A Subspace of Maximal Dimension of Schmidt Rank at least 3

Priyabrata Bag (Joint work with Santanu Dey, IIT Bombay)

Department of Mathematics Indian Institute of Technology Dharwad

Diamond Jubilee Symposium, Department of Mathematics, IIT Bombay, January 4, 2019

- In quantum information theory, quantum states of a particle called *qubit* are used to encode the data. A qubit is typically an element (of unit length) of the two dimensional complex Hilbert space C² with the usual inner product.
- We use the notation

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

- Then a qubit is not only either of $|0\rangle$ and $|1\rangle$, but it can be any (normalized) \mathbb{C} -linear combination of $|0\rangle$ and $|1\rangle$ which is called superposition.
- The Hilbert space \mathbb{C}^2 is known as 1-qubit Hilbert space.
- In general, data is encoded as a state in the *n*-qubit space (ℂ²)^{⊗ⁿ} which is *n*-fold tensor product of the 1-qubit space.

- A *state* (also known as the density matrices) is a positive matrix (with complex entries) whose trace is equal to 1.
- Consider the bipartite Hilbert space H := C^m ⊗ Cⁿ. A unit vector |v⟩ ∈ H (or the positive matrix |v⟩ ⟨v| of trace 1) is called a *pure state*.
- A pure state |v⟩ ∈ H is said to be a *product state* if it can be written as |v⟩ = |v₁⟩ ⊗ |v₂⟩ (= |v₁⟩ |v₂⟩) for some |v₁⟩ ∈ C^m and |v₂⟩ ∈ Cⁿ; otherwise it is called *entangled*.
- For $x_i \in \{0,1\}$, i = 1, 2, let $|x_1x_2\rangle = |x_1\rangle |x_2\rangle = |x_1\rangle \otimes |x_2\rangle$ in $\mathbb{C}^2 \otimes \mathbb{C}^2$.
- The (pure) state

$$\frac{|00\rangle+|11\rangle}{\sqrt{2}}$$

is a famous 2-qubit entangled state, which is known as *Bell state* or *EPR pair*.

- States which are not pure are also referred to as *mixed states*.
- A mixed state ρ on C^m ⊗ Cⁿ (that is, an element of M_m ⊗ M_n) is called *separable* if it is a convex combination of pure product states; otherwise it is called *entangled*.
- Entanglement is the key property of quantum systems which is responsible for the higher efficiency of quantum computation and tasks like teleportation, super-dense coding, etc.

Schmidt Rank and Schmidt Number A Subspace of Maximal Dimension General Overview Definitions

Schmidt Rank and Schmidt Number

- In the Schmidt decomposition $|\psi\rangle = \sum_{j=1}^{k} \alpha_j |u_j\rangle \otimes |v_j\rangle$ of a pure state $|\psi\rangle \in \mathbb{C}^m \otimes \mathbb{C}^n$ where $\{|u_j\rangle : 1 \leq j \leq k\}$ and $\{|v_j\rangle : 1 \leq j \leq k\}$ are orthonormal sets in \mathbb{C}^m and \mathbb{C}^n respectively, and α_j 's are nonnegative real numbers satisfying $\sum_j \alpha_j^2 = 1$, the minimum number of terms required in the summation is known as the *Schmidt rank* of $|\psi\rangle$.
- The *Schmidt number* of a state ρ on $\mathbb{C}^m \otimes \mathbb{C}^n$ is defined to be the least natural number k such that ρ can be decomposed to the form $\rho = \sum_j p_j |\psi_j\rangle \langle \psi_j|$ for some pure states $|\psi_j\rangle$ in $\mathbb{C}^m \otimes \mathbb{C}^n$ and a probability distribution $\{p_j\}$, with Schmidt rank of $|\psi_j\rangle \leq k$ for all j.

- The Schmidt rank of vectors (pure states) and Schmidt number of states in a bipartite finite dimensional Hilbert space are measures of entanglement.
- For example, if Schmidt rank is 1, then it is a product vector; otherwise it is entangled. Similarly, if Schmidt number is 1, then it is a separable state; otherwise it is entangled.

Theorem:

Let S be a subspace of $\mathbb{C}^m \otimes \mathbb{C}^n$ which does not contain any vector of Schmidt rank lesser or equal to k. Then any state ρ supported on S has Schmidt number at least k + 1.

- It is proved by T. Cubitt, A. Montanaro, and A. Winter that the dimension of any subspace of $\mathbb{C}^m \otimes \mathbb{C}^n$, with Schmidt rank (of all vectors in the subspace) greater than or equal to k is bounded above by (m k + 1)(n k + 1). Also, this bound is attained.
- The special case when k = 2, the above result is first proved by K. R. Parthasarathy, N. R. Wallach separately.
- B. V. Rajarama Bhat proves this result for *k* = 2 in a different approach.
- Motivated by the analysis done in Bhat's paper, we present an alternate approach to the above mentioned result by T. Cubitt, A. Montanaro, and A. Winter for the case when k = 3.

- Fix an infinite dimensional Hilbert space generated by the orthonormal basis $\{|e_0\rangle, |e_1\rangle, \ldots\}$, and identify \mathbb{C}^m and \mathbb{C}^n with span $\{|e_0\rangle, |e_1\rangle, \ldots, |e_{m-1}\rangle\}$ and span $\{|e_0\rangle, |e_1\rangle, \ldots, |e_{n-1}\rangle\}$, respectively.
- Define N = m + n 2, and for $2 \le d \le N 2$ define

$$\begin{aligned} \mathcal{S}^{(d)} &= \mathsf{span}\{|e_{i-1}\rangle \otimes |e_{j+1}\rangle - 2 |e_i\rangle \otimes |e_j\rangle + |e_{i+1}\rangle \otimes |e_{j-1}\rangle :\\ &1 \leqslant i \leqslant m-2, 1 \leqslant j \leqslant n-2, i+j=d\}, \end{aligned}$$

$$\mathcal{S}^{(0)} = \mathcal{S}^{(1)} = \mathcal{S}^{(N-1)} = \mathcal{S}^{(N)} = \{0\}, \text{ and } \mathcal{S} := \bigoplus_{d=0}^{N} \mathcal{S}^{(d)}.$$

Theorem:

Let *m* and *n* be natural numbers such that $3 \leq \min\{m, n\}$. The space S (subspace of $\mathbb{C}^m \otimes \mathbb{C}^n$) defined above does not contain any vector of Schmidt rank ≤ 2 and dim S = (m - 2)(n - 2).

Lemma

The columns of the $(t+2) \times t$ matrix

$$A_{t} = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ -2 & 1 & \dots & 0 & 0 \\ 1 & -2 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & -2 & 1 \\ 0 & 0 & \dots & 1 & -2 \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

are linearly independent such that any linear combination of these columns has at least 3 nonzero entries.

Sketch of the Proof

- For any element $|v\rangle \in \mathbb{C}^m \otimes \mathbb{C}^n$, we have $|v\rangle = \sum_{ij} c_{ij} |e_i\rangle \otimes |e_j\rangle$.
- We identify C^m ⊗ Cⁿ with the space M_{m×n} of m×n matrices by the isometric isomorphism φ : C^m ⊗ Cⁿ → M_{m×n} defined by φ(|v⟩) = [c_{ij}]_{m×n}.
- An element of C^m ⊗ Cⁿ has Schmidt rank at least *r* if and only if the corresponding *m* × *n* matrix is of rank at least *r*.
- Also, it is known that a matrix has rank at least *r* if and only if it has a nonzero minor of order *r*.
- So, it is enough to construct a set of (m 2)(n 2) linearly independent matrices, which are image under φ of a basis of S, such that any linear combination of these matrices has a nonzero minor of order 3.

- Label the anti-diagonals of any $m \times n$ matrix by non-negative integers k such that the first anti-diagonal from upper left (of length one) is labelled k = 0 and value of k increases from upper left to lower right.
- Recall that for $2 \leq k \leq N 2$, $S^{(k)}$ is generated by the set

$$B_k = \{ |e_{i-1}\rangle \otimes |e_{j+1}\rangle - 2 |e_i\rangle \otimes |e_j\rangle + |e_{i+1}\rangle \otimes |e_{j-1}\rangle : 1 \le i \le m-2, \\ 1 \le j \le n-2, i+j=k \}.$$

• For $2 \le k \le N - 2$, let \widetilde{B}_k denote the image of B_k under the map ϕ . Note that any element of \widetilde{B}_k is the matrix obtained from the $m \times n$ zero matrix by replacing the k^{th} anti-diagonal by $(0, \ldots, 0, 1, -2, 1, 0, \ldots, 0)$.

- Let the length of the k^{th} anti-diagonal be denoted by |k|.
- For $2 \le k \le N 2$ and t = |k| 2, from the lemma, \widetilde{B}_k is a set of t linearly independent matrices.
- Also, by the lemma it follows that if M is a matrix obtained by taking any linear combination of matrices from \tilde{B}_k , then M has at least 3 nonzero entries in the k^{th} anti-diagonal and the entries of M, other than those on k^{th} anti-diagonal, are zeros.
- Since the determinant of the 3×3 submatrix with these 3 nonzero elements in its principal anti-diagonal is clearly nonzero, any linear combination of the matrices in \tilde{B}_k has at least one nonzero order-3 minor, thus has rank at least 3.

• Let
$$\widetilde{B} = \bigcup_{k=2}^{N-2} \widetilde{B}_k$$
.

- Since elements from different \widetilde{B}_k 's have different nonzero anti-diagonal, \widetilde{B} is linearly independent. Thus $B = \bigcup_{k=2}^{N-2} B_k$ is a basis for S.
- Let *C* be a matrix obtained by an arbitrary linear combination from the elements of \tilde{B} .
- Let κ be the largest k for which the linear combination involves an element from \tilde{B}_k . The κ^{th} anti-diagonal of C has at least 3 nonzero elements.

- The 3×3 submatrix of *C* with these 3 nonzero elements in the principal anti-diagonal has nonzero determinant.
- Thus the rank of *C* is at least 3.
- We conclude that ${\cal S}$ does not contain any vector of Schmidt rank $\leqslant 2.$
- The dimension of S is equal to the cardinality of B, which is calculated to be (m-2)(n-2).

From the above theorem, it follows that the basis

$$B = \bigcup_{k=2}^{N-2} \{ |e_{i-1}\rangle \otimes |e_{j+1}\rangle - 2 |e_i\rangle \otimes |e_j\rangle + |e_{i+1}\rangle \otimes |e_{j-1}\rangle : 1 \le i \le m-2,$$
$$1 \le j \le n-2, i+j=k \},$$

of S is of Schmidt rank 3 (i.e., all the elements have Schmidt rank 3).

References

- P. Bag and S. Dey. A Subspace of Maximal Dimension with Bounded Schmidt Rank. *ArXiv:1804.04204 [quant-ph]*, Apr 2018.
- B. V. Rajarama Bhat. A completely entangled subspace of maximal dimension. *Int. J. Quantum Inform.*, 04(02):325–330, 2006.
- T. Cubitt, A. Montanaro, and A. Winter. On the dimension of subspaces with bounded Schmidt rank. *Journal of Mathematical Physics*, 49(2):022107, 2008.
- K. R. Parthasarathy. On the maximal dimension of a completely entangled subspace for finite level quantum systems. *Proceedings Mathematical Sciences*, 114(4):365–374, 2004.

Thank You