A Subspace of Maximal Dimension of Schmidt Rank at least 3

Priyabrata Bag
(Joint work with Santanu Dey, IIT Bombay)

॥सा विद्या या विमुक्तये ॥
भारतीय प्रौद्योगिकी संस्थान धारवाड
Indian Institute of Technology Dharwad
Department of Mathematics Indian Institute of Technology Dharwad

Diamond Jubilee Symposium, Department of Mathematics, IIT Bombay, January 4, 2019

- In quantum information theory, quantum states of a particle called qubit are used to encode the data. A qubit is typically an element (of unit length) of the two dimensional complex Hilbert space \mathbb{C}^{2} with the usual inner product.
- We use the notation

$$
|0\rangle=\binom{1}{0} \text { and }|1\rangle=\binom{0}{1} .
$$

- Then a qubit is not only either of $|0\rangle$ and $|1\rangle$, but it can be any (normalized) \mathbb{C}-linear combination of $|0\rangle$ and $|1\rangle$ which is called superposition.
- The Hilbert space \mathbb{C}^{2} is known as 1 -qubit Hilbert space.
- In general, data is encoded as a state in the n-qubit space $\left(\mathbb{C}^{2}\right)^{\otimes^{n}}$ which is n-fold tensor product of the 1-qubit space.
- A state (also known as the density matrices) is a positive matrix (with complex entries) whose trace is equal to 1.
- Consider the bipartite Hilbert space $\mathcal{H}:=\mathbb{C}^{m} \otimes \mathbb{C}^{n}$. A unit vector $|v\rangle \in \mathcal{H}$ (or the positive matrix $|v\rangle\langle v|$ of trace 1) is called a pure state.
- A pure state $|v\rangle \in \mathcal{H}$ is said to be a product state if it can be written as $|v\rangle=\left|v_{1}\right\rangle \otimes\left|v_{2}\right\rangle\left(=\left|v_{1}\right\rangle\left|v_{2}\right\rangle\right)$ for some $\left|v_{1}\right\rangle \in \mathbb{C}^{m}$ and $\left|v_{2}\right\rangle \in \mathbb{C}^{n}$; otherwise it is called entangled.
- For $x_{i} \in\{0,1\}, i=1,2$, let $\left|x_{1} x_{2}\right\rangle=\left|x_{1}\right\rangle\left|x_{2}\right\rangle=\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle$ in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$.
- The (pure) state

$$
\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

is a famous 2-qubit entangled state, which is known as Bell state or EPR pair.

- States which are not pure are also referred to as mixed states.
- A mixed state ρ on $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ (that is, an element of $M_{m} \otimes M_{n}$) is called separable if it is a convex combination of pure product states; otherwise it is called entangled.
- Entanglement is the key property of quantum systems which is responsible for the higher efficiency of quantum computation and tasks like teleportation, super-dense coding, etc.

Schmidt Rank and Schmidt Number

- In the Schmidt decomposition $|\psi\rangle=\sum_{j=1}^{k} \alpha_{j}\left|u_{j}\right\rangle \otimes\left|v_{j}\right\rangle$ of a pure state $|\psi\rangle \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ where $\left\{\left|u_{j}\right\rangle: 1 \leqslant j \leqslant k\right\}$ and $\left\{\left|v_{j}\right\rangle: 1 \leqslant j \leqslant k\right\}$ are orthonormal sets in \mathbb{C}^{m} and \mathbb{C}^{n} respectively, and α_{j} 's are nonnegative real numbers satisfying $\sum_{j} \alpha_{j}^{2}=1$, the minimum number of terms required in the summation is known as the Schmidt rank of $|\psi\rangle$.
- The Schmidt number of a state ρ on $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ is defined to be the least natural number k such that ρ can be decomposed to the form $\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ for some pure states $\left|\psi_{j}\right\rangle$ in $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ and a probability distribution $\left\{p_{j}\right\}$, with Schmidt rank of $\left|\psi_{j}\right\rangle \leqslant k$ for all j.
- The Schmidt rank of vectors (pure states) and Schmidt number of states in a bipartite finite dimensional Hilbert space are measures of entanglement.
- For example, if Schmidt rank is 1 , then it is a product vector; otherwise it is entangled. Similarly, if Schmidt number is 1 , then it is a separable state; otherwise it is entangled.

Theorem:

Let \mathcal{S} be a subspace of $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ which does not contain any vector of Schmidt rank lesser or equal to k. Then any state ρ supported on \mathcal{S} has Schmidt number at least $k+1$.

- It is proved by T. Cubitt, A. Montanaro, and A. Winter that the dimension of any subspace of $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$, with Schmidt rank (of all vectors in the subspace) greater than or equal to k is bounded above by $(m-k+1)(n-k+1)$. Also, this bound is attained.
- The special case when $k=2$, the above result is first proved by K. R. Parthasarathy, N. R. Wallach separately.
- B. V. Rajarama Bhat proves this result for $k=2$ in a different approach.
- Motivated by the analysis done in Bhat's paper, we present an alternate approach to the above mentioned result by T. Cubitt, A. Montanaro, and A. Winter for the case when $k=3$.
- Fix an infinite dimensional Hilbert space generated by the orthonormal basis $\left\{\left|e_{0}\right\rangle,\left|e_{1}\right\rangle, \ldots\right\}$, and identify \mathbb{C}^{m} and \mathbb{C}^{n} with $\operatorname{span}\left\{\left|e_{0}\right\rangle,\left|e_{1}\right\rangle, \ldots,\left|e_{m-1}\right\rangle\right\}$ and $\operatorname{span}\left\{\left|e_{0}\right\rangle,\left|e_{1}\right\rangle, \ldots,\left|e_{n-1}\right\rangle\right\}$, respectively.
- Define $N=m+n-2$, and for $2 \leqslant d \leqslant N-2$ define

$$
\begin{array}{r}
\mathcal{S}^{(d)}=\operatorname{span}\left\{\left|e_{i-1}\right\rangle \otimes\left|e_{j+1}\right\rangle-2\left|e_{i}\right\rangle \otimes\left|e_{j}\right\rangle+\left|e_{i+1}\right\rangle \otimes\left|e_{j-1}\right\rangle:\right. \\
1 \leqslant i \leqslant m-2,1 \leqslant j \leqslant n-2, i+j=d\} \\
\mathcal{S}^{(0)}=\mathcal{S}^{(1)}=\mathcal{S}^{(N-1)}=\mathcal{S}^{(N)}=\{0\}, \text { and } \mathcal{S}:=\bigoplus_{d=0}^{N} \mathcal{S}^{(d)}
\end{array}
$$

Theorem:

Let m and n be natural numbers such that $3 \leqslant \min \{m, n\}$. The space \mathcal{S} (subspace of $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$) defined above does not contain any vector of Schmidt rank $\leqslant 2$ and $\operatorname{dim} \mathcal{S}=(m-2)(n-2)$.

Lemma

The columns of the $(t+2) \times t$ matrix

$$
A_{t}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
-2 & 1 & \ldots & 0 & 0 \\
1 & -2 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & -2 & 1 \\
0 & 0 & \ldots & 1 & -2 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

are linearly independent such that any linear combination of these columns has at least 3 nonzero entries.

Sketch of the Proof

- For any element $|v\rangle \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$, we have $|v\rangle=\sum_{i j} c_{i j}\left|e_{i}\right\rangle \otimes\left|e_{j}\right\rangle$.
- We identify $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ with the space $M_{m \times n}$ of $m \times n$ matrices by the isometric isomorphism $\phi: \mathbb{C}^{m} \otimes \mathbb{C}^{n} \longrightarrow M_{m \times n}$ defined by $\phi(|v\rangle)=\left[c_{i j}\right]_{m \times n}$.
- An element of $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ has Schmidt rank at least r if and only if the corresponding $m \times n$ matrix is of rank at least r.
- Also, it is known that a matrix has rank at least r if and only if it has a nonzero minor of order r.
- So, it is enough to construct a set of $(m-2)(n-2)$ linearly independent matrices, which are image under ϕ of a basis of \mathcal{S}, such that any linear combination of these matrices has a nonzero minor of order 3 .
- Label the anti-diagonals of any $m \times n$ matrix by non-negative integers k such that the first anti-diagonal from upper left (of length one) is labelled $k=0$ and value of k increases from upper left to lower right.
- Recall that for $2 \leqslant k \leqslant N-2, \mathcal{S}^{(k)}$ is generated by the set

$$
\begin{array}{r}
B_{k}=\left\{\left|e_{i-1}\right\rangle \otimes\left|e_{j+1}\right\rangle-2\left|e_{i}\right\rangle \otimes\left|e_{j}\right\rangle+\left|e_{i+1}\right\rangle \otimes\left|e_{j-1}\right\rangle: 1 \leqslant i \leqslant m-2\right. \\
1 \leqslant j \leqslant n-2, i+j=k\}
\end{array}
$$

- For $2 \leqslant k \leqslant N-2$, let \widetilde{B}_{k} denote the image of B_{k} under the map ϕ. Note that any element of \widetilde{B}_{k} is the matrix obtained from the $m \times n$ zero matrix by replacing the $k^{\text {th }}$ anti-diagonal by $(0, \ldots, 0,1,-2,1,0, \ldots, 0)$.
- Let the length of the $k^{t h}$ anti-diagonal be denoted by $|k|$.
- For $2 \leqslant k \leqslant N-2$ and $t=|k|-2$, from the lemma, \widetilde{B}_{k} is a set of t linearly independent matrices.
- Also, by the lemma it follows that if M is a matrix obtained by taking any linear combination of matrices from \widetilde{B}_{k}, then M has at least 3 nonzero entries in the $k^{\text {th }}$ anti-diagonal and the entries of M, other than those on $k^{t h}$ anti-diagonal, are zeros.
- Since the determinant of the 3×3 submatrix with these 3 nonzero elements in its principal anti-diagonal is clearly nonzero, any linear combination of the matrices in B_{k} has at least one nonzero order- 3 minor, thus has rank at least 3 .
- Let $\widetilde{B}=\bigcup_{k=2}^{N-2} \widetilde{B}_{k}$.
- Since elements from different \widetilde{B}_{k} 's have different nonzero anti-diagonal, \widetilde{B} is linearly independent. Thus $B=\bigcup_{k=2}^{N-2} B_{k}$ is a basis for \mathcal{S}.
- Let C be a matrix obtained by an arbitrary linear combination from the elements of \widetilde{B}.
- Let κ be the largest k for which the linear combination involves an element from \widetilde{B}_{k}. The $\kappa^{\text {th }}$ anti-diagonal of C has at least 3 nonzero elements.
- The 3×3 submatrix of C with these 3 nonzero elements in the principal anti-diagonal has nonzero determinant.
- Thus the rank of C is at least 3 .
- We conclude that \mathcal{S} does not contain any vector of Schmidt rank $\leqslant 2$.
- The dimension of \mathcal{S} is equal to the cardinality of B, which is calculated to be $(m-2)(n-2)$.

From the above theorem, it follows that the basis

$$
\begin{aligned}
& B=\bigcup_{k=2}^{N-2}\left\{\left|e_{i-1}\right\rangle \otimes\left|e_{j+1}\right\rangle-2\left|e_{i}\right\rangle \otimes\left|e_{j}\right\rangle+\left|e_{i+1}\right\rangle\right. \otimes\left|e_{j-1}\right\rangle: 1 \leqslant i \leqslant m-2, \\
&1 \leqslant j \leqslant n-2, i+j=k\},
\end{aligned}
$$

of \mathcal{S} is of Schmidt rank 3 (i.e., all the elements have Schmidt rank 3).

References

P. Bag and S. Dey. A Subspace of Maximal Dimension with Bounded Schmidt Rank. ArXiv:1804.04204 [quant-ph], Apr 2018.
目 B. V. Rajarama Bhat. A completely entangled subspace of maximal dimension. Int. J. Quantum Inform., 04(02):325-330, 2006.
T. Cubitt, A. Montanaro, and A. Winter. On the dimension of subspaces with bounded Schmidt rank. Journal of Mathematical Physics, 49(2):022107, 2008.
㡽 K. R. Parthasarathy. On the maximal dimension of a completely entangled subspace for finite level quantum systems. Proceedings Mathematical Sciences, 114(4):365-374, 2004.

Thank You

