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Let C be a non-empty subset of a normed linear space X . A
mapping T : C → C is said to be nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖ for all x , y in C .

A closed bounded convex subset C of X has fixed point
property (FPP) if every nonexpansive mapping on C has a
fixed point in C . If C is weakly compact convex, then the
same property is called weak fixed point property (WFPP).

Also, X has FPP (WFPP) if every closed bounded (weakly
compact) convex subset of X has FPP (WFPP).
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Definition 1 (Brodskii, Milman)
[4, 7] A convex subset C of X has normal structure if for every
closed bounded convex subset K of C with diam(K ) > 0 there
exists a point x ∈ K such that
r(x ,K ) = sup{‖x − y‖ : y ∈ K} < diam(K ).

Theorem 2 (Kirk)
[10] Every weakly compact convex subset C of X with normal
structure has WFPP.

4M. S. Brodskii and D. P. Mil’man, On the center of a convex set, Doklady
Akad. Nauk SSSR (N.S.) 59 (1948), 837-840.

7K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge
Studies in Advanced Mathematics, vol. 28, Cambridge University Press,
Cambridge, 1990.

10W. A. Kirk, A fixed point theorem for mappings which do not increase
distances, Amer. Math. Monthly 72 (1965), 1004-1006.
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The classical spaces `1, c0, c, `∞ do not have FPP.
In 1981, Maurey [1, 12] proved that c0 ( and c) has WFPP. Note
that c0 does not have normal structure.

1A. G. Aksoy and M. A. Khamsi, Nonstandard methods in fixed point
theory, Universitext, Springer-Verlag, New York, 1990.

12B. Maurey, Points fixes des contractions de certains faiblement compacts
de L1, seminar on Functional Analysis, 1980-1981, Ecole Polytech., Palaiseau,
1981, pp. Exp. No. VIII, 19.
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Question: Does every Banach space has WFPP?
In 1981, Alspach [2] showed that L1[0, 1] does not have WFPP.

K := {f ∈ L1[0, 1] :
∫

f = 1, 0 ≤ f ≤ 2}

(Tf )t =

 min{2f (t), 2}, 0 ≤ t ≤ 1/2

max{2f (2t − 1)− 2, 0}, 1/2 < t ≤ 1.

2D. E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math.
Soc. 82 (1981), no. 3, 423-424.
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Question:

Does every reflexive Banach space has FPP?- remains open.
In 2009, Benavides [3] showed that every reflexive space can be
renormed to satisfy FPP.

3T. Dominguez Benavides, A renorming of some nonseparable Banach
spaces with the fixed point property, J. Math. Anal. Appl. 350 (2009), no. 2,
525-530.

5Linares, Carlos A. Hernandez; Japon, Maria A. A, Renorming in some
Banach spaces with applications to fixed point theory. J. Funct. Anal. 258
(2010), no. 10, 3452-3468.

12B. Maurey, Points fixes des contractions de certains faiblement compacts
de L1, seminar on Functional Analysis, 1980-1981, Ecole Polytech., Palaiseau,
1981, pp. Exp. No. VIII, 19.
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Question: Does every super-reflexive space has FPP?- remains
open.
In 1981, Maurey [1] proved that every super reflexive space has
FPP for isometries.

1A. G. Aksoy and M. A. Khamsi, Nonstandard methods in fixed point
theory, Universitext, Springer-Verlag, New York, 1990.
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Question: Does every renorming of `2 has FPP?- Also remains
open.
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In 2013, Jiménez-Melado and Llorens-Fuster [6] proved the
following:

Theorem 3
Every equivalent renorming of `2 of the form
|x | = max{‖x‖2, p(x)}, where p is a seminorm on `2, has the
WFPP if p satisfies the following condition:
There exists k ∈ N such that for all x1, · · · , xk in `2 with pairwise
disjoint supports we have

p(z) ≤ max{p(z − x1), · · · , p(z − xk)}, for all z ∈ `2. (1)

6A. Jimenez-Melado and E. Llorens-Fuster, A class of renormings of `2 with
the fixed point property, J. Nonlinear Convex Anal. 14 (2013), no. 2, 351-362.
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Theorem 4

[8] Let (X , ‖ · ‖) be a Banach space having normal structure. Let
{en} be a Schauder basis of X . Then every equivalent renorming
of X of the form, |x |β = max{‖x‖, βq(x)}, where q is a seminorm
on X, has the WFPP, for all β > 0, if q satisfies the following
condition:
There exists k ∈ N such that for all x1, . . . , xk in X with pairwise
disjoint supports with respect to {en}, we have

q(z) ≤ max{q(z − x1), . . . , q(z − xk)}, for all z ∈ X .

8Gopal Dutta and P. Veeramani, Some renormings of Banch spaces with the
weak fixed point property for nonexpasive mappings, Acta Sci. Math. (Szeged)
(Accepted).
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Theorem 5
[8] Every Banach space having normal structure and Schauder
basis has an equivalent renorming that lacks of asymptotic normal
structure but has the WFPP.

[8] Let X = `p, 1 < p <∞. Define, |x |β = max{‖x‖p, β‖x‖∞},
β ≥ 1. Then | · |β is an equivalent remorming of ‖ · ‖p. We proved
that (`p, | · |β) has normal structure if and only if β < 21/p. But it
has the WFPP for all β ≥ 1.

8Gopal Dutta and P. Veeramani, Some renormings of Banch spaces with the
weak fixed point property for nonexpasive mappings, Acta Sci. Math. (Szeged)
(Accepted).
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Proximal Normal Structure A nonempty convex pair (A,B) in a
Banach space X is said to have proximal normal structure if for
every closed, bounded, convex proximal pair (K1,K2) ⊂ (A,B) for
which dist(K1,K2) = dist(A,B) and δ(K1,K2) > dist(K1,K2),
there exists (x , y) ∈ K1 × K2 such that

rx (K2) < δ(K1,K2), ry (K1) < δ(K1,K2).

2Eldred,A.A, W.A.Kirk, and P.Veeramani . Proximal normal structure and
relatively nonexpansive mappings. Studia Math. 171(3), 2005, 283-293.
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The notion of proximal normal structure introduced by Eldred et.
al. to prove:

Theorem 6 (Eldred, et. al.)
If (A,B) is a nonempty weakly compact convex pair in a Banach
space X with proximal normal structure and T : A ∪ B → A ∪ B is
relatively cyclic nonexpansive (||Tx − Ty || ≤ ||x − y || , for all
x ∈ A, y ∈ B and T (A) ⊂ B, T (B) ⊂ A), then T has best
proximity point in A ∪ B, i.e. there exist x ∈ A, y ∈ B such that
||x − Tx || = ||y − Ty || = dist(A,B).

2Eldred,A.A, W.A.Kirk, and P.Veeramani . Proximal normal structure and
relatively nonexpansive mappings. Studia Math. 171(3), 2005, 283-293.
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Theorem 7 (Eldred, et. al.)
If (A,B) is a nonempty weakly compact convex pair in a strictly
convex Banach space X with proximal normal structure and
T : A ∪ B → A ∪ B is relatively non cyclic nonexpansive
(||Tx − Ty || ≤ ||x − y || , for all x ∈ A, y ∈ B) with T (A) ⊂ A,
T (B) ⊂ B, then T has best proximity point in A ∪ B i.e. there
exist x ∈ A, y ∈ B such that Tx = x, Ty = y and
||x − y || = dist(A,B).

2Eldred,A.A, W.A.Kirk, and P.Veeramani . Proximal normal structure and
relatively nonexpansive mappings. Studia Math. 171(3), 2005, 283-293.
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