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Fundamental Problem in Geometry and Topology

I The study of manifolds in differential topology presents itself
through four different classes of equivalence : homotopy
equivalence, homeomorphism, PL-homeomorphism and
diffeomorphism.

I The classification of manifolds upto these equivalences is a
fundamental question in geometry and topology.

I One of the first results in this subject is the result of Milnor
(1956) that there exist smooth manifolds which are
homeomorphic to S7 but not diffeomorphic.(The 7-sphere has
28 inequivalent smoothings (Kervaire-Milnor, 1963)).

I By a homotopy m-sphere Σm we mean a closed oriented
smooth manifold homotopy equivalent (and hence
homeomorphic) to Sm.

I The set of oriented diffeomorphism classes of homotopy
m-spheres is denoted by Θm.
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Higher Dimensions : The Connected Sum

If M1 and M2 are smooth, oriented connected m-manifolds,

then
the connected sum M1#M2 is a new smooth, oriented connected
m-manifold.

This operation is well defined up to orientation preserving
diffeomorphism. Thus we obtain a commutative, associative
semigroup Mm of oriented diffeomorphism classes; with the class
of Sm as an identity element, Mm#Sm ∼= Mm.
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Invertibility: Mn#Nn ∼= Sn for some Nn?

Lemma (Barry Mazur)

1. Mm is invertible (Mm#Nm ∼= Sm) ⇐⇒
2. Mm \ {point} ∼= Rm

3. =⇒ Mm is a homotopy m-sphere.

Therefore, we start to study the sub-semigroup Θm ⊂Mm of
oriented diffeomorphism classes of homotopy m-spheres.

Theorem (Stallings+ Munkres + Hirsch)

If m 6= 4, then any smooth manifold homeomorphic to Rm must
actually be diffeomorphic to Rm.

=⇒ Θm is a group for m 6= 4.
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The Four Dimensional

If M4 is a homotopy 4-sphere, then M4 \ {point} represents a
smooth structure on R4.

But,

Theorem (Clifford Taubes, 1987)

There are uncountably many distinct diffeomorphism
classes of smooth manifolds homeomorphic to R4.

Theorem (Kervaire and Milnor + Perelman)

Each Θm is a finite abelian groups for m 6= 4.
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Group of homotopy spheres, 1963

(Michel Kervaire)

(John Milnor)

m 1 2 3 4 5 6

Θm 0 0 0 ? 0 0

61

0

m 7 8 9 10 11 12

Θm Z28 Z2 Z2⊕Z2⊕Z2 Z6 Z992 0

m 13 14 15 16 17 18

Θm Z3 Z2 Z2 ⊕ Z8128 Z2 Z2 ⊕ Z8 Z2 ⊕Z8
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Further Developments by Many People

I The group Θm is now completely known for m ≤ 64.

(Frank
Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill,
Doug Ravenel and Mike Hopkins).

I One consequence of smoothing theory is that the set S(Mm)
of diffeomorphism classes of smooth manifolds homeomorphic
to a given closed smooth manifold Mm (m ≥ 5) is finite.

I For (m ≤ 3), the cardinality |S(Mm)| = 1 (Rado(1925) and
Moise (1952)).

I For closed 4-manifolds, Cheeger (1970) showed that there are
at most countably many distinct smooth structures. There are
many simply connected closed m-manifolds Mm such that
|S(Mm)| =∞ (for instance, R. Friedman-J. W. Morgan
(1988) for M = CP2#9CP2)

.
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Concordance..

I Two smooth structures X0 and X1 on a topological manifold
M are concordant if there is a smooth structure on M × I
which restricts to Xi on M × i , i = 0, 1.

I The set of all concordance classes of smooth structures on M
is denoted by C(M).

I Note that there is a natural surjective map C(M)� S(M).

I If Mm is a manifold of dimension (m ≤ 3), C(M) = {[M, Id ]}.
I C(S7) = Z28, S(S7) = Z28/(x ∼ −x) so #S(S7) = 15

(Kervaire and Milnor, 1962).

I C(Sm) = Θm (m ≥ 5) (Kirby-Siebenmann, 1977).

I

C(Tm) ∼= ⊕iH
i (Tm;πi (TOP/O))

and
S(Tm) = ⊕iH

i (Tm;πi (TOP/O))/GLm(Z).
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Fundamental Theorem of Smoothing

I #S(E 4k
8 ) = ∅ (E 4k

8 is a closed, topological manifold with
signature 8, so that E8 \ {?} is smoothable with a trivial
tangent bundle.)

I Why is C(M) nicer than S(M)? It is in bijection with a
computable abelian group and useful for gluing.

Theorem (Fundamental Theorem of Smoothing, Kirby and
Siebenmann, 1977)

There exists a connected H-space TOP/O such that there is a
bijection between C(M) and [M,TOP/O] for any closed connected
oriented smooth manifold M with dim M ≥ 5.

I TOP/O is the fiber of the natural fibration BO 7→ BTOP.
Moreover, it is an infinite loop space (Boardman and Vogt,
1973); the Atiyah-Hirzebruch spectral sequence applies to
compute [M,TOP/O], which is H0 of a generalized
cohomology theory.

I Θm y C(M) by ([Σ], [N, f ]) 7−→ [N#Σ, f ].
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Results....

I For example, If M is a closed smooth manifold homotopy
equivalent to RP7, then Θ7 acts freely on

C(M) = {[M#Σ], [M̃#Σ] | Σ ∈ Θ7},

but not transitively. Here M̃ represents the non trivial
PL-structure on M. (R.’15).

I If fM : Mm → Sm is the collapse map, then composition with
fM defines the map f ∗

M : [Sm,TOP/O]→ [Mm,TOP/O] and
fits into the following commutative diagram :

[Sm,Top/O]
f ∗M−−−−→ [M,Top/O]

∼=
y ∼=

y
C(Sm) = Θm

f ∗M−−−−→ C(M)

where the bottom horizontal map is [Σm] 7→ [Mm#Σm, Id ].
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Smooth Structures

I When the map f ∗
M : Θm → C(Mm) is injective or surjective ?.

I If Mm (m ≥ 5) is a stably parallelizable manifold, the map
f ∗
M : Θm → C(Mm) is injective (Browder (1965) and Brumfiel

(1971)).
I If M is a closed smooth manifold homotopy equivalent to

RP7, the map f ∗
M : Θ7 → C(M) is injective, but not surjective.

(R.’15).
I If M7 is a closed smooth manifold such that H i (M;Z2) = 0

for i = 3, 4, then f ∗
M : Θ7 → C(M7) is bijective (R.’16).

I If M8 is a closed smooth 3-connected 8-manifold, then
f ∗
M : Θ8 → C(M8) is surjective. (R.’15).

I For M = CPn(n ≤ 8), the map f ∗
CPn : Θ2n → C(CPn) is

injective. K. Kawakubo (1968), F.T.Farrell and Jones (1994).
I For infinitely many values of n ≥ 9, I have obtained (jointly

with Samik Basu, 2017) that the map
f ∗
CP4n+1 : Θ8n+2 → C(CP4n+1) is not injective.
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Smooth Structures on HPn

Theorem (Samik Basu + R., 2018)

(i) C(HP3) ∼= Z2.

(ii) C(HP4) =
{

[HP4#Σ] | Σ ∈ Θ16

}
.

(iii) C(HP5) has 48 concordance classes and as a group it is
isomorphic to Z24 ⊕ Z2 or Z48.

Theorem (Samik Basu + R., 2018)

For any two elements Σ1,Σ2 ∈ Θ20
∼= Z24, HP5#Σ1 is concordant

to HP5#Σ2 if and only if Σ1 = Σ2.

We have thus observed that for n ≤ 5 and Σ4n is an exotic sphere,
then HPn#Σ4n 6∼= HPn.

Theorem (Samik Basu + R., 2018)

For infinitely many n, there exists an exotic sphere Σ4n such that
HPn#Σ4n is diffeomorphic to HPn.
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For any two elements Σ1,Σ2 ∈ Θ20
∼= Z24, HP5#Σ1 is concordant

to HP5#Σ2 if and only if Σ1 = Σ2.

We have thus observed that for n ≤ 5 and Σ4n is an exotic sphere,
then HPn#Σ4n 6∼= HPn.
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Interesting problems

Problem
Does an exotic torus T2n#Σ2n (n > 2) carry any complex
structures ?

Problem
Does an exotic torus T2n#Σ2n (n > 2) carry symplectic structures?

This is a generalization of a similar problem, posed by Benson and
Gordon (1988) for kähler manifolds and B. Hajduk and A. Tralle
(2008) conjectured the following:

Conjecture

There are no symplectic structures on exotic tori.
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Interesting problems

I Instead of comparing the diffeomorphism type of M when
taking the connected sum M#Σ with an exotic sphere Σ, one
might try to compare the group of diffeomorphisms of M and
M#Σ.

I Using recent progress in manifold theory by Galatius and
Randal-Williams, together with computations in stable
homotopy theory, I am very much interested to know the
behaviour of the cohomology H∗(BDiff +(M)) and homotopy
groups πk(BDiff +(M)) of B+Diff (M) when replacing M with
M#Σ.

I Recently, Manuel Krannich (2018) have discussed about the
cohomology ring H∗(BDiff +((Sn × Sn)#g );Z) and showed
that H1(BDiff +((Sn × Sn)#g );Z) and
H1(BDiff +((Sn × Sn)#g#Σ);Z) cannot be isomorphic for
certain exotic spheres Σ.
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