Smooth Structures on Quaternionic Projective Spaces

Ramesh Kasilingam
Indian Institute of Technology Madras, India.
(Joint work with Samik Basu)

Jan 4, 2019

Fundamental Problem in Geometry and Topology

Fundamental Problem in Geometry and Topology

- The study of manifolds in differential topology presents itself through four different classes of equivalence :

Fundamental Problem in Geometry and Topology

- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence,

Fundamental Problem in Geometry and Topology

- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism,
- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- One of the first results in this subject is the result of Milnor (1956)
- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- One of the first results in this subject is the result of Milnor (1956) that there exist smooth manifolds which are homeomorphic to \mathbb{S}^{7} but not diffeomorphic.
- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- One of the first results in this subject is the result of Milnor (1956) that there exist smooth manifolds which are homeomorphic to \mathbb{S}^{7} but not diffeomorphic.(The 7-sphere has 28 inequivalent smoothings (Kervaire-Milnor, 1963)).
- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- One of the first results in this subject is the result of Milnor (1956) that there exist smooth manifolds which are homeomorphic to \mathbb{S}^{7} but not diffeomorphic.(The 7-sphere has 28 inequivalent smoothings (Kervaire-Milnor, 1963)).
- By a homotopy m-sphere Σ^{m}
- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- One of the first results in this subject is the result of Milnor (1956) that there exist smooth manifolds which are homeomorphic to \mathbb{S}^{7} but not diffeomorphic.(The 7-sphere has 28 inequivalent smoothings (Kervaire-Milnor, 1963)).
- By a homotopy m-sphere Σ^{m} we mean a closed oriented smooth manifold homotopy equivalent (and hence homeomorphic) to \mathbb{S}^{m}.
- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- One of the first results in this subject is the result of Milnor (1956) that there exist smooth manifolds which are homeomorphic to \mathbb{S}^{7} but not diffeomorphic.(The 7-sphere has 28 inequivalent smoothings (Kervaire-Milnor, 1963)).
- By a homotopy m-sphere Σ^{m} we mean a closed oriented smooth manifold homotopy equivalent (and hence homeomorphic) to \mathbb{S}^{m}.
- The set of oriented diffeomorphism classes of homotopy m-spheres is denoted by Θ_{m}.

Higher Dimensions : The Connected Sum

If M_{1} and M_{2} are smooth, oriented connected m-manifolds,

Higher Dimensions : The Connected Sum

If M_{1} and M_{2} are smooth, oriented connected m-manifolds, then the connected sum $M_{1} \# M_{2}$ is a new smooth, oriented connected m-manifold.

Higher Dimensions: The Connected Sum

If M_{1} and M_{2} are smooth, oriented connected m-manifolds, then the connected sum $M_{1} \# M_{2}$ is a new smooth, oriented connected m-manifold.

Higher Dimensions: The Connected Sum

If M_{1} and M_{2} are smooth, oriented connected m-manifolds, then the connected sum $M_{1} \# M_{2}$ is a new smooth, oriented connected m-manifold.

Higher Dimensions : The Connected Sum

If M_{1} and M_{2} are smooth, oriented connected m-manifolds, then the connected sum $M_{1} \# M_{2}$ is a new smooth, oriented connected m-manifold.

-

Higher Dimensions : The Connected Sum

If M_{1} and M_{2} are smooth, oriented connected m-manifolds, then the connected sum $M_{1} \# M_{2}$ is a new smooth, oriented connected m-manifold.

-

This operation is well defined up to orientation preserving diffeomorphism.

Higher Dimensions : The Connected Sum

If M_{1} and M_{2} are smooth, oriented connected m-manifolds, then the connected sum $M_{1} \# M_{2}$ is a new smooth, oriented connected m-manifold.

-

This operation is well defined up to orientation preserving diffeomorphism. Thus we obtain a commutative, associative semigroup \mathcal{M}_{m} of oriented diffeomorphism classes;

Higher Dimensions : The Connected Sum

If M_{1} and M_{2} are smooth, oriented connected m-manifolds, then the connected sum $M_{1} \# M_{2}$ is a new smooth, oriented connected m-manifold.

$=$

This operation is well defined up to orientation preserving diffeomorphism. Thus we obtain a commutative, associative semigroup \mathcal{M}_{m} of oriented diffeomorphism classes; with the class of \mathbb{S}^{m} as an identity element, $M^{m} \# \mathbb{S}^{m} \cong M^{m}$.

Invertibility: $M^{n} \# N^{n} \cong \mathbb{S}^{n}$ for some N^{n} ?

Invertibility: $M^{n} \# N^{n} \cong \mathbb{S}^{n}$ for some N^{n} ?

Lemma (Barry Mazur)

1. M^{m} is invertible $\left(M^{m} \# N^{m} \cong \mathbb{S}^{m}\right)$

Invertibility: $M^{n} \# N^{n} \cong \mathbb{S}^{n}$ for some N^{n} ?

Lemma (Barry Mazur)

1. M^{m} is invertible $\left(M^{m} \# N^{m} \cong \mathbb{S}^{m}\right) \Longleftrightarrow$
2. $M^{m} \backslash\{$ point $\} \cong \mathbb{R}^{m}$

Invertibility: $M^{n} \# N^{n} \cong \mathbb{S}^{n}$ for some N^{n} ?

Lemma (Barry Mazur)

1. M^{m} is invertible $\left(M^{m} \# N^{m} \cong \mathbb{S}^{m}\right) \Longleftrightarrow$
2. $M^{m} \backslash\{$ point $\} \cong \mathbb{R}^{m}$
3. $\Longrightarrow M^{m}$ is a homotopy m-sphere.

Invertibility: $M^{n} \# N^{n} \cong \mathbb{S}^{n}$ for some N^{n} ?

Lemma (Barry Mazur)

1. M^{m} is invertible $\left(M^{m} \# N^{m} \cong \mathbb{S}^{m}\right) \Longleftrightarrow$
2. $M^{m} \backslash\{$ point $\} \cong \mathbb{R}^{m}$
3. $\Longrightarrow M^{m}$ is a homotopy m-sphere.

Therefore, we start to study the sub-semigroup $\Theta_{m} \subset \mathcal{M}_{m}$ of oriented diffeomorphism classes of homotopy m-spheres.

Invertibility: $M^{n} \# N^{n} \cong \mathbb{S}^{n}$ for some N^{n} ?

Lemma (Barry Mazur)

1. M^{m} is invertible $\left(M^{m} \# N^{m} \cong \mathbb{S}^{m}\right) \Longleftrightarrow$
2. $M^{m} \backslash\{$ point $\} \cong \mathbb{R}^{m}$
3. $\Longrightarrow M^{m}$ is a homotopy m-sphere.

Therefore, we start to study the sub-semigroup $\Theta_{m} \subset \mathcal{M}_{m}$ of oriented diffeomorphism classes of homotopy m-spheres.

Theorem (Stallings + Munkres + Hirsch)
If $m \neq 4$, then any smooth manifold homeomorphic to \mathbb{R}^{m} must actually be diffeomorphic to \mathbb{R}^{m}.

Invertibility: $M^{n} \# N^{n} \cong \mathbb{S}^{n}$ for some N^{n} ?

Lemma (Barry Mazur)

1. M^{m} is invertible $\left(M^{m} \# N^{m} \cong \mathbb{S}^{m}\right) \Longleftrightarrow$
2. $M^{m} \backslash\{$ point $\} \cong \mathbb{R}^{m}$
3. $\Longrightarrow M^{m}$ is a homotopy m-sphere.

Therefore, we start to study the sub-semigroup $\Theta_{m} \subset \mathcal{M}_{m}$ of oriented diffeomorphism classes of homotopy m-spheres.

Theorem (Stallings + Munkres + Hirsch)
If $m \neq 4$, then any smooth manifold homeomorphic to \mathbb{R}^{m} must actually be diffeomorphic to \mathbb{R}^{m}.
$\Longrightarrow \Theta_{m}$ is a group for $m \neq 4$.

If M^{4} is a homotopy 4 -sphere, then $M^{4} \backslash\{$ point $\}$ represents a smooth structure on \mathbb{R}^{4}.

The Four Dimensional

If M^{4} is a homotopy 4 -sphere, then $M^{4} \backslash\{$ point $\}$ represents a smooth structure on \mathbb{R}^{4}. But,

The Four Dimensional

If M^{4} is a homotopy 4 -sphere, then $M^{4} \backslash\{$ point $\}$ represents a smooth structure on \mathbb{R}^{4}. But,

Theorem (Clifford Taubes, 1987)
There are uncountably many distinct diffeomorphism classes of smooth manifolds homeomorphic to \mathbb{R}^{4}.

The Four Dimensional

If M^{4} is a homotopy 4-sphere, then $M^{4} \backslash\{$ point $\}$ represents a smooth structure on \mathbb{R}^{4}. But,

Theorem (Clifford Taubes, 1987)
There are uncountably many distinct diffeomorphism classes of smooth manifolds homeomorphic to \mathbb{R}^{4}.

Theorem (Kervaire and Milnor + Perelman)
Each Θ_{m} is a finite abelian groups for $m \neq 4$.

Group of homotopy spheres, 1963

(Michel Kervaire)

Group of homotopy spheres, 1963

(Michel Kervaire)

(John Milnor)

Group of homotopy spheres， 1963

（Michel Kervaire）

（John Milnor）

m	1	2	3	4	5	6
Θ_{m}	0	0	0	$?$	0	0

Group of homotopy spheres, 1963

(Michel Kervaire)

(John Milnor)

m	1	2	3	4	5	6
Θ_{m}	0	0	0	$?$	0	0

m	7	8	9	10	11	12
Θ_{m}	\mathbb{Z}_{28}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	\mathbb{Z}_{6}	\mathbb{Z}_{992}	0

Group of homotopy spheres, 1963

(Michel Kervaire)

(John Milnor)

m	1	2	3	4	5	6
Θ_{m}	0	0	0	$?$	0	0

m	7	8	9	10	11	12
Θ_{m}	\mathbb{Z}_{28}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	\mathbb{Z}_{6}	\mathbb{Z}_{992}	0

m	13	14	15	16	17	18
Θ_{m}	\mathbb{Z}_{3}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{8128}$	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$

Group of homotopy spheres, 1963

(Michel Kervaire)

(John Milnor)

m	1	2	3	4	5	6
Θ_{m}	0	0	0	$?$	0	0

m	7	8	9	10	11	12
Θ_{m}	\mathbb{Z}_{28}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	\mathbb{Z}_{6}	\mathbb{Z}_{992}	0

m	13	14	15	16	17	18
Θ_{m}	\mathbb{Z}_{3}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{8128}$	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$

- The group Θ_{m} is now completely known for $m \leq 64$.
- The group Θ_{m} is now completely known for $m \leq 64$. (Frank Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill, Doug Ravenel and Mike Hopkins).
- The group Θ_{m} is now completely known for $m \leq 64$. (Frank Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill, Doug Ravenel and Mike Hopkins).
- One consequence of smoothing theory is that the set $\mathcal{S}\left(M^{m}\right)$ of diffeomorphism classes of smooth manifolds homeomorphic to a given closed smooth manifold $M^{m}(m \geq 5)$ is finite.
- The group Θ_{m} is now completely known for $m \leq 64$. (Frank Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill, Doug Ravenel and Mike Hopkins).
- One consequence of smoothing theory is that the set $\mathcal{S}\left(M^{m}\right)$ of diffeomorphism classes of smooth manifolds homeomorphic to a given closed smooth manifold $M^{m}(m \geq 5)$ is finite.
- For $(m \leq 3)$, the cardinality $\left|\mathcal{S}\left(M^{m}\right)\right|=1$ (Rado(1925) and Moise (1952)).
- The group Θ_{m} is now completely known for $m \leq 64$. (Frank Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill, Doug Ravenel and Mike Hopkins).
- One consequence of smoothing theory is that the set $\mathcal{S}\left(M^{m}\right)$ of diffeomorphism classes of smooth manifolds homeomorphic to a given closed smooth manifold $M^{m}(m \geq 5)$ is finite.
- For $(m \leq 3)$, the cardinality $\left|\mathcal{S}\left(M^{m}\right)\right|=1$ (Rado(1925) and Moise (1952)).
- For closed 4-manifolds, Cheeger (1970) showed that there are at most countably many distinct smooth structures.
- The group Θ_{m} is now completely known for $m \leq 64$. (Frank Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill, Doug Ravenel and Mike Hopkins).
- One consequence of smoothing theory is that the set $\mathcal{S}\left(M^{m}\right)$ of diffeomorphism classes of smooth manifolds homeomorphic to a given closed smooth manifold $M^{m}(m \geq 5)$ is finite.
- For $(m \leq 3)$, the cardinality $\left|\mathcal{S}\left(M^{m}\right)\right|=1$ (Rado(1925) and Moise (1952)).
- For closed 4-manifolds, Cheeger (1970) showed that there are at most countably many distinct smooth structures. There are many simply connected closed m-manifolds M^{m} such that $\left|\mathcal{S}\left(M^{m}\right)\right|=\infty($ for instance, R. Friedman-J. W. Morgan (1988) for $M=\mathbb{C P}^{2} \#_{9} \overline{\mathbb{C P}^{2}}$).

Concordance..

- Two smooth structures X_{0} and X_{1} on a topological manifold M are concordant if there is a smooth structure on $M \times I$ which restricts to X_{i} on $M \times i, i=0,1$.

Concordance..

- Two smooth structures X_{0} and X_{1} on a topological manifold M are concordant if there is a smooth structure on $M \times I$ which restricts to X_{i} on $M \times i, i=0,1$.
- The set of all concordance classes of smooth structures on M is denoted by $\mathcal{C}(M)$.

Concordance..

- Two smooth structures X_{0} and X_{1} on a topological manifold M are concordant if there is a smooth structure on $M \times I$ which restricts to X_{i} on $M \times i, i=0,1$.
- The set of all concordance classes of smooth structures on M is denoted by $\mathcal{C}(M)$.
- Note that there is a natural surjective map $\mathcal{C}(M) \rightarrow \mathcal{S}(M)$.

Concordance..

- Two smooth structures X_{0} and X_{1} on a topological manifold M are concordant if there is a smooth structure on $M \times I$ which restricts to X_{i} on $M \times i, i=0,1$.
- The set of all concordance classes of smooth structures on M is denoted by $\mathcal{C}(M)$.
- Note that there is a natural surjective map $\mathcal{C}(M) \rightarrow \mathcal{S}(M)$.
- If M^{m} is a manifold of dimension $(m \leq 3), \mathcal{C}(M)=\{[M, I d]\}$.

Concordance..

- Two smooth structures X_{0} and X_{1} on a topological manifold M are concordant if there is a smooth structure on $M \times I$ which restricts to X_{i} on $M \times i, i=0,1$.
- The set of all concordance classes of smooth structures on M is denoted by $\mathcal{C}(M)$.
- Note that there is a natural surjective map $\mathcal{C}(M) \rightarrow \mathcal{S}(M)$.
- If M^{m} is a manifold of dimension $(m \leq 3), \mathcal{C}(M)=\{[M, I d]\}$.
- $\mathcal{C}\left(\mathbb{S}^{7}\right)=\mathbb{Z}_{28}$,

Concordance..

- Two smooth structures X_{0} and X_{1} on a topological manifold M are concordant if there is a smooth structure on $M \times I$ which restricts to X_{i} on $M \times i, i=0,1$.
- The set of all concordance classes of smooth structures on M is denoted by $\mathcal{C}(M)$.
- Note that there is a natural surjective map $\mathcal{C}(M) \rightarrow \mathcal{S}(M)$.
- If M^{m} is a manifold of dimension $(m \leq 3), \mathcal{C}(M)=\{[M, I d]\}$.
- $\mathcal{C}\left(\mathbb{S}^{7}\right)=\mathbb{Z}_{28}, \mathcal{S}\left(\mathbb{S}^{7}\right)=\mathbb{Z}_{28} /(x \sim-x)$ so $\# \mathcal{S}\left(\mathbb{S}^{7}\right)=15$ (Kervaire and Milnor, 1962).

Concordance.

- Two smooth structures X_{0} and X_{1} on a topological manifold M are concordant if there is a smooth structure on $M \times I$ which restricts to X_{i} on $M \times i, i=0,1$.
- The set of all concordance classes of smooth structures on M is denoted by $\mathcal{C}(M)$.
- Note that there is a natural surjective map $\mathcal{C}(M) \rightarrow \mathcal{S}(M)$.
- If M^{m} is a manifold of dimension $(m \leq 3), \mathcal{C}(M)=\{[M, I d]\}$.
- $\mathcal{C}\left(\mathbb{S}^{7}\right)=\mathbb{Z}_{28}, \mathcal{S}\left(\mathbb{S}^{7}\right)=\mathbb{Z}_{28} /(x \sim-x)$ so $\# \mathcal{S}\left(\mathbb{S}^{7}\right)=15$ (Kervaire and Milnor, 1962).
- $\mathcal{C}\left(\mathbb{S}^{m}\right)=\Theta_{m}(m \geq 5)$ (Kirby-Siebenmann, 1977).
- Two smooth structures X_{0} and X_{1} on a topological manifold M are concordant if there is a smooth structure on $M \times I$ which restricts to X_{i} on $M \times i, i=0,1$.
- The set of all concordance classes of smooth structures on M is denoted by $\mathcal{C}(M)$.
- Note that there is a natural surjective map $\mathcal{C}(M) \rightarrow \mathcal{S}(M)$.
- If M^{m} is a manifold of dimension $(m \leq 3), \mathcal{C}(M)=\{[M, I d]\}$.
- $\mathcal{C}\left(\mathbb{S}^{7}\right)=\mathbb{Z}_{28}, \mathcal{S}\left(\mathbb{S}^{7}\right)=\mathbb{Z}_{28} /(x \sim-x)$ so $\# \mathcal{S}\left(\mathbb{S}^{7}\right)=15$ (Kervaire and Milnor, 1962).
- $\mathcal{C}\left(\mathbb{S}^{m}\right)=\Theta_{m}(m \geq 5)$ (Kirby-Siebenmann, 1977).

$$
\mathcal{C}\left(\mathbb{T}^{m}\right) \cong \oplus_{i} H^{i}\left(\mathbb{T}^{m} ; \pi_{i}(T O P / O)\right)
$$

and

$$
\mathcal{S}\left(\mathbb{T}^{m}\right)=\oplus_{i} H^{i}\left(\mathbb{T}^{m} ; \pi_{i}(T O P / O)\right) / G L_{m}(\mathbb{Z})
$$

- $\# \mathcal{S}\left(E_{8}^{4 k}\right)=\emptyset\left(E_{8}^{4 k}\right.$ is a closed, topological manifold with signature 8 , so that $E_{8} \backslash\{\star\}$ is smoothable with a trivial tangent bundle.)
- $\# \mathcal{S}\left(E_{8}^{4 k}\right)=\emptyset\left(E_{8}^{4 k}\right.$ is a closed, topological manifold with signature 8 , so that $E_{8} \backslash\{\star\}$ is smoothable with a trivial tangent bundle.)
- Why is $\mathcal{C}(M)$ nicer than $\mathcal{S}(M)$?
- $\# \mathcal{S}\left(E_{8}^{4 k}\right)=\emptyset\left(E_{8}^{4 k}\right.$ is a closed, topological manifold with signature 8 , so that $E_{8} \backslash\{\star\}$ is smoothable with a trivial tangent bundle.)
- Why is $\mathcal{C}(M)$ nicer than $\mathcal{S}(M)$? It is in bijection with a computable abelian group and useful for gluing.
- \#S $\left(E_{8}^{4 k}\right)=\emptyset\left(E_{8}^{4 k}\right.$ is a closed, topological manifold with signature 8 , so that $E_{8} \backslash\{\star\}$ is smoothable with a trivial tangent bundle.)
- Why is $\mathcal{C}(M)$ nicer than $\mathcal{S}(M)$? It is in bijection with a computable abelian group and useful for gluing.
Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)
There exists a connected H-space TOP/O such that there is a bijection between $\mathcal{C}(M)$ and $[M, T O P / O]$ for any closed connected oriented smooth manifold M with $\operatorname{dim} M \geq 5$.
- \#S $\left(E_{8}^{4 k}\right)=\emptyset\left(E_{8}^{4 k}\right.$ is a closed, topological manifold with signature 8 , so that $E_{8} \backslash\{\star\}$ is smoothable with a trivial tangent bundle.)
- Why is $\mathcal{C}(M)$ nicer than $\mathcal{S}(M)$? It is in bijection with a computable abelian group and useful for gluing.
Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)
There exists a connected H-space TOP/O such that there is a bijection between $\mathcal{C}(M)$ and $[M, T O P / O]$ for any closed connected oriented smooth manifold M with $\operatorname{dim} M \geq 5$.
- TOP/O is the fiber of the natural fibration $B O \mapsto B T O P$.
- \#S $\left(E_{8}^{4 k}\right)=\emptyset\left(E_{8}^{4 k}\right.$ is a closed, topological manifold with signature 8 , so that $E_{8} \backslash\{\star\}$ is smoothable with a trivial tangent bundle.)
- Why is $\mathcal{C}(M)$ nicer than $\mathcal{S}(M)$? It is in bijection with a computable abelian group and useful for gluing.
Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)
There exists a connected H-space TOP/O such that there is a bijection between $\mathcal{C}(M)$ and $[M, T O P / O]$ for any closed connected oriented smooth manifold M with $\operatorname{dim} M \geq 5$.
- TOP/O is the fiber of the natural fibration $B O \mapsto B T O P$. Moreover, it is an infinite loop space (Boardman and Vogt, 1973);
- $\# \mathcal{S}\left(E_{8}^{4 k}\right)=\emptyset\left(E_{8}^{4 k}\right.$ is a closed, topological manifold with signature 8 , so that $E_{8} \backslash\{\star\}$ is smoothable with a trivial tangent bundle.)
- Why is $\mathcal{C}(M)$ nicer than $\mathcal{S}(M)$? It is in bijection with a computable abelian group and useful for gluing.
Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)
There exists a connected H-space TOP/O such that there is a bijection between $\mathcal{C}(M)$ and $[M, T O P / O]$ for any closed connected oriented smooth manifold M with $\operatorname{dim} M \geq 5$.
- TOP/O is the fiber of the natural fibration $B O \mapsto B T O P$. Moreover, it is an infinite loop space (Boardman and Vogt, 1973); the Atiyah-Hirzebruch spectral sequence applies to compute [$M, T O P / O$], which is H^{0} of a generalized cohomology theory.
- $\# \mathcal{S}\left(E_{8}^{4 k}\right)=\emptyset\left(E_{8}^{4 k}\right.$ is a closed, topological manifold with signature 8 , so that $E_{8} \backslash\{\star\}$ is smoothable with a trivial tangent bundle.)
- Why is $\mathcal{C}(M)$ nicer than $\mathcal{S}(M)$? It is in bijection with a computable abelian group and useful for gluing.
Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)
There exists a connected H-space TOP/O such that there is a bijection between $\mathcal{C}(M)$ and $[M, T O P / O]$ for any closed connected oriented smooth manifold M with $\operatorname{dim} M \geq 5$.
- TOP/O is the fiber of the natural fibration $B O \mapsto B T O P$. Moreover, it is an infinite loop space (Boardman and Vogt, 1973); the Atiyah-Hirzebruch spectral sequence applies to compute [$M, T O P / O$], which is H^{0} of a generalized cohomology theory.
- $\Theta_{m} \curvearrowright \mathcal{C}(M)$
- $\# \mathcal{S}\left(E_{8}^{4 k}\right)=\emptyset\left(E_{8}^{4 k}\right.$ is a closed, topological manifold with signature 8 , so that $E_{8} \backslash\{\star\}$ is smoothable with a trivial tangent bundle.)
- Why is $\mathcal{C}(M)$ nicer than $\mathcal{S}(M)$? It is in bijection with a computable abelian group and useful for gluing.
Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)
There exists a connected H-space TOP/O such that there is a bijection between $\mathcal{C}(M)$ and $[M, T O P / O]$ for any closed connected oriented smooth manifold M with $\operatorname{dim} M \geq 5$.
- TOP/O is the fiber of the natural fibration $B O \mapsto B T O P$. Moreover, it is an infinite loop space (Boardman and Vogt, 1973); the Atiyah-Hirzebruch spectral sequence applies to compute [$M, T O P / O$], which is H^{0} of a generalized cohomology theory.
- $\Theta_{m} \curvearrowright \mathcal{C}(M)$ by $([\Sigma],[N, f]) \longmapsto[N \# \Sigma, f]$.
- For example, If M is a closed smooth manifold homotopy equivalent to $\mathbb{R} \mathbb{P}^{7}$, then Θ_{7} acts freely on

$$
\mathcal{C}(M)=\left\{[M \# \Sigma],[\tilde{M} \# \Sigma] \mid \Sigma \in \Theta_{7}\right\}
$$

but not transitively. Here \tilde{M} represents the non trivial PL-structure on M. (R.'15).

- For example, If M is a closed smooth manifold homotopy equivalent to $\mathbb{R} \mathbb{P}^{7}$, then Θ_{7} acts freely on

$$
\mathcal{C}(M)=\left\{[M \# \Sigma],[\tilde{M} \# \Sigma] \mid \Sigma \in \Theta_{7}\right\}
$$

but not transitively. Here \tilde{M} represents the non trivial PL-structure on M. (R.'15).

- If $f_{M}: M^{m} \rightarrow \mathbb{S}^{m}$ is the collapse map, then composition with f_{M} defines the map $f_{M}^{*}:\left[S^{m}, T O P / O\right] \rightarrow\left[M^{m}, T O P / O\right]$
- For example, If M is a closed smooth manifold homotopy equivalent to $\mathbb{R} \mathbb{P}^{7}$, then Θ_{7} acts freely on

$$
\mathcal{C}(M)=\left\{[M \# \Sigma],[\tilde{M} \# \Sigma] \mid \Sigma \in \Theta_{7}\right\}
$$

but not transitively. Here \tilde{M} represents the non trivial PL-structure on M. (R.'15).

- If $f_{M}: M^{m} \rightarrow \mathbb{S}^{m}$ is the collapse map, then composition with f_{M} defines the map $f_{M}^{*}:\left[S^{m}, T O P / O\right] \rightarrow\left[M^{m}, T O P / O\right]$ and fits into the following commutative diagram :
- For example, If M is a closed smooth manifold homotopy equivalent to $\mathbb{R} \mathbb{P}^{7}$, then Θ_{7} acts freely on

$$
\mathcal{C}(M)=\left\{[M \# \Sigma],[\tilde{M} \# \Sigma] \mid \Sigma \in \Theta_{7}\right\}
$$

but not transitively. Here \tilde{M} represents the non trivial PL-structure on M. (R.'15).

- If $f_{M}: M^{m} \rightarrow \mathbb{S}^{m}$ is the collapse map, then composition with f_{M} defines the map $f_{M}^{*}:\left[S^{m}, T O P / O\right] \rightarrow\left[M^{m}, T O P / O\right]$ and fits into the following commutative diagram :

$$
\begin{gathered}
{\left[\mathbb{S}^{m}, \text { Top } / O\right] \xrightarrow{f_{M}^{*}}\left[\begin{array}{c}
M, \text { Top } / O] \\
\cong \downarrow \\
\cong \\
\mathcal{C}\left(\mathbb{S}^{m}\right)=\Theta_{m} \xrightarrow{f_{M}^{*}} \quad \mathcal{C}(M)
\end{array} .\right.}
\end{gathered}
$$

- For example, If M is a closed smooth manifold homotopy equivalent to $\mathbb{R} \mathbb{P}^{7}$, then Θ_{7} acts freely on

$$
\mathcal{C}(M)=\left\{[M \# \Sigma],[\tilde{M} \# \Sigma] \mid \Sigma \in \Theta_{7}\right\}
$$

but not transitively. Here \tilde{M} represents the non trivial PL-structure on M. (R.'15).

- If $f_{M}: M^{m} \rightarrow \mathbb{S}^{m}$ is the collapse map, then composition with f_{M} defines the map $f_{M}^{*}:\left[S^{m}, T O P / O\right] \rightarrow\left[M^{m}, T O P / O\right]$ and fits into the following commutative diagram :

$$
\begin{gathered}
{\left[\mathbb{S}^{m}, \text { Top } / O\right] \xrightarrow{f_{M}^{*}}\left[\begin{array}{c}
M, \text { Top } / O] \\
\cong \downarrow \\
\cong \\
\mathcal{C}\left(\mathbb{S}^{m}\right)=\Theta_{m} \xrightarrow{f_{M}^{*}} \quad \mathcal{C}(M)
\end{array}\right.}
\end{gathered}
$$

where the bottom horizontal map is $\left[\Sigma^{m}\right] \mapsto\left[M^{m} \# \Sigma^{m}, l d\right]$.

Smooth Structures

- When the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective or surjective?.
- When the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective or surjective?.
- If $M^{m}(m \geq 5)$ is a stably parallelizable manifold, the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective (Browder (1965) and Brumfiel (1971)).
- When the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective or surjective?.
- If $M^{m}(m \geq 5)$ is a stably parallelizable manifold, the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective (Browder (1965) and Brumfiel (1971)).
- If M is a closed smooth manifold homotopy equivalent to $\mathbb{R P}^{7}$, the map $f_{M}^{*}: \Theta_{7} \rightarrow \mathcal{C}(M)$ is injective, but not surjective. (R.'15).
- When the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective or surjective?.
- If $M^{m}(m \geq 5)$ is a stably parallelizable manifold, the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective (Browder (1965) and Brumfiel (1971)).
- If M is a closed smooth manifold homotopy equivalent to $\mathbb{R} \mathbb{P}^{7}$, the map $f_{M}^{*}: \Theta_{7} \rightarrow \mathcal{C}(M)$ is injective, but not surjective. (R.'15).
- If M^{7} is a closed smooth manifold such that $H^{i}\left(M ; \mathbb{Z}_{2}\right)=0$ for $i=3,4$, then $f_{M}^{*}: \Theta_{7} \rightarrow \mathcal{C}\left(M^{7}\right)$ is bijective (R.'16).
- When the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective or surjective?.
- If $M^{m}(m \geq 5)$ is a stably parallelizable manifold, the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective (Browder (1965) and Brumfiel (1971)).
- If M is a closed smooth manifold homotopy equivalent to $\mathbb{R} \mathbb{P}^{7}$, the map $f_{M}^{*}: \Theta_{7} \rightarrow \mathcal{C}(M)$ is injective, but not surjective. (R.'15).
- If M^{7} is a closed smooth manifold such that $H^{i}\left(M ; \mathbb{Z}_{2}\right)=0$ for $i=3,4$, then $f_{M}^{*}: \Theta_{7} \rightarrow \mathcal{C}\left(M^{7}\right)$ is bijective (R.'16).
- If M^{8} is a closed smooth 3-connected 8-manifold, then $f_{M}^{*}: \Theta_{8} \rightarrow \mathcal{C}\left(M^{8}\right)$ is surjective. (R.'15).
- When the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective or surjective?.
- If $M^{m}(m \geq 5)$ is a stably parallelizable manifold, the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective (Browder (1965) and Brumfiel (1971)).
- If M is a closed smooth manifold homotopy equivalent to $\mathbb{R P}^{7}$, the map $f_{M}^{*}: \Theta_{7} \rightarrow \mathcal{C}(M)$ is injective, but not surjective. (R.'15).
- If M^{7} is a closed smooth manifold such that $H^{i}\left(M ; \mathbb{Z}_{2}\right)=0$ for $i=3,4$, then $f_{M}^{*}: \Theta_{7} \rightarrow \mathcal{C}\left(M^{7}\right)$ is bijective (R.'16).
- If M^{8} is a closed smooth 3-connected 8-manifold, then $f_{M}^{*}: \Theta_{8} \rightarrow \mathcal{C}\left(M^{8}\right)$ is surjective. (R.'15).
- For $M=\mathbb{C P}^{n}(n \leq 8)$, the map $f_{\mathbb{C P}^{n}}^{*}: \Theta_{2 n} \rightarrow \mathcal{C}\left(\mathbb{C P}^{n}\right)$ is injective. K. Kawakubo (1968), F.T.Farrell and Jones (1994).
- When the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective or surjective ?.
- If $M^{m}(m \geq 5)$ is a stably parallelizable manifold, the map $f_{M}^{*}: \Theta_{m} \rightarrow \mathcal{C}\left(M^{m}\right)$ is injective (Browder (1965) and Brumfiel (1971)).
- If M is a closed smooth manifold homotopy equivalent to $\mathbb{R P}^{7}$, the map $f_{M}^{*}: \Theta_{7} \rightarrow \mathcal{C}(M)$ is injective, but not surjective. (R.'15).
- If M^{7} is a closed smooth manifold such that $H^{i}\left(M ; \mathbb{Z}_{2}\right)=0$ for $i=3,4$, then $f_{M}^{*}: \Theta_{7} \rightarrow \mathcal{C}\left(M^{7}\right)$ is bijective (R.'16).
- If M^{8} is a closed smooth 3-connected 8-manifold, then $f_{M}^{*}: \Theta_{8} \rightarrow \mathcal{C}\left(M^{8}\right)$ is surjective. (R.'15).
- For $M=\mathbb{C} \mathbb{P}^{n}(n \leq 8)$, the map $f_{\mathbb{C P}^{n}}^{*}: \Theta_{2 n} \rightarrow \mathcal{C}\left(\mathbb{C P} \mathbb{P}^{n}\right)$ is injective. K. Kawakubo (1968), F.T.Farrell and Jones (1994).
- For infinitely many values of $n \geq 9$, I have obtained (jointly with Samik Basu, 2017) that the map $f_{\mathbb{C P}^{4 n+1}}^{*}: \Theta_{8 n+2} \rightarrow \mathcal{C}\left(\mathbb{C P}^{4 n+1}\right)$ is not injective.

Smooth Structures on $\mathbb{H}^{\text {P }}$

Theorem (Samik Basu + R., 2018)
(i) $\mathcal{C}\left(\mathbb{H} \mathbb{P}^{3}\right) \cong \mathbb{Z}_{2}$.
(ii) $\mathcal{C}\left(\mathbb{H} \mathbb{P}^{4}\right)=\left\{\left[\mathbb{H P}^{4} \# \Sigma\right] \mid \Sigma \in \Theta_{16}\right\}$.
(iii) $\mathcal{C}\left(\mathbb{H P}^{5}\right)$ has 48 concordance classes and as a group it is isomorphic to $\mathbb{Z}_{24} \oplus \mathbb{Z}_{2}$ or \mathbb{Z}_{48}.

Theorem (Samik Basu + R., 2018)
(i) $\mathcal{C}\left(\mathbb{H} \mathbb{P}^{3}\right) \cong \mathbb{Z}_{2}$.
(ii) $\mathcal{C}\left(\mathbb{H} \mathbb{P}^{4}\right)=\left\{\left[\mathbb{H P}^{4} \# \Sigma\right] \mid \Sigma \in \Theta_{16}\right\}$.
(iii) $\mathcal{C}\left(\mathbb{H}^{5}\right)$ has 48 concordance classes and as a group it is isomorphic to $\mathbb{Z}_{24} \oplus \mathbb{Z}_{2}$ or \mathbb{Z}_{48}.

Theorem (Samik Basu + R., 2018)
For any two elements $\Sigma_{1}, \Sigma_{2} \in \Theta_{20} \cong \mathbb{Z}_{24}, \mathbb{H P}^{5} \# \Sigma_{1}$ is concordant to $\mathbb{H P} \mathbb{P}^{5} \# \Sigma_{2}$ if and only if $\Sigma_{1}=\Sigma_{2}$.

Theorem (Samik Basu + R., 2018)
(i) $\mathcal{C}\left(\mathbb{H P}^{3}\right) \cong \mathbb{Z}_{2}$.
(ii) $\mathcal{C}\left(\mathbb{H} \mathbb{P}^{4}\right)=\left\{\left[\mathbb{H P}^{4} \# \Sigma\right] \mid \Sigma \in \Theta_{16}\right\}$.
(iii) $\mathcal{C}\left(\mathbb{H}^{5}\right)$ has 48 concordance classes and as a group it is isomorphic to $\mathbb{Z}_{24} \oplus \mathbb{Z}_{2}$ or \mathbb{Z}_{48}.

Theorem (Samik Basu + R., 2018)
For any two elements $\Sigma_{1}, \Sigma_{2} \in \Theta_{20} \cong \mathbb{Z}_{24}, \mathbb{H P}^{5} \# \Sigma_{1}$ is concordant to $\mathbb{H P}^{5} \# \Sigma_{2}$ if and only if $\Sigma_{1}=\Sigma_{2}$.
We have thus observed that for $n \leq 5$ and $\Sigma^{4 n}$ is an exotic sphere, then $\mathbb{H} \mathbb{P}^{n} \# \Sigma^{4 n} \not \approx \mathbb{H} \mathbb{P}^{n}$.

Theorem (Samik Basu + R., 2018)
(i) $\mathcal{C}\left(\mathbb{H} \mathbb{P}^{3}\right) \cong \mathbb{Z}_{2}$.
(ii) $\mathcal{C}\left(\mathbb{H} \mathbb{P}^{4}\right)=\left\{\left[\mathbb{H P}^{4} \# \Sigma\right] \mid \Sigma \in \Theta_{16}\right\}$.
(iii) $\mathcal{C}\left(\mathbb{H}^{5}\right)$ has 48 concordance classes and as a group it is isomorphic to $\mathbb{Z}_{24} \oplus \mathbb{Z}_{2}$ or \mathbb{Z}_{48}.

Theorem (Samik Basu + R., 2018)
For any two elements $\Sigma_{1}, \Sigma_{2} \in \Theta_{20} \cong \mathbb{Z}_{24}, \mathbb{H P}^{5} \# \Sigma_{1}$ is concordant to $\mathbb{H} \mathbb{P}^{5} \# \Sigma_{2}$ if and only if $\Sigma_{1}=\Sigma_{2}$.
We have thus observed that for $n \leq 5$ and $\Sigma^{4 n}$ is an exotic sphere, then $\mathbb{H} \mathbb{P}^{n} \# \Sigma^{4 n} \neq \mathbb{H} \mathbb{P}^{n}$.
Theorem (Samik Basu + R., 2018)
For infinitely many n, there exists an exotic sphere $\Sigma^{4 n}$ such that $\mathbb{H P}^{n} \# \Sigma^{4 n}$ is diffeomorphic to $\mathbb{H P}^{n}$.

Interesting problems

Problem

Does an exotic torus $\mathbb{T}^{2 n} \# \Sigma^{2 n}(n>2)$ carry any complex structures?

Problem

Does an exotic torus $\mathbb{T}^{2 n} \# \Sigma^{2 n}(n>2)$ carry symplectic structures?
This is a generalization of a similar problem, posed by Benson and Gordon (1988) for kähler manifolds and B. Hajduk and A. Tralle (2008) conjectured the following:

Conjecture
There are no symplectic structures on exotic tori.

Interesting problems

- Instead of comparing the diffeomorphism type of M when taking the connected sum $M \# \Sigma$ with an exotic sphere Σ, one might try to compare the group of diffeomorphisms of M and $M \# \Sigma$.
- Using recent progress in manifold theory by Galatius and Randal-Williams, together with computations in stable homotopy theory, I am very much interested to know the behaviour of the cohomology $H^{*}(B \operatorname{Diff}+(M))$ and homotopy groups $\pi_{k}\left(\operatorname{BDiff}^{+}(M)\right)$ of $B^{+} \operatorname{Diff}(M)$ when replacing M with $M \# \Sigma$.
- Recently, Manuel Krannich (2018) have discussed about the cohomology ring $H^{*}\left(B \operatorname{Diff}+\left(\left(\mathbb{S}^{n} \times \mathbb{S}^{n}\right)^{\# g}\right) ; \mathbb{Z}\right)$ and showed that $H^{1}\left(B \operatorname{Diff}^{+}\left(\left(\mathbb{S}^{n} \times \mathbb{S}^{n}\right)^{\# g}\right) ; \mathbb{Z}\right)$ and $H^{1}\left(\right.$ BDiff $\left.{ }^{+}\left(\left(\mathbb{S}^{n} \times \mathbb{S}^{n}\right)^{\# g} \# \Sigma\right) ; \mathbb{Z}\right)$ cannot be isomorphic for certain exotic spheres Σ.
- With Samik Basu : Inertia Groups and Smooth Structures on Quaternionic Projective Space (Submitted).
- With Samik Basu : Inertia Groups of Higher-Dimensional Complex Projective Spaces, Algebraic \& Geometric Topology 18 (2018) 387-408.
- Ramesh Kasilingam, Topological Rigidity Problems, Journal of Advanced Studies in Topology, Vol. 7, Issue 4 (2016), 161-204.
- Ramesh Kasilingam, A Survey of Smooth and PL-Rigidity Problems on Locally Symmetric Spaces, Journal of Advanced Studies in Topology, Vol. 7, Issue 4 (2016), 205-250.

Thank you for your attention.

