{i \geq 0} R_{i}$ is a graded ring with $R_{0}=\mathrm{k}$ (e.g. $\left.R=S / I\right)$.
- Let $\mathfrak{m}_{R}=\oplus_{i \geq 1} R_{i}$ be the unique homogeneous maximal ideal of R.
- R is standard graded if \mathfrak{m}_{R} is generated by R_{1}.

Let \mathbf{F} be the minimal graded free resolution of $\mathrm{k}=R / \mathfrak{m}_{R}$ over R :

$$
\text { F } \quad \cdots \rightarrow R^{\beta_{i}} \xrightarrow{\partial_{i}} R^{\beta_{i-1}} \rightarrow \cdots \xrightarrow{\partial_{2}} R^{\beta_{1}} \xrightarrow{\partial_{1}} R^{\beta_{0}} \rightarrow 0
$$

Let X_{i} be the matrix corresponding to the map ∂_{i}.
Priddy (1970): R is Koszul if all the non-zero entries of X_{i} are in degree one,

$$
X_{i}=\left(\begin{array}{cccc}
\star & 0 & \cdots & \star \\
\star & \star & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & \star & \cdots & \star
\end{array}\right) .
$$

Using Mumford (1966) definition of regularity, R is Koszul if

$$
\operatorname{reg}_{R}(\mathrm{k}):=\sup _{i \in \mathbb{N}}\left\{j-i: \operatorname{dim}_{\mathrm{k}} \operatorname{Tor}_{i}^{R}(\mathrm{k}, \mathrm{k})_{j} \neq 0\right\}=0
$$

Löfwall (1983): R is Koszul if and only if $H_{R}(t) \cdot P_{k}^{R}(-t)=1$.

Few definitions and facts

- $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k .
- $I=\left(f_{1}, f_{2}, \ldots, f_{r}\right) \subset S$, where f_{i} 's are homogeneous polynomials.
- $R=S / I$ is Quadratic if $\operatorname{deg}\left(f_{i}\right)=2$ for all i.

Few definitions and facts

- $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k .
- $I=\left(f_{1}, f_{2}, \ldots, f_{r}\right) \subset S$, where f_{i} 's are homogeneous polynomials.
- $R=S / I$ is Quadratic if $\operatorname{deg}\left(f_{i}\right)=2$ for all i.
- $R=S / I$ is defined by Gröbner basis of quadrics, if w.r.t some coordinate system of S_{1} and some term order τ on S, I can be deformed to an ideal generated by monomials of degree 2 without changing the Hilbert series of R.

Few definitions and facts

- $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k .
- $I=\left(f_{1}, f_{2}, \ldots, f_{r}\right) \subset S$, where f_{i} 's are homogeneous polynomials.
- $R=S / I$ is Quadratic if $\operatorname{deg}\left(f_{i}\right)=2$ for all i.
- $R=S / I$ is defined by Gröbner basis of quadrics, if w.r.t some coordinate system of S_{1} and some term order τ on S, I can be deformed to an ideal generated by monomials of degree 2 without changing the Hilbert series of R.
- $I=\left(f_{1}, f_{2}, \ldots, f_{r}\right) \subset S$ is generated by regular sequence if for each i, the image of f_{i+1} is a nonzero divisor in $S /\left(f_{1}, \ldots, f_{i}\right)$.
- $R=S / I$ is complete interection if I is generated by regular sequence.

Few definitions and facts

- $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k .
- $I=\left(f_{1}, f_{2}, \ldots, f_{r}\right) \subset S$, where f_{i} 's are homogeneous polynomials.
- $R=S / I$ is Quadratic if $\operatorname{deg}\left(f_{i}\right)=2$ for all i.
- $R=S / I$ is defined by Gröbner basis of quadrics, if w.r.t some coordinate system of S_{1} and some term order τ on S, I can be deformed to an ideal generated by monomials of degree 2 without changing the Hilbert series of R.
- $I=\left(f_{1}, f_{2}, \ldots, f_{r}\right) \subset S$ is generated by regular sequence if for each i, the image of f_{i+1} is a nonzero divisor in $S /\left(f_{1}, \ldots, f_{i}\right)$.
- $R=S / I$ is complete interection if I is generated by regular sequence.
- We say R is Cohen-Macaulay if the length of maximal regular sequence in R is same as the dimension of R, i.e., $\operatorname{dim} R=\operatorname{depth} R$.
i) Mumford (1969) - Any projective variety $X \subset \mathbb{P}^{n}$, its Veronese embedding $v_{d_{0}}(X) \subset \mathbb{P}^{N_{0}}$ is cut out by quadrics, for $d_{0} \gg 0$.
ii) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring $R^{\left(d_{1}\right)}$ is even Koszul, for $d_{1} \geq d_{0} \gg 0$.
iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring $R^{\left(d_{2}\right)}$ is defined by Gröbner basis of quadrics, for $d_{2} \geq d_{1} \gg 0$.

Motivation for studying Koszul algebras
i) Mumford (1969) - Any projective variety $X \subset \mathbb{P}^{n}$, its Veronese embedding $v_{d_{0}}(X) \subset \mathbb{P}^{N_{0}}$ is cut out by quadrics, for $d_{0} \gg 0$.
ii) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring $R^{\left(d_{1}\right)}$ is even Koszul, for $d_{1} \geq d_{0} \gg 0$.
iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring $R^{\left(d_{2}\right)}$ is defined by Gröbner basis of quadrics, for $d_{2} \geq d_{1} \gg 0$.

$$
\begin{array}{cc}
\text { Gröbner basis of quadrics } \Rightarrow \underset{\substack{\text { c.i. quadratic }}}{\text { Koszul }} \Rightarrow \text { Quadratic } \\
\text { c. }
\end{array}
$$

Motivation for studying Koszul algebras
i) Mumford (1969) - Any projective variety $X \subset \mathbb{P}^{n}$, its Veronese embedding $v_{d_{0}}(X) \subset \mathbb{P}^{N_{0}}$ is cut out by quadrics, for $d_{0} \gg 0$.
ii) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring $R^{\left(d_{1}\right)}$ is even Koszul, for $d_{1} \geq d_{0} \gg 0$.
iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring $R^{\left(d_{2}\right)}$ is defined by Gröbner basis of quadrics, for $d_{2} \geq d_{1} \gg 0$.

c.i. quadratic
(a) Kaplansky (1957), Serre (1965) - Whether Poincaré-Betti series $P_{k}(R)$ is rational? (Motivated by Tate's (1957) construction of free resolution).

Motivation for studying Koszul algebras
i) Mumford (1969) - Any projective variety $X \subset \mathbb{P}^{n}$, its Veronese embedding $v_{d_{0}}(X) \subset \mathbb{P}^{N_{0}}$ is cut out by quadrics, for $d_{0} \gg 0$.
ii) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring $R^{\left(d_{1}\right)}$ is even Koszul, for $d_{1} \geq d_{0} \gg 0$.
iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring $R^{\left(d_{2}\right)}$ is defined by Gröbner basis of quadrics, for $d_{2} \geq d_{1} \gg 0$.

c.i. quadratic
(a) Kaplansky (1957), Serre (1965) - Whether Poincaré-Betti series $P_{k}(R)$ is rational? (Motivated by Tate's (1957) construction of free resolution).
(b) Fröberg (1975) - Poincaré-Betti series is rational for Koszul algebras.

Motivation for studying Koszul algebras
i) Mumford (1969) - Any projective variety $X \subset \mathbb{P}^{n}$, its Veronese embedding $v_{d_{0}}(X) \subset \mathbb{P}^{N_{0}}$ is cut out by quadrics, for $d_{0} \gg 0$.
ii) Backlin (1986) - If R is any standard graded k-algebra, then Veronese ring $R^{\left(d_{1}\right)}$ is even Koszul, for $d_{1} \geq d_{0} \gg 0$.
iii) Eisenbud, Reeves and Totaro (1994) - Sufficiently high Veronese ring $R^{\left(d_{2}\right)}$ is defined by Gröbner basis of quadrics, for $d_{2} \geq d_{1} \gg 0$.

c.i. quadratic

(a) Kaplansky (1957), Serre (1965) - Whether Poincaré-Betti series $P_{k}(R)$ is rational? (Motivated by Tate's (1957) construction of free resolution).
(b) Fröberg (1975) - Poincaré-Betti series is rational for Koszul algebras.
(c) Anick (1980), Roos and Sturmfels (1998) - Poincaré series can be irrational.

Results

i) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree d.
ii) The Rees algebra of I is $\mathcal{R}(I)=\mathrm{k}\left[x_{1}, \ldots, x_{n}, f_{1} t, f_{2} t, f_{3} t\right]$.

Results

i) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree d.
ii) The Rees algebra of I is $\mathcal{R}(I)=\mathrm{k}\left[x_{1}, \ldots, x_{n}, f_{1} t, f_{2} t, f_{3} t\right]$.
iii) Let $\Delta=(c, e)$.

Theorem (Kumar (2014)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{d}{2}$ and $e>0$.

Results

i) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree d.
ii) The Rees algebra of I is $\mathcal{R}(I)=\mathrm{k}\left[x_{1}, \ldots, x_{n}, f_{1} t, f_{2} t, f_{3} t\right]$.
iii) Let $\Delta=(c, e)$.

Theorem (Kumar (2014)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{d}{2}$ and $e>0$.
Known results
Theorem (Conca, Herzog, Trung, and Valla (1997)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{2 d}{3}$ and $e>0$.

Results

i) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree d.
ii) The Rees algebra of I is $\mathcal{R}(I)=\mathrm{k}\left[x_{1}, \ldots, x_{n}, f_{1} t, f_{2} t, f_{3} t\right]$.
iii) Let $\Delta=(c, e)$.

Theorem (Kumar (2014)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{d}{2}$ and $e>0$.
Known results
Theorem (Conca, Herzog, Trung, and Valla (1997)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{2 d}{3}$ and $e>0$.
Theorem (Caviglia (2009)). Let $\Delta=(1,1)$ and $I=\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle$, then $\mathcal{R}(I)_{\Delta}$ is Koszul.

Results

i) $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ an ideal of S generated by homogeneous (homog.) polynomials of same degree d.
ii) The Rees algebra of I is $\mathcal{R}(I)=\mathrm{k}\left[x_{1}, \ldots, x_{n}, f_{1} t, f_{2} t, f_{3} t\right]$.
iii) Let $\Delta=(c, e)$.

Theorem (Kumar (2014)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{d}{2}$ and $e>0$.

Known results

Theorem (Conca, Herzog, Trung, and Valla (1997)). $\mathcal{R}(I)_{\Delta}$ is Koszul if $c \geq \frac{2 d}{3}$ and $e>0$.
Theorem (Caviglia (2009)). Let $\Delta=(1,1)$ and $I=\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle$, then $\mathcal{R}(I)_{\Delta}$ is Koszul.
Theorem (Conca, Caviglia (2013)). Let $\Delta=(1,1)$ and $I=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ with $\operatorname{deg} f_{i}=2$, then $\mathcal{R}(I)_{\Delta}$ is Koszul.

Residual Intersections

1) Artin and Nagata (1972): An ideal J of Noetherian ring R is an s-residual intersection of I if there exists an ideal $K=\left(g_{1}, \ldots, g_{s}\right) \subset I$ such that $J=K: I$ and $h t \geq s$.

Residual Intersections

1) Artin and Nagata (1972): An ideal J of Noetherian ring R is an s-residual intersection of I if there exists an ideal $K=\left(g_{1}, \ldots, g_{s}\right) \subset I$ such that $J=K: I$ and $h t J \geq s$.
2) Huneke and Ulrich (1982): An ideal $J \subset R$ is a geometric s-residual intersection of I if J is an s-residual intersection of I and $\mathrm{ht}(I+J) \geq s+1$.

Residual Intersections

1) Artin and Nagata (1972): An ideal J of Noetherian ring R is an s-residual intersection of l if there exists an ideal $K=\left(g_{1}, \ldots, g_{s}\right) \subset I$ such that $J=K: I$ and $h t J \geq s$.
2) Huneke and Ulrich (1982): An ideal $J \subset R$ is a geometric s-residual intersection of I if J is an s-residual intersection of I and $\mathrm{ht}(I+J) \geq s+1$.

Bruns, Kustin and Miller (1990):

- Let ϕ be an $n \times m$ matrix $(m \geq n)$ with linear entries in y_{1}, \ldots, y_{p}.
- Let $R=S\left[y_{1}, y_{2}, \ldots, y_{p}\right]$ be a polynomial ring over $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $\mathfrak{m}_{S}=\left(x_{1}, \ldots, x_{n}\right)$.
- R is bigraded with $\operatorname{deg}\left(x_{i}\right)=(1,0), \operatorname{deg}\left(y_{j}\right)=(0,1)$.
- Consider an ideal $J=\left(z_{1}, \ldots z_{m}\right)+I_{n}(\phi)$, where

$$
\left[\begin{array}{llll}
z_{1} & z_{2} & \ldots & z_{m}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right] \cdot \phi
$$

and $I_{n}(\phi)$ is the ideal generated by maximal minors of ϕ.

Residual Intersections

1) Artin and Nagata (1972): An ideal J of Noetherian ring R is an s-residual intersection of l if there exists an ideal $K=\left(g_{1}, \ldots, g_{s}\right) \subset I$ such that $J=K: I$ and $h t J \geq s$.
2) Huneke and Ulrich (1982): An ideal $J \subset R$ is a geometric s-residual intersection of I if J is an s-residual intersection of I and $\mathrm{ht}(I+J) \geq s+1$.

Bruns, Kustin and Miller (1990):

- Let ϕ be an $n \times m$ matrix $(m \geq n)$ with linear entries in y_{1}, \ldots, y_{p}.
- Let $R=S\left[y_{1}, y_{2}, \ldots, y_{p}\right]$ be a polynomial ring over $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$, and $\mathfrak{m}_{S}=\left(x_{1}, \ldots, x_{n}\right)$.
- R is bigraded with $\operatorname{deg}\left(x_{i}\right)=(1,0), \operatorname{deg}\left(y_{j}\right)=(0,1)$.
- Consider an ideal $J=\left(z_{1}, \ldots z_{m}\right)+I_{n}(\phi)$, where

$$
\left[\begin{array}{llll}
z_{1} & z_{2} & \ldots & z_{m}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right] \cdot \phi
$$

and $I_{n}(\phi)$ is the ideal generated by maximal minors of ϕ.
Then $J \subset R$ is geometric m-residual intersection of \mathfrak{m}_{S}, if $h t(J) \geq m$, and $h t\left(I_{n}(\phi)\right) \geq m-n+1$.

Diagonal Subalgebras of Residual Intersections

Ananthnarayan, Kumar and Mukundan (2018):

We describe the bigraded resolution and compute the homological invariants depth and regularity of modules in the bigraded resolution of geometric m-residual intersection ring R / J :

Diagonal Subalgebras of Residual Intersections

Ananthnarayan, Kumar and Mukundan (2018):

We describe the bigraded resolution and compute the homological invariants depth and regularity of modules in the bigraded resolution of geometric m-residual intersection ring R / J :
i) $(R / J)_{\Delta}$ is Koszul for all $c \geq 1$ and $e \geq \frac{n}{2}$.

Diagonal Subalgebras of Residual Intersections

Ananthnarayan, Kumar and Mukundan (2018):

We describe the bigraded resolution and compute the homological invariants depth and regularity of modules in the bigraded resolution of geometric m-residual intersection ring R / J :
i) $(R / J)_{\Delta}$ is Koszul for all $c \geq 1$ and $e \geq \frac{n}{2}$.
ii) Suppose $p>m$, then $\operatorname{depth}(R / J)_{\Delta} \geq p+n-(m+1)$ for all Δ.

Diagonal Subalgebras of Residual Intersections

Ananthnarayan, Kumar and Mukundan (2018):

We describe the bigraded resolution and compute the homological invariants depth and regularity of modules in the bigraded resolution of geometric m-residual intersection ring R / J :
i) $(R / J)_{\Delta}$ is Koszul for all $c \geq 1$ and $e \geq \frac{n}{2}$.
ii) Suppose $p>m$, then $\operatorname{depth}(R / J)_{\Delta} \geq p+n-(m+1)$ for all Δ.
iii) If $p=m+1$, then $(R / J)_{\Delta}$ is Cohen-Macaulay for all Δ.

Diagonal Subalgebras of Residual Intersections

Ananthnarayan, Kumar and Mukundan (2018):

We describe the bigraded resolution and compute the homological invariants depth and regularity of modules in the bigraded resolution of geometric m-residual intersection ring R / J :
i) $(R / J)_{\Delta}$ is Koszul for all $c \geq 1$ and $e \geq \frac{n}{2}$.
ii) Suppose $p>m$, then $\operatorname{depth}(R / J)_{\Delta} \geq p+n-(m+1)$ for all Δ.
iii) If $p=m+1$, then $(R / J)_{\Delta}$ is Cohen-Macaulay for all Δ.

Conca, Herzog, Trung, and Valla (1997): If $p=m+1$, then $(R / J)_{\Delta}$ is Cohen-Macaulay for large Δ.

Thank you for your attention!

