Fixed Point and Best Proximity Point Theorems: Some Open Problems Related to Nonexpansive Mappings

P. Veeramani

Department of Mathematics
Indian Institute of Technology Madras
Chennai- 600036
Let C be a non-empty subset of a normed linear space X. A mapping $T : C \rightarrow C$ is said to be nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all x, y in C.

A closed bounded convex subset C of X has fixed point property (FPP) if every nonexpansive mapping on C has a fixed point in C. If C is weakly compact convex, then the same property is called weak fixed point property (WFPP). Also, X has FPP (WFPP) if every closed bounded (weakly compact) convex subset of X has FPP (WFPP).
Let C be a non-empty subset of a normed linear space X. A mapping $T : C \to C$ is said to be nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all x, y in C.

A closed bounded convex subset C of X has fixed point property (FPP) if every nonexpansive mapping on C has a fixed point in C. If C is weakly compact convex, then the same property is called weak fixed point property (WFPP).
Let C be a non-empty subset of a normed linear space X. A mapping $T : C \rightarrow C$ is said to be nonexpansive if
\[\| Tx - Ty \| \leq \| x - y \| \]
for all x, y in C.

A closed bounded convex subset C of X has fixed point property (FPP) if every nonexpansive mapping on C has a fixed point in C. If C is weakly compact convex, then the same property is called weak fixed point property (WFPP).

Also, X has FPP (WFPP) if every closed bounded (weakly compact) convex subset of X has FPP (WFPP).
Definition 1 (Brodskii, Milman)

[4, 7] A convex subset C of X has normal structure if for every closed bounded convex subset K of C with $\text{diam}(K) > 0$ there exists a point $x \in K$ such that

\[r(x, K) = \sup\{\|x - y\| : y \in K\} < \text{diam}(K). \]

Theorem 2 (Kirk)

[10] Every weakly compact convex subset C of X with normal structure has WFPP.

P. Veeramani
The classical spaces $\ell_1, c_0, c, \ell_\infty$ do not have FPP. In 1981, Maurey [1, 12] proved that c_0 (and c) has WFPP. Note that c_0 does not have normal structure.

Question: Does every Banach space has WFPP?
In 1981, Alspach [2] showed that $L_1[0, 1]$ does not have WFPP.

$$K := \{ f \in L_1[0, 1]: \int f = 1, 0 \leq f \leq 2 \}$$

$$(Tf)t = \begin{cases}
\min\{2f(t), 2\}, & 0 \leq t \leq 1/2 \\
\max\{2f(2t - 1) - 2, 0\}, & 1/2 < t \leq 1.
\end{cases}$$

Does every reflexive Banach space has FPP? remains open.
In 2009, Benavides [3] showed that every reflexive space can be renormed to satisfy FPP.

Question: Does every super-reflexive space has FPP?- remains open.

In 1981, Maurey [1] proved that every super reflexive space has FPP for isometries.

Question: Does every renorming of ℓ^2 has FPP? Also remains open.
In 2013, Jiménez-Melado and Llorens-Fuster [6] proved the following:

Theorem 3

Every equivalent renorming of ℓ^2 *of the form*

$$|x| = \max\{|x|_2, p(x)\}, \text{ where } p \text{ is a seminorm on } \ell^2,$$

has the WFPP if p *satisfies the following condition:*

There exists $k \in \mathbb{N}$ *such that for all* x_1, \cdots, x_k *in* ℓ^2 *with pairwise disjoint supports we have*

$$p(z) \leq \max\{p(z - x_1), \cdots, p(z - x_k)\}, \text{ for all } z \in \ell^2. \quad (1)$$

Theorem 4

[8] Let \((X, \| \cdot \|)\) be a Banach space having normal structure. Let \(\{e_n\}\) be a Schauder basis of \(X\). Then every equivalent renorming of \(X\) of the form,
\[|x|_\beta = \max\{\|x\|, \beta q(x)\}, \]
where \(q\) is a seminorm on \(X\), has the WFPP, for all \(\beta > 0\), if \(q\) satisfies the following condition:

There exists \(k \in \mathbb{N}\) such that for all \(x_1, \ldots, x_k\) in \(X\) with pairwise disjoint supports with respect to \(\{e_n\}\), we have

\[q(z) \leq \max\{q(z - x_1), \ldots, q(z - x_k)\}, \text{ for all } z \in X. \]

Gopal Dutta and P. Veeramani, Some renormings of Banach spaces with the weak fixed point property for nonexpansive mappings, Acta Sci. Math. (Szeged) (Accepted).
Theorem 5

[8] Every Banach space having normal structure and Schauder basis has an equivalent renorming that lacks of asymptotic normal structure but has the WFPP.

[8] Let \(X = \ell^p \), \(1 < p < \infty \). Define, \(|x|_\beta = \max\{\|x\|_p, \beta \|x\|_\infty\} \), \(\beta \geq 1 \). Then \(|\cdot|_\beta \) is an equivalent remorming of \(\|\cdot\|_p \). We proved that \((\ell^p, |\cdot|_\beta)\) has normal structure if and only if \(\beta < 2^{1/p} \). But it has the WFPP for all \(\beta \geq 1 \).

Gopal Dutta and P. Veeramani, Some renormings of Banch spaces with the weak fixed point property for nonexpasive mappings, Acta Sci. Math. (Szeged) (Accepted).
Proximal Normal Structure A nonempty convex pair \((A, B)\) in a Banach space \(X\) is said to have proximal normal structure if for every closed, bounded, convex proximal pair \((K_1, K_2) \subset (A, B)\) for which \(\text{dist}(K_1, K_2) = \text{dist}(A, B)\) and \(\delta(K_1, K_2) > \text{dist}(K_1, K_2)\), there exists \((x, y) \in K_1 \times K_2\) such that

\[
r_x(K_2) < \delta(K_1, K_2), \quad r_y(K_1) < \delta(K_1, K_2).
\]

The notion of proximal normal structure introduced by Eldred et. al. to prove:

Theorem 6 (Eldred, et. al.)

If \((A, B)\) is a nonempty weakly compact convex pair in a Banach space \(X\) with proximal normal structure and \(T : A \cup B \to A \cup B\) is relatively cyclic nonexpansive (\(\|Tx - Ty\| \leq \|x - y\|\), for all \(x \in A, y \in B\) and \(T(A) \subset B, T(B) \subset A\)), then \(T\) has best proximity point in \(A \cup B\), i.e. there exist \(x \in A, y \in B\) such that

\[\|x - Tx\| = \|y - Ty\| = \text{dist}(A, B).\]

Theorem 7 (Eldred, et. al.)

If \((A, B)\) is a nonempty weakly compact convex pair in a strictly convex Banach space \(X\) with proximal normal structure and \(T : A \cup B \to A \cup B\) is relatively non cyclic nonexpansive \((||Tx - Ty|| \leq ||x - y||\), for all \(x \in A, y \in B\)) with \(T(A) \subset A, T(B) \subset B\), then \(T\) has best proximity point in \(A \cup B\) i.e. there exist \(x \in A, y \in B\) such that \(Tx = x, Ty = y\) and \(||x - y|| = dist(A, B)\).

Gopal Dutta and P. Veeramani, Some renormings of Banach spaces with the weak fixed point property for nonexpasive mappings, Acta Sci. Math. (Szeged) (Accepted).

THANK YOU