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This operation is well defined up to orientation preserving
diffeomorphism. Thus we obtain a commutative, associative
semigroup M, of oriented diffeomorphism classes; with the class
of S™ as an identity element, MT#S™ = M™,
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smooth structure on R*. But,

Theorem (Clifford Taubes, 1987)

There are uncountably many distinct diffeomorphism
classes of smooth manifolds homeomorphic to R*.

.

Theorem (Kervaire and Milnor + Perelman)
Each ©, is a finite abelian groups for m # 4.
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of diffeomorphism classes of smooth manifolds homeomorphic
to a given closed smooth manifold M™ (m > 5) is finite.

» For (m < 3), the cardinality |[S(M™)| = 1 (Rado(1925) and
Moise (1952)).

» For closed 4-manifolds, Cheeger (1970) showed that there are
at most countably many distinct smooth structures. There are
many simply connected closed m-manifolds M"™ such that
|S(M™)| = oo (for instance, R. Friedman-J. W. Morgan
(1988) for M = CP?#4CP?2).
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» If M™ is a manifold of dimension (m < 3), C(M) = {[M, Id]}.

» C(S7) = Zog, S(S7) = Zag/(x ~ —x) so #S(S") =15
(Kervaire and Milnor, 1962).

» C(S™) =0, (m>5) (Kirby-Siebenmann, 1977).

C(T™) = @;H'(T™; 7;( TOP/ 0))
and
S(T™) = @;H(T™; 7;(TOP/0))/ GLn(Z).
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» If M8 is a closed smooth 3-connected 8-manifold, then
fry : ©g — C(MB8) is surjective. (R.'15).

» For M = CP"(n < 8), the map fp, : ©2, — C(CP") is
injective. K. Kawakubo (1968), F.T.Farrell and Jones (1994).

» For infinitely many values of n > 9, | have obtained (jointly
with Samik Basu, 2017) that the map
flpanit © Ogni2 — C(CP**1) is not injective.
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Smooth Structures on HP”

Theorem (Samik Basu + R., 2018)

(i) C(HP3) = Z,.
(i) C(HP*) = {[HP*#X] | £ € O16} .
(iii) C(HIP®) has 48 concordance classes and as a group it is
isomorphic to Zps ® Zyp or Zasg.
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For any two elements ¥1,%> € Oog = Zos, HP?#3 1 is concordant
to HPS#Y, if and only if ¥1 = ¥».

We have thus observed that for n < 5 and ¥*” is an exotic sphere,
then HP"#¥4" 2 HP".

Theorem (Samik Basu + R., 2018)

For infinitely many n, there exists an exotic sphere ¥*" such that
HP"#3%4" s diffeomorphic to HP".
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Interesting problems

Problem
Does an exotic torus T?"#3%2" (n > 2) carry any complex
structures ?

Problem
Does an exotic torus T?"#35°" (n > 2) carry symplectic structures?

This is a generalization of a similar problem, posed by Benson and
Gordon (1988) for kihler manifolds and B. Hajduk and A. Tralle
(2008) conjectured the following:

Conjecture
There are no symplectic structures on exotic tori.
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Interesting problems

» Instead of comparing the diffeomorphism type of M when
taking the connected sum M#% with an exotic sphere ¥, one
might try to compare the group of diffeomorphisms of M and
M#%.

» Using recent progress in manifold theory by Galatius and
Randal-Williams, together with computations in stable
homotopy theory, | am very much interested to know the
behaviour of the cohomology H*(BDiff *(M)) and homotopy
groups mx(BDiff *(M)) of Bt Diff (M) when replacing M with
M#Y.

» Recently, Manuel Krannich (2018) have discussed about the
cohomology ring H*(BDiff ((S" x S")##);Z) and showed
that HY(BDiff*((S" x S")#€); Z) and
HY(BDiff+((S" x S™)#€4¥); Z) cannot be isomorphic for
certain exotic spheres ..
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Thank you for your attention.
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