Spectral Bounds for Vanishing of Cohomology of a Simplicial Complex

Samir Shukla
IIT Bombay
(Joint with D. Yogeshwaran)

Diamond Jubilee Symposium
Indian Institute of Technology Bombay, India
January 4, 2019

Definition (Graph)

A graph G is a pair $(V(G), E(G))$, where
$V(G)$ is the set of vertices and $E(G) \subseteq V(G) \times V(G)$ is the set of edges.

Definition (Graph)

A graph G is a pair $(V(G), E(G))$, where
$V(G)$ is the set of vertices and $E(G) \subseteq V(G) \times V(G)$ is the set of edges.

- A graph G on n vertices is called a complete graph, if $(x, y) \in E(G)$, $\forall x, y \in V(G), x \neq y$ and $(x, x) \notin E(G)$. It is denoted by K_{n}.

Definition (Graph)

A graph G is a pair $(V(G), E(G))$, where
$V(G)$ is the set of vertices and $E(G) \subseteq V(G) \times V(G)$ is the set of edges.

- A graph G on n vertices is called a complete graph, if $(x, y) \in E(G)$, $\forall x, y \in V(G), x \neq y$ and $(x, x) \notin E(G)$. It is denoted by K_{n}.

Example:

G

K_{4}

The degree of a vertex $v \in V(G)$ is $\operatorname{deg}(v):=|\{w \mid(v, w) \in E(G)\}|$.

The degree of a vertex $v \in V(G)$ is $\operatorname{deg}(v):=|\{w \mid(v, w) \in E(G)\}|$. Definition (Laplacian)
The (unnormalized) Laplacian of a graph G is the $V(G) \times V(G)$ matrix $L(G)$ given by

$$
L(G)(x, y):= \begin{cases}\operatorname{deg}(x) & x=y \\ -1 & (x, y) \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

Definition (Clique complex)

Let G be a graph. The clique complex $X(G)$ of G is the simplicial complex, whose simplices are those subsets of $V(G)$ which spans a complete subgraph.

Definition (Clique complex)

Let G be a graph. The clique complex $X(G)$ of G is the simplicial complex, whose simplices are those subsets of $V(G)$ which spans a complete subgraph.

G

$X(G)$

Theorem (Aharoni, Berger \& Meshulam, 2005)
Let G be a graph on n vertices. Let $\lambda_{1}(G) \leq \lambda_{2}(G) \leq \ldots \leq \lambda_{n}(G)$ denote the eigenvalues of $L(G)$. If $\lambda_{2}(G)>\frac{k n}{k+1}$, then $\widetilde{H}^{k}(X(G) ; \mathbb{R})=0$.

Theorem (Aharoni, Berger \& Meshulam, 2005)
Let G be a graph on n vertices. Let $\lambda_{1}(G) \leq \lambda_{2}(G) \leq \ldots \leq \lambda_{n}(G)$ denote the eigenvalues of $L(G)$. If $\lambda_{2}(G)>\frac{k n}{k+1}$, then $\widetilde{H}^{k}(X(G) ; \mathbb{R})=0$.

We have generalized this theorem for two simplicial complexes:

- for a simplicial complex X, whose k-skeleton is a clique complex.

Theorem (Aharoni, Berger \& Meshulam, 2005)

 Let G be a graph on n vertices. Let $\lambda_{1}(G) \leq \lambda_{2}(G) \leq \ldots \leq \lambda_{n}(G)$ denote the eigenvalues of $L(G)$. If $\lambda_{2}(G)>\frac{k n}{k+1}$, then $\widetilde{H}^{k}(X(G) ; \mathbb{R})=0$.We have generalized this theorem for two simplicial complexes:

- for a simplicial complex X, whose k-skeleton is a clique complex.
- for a simplicial complex X, which is a subcomplex of a clique complex Y having the same 1 -skeleton as of X.

Let X be a simplicial complex. For $j \geq 1$, let $X(j)$ denote the set of all j-simplices of X.

Let X be a simplicial complex. For $j \geq 1$, let $X(j)$ denote the set of all j-simplices of X. For $k \geq 1$, let

$$
\begin{aligned}
D_{k}(X):= & \max _{\sigma \in X(k)} \mid\{w \mid \sigma \cup\{w\} \notin X(k+1) \text { and any } \\
& (k+1) \text {-subset of } \sigma \cup\{w\} \text { is a } k \text {-simplex }\} \mid .
\end{aligned}
$$

Let X be a simplicial complex. For $j \geq 1$, let $X(j)$ denote the set of all j-simplices of X. For $k \geq 1$, let

$$
\begin{aligned}
D_{k}(X):= & \max _{\sigma \in X(k)} \mid\{w \mid \sigma \cup\{w\} \notin X(k+1) \text { and any } \\
& (k+1) \text {-subset of } \sigma \cup\{w\} \text { is a } k \text {-simplex }\} \mid .
\end{aligned}
$$

Theorem (Yogeshwaran \& S.)
Let G be the 1 -skeleton of X and let k-skeleton of X is the clique complex of G. If $\lambda_{2}(G)>\frac{k|V(G)|}{k+1}+\left(k+\frac{1}{k+1}\right) D_{k}(X)$, then $\widetilde{H}^{k}(X ; \mathbb{R})=0$.

Let X^{\prime} be a subcomplex of X. For $k \geq 1$, let

$$
S_{k}\left(X, X^{\prime}\right):=\max _{\sigma \in X^{\prime}(k)}\left|\left\{\tau \in X(k+1) \backslash X^{\prime}(k+1) \mid \sigma \subset \tau\right\}\right| .
$$

Let X^{\prime} be a subcomplex of X. For $k \geq 1$, let

$$
S_{k}\left(X, X^{\prime}\right):=\max _{\sigma \in X^{\prime}(k)}\left|\left\{\tau \in X(k+1) \backslash X^{\prime}(k+1) \mid \sigma \subset \tau\right\}\right| .
$$

Theorem (Yogeshwaran \& S.)
Let X be the clique complex of G and the 1 -skeleton of X^{\prime} is G. If $\lambda_{2}(G)>\frac{k|V(G)|}{k+1}+\frac{k+2}{k+1} S_{k}\left(X, X^{\prime}\right)$, then $\widetilde{H}^{k}\left(X^{\prime} ; \mathbb{R}\right)=0$.

Outline of Proof...

For $k \geq 0$, let
$C_{k}(X ; \mathbb{R}):=k^{\text {th }}$-chain group and $C^{k}(X ; \mathbb{R}):=\operatorname{Hom}\left(C_{k}(X) ; \mathbb{R}\right)$.

Outline of Proof...

For $k \geq 0$, let

$$
C_{k}(X ; \mathbb{R}):=k^{\text {th }} \text {-chain group and } C^{k}(X ; \mathbb{R}):=\operatorname{Hom}\left(C_{k}(X) ; \mathbb{R}\right)
$$

We can defined the standard inner product on $C^{k}(X ; \mathbb{R})$ by

$$
\langle\phi, \psi\rangle:=\sum_{\sigma \in X(k)} \phi(\sigma) \psi(\sigma) .
$$

Outline of Proof...

For $k \geq 0$, let

$$
C_{k}(X ; \mathbb{R}):=k^{t h} \text {-chain group and } C^{k}(X ; \mathbb{R}):=\operatorname{Hom}\left(C_{k}(X) ; \mathbb{R}\right) .
$$

We can defined the standard inner product on $C^{k}(X ; \mathbb{R})$ by

$$
\langle\phi, \psi\rangle:=\sum_{\sigma \in X(k)} \phi(\sigma) \psi(\sigma) .
$$

Let $\delta_{k}(X): C^{k}(X ; \mathbb{R}) \rightarrow C^{k+1}(X ; \mathbb{R})$ denote the $k^{\text {th }}$-coboundary operator.

Outline of Proof...

For $k \geq 0$, let

$$
C_{k}(X ; \mathbb{R}):=k^{t h} \text {-chain group and } C^{k}(X ; \mathbb{R}):=\operatorname{Hom}\left(C_{k}(X) ; \mathbb{R}\right)
$$

We can defined the standard inner product on $C^{k}(X ; \mathbb{R})$ by

$$
\langle\phi, \psi\rangle:=\sum_{\sigma \in X(k)} \phi(\sigma) \psi(\sigma) .
$$

Let $\delta_{k}(X): C^{k}(X ; \mathbb{R}) \rightarrow C^{k+1}(X ; \mathbb{R})$ denote the $k^{t h}$-coboundary operator. Let $\delta_{k}^{*}(X): C^{k+1}(X ; \mathbb{R}) \rightarrow C^{k}(X ; \mathbb{R})$ denote the adjoint of $\delta_{k}(X)$. The reduced k-Laplacian of X is the mapping

$$
\Delta_{k}(X):=\delta_{k-1}(X) \delta_{k-1}^{*}(X)+\delta_{k}^{*}(X) \delta_{k}(X): C^{k}(X ; \mathbb{R}) \rightarrow C^{k}(X ; \mathbb{R})
$$

Outline of Proof...

For $k \geq 0$, let

$$
C_{k}(X ; \mathbb{R}):=k^{\text {th }} \text {-chain group and } C^{k}(X ; \mathbb{R}):=\operatorname{Hom}\left(C_{k}(X) ; \mathbb{R}\right)
$$

We can defined the standard inner product on $C^{k}(X ; \mathbb{R})$ by

$$
\langle\phi, \psi\rangle:=\sum_{\sigma \in X(k)} \phi(\sigma) \psi(\sigma) .
$$

Let $\delta_{k}(X): C^{k}(X ; \mathbb{R}) \rightarrow C^{k+1}(X ; \mathbb{R})$ denote the $k^{\text {th }}$-coboundary operator. Let $\delta_{k}^{*}(X): C^{k+1}(X ; \mathbb{R}) \rightarrow C^{k}(X ; \mathbb{R})$ denote the adjoint of $\delta_{k}(X)$. The reduced k-Laplacian of X is the mapping

$$
\Delta_{k}(X):=\delta_{k-1}(X) \delta_{k-1}^{*}(X)+\delta_{k}^{*}(X) \delta_{k}(X): C^{k}(X ; \mathbb{R}) \rightarrow C^{k}(X ; \mathbb{R})
$$

Theorem (Simplicial Hodge Theorem)

$$
\text { For } k \geq 0, \operatorname{Ker} \Delta_{k}(X) \cong \widetilde{H}^{k}(X ; \mathbb{R})
$$

Outline of Proof...

Let $\mu_{k}(X)$ be the minimum eigenvalue of $\Delta_{k}(X)$.
Theorem (Yogeshwaran \& S.)
Let X be a simplicial complex on n vertices. For $k \geq 1$,

$$
k \mu_{k}(X) \geq(k+1) \mu_{k-1}(X)-n-(k(k+1)+1) \sum_{j=2}^{k+1} D_{k}(X, j),
$$

where

$$
\begin{aligned}
D_{k}(X, j):= & \max _{\sigma \in X(k)} \mid\left\{u \mid \sigma \cup\{u\} \notin X(k+1) \text { and } \exists \text { exactly } j \text { vertices } v_{1}, \ldots, v_{j} \in \sigma\right. \\
& \text { such that } \left.\left(\sigma \backslash\left\{v_{i}\right\}\right) \cup\{u\} \in X(k) \forall 1 \leq i \leq j\right\} \mid .
\end{aligned}
$$

Outline of Proof...

Let $\mu_{k}(X)$ be the minimum eigenvalue of $\Delta_{k}(X)$.
Theorem (Yogeshwaran \& S.)
Let X be a simplicial complex on n vertices. For $k \geq 1$,

$$
k \mu_{k}(X) \geq(k+1) \mu_{k-1}(X)-n-(k(k+1)+1) \sum_{j=2}^{k+1} D_{k}(X, j),
$$

where

$$
\begin{aligned}
D_{k}(X, j):= & \max _{\sigma \in X(k)} \mid\left\{u \mid \sigma \cup\{u\} \notin X(k+1) \text { and } \exists \text { exactly } j \text { vertices } v_{1}, \ldots, v_{j} \in \sigma\right. \\
& \text { such that } \left.\left(\sigma \backslash\left\{v_{i}\right\}\right) \cup\{u\} \in X(k) \forall 1 \leq i \leq j\right\} \mid .
\end{aligned}
$$

If k-skeleton of X is clique complex, then $D_{k}(X, j)=0 \forall j \leq k$ and $D_{k}(X, k+1)=D_{k}(X)$.

Outline of Proof...

If \mathbb{I} denotes the $|V(G)| \times|V(G)|$ matrix with all entries 1 , then $\mathbb{I}+L(G)$ represents $\Delta_{0}(X)$ with respect to the standard basis. In particular the minimal eigenvalue of $\Delta_{0}(X)$ (i.e., $\left.\mu_{0}(X)\right)$ is $\lambda_{2}(G)$.

Outline of Proof...

If \mathbb{I} denotes the $|V(G)| \times|V(G)|$ matrix with all entries 1 , then $\mathbb{I}+L(G)$ represents $\Delta_{0}(X)$ with respect to the standard basis. In particular the minimal eigenvalue of $\Delta_{0}(X)$ (i.e., $\left.\mu_{0}(X)\right)$ is $\lambda_{2}(G)$.
Theorem (Yogeshwaran \& S.)
Let X be a simplicial complex and X^{\prime} be a subcomplex of X^{\prime}. For $k \geq 1$,

$$
\mu_{k}\left(X^{\prime}\right) \geq \mu_{k}(X)-(k+2) S_{k}\left(X, X^{\prime}\right)
$$

Application...

The neighborhood of a vertex $v, N(v):=\{w \mid(v, w) \in E(G)\}$.

Application...

The neighborhood of a vertex $v, N(v):=\{w \mid(v, w) \in E(G)\}$.
Definition (Neighborhood complex)
The neighborhood complex $\mathcal{N}(G)$ of a graph G is the simplicial complex:

- simplices are all those subsets of $V(G)$ which have a common neighbor.

Application...

The neighborhood of a vertex $v, N(v):=\{w \mid(v, w) \in E(G)\}$.

Definition (Neighborhood complex)

The neighborhood complex $\mathcal{N}(G)$ of a graph G is the simplicial complex:

- simplices are all those subsets of $V(G)$ which have a common neighbor.

G
$\mathcal{N}(G)$

Application...

Definition

The Erdös-Rényi random graph $G(n, p)$ with edge-probability p is the graph:

- $V(G(n, p))=\{1, \ldots, n\}$,
- $(i, j) \in E(G(n, p))$ with probability p.

Application...

Definition

The Erdös-Rényi random graph $G(n, p)$ with edge-probability p is the graph:

- $V(G(n, p))=\{1, \ldots, n\}$,
- $(i, j) \in E(G(n, p))$ with probability p.

Theorem (Kahle, 2007)
Let $k \geq 1$. If $p=\left(\frac{(k+2) \log n+c_{n}}{n}\right)^{\frac{1}{k+2}}$ with $c_{n} \rightarrow \infty$, then with high probability $\widetilde{H}^{i}(\mathcal{N}(G(n, p) ; \mathbb{R}))=0$ for $i \leq k$.

Application...

Definition

The Erdös-Rényi random graph $G(n, p)$ with edge-probability p is the graph:

- $V(G(n, p))=\{1, \ldots, n\}$,
- $(i, j) \in E(G(n, p))$ with probability p.

Theorem (Kahle, 2007)
Let $k \geq 1$. If $p=\left(\frac{(k+2) \log n+c_{n}}{n}\right)^{\frac{1}{k+2}}$ with $c_{n} \rightarrow \infty$, then with high probability $\tilde{H}^{i}(\mathcal{N}(G(n, p) ; \mathbb{R}))=0$ for $i \leq k$.

Theorem (Yogeshwaran \& S.)
Let $k \geq 1$. If $p=\left(\frac{(k+1) \log n+c_{n}}{n}\right)^{\frac{1}{k+2}}$ with $c_{n} \rightarrow \infty$, then with high probability $\tilde{H}^{i}(\mathcal{N}(G(n, p) ; \mathbb{R}))=0$ for $i \leq k$.

References

[1] R. Aharoni, E. Berger and R. Meshulam, Eigenvalues and homology of flag complexes and vector representations of graphs. Geom. Funct. Anal. 15, no. 3, 555-566, 2005.
[2] M. Kahle, The neighborhood complex of a random graph. J. Comb. Th. Ser. A, 114, no. 2, 380-387, 2007.
[3] S. Shukla and D. Yogeshwaran, Spectral bounds for vanishing of cohomology and the neighborhood complex of a random graph, (submitted).

Thank you

