Smooth Structures on Quaternionic Projective Spaces

Ramesh Kasilingam Indian Institute of Technology Madras, India. (Joint work with Samik Basu)

Jan 4, 2019

1/16

・ロ・・日・・日・・日・・日・

2/16

The study of manifolds in differential topology presents itself through four different classes of equivalence :

 The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence,

The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism,

The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.

- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.

- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- One of the first results in this subject is the result of Milnor (1956)

- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- ► One of the first results in this subject is the result of Milnor (1956) that there exist smooth manifolds which are homeomorphic to S⁷ but not diffeomorphic.

- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- ➤ One of the first results in this subject is the result of Milnor (1956) that there exist smooth manifolds which are homeomorphic to S⁷ but not diffeomorphic.(The 7-sphere has 28 inequivalent smoothings (Kervaire-Milnor, 1963)).

- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- ► One of the first results in this subject is the result of Milnor (1956) that there exist smooth manifolds which are homeomorphic to S⁷ but not diffeomorphic.(The 7-sphere has 28 inequivalent smoothings (Kervaire-Milnor, 1963)).
- By a homotopy *m*-sphere Σ^m

- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- ➤ One of the first results in this subject is the result of Milnor (1956) that there exist smooth manifolds which are homeomorphic to S⁷ but not diffeomorphic.(The 7-sphere has 28 inequivalent smoothings (Kervaire-Milnor, 1963)).
- By a homotopy *m*-sphere Σ^m we mean a closed oriented smooth manifold homotopy equivalent (and hence homeomorphic) to S^m.

- The study of manifolds in differential topology presents itself through four different classes of equivalence : homotopy equivalence, homeomorphism, PL-homeomorphism and diffeomorphism.
- The classification of manifolds upto these equivalences is a fundamental question in geometry and topology.
- ➤ One of the first results in this subject is the result of Milnor (1956) that there exist smooth manifolds which are homeomorphic to S⁷ but not diffeomorphic.(The 7-sphere has 28 inequivalent smoothings (Kervaire-Milnor, 1963)).
- By a homotopy *m*-sphere Σ^m we mean a closed oriented smooth manifold homotopy equivalent (and hence homeomorphic) to S^m.
- ► The set of oriented diffeomorphism classes of homotopy *m*-spheres is denoted by ⊖_{*m*}.

If M_1 and M_2 are smooth, oriented connected *m*-manifolds,

If M_1 and M_2 are smooth, oriented connected *m*-manifolds, then the connected sum $M_1 \# M_2$ is a new smooth, oriented connected *m*-manifold.

This operation is well defined up to orientation preserving diffeomorphism.

- 4 同 ▶ - 4 回 ▶

If M_1 and M_2 are smooth, oriented connected *m*-manifolds, then the connected sum $M_1 \# M_2$ is a new smooth, oriented connected *m*-manifold.

This operation is well defined up to orientation preserving diffeomorphism. Thus we obtain a commutative, associative semigroup \mathcal{M}_m of oriented diffeomorphism classes;

If M_1 and M_2 are smooth, oriented connected *m*-manifolds, then the connected sum $M_1 \# M_2$ is a new smooth, oriented connected *m*-manifold.

This operation is well defined up to orientation preserving diffeomorphism. Thus we obtain a commutative, associative semigroup \mathcal{M}_m of oriented diffeomorphism classes; with the class of \mathbb{S}^m as an identity element, $\mathcal{M}^m \# \mathbb{S}^m \cong \mathcal{M}^m$.

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ◆ ○ ○ ○ ○ ○ ○

Lemma (Barry Mazur)

1. M^m is invertible $(M^m \# N^m \cong \mathbb{S}^m)$

<ロト <部ト < 注ト < 注ト = 注

4/16

Lemma (Barry Mazur)

1. M^m is invertible $(M^m \# N^m \cong \mathbb{S}^m) \iff$

<ロト <部ト < 注ト < 注ト = 注

4/16

2. $M^m \setminus {\text{point}} \cong \mathbb{R}^m$

Lemma (Barry Mazur)

- 1. M^m is invertible $(M^m \# N^m \cong \mathbb{S}^m) \iff$
- 2. $M^m \setminus {\text{point}} \cong \mathbb{R}^m$
- 3. $\implies M^m$ is a homotopy m-sphere.

Lemma (Barry Mazur)

- 1. M^m is invertible $(M^m \# N^m \cong \mathbb{S}^m) \iff$
- 2. $M^m \setminus {\text{point}} \cong \mathbb{R}^m$
- 3. $\implies M^m$ is a homotopy m-sphere.

Therefore, we start to study the sub-semigroup $\Theta_m \subset \mathcal{M}_m$ of oriented diffeomorphism classes of homotopy *m*-spheres.

Lemma (Barry Mazur)

1. M^m is invertible $(M^m \# N^m \cong \mathbb{S}^m) \iff$

- 2. $M^m \setminus {\text{point}} \cong \mathbb{R}^m$
- 3. $\implies M^m$ is a homotopy m-sphere.

Therefore, we start to study the sub-semigroup $\Theta_m \subset \mathcal{M}_m$ of oriented diffeomorphism classes of homotopy *m*-spheres.

Theorem (Stallings+ Munkres + Hirsch)

If $m \neq 4$, then any smooth manifold homeomorphic to \mathbb{R}^m must actually be diffeomorphic to \mathbb{R}^m .

Lemma (Barry Mazur)

1. M^m is invertible $(M^m \# N^m \cong \mathbb{S}^m) \iff$

- 2. $M^m \setminus {\text{point}} \cong \mathbb{R}^m$
- 3. $\implies M^m$ is a homotopy m-sphere.

Therefore, we start to study the sub-semigroup $\Theta_m \subset \mathcal{M}_m$ of oriented diffeomorphism classes of homotopy *m*-spheres.

Theorem (Stallings+ Munkres + Hirsch)

If $m \neq 4$, then any smooth manifold homeomorphic to \mathbb{R}^m must actually be diffeomorphic to \mathbb{R}^m .

 $\implies \Theta_m$ is a group for $m \neq 4$.

The Four Dimensional

If M^4 is a homotopy 4-sphere, then $M^4 \setminus {\text{point}}$ represents a smooth structure on \mathbb{R}^4 .

The Four Dimensional

If M^4 is a homotopy 4-sphere, then $M^4 \setminus {\text{point}}$ represents a smooth structure on \mathbb{R}^4 . But,

The Four Dimensional

If M^4 is a homotopy 4-sphere, then $M^4 \setminus {\text{point}}$ represents a smooth structure on \mathbb{R}^4 . But,

Theorem (Clifford Taubes, 1987) There are uncountably many distinct diffeomorphism classes of smooth manifolds homeomorphic to \mathbb{R}^4 .

If M^4 is a homotopy 4-sphere, then $M^4 \setminus {\text{point}}$ represents a smooth structure on \mathbb{R}^4 . But,

Theorem (Clifford Taubes, 1987) There are uncountably many distinct diffeomorphism classes of smooth manifolds homeomorphic to \mathbb{R}^4 .

Theorem (Kervaire and Milnor + Perelman) Each Θ_m is a finite abelian groups for $m \neq 4$.

(Michel Kervaire)

(Michel Kervaire)

(John Milnor)

(Michel Kervaire)

(John Milnor)

m	1	2	3	4	5	6
Θ_m	0	0	0	?	0	0

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ● ○ ○ ○

6/16

(Michel Kervaire)

(John Milnor)

		т	1	2	3	4	5	6		
		Θ_m	0	0	0	?	0	0		
m	7		8		9		10		11	12
Θ_m	Z	28	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$		\mathbb{Z}_6		Z992	0

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

6/16
Group of homotopy spheres, 1963

(Michel Kervaire)

m

(John Milnor)

	m	1	2	3	4	5	6		
	Θ_m	0	0	0	?	0	0		
 -	7	8		g		1()	11	12

	· ·	0		10		14
Θ_m	\mathbb{Z}_{28}	\mathbb{Z}_2	$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$	\mathbb{Z}_6	\mathbb{Z}_{992}	0

т	13	14	15	16	17	18
Θ_m	\mathbb{Z}_3	\mathbb{Z}_2	$\mathbb{Z}_2\oplus\mathbb{Z}_{8128}$	\mathbb{Z}_2	$\mathbb{Z}_2\oplus\mathbb{Z}_8$	$\mathbb{Z}_2\oplus\mathbb{Z}_8$

◆ロ ▶ ◆屈 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 ─ ののの

Group of homotopy spheres, 1963

(Michel Kervaire)

(John Milnor)

		m	1	2	3	4	5	6		61		
		Θ_n	n 0	0	0	?	0	0		0		
m	7		8		9		10		11		12)
Θ_m \mathbb{Z}_{28}		\mathbb{Z}_{28}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}$		∠2 <mark>ℤ</mark> 6		Z992		0	
m	1	.3	14	15			16 1		17		18	
Θ_m	7	23	\mathbb{Z}_2	$\mathbb{Z}_2 \in$	$\oplus \mathbb{Z}_{8128}$ 2		22	$\mathbb{Z}_2 \oplus \mathbb{Z}_8$		Z8	$\mathbb{Z}_2 \oplus \mathbb{Z}$	Z8

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト ● の Q ()

• The group Θ_m is now completely known for $m \leq 64$.

.

► The group Θ_m is now completely known for m ≤ 64. (Frank Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill, Doug Ravenel and Mike Hopkins).

.

- ► The group Θ_m is now completely known for $m \leq 64$. (Frank Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill, Doug Ravenel and Mike Hopkins).
- One consequence of smoothing theory is that the set $S(M^m)$ of diffeomorphism classes of smooth manifolds homeomorphic to a given closed smooth manifold M^m ($m \ge 5$) is finite.

- ► The group Θ_m is now completely known for m ≤ 64. (Frank Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill, Doug Ravenel and Mike Hopkins).
- One consequence of smoothing theory is that the set S(M^m) of diffeomorphism classes of smooth manifolds homeomorphic to a given closed smooth manifold M^m (m ≥ 5) is finite.
- For (m ≤ 3), the cardinality |S(M^m)| = 1 (Rado(1925) and Moise (1952)).

- ► The group Θ_m is now completely known for m ≤ 64. (Frank Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill, Doug Ravenel and Mike Hopkins).
- One consequence of smoothing theory is that the set S(M^m) of diffeomorphism classes of smooth manifolds homeomorphic to a given closed smooth manifold M^m (m ≥ 5) is finite.
- For (m ≤ 3), the cardinality |S(M^m)| = 1 (Rado(1925) and Moise (1952)).
- For closed 4-manifolds, Cheeger (1970) showed that there are at most countably many distinct smooth structures.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

- ► The group Θ_m is now completely known for $m \leq 64$. (Frank Adams, G. Brumfiel, W. Browder, M. Mahowald, Mike Hill, Doug Ravenel and Mike Hopkins).
- One consequence of smoothing theory is that the set S(M^m) of diffeomorphism classes of smooth manifolds homeomorphic to a given closed smooth manifold M^m (m ≥ 5) is finite.
- For (m ≤ 3), the cardinality |S(M^m)| = 1 (Rado(1925) and Moise (1952)).
- For closed 4-manifolds, Cheeger (1970) showed that there are at most countably many distinct smooth structures. There are many simply connected closed *m*-manifolds M^m such that |S(M^m)| = ∞ (for instance, R. Friedman-J. W. Morgan (1988) for M = CP²#₉CP²).

► Two smooth structures X₀ and X₁ on a topological manifold M are concordant if there is a smooth structure on M × I which restricts to X_i on M × i, i = 0, 1.

- ► Two smooth structures X₀ and X₁ on a topological manifold M are concordant if there is a smooth structure on M × I which restricts to X_i on M × i, i = 0, 1.
- ► The set of all concordance classes of smooth structures on M is denoted by C(M).

- ► Two smooth structures X₀ and X₁ on a topological manifold M are concordant if there is a smooth structure on M × I which restricts to X_i on M × i, i = 0, 1.
- ► The set of all concordance classes of smooth structures on M is denoted by C(M).
- ▶ Note that there is a natural surjective map $\mathcal{C}(M) \twoheadrightarrow \mathcal{S}(M)$.

- ► Two smooth structures X₀ and X₁ on a topological manifold M are concordant if there is a smooth structure on M × I which restricts to X_i on M × i, i = 0, 1.
- ► The set of all concordance classes of smooth structures on M is denoted by C(M).
- ▶ Note that there is a natural surjective map $\mathcal{C}(M) \twoheadrightarrow \mathcal{S}(M)$.
- ▶ If M^m is a manifold of dimension $(m \le 3)$, $C(M) = \{[M, Id]\}$.

- ► Two smooth structures X₀ and X₁ on a topological manifold M are concordant if there is a smooth structure on M × I which restricts to X_i on M × i, i = 0, 1.
- ► The set of all concordance classes of smooth structures on M is denoted by C(M).
- ▶ Note that there is a natural surjective map $\mathcal{C}(M) \twoheadrightarrow \mathcal{S}(M)$.
- If M^m is a manifold of dimension $(m \le 3)$, $\mathcal{C}(M) = \{[M, Id]\}$.
- $\mathcal{C}(\mathbb{S}^7) = \mathbb{Z}_{28}$,

- ► Two smooth structures X₀ and X₁ on a topological manifold M are concordant if there is a smooth structure on M × I which restricts to X_i on M × i, i = 0, 1.
- ► The set of all concordance classes of smooth structures on M is denoted by C(M).
- ▶ Note that there is a natural surjective map $\mathcal{C}(M) \twoheadrightarrow \mathcal{S}(M)$.
- ▶ If M^m is a manifold of dimension $(m \le 3)$, $C(M) = \{[M, Id]\}$.
- C(S⁷) = Z₂₈, S(S⁷) = Z₂₈/(x ∼ −x) so #S(S⁷) = 15 (Kervaire and Milnor, 1962).

- ► Two smooth structures X₀ and X₁ on a topological manifold M are concordant if there is a smooth structure on M × I which restricts to X_i on M × i, i = 0, 1.
- ► The set of all concordance classes of smooth structures on M is denoted by C(M).
- ▶ Note that there is a natural surjective map $\mathcal{C}(M) \twoheadrightarrow \mathcal{S}(M)$.
- If M^m is a manifold of dimension $(m \le 3)$, $\mathcal{C}(M) = \{[M, Id]\}$.
- ► $\mathcal{C}(\mathbb{S}^7) = \mathbb{Z}_{28}, \ \mathcal{S}(\mathbb{S}^7) = \mathbb{Z}_{28}/(x \sim -x) \text{ so } \#\mathcal{S}(\mathbb{S}^7) = 15$ (Kervaire and Milnor, 1962).
- ► $\mathcal{C}(\mathbb{S}^m) = \Theta_m \ (m \ge 5)$ (Kirby-Siebenmann, 1977).

- ► Two smooth structures X₀ and X₁ on a topological manifold M are concordant if there is a smooth structure on M × I which restricts to X_i on M × i, i = 0, 1.
- ► The set of all concordance classes of smooth structures on M is denoted by C(M).
- ▶ Note that there is a natural surjective map $\mathcal{C}(M) \twoheadrightarrow \mathcal{S}(M)$.
- If M^m is a manifold of dimension $(m \le 3)$, $\mathcal{C}(M) = \{[M, Id]\}$.
- ► $\mathcal{C}(\mathbb{S}^7) = \mathbb{Z}_{28}, \ \mathcal{S}(\mathbb{S}^7) = \mathbb{Z}_{28}/(x \sim -x) \text{ so } \#\mathcal{S}(\mathbb{S}^7) = 15$ (Kervaire and Milnor, 1962).
- ► $\mathcal{C}(\mathbb{S}^m) = \Theta_m \ (m \ge 5)$ (Kirby-Siebenmann, 1977).

$$\mathcal{C}(\mathbb{T}^m) \cong \oplus_i H^i(\mathbb{T}^m; \pi_i(TOP/O))$$

and

$$\mathcal{S}(\mathbb{T}^m) = \oplus_i H^i(\mathbb{T}^m; \pi_i(TOP/O))/GL_m(\mathbb{Z}).$$

#S(E₈^{4k}) = Ø (E₈^{4k} is a closed, topological manifold with signature 8, so that E₈ \ {★} is smoothable with a trivial tangent bundle.)

- #S(E₈^{4k}) = Ø (E₈^{4k} is a closed, topological manifold with signature 8, so that E₈ \ {★} is smoothable with a trivial tangent bundle.)
- Why is $\mathcal{C}(M)$ nicer than $\mathcal{S}(M)$?

- #S(E₈^{4k}) = Ø (E₈^{4k} is a closed, topological manifold with signature 8, so that E₈ \ {★} is smoothable with a trivial tangent bundle.)
- ► Why is C(M) nicer than S(M)? It is in bijection with a computable abelian group and useful for gluing.

- #S(E₈^{4k}) = Ø (E₈^{4k} is a closed, topological manifold with signature 8, so that E₈ \ {★} is smoothable with a trivial tangent bundle.)
- ► Why is C(M) nicer than S(M)? It is in bijection with a computable abelian group and useful for gluing.

Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)

There exists a connected H-space TOP/O such that there is a bijection between C(M) and [M, TOP/O] for any closed connected oriented smooth manifold M with dim $M \ge 5$.

- #S(E₈^{4k}) = Ø (E₈^{4k} is a closed, topological manifold with signature 8, so that E₈ \ {★} is smoothable with a trivial tangent bundle.)
- ► Why is C(M) nicer than S(M)? It is in bijection with a computable abelian group and useful for gluing.

Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)

There exists a connected H-space TOP/O such that there is a bijection between C(M) and [M, TOP/O] for any closed connected oriented smooth manifold M with dim $M \ge 5$.

• TOP/O is the fiber of the natural fibration $BO \mapsto BTOP$.

- #S(E₈^{4k}) = Ø (E₈^{4k} is a closed, topological manifold with signature 8, so that E₈ \ {★} is smoothable with a trivial tangent bundle.)
- ► Why is C(M) nicer than S(M)? It is in bijection with a computable abelian group and useful for gluing.

Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)

There exists a connected H-space TOP/O such that there is a bijection between C(M) and [M, TOP/O] for any closed connected oriented smooth manifold M with dim $M \ge 5$.

 TOP/O is the fiber of the natural fibration BO → BTOP. Moreover, it is an infinite loop space (Boardman and Vogt, 1973);

- #S(E₈^{4k}) = Ø (E₈^{4k} is a closed, topological manifold with signature 8, so that E₈ \ {★} is smoothable with a trivial tangent bundle.)
- ► Why is C(M) nicer than S(M)? It is in bijection with a computable abelian group and useful for gluing.

Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)

There exists a connected H-space TOP/O such that there is a bijection between C(M) and [M, TOP/O] for any closed connected oriented smooth manifold M with dim $M \ge 5$.

► TOP/O is the fiber of the natural fibration BO → BTOP. Moreover, it is an infinite loop space (Boardman and Vogt, 1973); the Atiyah-Hirzebruch spectral sequence applies to compute [M, TOP/O], which is H⁰ of a generalized cohomology theory.

A ロ ト 4 目 ト 4 目 ト 4 目 ・ 9 Q Q

- #S(E₈^{4k}) = Ø (E₈^{4k} is a closed, topological manifold with signature 8, so that E₈ \ {★} is smoothable with a trivial tangent bundle.)
- ► Why is C(M) nicer than S(M)? It is in bijection with a computable abelian group and useful for gluing.

Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)

There exists a connected H-space TOP/O such that there is a bijection between C(M) and [M, TOP/O] for any closed connected oriented smooth manifold M with dim $M \ge 5$.

- ► TOP/O is the fiber of the natural fibration BO → BTOP. Moreover, it is an infinite loop space (Boardman and Vogt, 1973); the Atiyah-Hirzebruch spectral sequence applies to compute [M, TOP/O], which is H⁰ of a generalized cohomology theory.
- $\Theta_m \curvearrowright \mathcal{C}(M)$

- #S(E₈^{4k}) = Ø (E₈^{4k} is a closed, topological manifold with signature 8, so that E₈ \ {★} is smoothable with a trivial tangent bundle.)
- ► Why is C(M) nicer than S(M)? It is in bijection with a computable abelian group and useful for gluing.

Theorem (Fundamental Theorem of Smoothing, Kirby and Siebenmann, 1977)

There exists a connected H-space TOP/O such that there is a bijection between C(M) and [M, TOP/O] for any closed connected oriented smooth manifold M with dim $M \ge 5$.

- ► TOP/O is the fiber of the natural fibration BO → BTOP. Moreover, it is an infinite loop space (Boardman and Vogt, 1973); the Atiyah-Hirzebruch spectral sequence applies to compute [M, TOP/O], which is H⁰ of a generalized cohomology theory.
- $\blacktriangleright \Theta_m \curvearrowright \mathcal{C}(M) \text{ by } ([\Sigma], [N, f]) \longmapsto [N \# \Sigma, f].$

Results....

For example, If M is a closed smooth manifold homotopy equivalent to ℝP⁷, then Θ₇ acts freely on

 $\mathcal{C}(M) = \{ [M \# \Sigma], [\tilde{M} \# \Sigma] \mid \Sigma \in \Theta_7 \},$

but not transitively. Here \tilde{M} represents the non trivial PL-structure on M. (R.'15).

 $\mathcal{C}(M) = \{[M \# \Sigma], [\tilde{M} \# \Sigma] \mid \Sigma \in \Theta_7\},$

but not transitively. Here \tilde{M} represents the non trivial PL-structure on M. (R.'15).

▶ If $f_M : M^m \to \mathbb{S}^m$ is the collapse map, then composition with f_M defines the map $f_M^* : [S^m, TOP/O] \to [M^m, TOP/O]$

 $\mathcal{C}(M) = \{ [M \# \Sigma], [\tilde{M} \# \Sigma] \mid \Sigma \in \Theta_7 \},$

but not transitively. Here \tilde{M} represents the non trivial PL-structure on M. (R.'15).

• If $f_M : M^m \to \mathbb{S}^m$ is the collapse map, then composition with f_M defines the map $f_M^* : [S^m, TOP/O] \to [M^m, TOP/O]$ and fits into the following commutative diagram :

 $\mathcal{C}(M) = \{ [M \# \Sigma], [\tilde{M} \# \Sigma] \mid \Sigma \in \Theta_7 \},$

but not transitively. Here \tilde{M} represents the non trivial PL-structure on M. (R.'15).

• If $f_M : M^m \to \mathbb{S}^m$ is the collapse map, then composition with f_M defines the map $f_M^* : [S^m, TOP/O] \to [M^m, TOP/O]$ and fits into the following commutative diagram :

$$\begin{bmatrix} \mathbb{S}^m, \operatorname{Top}/O \end{bmatrix} \xrightarrow{f_M^*} \begin{bmatrix} M, \operatorname{Top}/O \end{bmatrix}$$
$$\cong \downarrow \qquad \qquad \cong \downarrow$$
$$\mathcal{C}(\mathbb{S}^m) = \Theta_m \xrightarrow{f_M^*} \mathcal{C}(M)$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト → ○ ○ ○ ○ ○ ○

 $\mathcal{C}(M) = \{ [M \# \Sigma], [\tilde{M} \# \Sigma] \mid \Sigma \in \Theta_7 \},$

but not transitively. Here \tilde{M} represents the non trivial PL-structure on M. (R.'15).

• If $f_M : M^m \to \mathbb{S}^m$ is the collapse map, then composition with f_M defines the map $f_M^* : [S^m, TOP/O] \to [M^m, TOP/O]$ and fits into the following commutative diagram :

$$\begin{bmatrix} \mathbb{S}^m, \operatorname{Top}/O \end{bmatrix} \xrightarrow{f_M^*} \begin{bmatrix} M, \operatorname{Top}/O \end{bmatrix}$$
$$\cong \downarrow \qquad \qquad \cong \downarrow$$
$$\mathcal{C}(\mathbb{S}^m) = \Theta_m \xrightarrow{f_M^*} \mathcal{C}(M)$$

where the bottom horizontal map is $[\Sigma^m] \mapsto [M^m \# \Sigma^m, Id]$.

• When the map $f_M^* : \Theta_m \to \mathcal{C}(M^m)$ is injective or surjective ?.

- When the map $f_M^* : \Theta_m \to \mathcal{C}(M^m)$ is injective or surjective ?.
- ▶ If M^m ($m \ge 5$) is a stably parallelizable manifold, the map $f^*_M : \Theta_m \to C(M^m)$ is injective (Browder (1965) and Brumfiel (1971)).

- When the map $f_M^* : \Theta_m \to \mathcal{C}(M^m)$ is injective or surjective ?.
- ▶ If M^m ($m \ge 5$) is a stably parallelizable manifold, the map $f^*_M : \Theta_m \to C(M^m)$ is injective (Browder (1965) and Brumfiel (1971)).
- ▶ If *M* is a closed smooth manifold homotopy equivalent to \mathbb{RP}^7 , the map $f_M^* : \Theta_7 \to \mathcal{C}(M)$ is injective, but not surjective. (R.'15).

- When the map $f_M^* : \Theta_m \to \mathcal{C}(M^m)$ is injective or surjective ?.
- ▶ If M^m ($m \ge 5$) is a stably parallelizable manifold, the map $f^*_M : \Theta_m \to C(M^m)$ is injective (Browder (1965) and Brumfiel (1971)).
- ▶ If *M* is a closed smooth manifold homotopy equivalent to \mathbb{RP}^7 , the map $f_M^* : \Theta_7 \to \mathcal{C}(M)$ is injective, but not surjective. (R.'15).
- ► If M^7 is a closed smooth manifold such that $H^i(M; \mathbb{Z}_2) = 0$ for i = 3, 4, then $f_M^* : \Theta_7 \to \mathcal{C}(M^7)$ is bijective (R.'16).

- When the map $f_M^* : \Theta_m \to \mathcal{C}(M^m)$ is injective or surjective ?.
- ▶ If M^m ($m \ge 5$) is a stably parallelizable manifold, the map $f^*_M : \Theta_m \to C(M^m)$ is injective (Browder (1965) and Brumfiel (1971)).
- ▶ If *M* is a closed smooth manifold homotopy equivalent to \mathbb{RP}^7 , the map $f_M^* : \Theta_7 \to \mathcal{C}(M)$ is injective, but not surjective. (R.'15).
- ► If M^7 is a closed smooth manifold such that $H^i(M; \mathbb{Z}_2) = 0$ for i = 3, 4, then $f_M^* : \Theta_7 \to \mathcal{C}(M^7)$ is bijective (R.'16).
- ▶ If M^8 is a closed smooth 3-connected 8-manifold, then $f_M^* : \Theta_8 \to C(M^8)$ is surjective. (R.'15).

- When the map $f_M^* : \Theta_m \to \mathcal{C}(M^m)$ is injective or surjective ?.
- ▶ If M^m ($m \ge 5$) is a stably parallelizable manifold, the map $f^*_M : \Theta_m \to C(M^m)$ is injective (Browder (1965) and Brumfiel (1971)).
- ▶ If *M* is a closed smooth manifold homotopy equivalent to \mathbb{RP}^7 , the map $f_M^* : \Theta_7 \to \mathcal{C}(M)$ is injective, but not surjective. (R.'15).
- ▶ If M^7 is a closed smooth manifold such that $H^i(M; \mathbb{Z}_2) = 0$ for i = 3, 4, then $f_M^* : \Theta_7 \to \mathcal{C}(M^7)$ is bijective (R.'16).
- ▶ If M^8 is a closed smooth 3-connected 8-manifold, then $f_M^* : \Theta_8 \to C(M^8)$ is surjective. (R.'15).
- For M = CPⁿ(n ≤ 8), the map f^{*}_{CPⁿ} : Θ_{2n} → C(CPⁿ) is injective. K. Kawakubo (1968), F.T.Farrell and Jones (1994).
Smooth Structures

- When the map $f_M^* : \Theta_m \to \mathcal{C}(M^m)$ is injective or surjective ?.
- ▶ If M^m ($m \ge 5$) is a stably parallelizable manifold, the map $f^*_M : \Theta_m \to C(M^m)$ is injective (Browder (1965) and Brumfiel (1971)).
- ▶ If *M* is a closed smooth manifold homotopy equivalent to \mathbb{RP}^7 , the map $f_M^* : \Theta_7 \to \mathcal{C}(M)$ is injective, but not surjective. (R.'15).
- ▶ If M^7 is a closed smooth manifold such that $H^i(M; \mathbb{Z}_2) = 0$ for i = 3, 4, then $f^*_M : \Theta_7 \to \mathcal{C}(M^7)$ is bijective (R.'16).
- ▶ If M^8 is a closed smooth 3-connected 8-manifold, then $f^*_M : \Theta_8 \to C(M^8)$ is surjective. (R.'15).
- For M = CPⁿ(n ≤ 8), the map f^{*}_{CPⁿ} : Θ_{2n} → C(CPⁿ) is injective. K. Kawakubo (1968), F.T.Farrell and Jones (1994).
- For infinitely many values of n ≥ 9, I have obtained (jointly with Samik Basu, 2017) that the map f^{*}_{ℂℙ^{4n+1} : Θ_{8n+2} → C(ℂℙ⁴ⁿ⁺¹) is not injective.</sub>}

- (i) $\mathcal{C}(\mathbb{HP}^3) \cong \mathbb{Z}_2$.
- $(\mathrm{ii}) \ \mathcal{C}(\mathbb{HP}^4) = \left\{ [\mathbb{HP}^4 \# \Sigma] \ | \ \Sigma \in \Theta_{16} \right\}.$
- (iii) C(ℍℙ⁵) has 48 concordance classes and as a group it is isomorphic to Z₂₄ ⊕ Z₂ or Z₄₈.

- (i) $\mathcal{C}(\mathbb{HP}^3) \cong \mathbb{Z}_2$.
- $\text{(ii)} \ \mathcal{C}(\mathbb{HP}^4) = \left\{ [\mathbb{HP}^4 \# \Sigma] \ | \ \Sigma \in \Theta_{16} \right\}.$
- (iii) C(ℍℙ⁵) has 48 concordance classes and as a group it is isomorphic to Z₂₄ ⊕ Z₂ or Z₄₈.

Theorem (Samik Basu + R., 2018) For any two elements $\Sigma_1, \Sigma_2 \in \Theta_{20} \cong \mathbb{Z}_{24}$, $\mathbb{HP}^5 \# \Sigma_1$ is concordant to $\mathbb{HP}^5 \# \Sigma_2$ if and only if $\Sigma_1 = \Sigma_2$.

- (i) $\mathcal{C}(\mathbb{HP}^3) \cong \mathbb{Z}_2$.
- $\text{(ii)} \ \mathcal{C}(\mathbb{HP}^4) = \left\{ [\mathbb{HP}^4 \# \Sigma] \ | \ \Sigma \in \Theta_{16} \right\}.$
- (iii) C(ℍℙ⁵) has 48 concordance classes and as a group it is isomorphic to Z₂₄ ⊕ Z₂ or Z₄₈.
- Theorem (Samik Basu + R., 2018)

For any two elements $\Sigma_1, \Sigma_2 \in \Theta_{20} \cong \mathbb{Z}_{24}$, $\mathbb{HP}^5 \# \Sigma_1$ is concordant to $\mathbb{HP}^5 \# \Sigma_2$ if and only if $\Sigma_1 = \Sigma_2$.

We have thus observed that for $n \leq 5$ and Σ^{4n} is an exotic sphere, then $\mathbb{HP}^n \# \Sigma^{4n} \ncong \mathbb{HP}^n$.

- (i) $\mathcal{C}(\mathbb{HP}^3) \cong \mathbb{Z}_2$.
- $(\mathrm{ii}) \ \mathcal{C}(\mathbb{HP}^4) = \left\{ [\mathbb{HP}^4 \# \Sigma] \ | \ \Sigma \in \Theta_{16} \right\}.$
- (iii) C(ℍℙ⁵) has 48 concordance classes and as a group it is isomorphic to Z₂₄ ⊕ Z₂ or Z₄₈.
- Theorem (Samik Basu + R., 2018)

For any two elements $\Sigma_1, \Sigma_2 \in \Theta_{20} \cong \mathbb{Z}_{24}$, $\mathbb{HP}^5 \# \Sigma_1$ is concordant to $\mathbb{HP}^5 \# \Sigma_2$ if and only if $\Sigma_1 = \Sigma_2$.

We have thus observed that for $n \leq 5$ and Σ^{4n} is an exotic sphere, then $\mathbb{HP}^n \# \Sigma^{4n} \ncong \mathbb{HP}^n$.

Theorem (Samik Basu + R., 2018)

For infinitely many n, there exists an exotic sphere Σ^{4n} such that $\mathbb{HP}^n \# \Sigma^{4n}$ is diffeomorphic to \mathbb{HP}^n .

Problem

Does an exotic torus $\mathbb{T}^{2n} \# \Sigma^{2n}$ (n > 2) carry any complex structures ?

Problem

Does an exotic torus $\mathbb{T}^{2n} \# \Sigma^{2n}$ (n > 2) carry symplectic structures?

This is a generalization of a similar problem, posed by Benson and Gordon (1988) for kähler manifolds and B. Hajduk and A. Tralle (2008) conjectured the following:

Conjecture

There are no symplectic structures on exotic tori.

Interesting problems

- Instead of comparing the diffeomorphism type of M when taking the connected sum M#Σ with an exotic sphere Σ, one might try to compare the group of diffeomorphisms of M and M#Σ.
- Using recent progress in manifold theory by Galatius and Randal-Williams, together with computations in stable homotopy theory, I am very much interested to know the behaviour of the cohomology $H^*(BDiff^+(M))$ and homotopy groups $\pi_k(BDiff^+(M))$ of $B^+Diff(M)$ when replacing M with $M\#\Sigma$.
- ► Recently, Manuel Krannich (2018) have discussed about the cohomology ring H*(BDiff⁺((Sⁿ × Sⁿ)^{#g}); Z) and showed that H¹(BDiff⁺((Sⁿ × Sⁿ)^{#g}); Z) and H¹(BDiff⁺((Sⁿ × Sⁿ)^{#g}#Σ); Z) cannot be isomorphic for certain exotic spheres Σ.

- With Samik Basu : Inertia Groups and Smooth Structures on Quaternionic Projective Space (Submitted).
- With Samik Basu : Inertia Groups of Higher-Dimensional Complex Projective Spaces, Algebraic & Geometric Topology 18 (2018) 387-408.
- Ramesh Kasilingam, *Topological Rigidity Problems*, Journal of Advanced Studies in Topology, Vol. 7, Issue 4 (2016), 161-204.
- Ramesh Kasilingam, A Survey of Smooth and PL-Rigidity Problems on Locally Symmetric Spaces, Journal of Advanced Studies in Topology, Vol. 7, Issue 4 (2016), 205-250.

Thank you for your attention.

ヘロト ヘ部ト ヘヨト ヘヨト

Э

16/16