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Foliations

Definition

A codimension one foliation F of a 3-manifold M is a union of disjoint
connected surfaces Li , called the leaves of F , in M such that:

1 ∪iLi = M, and
2 there exists an atlas A on M with respect to which F satisfies the

following local product structure:
for every p ∈ M, there exists a coordinate chart (U, (x , y , z)) in A about p
such that U ≈ R3 and the restriction of F to U is the union of planes given
by z = constant.
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Figure: Local patches of a foliation.
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Foliation of a strip

Figure: Translates of a curve which asymptote to the lines x = ±1

Tejas Kalelkar Indian Institute of Science Education and Research, Pune Taut Foliations of 3-manifolds



Foliation of a solid cylinder

Figure: Rotating the curves about the Y -axis gives planar leaves, along with one
cylinder leaf.
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Reeb foliation of a solid torus

Figure: Taking quotient-space of integer-translations in Y -direction

Figure: Reeb foliation of a solid torus

Theorem (Lickorish, Novikov - Zeischang)

Every closed 3-manifold has a codimension one foliation.

Remark: The foliation obtained from this general construction always has Reeb
components.
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Taut Foliations

Definition

A taut foliation F of M is a codimension one foliation such that there exists an
embedded closed curve in M that intersects each leaf of F transversely.

Remark

Taut foliations are Reebless, i.e, they do not have Reeb components and so do
not come from the general construction of foliations for 3-manifolds.

Theorem (Novikov)

A foliation of an atoroidal 3-manifold is taut if and only if it has no Reeb
components.
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A taut foliation F of M is a codimension one foliation such that there exists an
embedded closed curve in M that intersects each leaf of F transversely.

Remark

Taut foliations are Reebless, i.e, they do not have Reeb components and so do
not come from the general construction of foliations for 3-manifolds.

Figure: A proper arc cannot be transverse to leaves of a Reeb foliation.

Theorem (Novikov)

A foliation of an atoroidal 3-manifold is taut if and only if it has no Reeb
components.
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A taut foliation F of M is a codimension one foliation such that there exists an
embedded closed curve in M that intersects each leaf of F transversely.

Remark

Taut foliations are Reebless, i.e, they do not have Reeb components and so do
not come from the general construction of foliations for 3-manifolds.

Figure: An arc transverse to leaves of a Reeb foliation.

Theorem (Novikov)

A foliation of an atoroidal 3-manifold is taut if and only if it has no Reeb
components.
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Properties of manifolds with taut foliation

Question

What are the topological/geometric consequences of having a taut foliation?

Theorem (Palmeira, Rosenberg, Haefliger)

If M is a closed, orientable 3-manifold that has a taut foliation with no sphere
leaves then M is covered by R3, M is irreducible and has infinite fundamental
group.

Theorem (Sullivan)

Let F be a co-orientable C2 foliation of M. The following are equivalent:

1 F is taut.

2 M admits a volume preserving flow transverse to F , for some volume form.

3 There is a closed 2-form θ on M which is positive on TF .

4 There is a Riemannian metric on M for which leaves of Fare minimal
surfaces.
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Examples of manifolds with taut foliations

Question

When does a 3-manifold have a taut foliation?

Theorem (Thurston, Gabai)

Let M be a compact connected irreducible orientable 3-manifold whose
boundary is a (possibly empty) union of tori. A properly embedded
homologically essential surface Σ is a leaf of a taut foliation of M if and only if
it minimizes −χ(Σ) amongst all proper embedded surfaces with no spherical
components in its homology class.

Theorem (Calliat-Gilbert, Matignon; Eisenbud, Hirsch, Neumann,
Jankins, Naimi, Roberts etc )

For Seifert fibered rational homology spheres, existence of C2-taut foliation can
be determined in terms of the Seifert invariants.

Question

(Open) When do hyperbolic rational homology spheres have taut foliations?
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Taut foliation of mapping torus of a surface

Ft@
φ Ft

Figure: Surface bundle over a circle, Mφ = F × I/(x , 1) ∼ (φ(x), 0) where φ is a
homeomorphism of F that fixes each boundary component.
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Taut foliation of mapping torus of a surface

Ft@φ Ft

Figure: The foliation of Mφ by fibers is a taut foliation.
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Taut foliation of mapping torus of a surface

Ft@φ Ft

Figure: The foliation of Mφ by fibers is a taut foliation.
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Taut foliation of mapping torus of a surface

Ft@φ Ft

Figure: The foliation of Mφ by fibers gives a foliation of the boundary torii by curves
of slope 0.
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Taut foliation of mapping torus of a surface

Ft@φ Ft

Figure: A foliation of the boundary torii by parallel curves of slope 1
5

.
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Our results

Theorem (K, Roberts)

Given an orientable, fibered compact 3-manifold, a fibration with fiber surface
of positive genus can be perturbed to yield transversely oriented taut foliations
realizing a neighborhood of rational boundary multislopes about the boundary
multislope of the fibration.

Corollary

For a surface-bundle Mφ with fibers having k components, there is an open
neigborhood U of 0 ∈ Qk such that for each point (m1, ...,mk) ∈ U , the closed
manifold obtained by a Dehn filling Mφ along the multicurve (m1, ...,mk) also
has a transversely oriented taut foliation.

Theorem (Alexander)

Existence of an open-book decomposition: Any closed orientable 3-manifold
can be realized by Dehn filling a surface bundle over a circle.
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Branched surface

Figure: Local model of a branched surface

Definition

A branched surface is a 2-complex B in a 3-manifold M, locally modeled on the
spaces shown above.
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Lamination carried by a branched surface

Figure: One-dimensional branch surface B, called a train-track.
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Lamination carried by a branched surface

Figure: Neighbourhood N(B)
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Lamination carried by a branched surface

Figure: Fibered neighbourhood N(B)
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Lamination carried by a branched surface

Figure: Lamination λ carried by B

Definition

A lamination λ carried by B is a closed disjoint union of surfaces in N(B),
transverse to the I -fibration.
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Laminar branched surface

Definition

A branched surface B in a closed 3-manifold M is called a laminar branched
surface if it satisfies the following conditions:

1 ∂hN(B) is incompressible in M \ int(N(B)), no component of ∂hN(B) is a
sphere and M \ B is irreducible.

2 There is no monogon in M \ int(N(B)); i.e., no disk D ⊂ M \ int(N(B))
with ∂D = D ∩N(B) = α∪ β, where α ⊂ ∂vN(B) is in an interval fiber of
∂vN(B) and β ⊂ ∂hN(B)

3 There is no Reeb component; i.e., B does not carry a torus that bounds a
solid torus in M.

4 B has no trivial bubbles.

5 B has no sink disk or half sink disk.
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Sink disk

Figure: A sinkdisk

Definition

Let L be the branching locus of B and let X denote the union of double points
of L. A sink disk is a disk branch sector D of B for which the branch direction
of each component of (L \ X ) ∩ D points into D. A half sink disk is a sink disk
which has nonempty intersection with ∂M.
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Laminar branched surfaces carry essential laminations

Theorem (Tao Li)

Let M be an irreducible and orientable 3-manifold whose boundary is a union
of incompressible tori. Suppose B is a laminar branched surface and ∂M \ ∂B
is a union of bigons. Then, for any multislope (s1, ..., sk) ∈ (Q ∪ {∞})k that
can be realized by the train track ∂B, if B does not carry a torus that bounds a
solid torus in M̂(s1, ..., sk), then B fully carries a lamination λ(s1,...,sk ) whose
boundary consists of the multislope (s1, ..., sk) and λ(s1,...,sk ) can be extended to

an essential lamination in M̂(s1, ..., sk).
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Outline of Proof

There exists a branched surface B in Mφ such that:

1 B is laminar.

2 B does not carry any compact surface (other than F ).

3 There exists a neighbourhood U of 0 ∈ Qk such that for any
(m1, ...,mk) ∈ U there are closed curves carried by the train track ∂B in
the boundary torii, with slopes (m1, ...,mk).

4 Furthermore, M \ N(B) is a union of product regions S × I , for some
components S of ∂hN(B).
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Interval in terms of pseudo-anosov map

Question

What is the precise interval around slope 0, in terms of the pseudo-anosov
monodromy, which is realised by taut foliations?

Theorem (Roberts, 2000)

Suppose M is a surface-bundle over a circle with fiber F , pseudo-anosov
monodromy φ and a single boundary component. Fix the canonical coordinate
system on ∂M determined by the given fibering. Let γ denote a closed orbit of
the suspension flow of φ restricted to ∂F and let λ = ∂F . Then, one of the
following is true:

1 |γ ∩ λ| = 1, and M contains taut foliations realizing all boundary slopes in

(−∞,∞); in this case M̂(r) contains a taut foliation for all rational r ∈ Q
2 γ as positive slope, and M contains taut foliations realizing all boundary

slopes in (−∞, 1); in this case, M̂(r) contains a taut foliation for all
rational r ∈ (−∞, 1)

3 γ as negative slope, and M contains taut foliations realizing all boundary
slopes in (−1,∞); in this case, M̂(r) contains a taut foliation for all
rational r ∈ (−1,∞)
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Current project: Obtain similar result for disconnected boundary

Question

Find the open interval explicitly in terms of the pseudo-anosov map, such that
every rational point in it is realised by a taut foliation.

Remark

Note, the naive generalization of taking product of open intervals for
boundaries does not work, as can be seen by the Baldwin-Etnyre examples.
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Taut foliation of knot-complements

Theorem (Gabai)

Let k be a non-trivial knot in S3. Let S be a minimal genus Seifert surface for
k in S3. There exists a taut foliation F of M = S3 \ int(N(k)) such that S is a
leaf of F . In particular, there is a foliation whose restriction to the boundary is
a collection of circles of slope 0.

Theorem (Li - Roberts, 2014)

Let k be a non-trivial knot in S3. Then there is an interval (−a, b) with
a, b > 0 such that for any rational slope s ∈ (−a, b), M = S3 \ int(N(k)) has a
taut foliation whose restriction to the boundary torus ∂M is a collection of
circles of slope s. Moreover, by attaching disks along the boundary circles, the
foliation can be extended to a taut foliation in M̂(s), where M̂(s) is the
manifold obtained by performing Dehn surgery to k with surgery slope s.
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Current project: Generalise result to link complements

Conjecture

Let L be a non-trivial link in S3. Then there is an open set U containing 0 such
that for any rational multi-slope (s1, ..., sk) ∈ U , M = S3 \ int(N(L)) has a taut
foliation whose restriction to the boundary torii ∂M is a collection of circles of
slope si . Moreover, by attaching disks along the boundary circles, the foliation
can be extended to a taut foliation in M̂(si ), where M̂(si ) is the manifolds
obtained by performing Dehn surgery to L with surgery slopes si .
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Basic definitions:Parallel Tuple

α1
α2 α3

A1 A2

Ak−1 αk−1

αk

c

S

Figure: A Parallel tuple {αi} on the surface F

Definition

Let (α1, ..., αk) be a tuple of simple arcs properly embedded in F with
∂αj ⊂ T j . Such a tuple will be called parallel if F \ {α1, ..., αk} has k
components, k − 1 of which are annuli {Aj} with ∂Aj ⊃ {αj , αj+1} and one
component S of genus g − 1 with ∂S ⊃ {α1, αk}. Furthermore all αj are
oriented in parallel, i.e., orientation of ∂Aj agrees with {αj ,−αj+1} and
orientation of ∂S agrees with {αk ,−α1}. Note that, in particular, each αj is
non-separating.
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Basic definitions: Good Pair of Parallel Tuples

S

c

T 1

T k

T 2

α1
αkα2

β1

βk

β2

Figure: Neighbourhood of F with a good pair ((αj ), (βj ))

Definition

A pair of tuples (αi )i=1...k and (βj)j=1...k will be called good if both are parallel
tuples and αi intersects βj exactly once when i 6= j while αi is disjoint from βj

when i = j .
A sequence of parallel tuples
σ = ((α1

0, α
2
0, ..., α

k
0), (α1

1, α
2
1, ..., α

k
1), ..., (α1

n, α
2
n, ..., α

k
n)) will be called good if

for each 0 ≤ i < n, 0 ≤ j ≤ k, the pair ((αj
i ), (α

j
i+1)) is good.
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Basic definitions: Oriented Tuple

α

β

α

β

α α

ββ

(a) (b)

Figure: A pair of arcs in position (a) is called negatively oriented, while a pair in
position (b) is called positively oriented

Definition

We say a good pair ((αj), (βj)) is positively oriented if for each j ∈ {1, ..., k} a
neighbourhood of the j-th boundary component in F is as shown in (b) above.
Analogously define negatively oriented.
We say a good sequence σ = ((αj

0), (αj
1), ..., (αj

n)) is positively oriented if each
pair ((αj

i ), (α
j
i+1)) is positively oriented. Similarly define negatively oriented

sequence.
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Generators of Mapping Class Group of a surface

η1

η2g+k−2

η2g
η2g−2

η7

η6

η5

η4 η3
η2 γ12

γ2g−4,2g−2

γ68

γ46

γ24

α1

αk

αk−1

α2

β

β1

βg−1

β3

β2

η2g+2

δ1

δk

δk − 1

δ2

Theorem (Gervais)

Dehn twists along the curves shown in the figure above generate the Mapping
Class Group of F relative ∂F .
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Oriented Spine in the neighbourhood of F

S

c

D1 D2 Dk

T 1

T k

T 2

α1 αkα2

β1

βk

β2

Figure: Neighbourhood of F with a good positively oriented pair ((αj ), (βj )) in the
oriented spine
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Associated Branched surface B

αkα3α2α1

βk

β1

β2

β3

S

Figure: Neighbourhood of F in the associated branched surface B
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Weighted traintrack on a boundary torus

x

x

x

x y

y

y

y
λj

µj

1 + y

1 + y

1 + y

1 + y

Figure: The weighted boundary train track when n = 4

The boundary train track τ j = B ∩ T j carries all slopes realizable by x−y
n(1+y)

for

some x , y > 0. Therefore, τ j carries all slopes in (− 1
n
,∞).
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