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Applications

In dose–response studies, responses are increasing with increasing
amount of dose (Simple order).

In clinical trials, a placebo or control group is tested against multiple
treatment groups (Tree order).

Multiple controls versus multiple treatments comparisons (Bipartite
order).

Referred to [Barlow et al., 1972] for more applications.
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Case studies: Simple order

In the study by [Spiegelhalter et al., 1999] the height of the ramus
bone was measured at three equally spaced time points for 20 boys
ages 8 to 9. The goal of the study was to identify significant growth
spurts, i.e., to test for µ1 ≤ µ2 ≤ µ3, with at least one strict inequlity.

Sample means: µ̂ = (µ̂1, µ̂2, µ̂3) = (48.66, 49.62, 50.57)

Design: n = (n1, n2, n3) = (20, 20, 20), Balanced design ?
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Case studies: Tree order

[Igari et al., 2014] investigated the effect of various drugs on
dysporic-like state in rats. In particular, different doses of cytisine
(drug used for smoking cessation treatment) are given to the rats and
associated intracranial self-stimulation (ICSS) thresholds are observed
(response). ICSS measures the potentiation of brain reward function.

Sample means: µ̂ = (µ̂1, . . . , µ̂5) = (97.6, 101.6, 102.2, 103.4, 105.9)

Design: n = (n1, . . . , n5) = (12, . . . , 12), Balanced design ?
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Case studies: Bipartite order

The study by [Blake and Boockfor, 1997] designed to study the effect
of 4-Tert-Octylphenol (OP) on reproductive hormone secretion in the
adult male rats.

The outcome is the ratio of organ (the left kidney) to body weight.

Two control groups (injection of corn oil, no injection) and four
treatment groups with varied doses of OP and estradiol valerate.
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Case studies: Bipartite order

Sample means: µ̂ = (µ̂1, . . . , µ̂5) = (3.78, 3.60, 3.96, 4.06, 3.68)

Design: n = (n1, . . . , n5) = (6, . . . , 6), Balanced design ?
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Stress to

“Customize the experiment for the setting
instead of adjusting the setting to fit a
classical design”.

Smucker, B., Krzywinski, M. and Altman, N.: Optimal experimental
design. Nature Methods 15, 557–560 (2018)
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Model

Suppose there are K treatment groups and ni subjects to the ith group.

One-way ANOVA:

Yij = µi + εij , i = 1, . . . ,K and j = 1, . . . , ni

Yij :response of j th subject in i th treatment group

µi : ith treatment effect

εij ∼ N(0, σ2).
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Order restrictions

In dose response experiments one often expects an increasing
response with an increasing dose.

Simple Order : µ1 ≤ µ2 ≤ · · · ≤ µK
Comparing several treatments with a control.

Tree Order : µ1 ≤ [µ2, . . . , µK ]

Investigate and localize the age at which learning ability peaks.

Umbrella Order : µ1 ≤ · · · ≤ µh ≥ · · · ≥ µK
In General,

M1 = {µ ∈ RK : Rµ ≥ 0},

matrix R with elements rij ∈ {−1, 0, 1}, referred to as restriction matrix.
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Objective

The existing methods for designing experiments in the presence of an
ordering are limited in scope. A broad understanding and formal methods,
for constructing optimal designs under order restrictions are still lacking.
Our objective is to:

Introducing a new maxi–min optimality criteria tailored for testing
hypotheses;

Using this criteria to derive optimal designs for u–LRTs, r–LRTs and
Intersection-Union-Tests (IUTs); and

Exploring the relations between the proposed designs and some other
well known design criteria.
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Graphical Representation
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Graphical Representation

Let R and L denote, respectively, the set of roots and leafs of an
order graph.

The pair (i , j) where i ∈ R and j ∈ L is called a maximal pair if there
is a path from i to j .

The degree of the vertex i , denoted by di , is the number of directed
edges connected to it.

Let V denotes the set of maximal pairs with cardinality |V|.
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Graphical Representation
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(a) Bipartite
order

L = {1, 2}, R = {3, 4, 5}, d1 = 3, d2 = 2, d3 = 1, d4 = 2, d5 = 2,
V = {(1, 3), (1, 4), (1, 5), (2, 4), (2, 5)}, |V| = 5.
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Tests

Hypothesis

H0 : µ ∈M0 versus H1 : µ ∈M1 \M0,

where M0 = {µ ∈ RK : µ1 = µ2 = · · · = µK}.
The LRT statistic is:

Tn = 2 log

{
maxµ∈M1 L(µ)

maxµ∈M0 L(µ)

}
where

L(µ) =
K∏
i=1

ni∏
j=1

(
√

2π)−1/2 exp{−1

2
(Yij − µi )2}

.
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Tests

u–LRT (standard ANOVA): H1 : µ /∈M0.

u–LRT: Tn follows a chi–square distribution.

r–LRT: H1 : µ ∈M1 \M0.

r–LRT: Tn follows a chi–bar–square distribution
([Robertson et al., 1988]).
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Approximate Design

Exact design: N = {(n1, n2, . . . , nK ) : ni ≥ 0,
∑K

i=1 ni = N} denote
the set of all possible ways of arranging N subjects in K groups.

Approximate design: denoted by ξ, where
ξ = {(ξ1, ξ2, . . . , ξK )T} ∈ Ξ is a vector of probabilities and the design
space Ξ is the unit simplex i.e., ξi ≥ 0 and

∑K
i=1 ξi = 1. Basically,

ξi = ni/N, for i = 1, . . . ,K .

The power function

π(µ; ξ) = Pµ,ξ(Tn ≥ cα,ξ) =
K∑
j=0

wjP(χ2
j ≥ c)

depends on µ, ξ and wj = wj(Σ,M1) are non-negative weights
summing to unity and Σ = diag(N/n1, . . . ,N/nK ).
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Motivation: A power maximizing design

Theorem

If |µi − µj | = max{|µs − µt | : 1 ≤ s, t ≤ K} then an optimal design for
standard ANOVA is ξopt = (1/2)(ei + ej), where el is the l th standard
basis of RK .

Prior to the experiment, it is not know that which pair (i , j) of treatments
is maximally separated.

Example

For µ1 = (1,−1, 0, 0), then ξ1 = (1/2, 1/2, 0, 0) is optimal. For
µ2 = (0, 0,−1, 1), then ξ2 = (0, 0, 1/2, 1/2) is optimal. Then
πξ1,µ1 = πξ2,µ2 = 1 as N →∞ but πξ2,µ1 = πξ1,µ2 = α as N →∞.
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Design Selection Criterion

Define ξMM and µLFC as the the values satisfying:

π(µLFC; ξMM) = max
ξ

min
µ
π(µ; ξ), (1)

where ξ ∈ Ξ and µ ∈Mδ ⊂M1 \M0 where δ measures the distance
from the null.

Parameter space:

Mδ = {µ ∈ RK : Iµ ≥ 0,Rµ ≥ 0,
∑

(i ,j)∈V

(µi − µj) ≥ δ}. (2)

We refer to ξMM as the maxi–min design (MM–design), and µLFC as the
least favorable configuration (LFC).
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Remark

The constraint in (2) in a 1–norm. More generally a κ–norm would lead to
a constraint of the type

∑
(i ,j)∈V(µi − µj)κ)1/κ ≥ δ. For example, when

κ = 2 the sum
∑

(i ,j)∈V(µi − µj)2 can be rewritten as µTLµ where L is
the Laplacian matrix of the order graph; whereas when κ→∞ we obtain
the constraint max(i ,j)∈V(µi − µj) ≥ δ. A little thought reveals that κ
plays no role in the minimization of the power function over Mδ and
therefore for simplicity we set κ = 1.
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Results: u–LRT (ANOVA)

Theorem

The balanced design is the maxi-min design in the standard ANOVA
setting.

Theorem

For any order graph the MM–design for the u–LRT is given by:

ξMM = |V|−1
∑

(i ,j)∈V

ξij , where ξij = (ei + ej)/2.

Further simplifies to

ξMM = (2|V|)−1(t1, . . . , tK ),

where ti = di if i ∈ L ∪R and 0 otherwise.
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Sketch of the proof:

Non-centrality parameter (NCP) versus Power.

Reduction of general order graph to Bipartite order.

Equivalence Theorem.
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Corollary

The designs: (i) (e1 + eK )/2; (ii) e1/2 +
∑K

i=2 ei/(2(K − 1)); and (iii)
eh/2 + (e1 + eK )/4 are the MM–designs for the simple, tree and umbrella
(with a peak at h) order, respectively.
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MM–Designs
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Figure: MM–designs for various order restrictions
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r–LRT

Theorem

The design (e1 + eK )/2 is the MM–design for the r–LRT under the simple
order.

Theorem

For any order graph and as N →∞ the MM–design for the r–LRT satisfies

ξR
MM = ξU

MM + o(1).
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Results
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Figure: The power of the u–LRT based on balanced and Dunnett designs and the
powers of the r–LRT based on the MM–design for tree order with K = 4
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Results: Simulated

Table: The required sample sizes (N) necessary to achieve pre-specified power
based on the r–LRT. The MM, balanced, Dunnett and Singh designs are
compared under the tree order with K = 4 and K = 5. The reduction in sample
size due to the MM design are reported in (%).

N(K = 4) N(K = 5)

Power MM Balanced Dunnett Singh MM Balanced Dunnett

60% 78
112 88 86

87
149 104

(44%) (13%) (10%) (71%) (19.5%)

80% 130
185 145 140

139
239 164

(42%) (11.5%) (7.7%) (72%) (18%)
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Results: Real data examples

Table: Sample size N required to achieve a 80% power based on r–LRT.

Case Study Simple order Tree order (a) Bipartite order

Design
MM 42 99 280

Balanced 66 140 320
Dunnett’s – 110 –
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Further work...

Do not assign observations to the intermediate group.

As a solution, we also proposed designs based on Intersection Union
Tests (IUTs).

MM–design are Bayes design with respect to the least favourable prior
of µ.

MM–design is Nash design associated with the Game theoritic
framework of the usual ANOVA.

Singh, Davidov (University of Haifa, Israel) Designs for Ordered Experiments 28 / 30



Future work

Designs for experiments with co-variates models.

Correlated observations.

Generalized linear models.
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Thank

You: for your attention.

Questions and Suggestions?
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