Decoding Downset Codes over Finite Grids

S. Venkitesh Department of Mathematics, IIT Bombay

Diamond Jubilee Symposium Department of Mathematics, IIT Bombay January 4, 2019

Introduction

Introduction

S

$$S = S_1 \times \cdots \times S_n \subseteq \mathbb{F}^n, \quad k_i = |S_i|, \forall i \in [n], \quad k = |S| = k_1 \cdots k_n$$
$$\mathcal{M}_S = \{ \mathbf{X}^{\alpha} = X_1^{\alpha_1} \cdots X_n^{\alpha_n} : \alpha_i \le k_i - 1, \forall i \in [n] \} = \mathbb{F}\text{-basis of } \{ S \to \mathbb{F} \}$$

$$\subseteq \mathbb{F}^2 \qquad \qquad \mathcal{M}_S \subseteq \mathbb{N}^2$$

Introduction

Definition (Reed-Muller Code on S)

$$RM(S,d) = \{P(\mathbf{X}) \in \operatorname{span}_{\mathbb{F}}\mathcal{M}_S \mid \deg P \leq d\}, \quad d \leq \sum_{i=1}^n (k_i - 1)$$

RM(S, d) is a subspace of span_{\mathbb{F}} $\mathcal{M}_S \simeq \mathbb{F}^k$, i.e. it is a **linear code**.

$$RM(S,d) = \operatorname{span}_{\mathbb{F}}\mathcal{M}_{S,d}, \quad \text{where } \mathcal{M}_{S,d} = \left\{ \mathbf{X}^{\alpha} \in \mathcal{M}_{S} : |\alpha| = \sum_{i=1}^{n} \alpha_{i} \leq d \right\}.$$

Note that

$$\mathbf{X}^{lpha} \in \mathcal{M}_{\mathcal{S},d}, \, \mathbf{X}^{eta} \mid \mathbf{X}^{lpha} \, (\mathsf{i.e.} \, \ eta \leq lpha \, \mathsf{in} \, \mathsf{natural} \, \mathsf{partial} \, \mathsf{order}) \quad \Longrightarrow \quad \mathbf{X}^{eta} \in \mathcal{M}_{\mathcal{S},d}$$

So $\mathcal{M}_{S,d}$ is a down-closed set (downset).

Downset and Downset Code

Definition (Downset)

A nonempty set of monomials ${\mathcal D}$ is called a downset if

$$\mathbf{X}^{\alpha} \in \mathcal{D}, \ \mathbf{X}^{\beta} \mid \mathbf{X}^{\alpha} \ (\beta \leq \alpha) \implies \mathbf{X}^{\beta} \in \mathcal{D}.$$

Definition (Downset code on S)

 $\mathcal{C}(S, \mathcal{D}) = \operatorname{span}_{\mathbb{F}} \mathcal{D}, \quad \text{where } \mathcal{D} \subseteq \mathcal{M}_S \text{ is a downset}$

 $\mathcal{C}(S,\mathcal{D})$ is a subspace of span_{\mathbb{F}} $\mathcal{M}_S \simeq \mathbb{F}^k$, i.e., it is a linear code.

The downset \mathcal{D} is an \mathbb{F} -basis of $\mathcal{C}(S, \mathcal{D})$.

Eg. n = 2, $S = S_1 \times S_2$, $|S_1| = 8$, $|S_2| = 7$, $\mathcal{M}_S = \{0, \dots, 7\} \times \{0, \dots, 6\}$

 \mathcal{M}_{S}

Eg. n = 2, $S = S_1 \times S_2$, $|S_1| = 8$, $|S_2| = 7$, $\mathcal{M}_S = \{0, \dots, 7\} \times \{0, \dots, 6\}$

 $\mathcal{D} = \mathcal{M}_{\mathcal{S}}, \quad \mathcal{C}(\mathcal{S}, \mathcal{D}) = \{\mathcal{S}
ightarrow \mathbb{F}\}$

Eg. n = 2, $S = S_1 \times S_2$, $|S_1| = 8$, $|S_2| = 7$, $\mathcal{M}_S = \{0, \dots, 7\} \times \{0, \dots, 6\}$

Eg. n = 2, $S = S_1 \times S_2$, $|S_1| = 8$, $|S_2| = 7$, $\mathcal{M}_S = \{0, \dots, 7\} \times \{0, \dots, 6\}$

 $\mathcal{D} = \{ \mathbf{X}^{\alpha} \in \mathcal{M}_{\mathcal{S}} : |\alpha| \leq 5, \ \alpha_{1} \leq 3, \ \alpha_{2} \leq 4 \}, \quad \mathcal{C}(\mathcal{S}, \mathcal{D})$

Eg. n = 2, $S = S_1 \times S_2$, $|S_1| = 8$, $|S_2| = 7$, $\mathcal{M}_S = \{0, \dots, 7\} \times \{0, \dots, 6\}$

 $\mathcal{D}, \mathcal{C}(\mathcal{S}, \mathcal{D})$

Linear code C

Definition (Hamming distance (metric))

$$\Delta(f,g) = |\{x \in S : f(x) \neq g(x)\}|, \quad f,g \in \mathcal{C}$$

The **Hamming weight** of $f \in C$ is $||f|| = |supp(f)| = \Delta(f, 0)$.

Definition (Minimum distance of a linear code)

 $\mu(\mathcal{C}) = \min\{\Delta(f,g) : f,g \in \mathcal{C}, f \neq g\} = \min\{\|f\| : f \in \mathcal{C}, f \neq 0\}$

 $\begin{array}{ll} \mbox{Linear code } \mathcal{C} \subseteq \mathbb{F}^k, \quad \mu = \mu(\mathcal{C}), \quad f \in \mathbb{F}^k \\ B(f, \mu/2) = \{ g \in \mathbb{F}^k : \Delta(f, g) < \mu/2 \} \end{array}$

Case (I) $B(f, \mu/2)$ with $B(f, \mu/2) \cap C = \emptyset$, NO DECODING

Linear code $C \subseteq \mathbb{F}^k$, $\mu = \mu(C)$, $f \in \mathbb{F}^k$, $P, Q \in C, P \neq Q$ $B(f, \mu/2) = \{g \in \mathbb{F}^k : \Delta(f, g) < \mu/2\}$

Case (II) $B(f, \mu/2)$ with $B(f, \mu/2) \cap C \supseteq \{P, Q\}$, NOT POSSIBLE $\Delta(P, Q) \leq \Delta(f, P) + \Delta(f, Q) < \mu/2 + \mu/2 = \mu$ NOT TRUE

Linear code $C \subseteq \mathbb{F}^k$, $\mu = \mu(C)$, $f \in \mathbb{F}^k$, $P, Q \in C, P \neq Q$ $B(f, \mu/2) = \{g \in \mathbb{F}^k : \Delta(f, g) < \mu/2\}$

Case (III) $B(f, \mu/2)$ with $B(f, \mu/2) \cap C = \{P\}$, UNIQUE DECODING

Theorem (A template)

For 'appropriate' dimension n, field \mathbb{F} , finite grid $S \subseteq \mathbb{F}^n$ and the corresponding linear code $\mathcal{C} \subseteq \{S \to \mathbb{F}\}$, there is an algorithm which, given $f : S \to \mathbb{F}$ with the 'promise' that there exists a (unique) $P \in \mathcal{C}$ such that $\Delta(f, P) < \mu(\mathcal{C})/2$, returns P 'efficiently'.

	n	\mathbb{F}	S	${\mathcal D}$	$\mathcal{C}(S,\mathcal{D})$
Reed (1954)	arbitrary arbitrary	\mathbb{F}_2 arbitrary	\mathbb{F}_2^n $\{0,1\}^n$	$\mathcal{M}_{\mathcal{S},d} \ \mathcal{M}_{\mathcal{S},d}$	$egin{aligned} & RM(\mathbb{F}_2^n,d)\ & RM(\{0,1\}^n,d) \end{aligned}$
Forney (1966) ¹	1 1	\mathbb{F}_q arbitrary	\mathbb{F}_q arbitrary	$\mathcal{M}_{\mathcal{S},d} \ \mathcal{M}_{\mathcal{S},d}$	$RS(\mathbb{F}_q, d)$ RS(S, d)
Berlekamp, Welch (1983)	1 1	\mathbb{F}_q \mathbb{F}_q	\mathbb{F}_q arbitrary	$\mathcal{M}_{\mathcal{S},d} \ \mathcal{M}_{\mathcal{S},d}$	$egin{aligned} &RS(\mathbb{F}_q,d)\ &RS(\mathbb{F}_q,d) \end{aligned}$
Kim, Kopparty (2017)	arbitrary	arbitrary	arbitrary	$\mathcal{M}_{\mathcal{S},d}$	RM(S, d)
Our result ²	arbitrary	arbitrary	arbitrary	arbitrary	$\mathcal{C}(\mathcal{S},\mathcal{D})$

¹with weights/uncertainties on words.

²joint work with Srikanth Srinivasan and Utkarsh Tripathi, both from Dept. of Mathematics, IIT Bombay.

Main Theorem

Theorem (Our Result)

There is a deterministic polynomial time algorithm such that, given a finite grid $S = S_1 \times \cdots \times S_n \subseteq \mathbb{F}^n$, a downset $\mathcal{D} \subseteq \mathcal{M}_S$, and $f : S \to \mathbb{F}$, the algorithm outputs $C \in \mathcal{C}(S, \mathcal{D})$ such that $\Delta(f, C) < \frac{\mu(S, \mathcal{D})}{2}$, if such a C exists. If such a C does not exist, then the algorithm outputs an arbitrary polynomial.

We will prove a slightly stronger version of the above involving a weighted word as input.

Weighted word and weighted distance Definition

$$\begin{array}{ll} \text{Word} \quad b: S \to \mathbb{F} \\ \text{Weighted word} \quad (a, w): S \to \mathbb{F} \times [0, 1] \\ \text{Weighted distance} \quad \Delta((a, w), b) = \sum_{a(x) = b(x)} \left(\frac{w(x)}{2}\right) + \sum_{a(x) \neq b(x)} \left(1 - \frac{w(x)}{2}\right) \end{array}$$

Fact (Triangle Inequality)

Let $(a, w) : S \to \mathbb{F} \times [0, 1]$ be a weighted word and $b, c : S \to \mathbb{F}$ be words. Then

$$\Delta((a, w), b) + \Delta((a, w), c) \ge \Delta(b, c).$$

Further if $b, c \in C(S, D)$ and $b \neq c$, then

$$\Delta((a, w), b) + \Delta((a, w), c) \ge \Delta(b, c) \ge \mu(S, \mathcal{D}).$$

In particular, $\Delta((a, w), b) < \mu(S, D)/2$ and $\Delta((a, w), c) < \mu(S, D)/2$ is not possible.

Main Theorem (Weighted version)

Theorem (Our Result)

There is a deterministic polynomial time algorithm such that, given a finite grid $S = S_1 \times \cdots \times S_n \subseteq \mathbb{F}^n$, a downset $\mathcal{D} \subseteq \mathcal{M}_S$, and $f : S \to \mathbb{F}$, the algorithm outputs $C \in \mathcal{C}(S, \mathcal{D})$ such that $\Delta(f, C) < \frac{\mu(S, \mathcal{D})}{2}$, if such a C exists. If such a C does not exist, then the algorithm outputs an arbitrary polynomial.

Theorem (Our Result, weighted version)

There is a deterministic polynomial time algorithm such that, given a finite grid $S = S_1 \times \cdots \times S_n \subseteq \mathbb{F}^n$, a downset $\mathcal{D} \subseteq \mathcal{M}_S$, and a **weighted word** $(a, w) : S \to \mathbb{F}$, the algorithm outputs $C \in \mathcal{C}(S, \mathcal{D})$ such that $\Delta((a, w), C) < \frac{\mu(S, \mathcal{D})}{2}$, if such a C exists. If such a C does not exist, then the algorithm outputs an arbitrary polynomial.

We will proceed by induction on n. The base case uses Forney's weighted Reed-Solomon decoder, mentioned earlier. For this talk, this decoder is a BLACK BOX.

Some more facts

• Let $\mathcal{D} \subseteq \mathcal{M}_S$ be a downset and $\deg_n \mathcal{D} = \max\{\alpha_n : \alpha \in \mathcal{D}\}$. Define

$$\mathcal{D}_i = \{\beta \in \mathcal{M}_S : (\beta, i) \in \mathcal{D}\},\$$

for $i \in \{0, \ldots, d = \deg_n \mathcal{D}\}$. Then

(i) \mathcal{D}_i is a downset, for all *i*, since \mathcal{D} is a downset.

(ii) $\mathcal{D}_0 \supseteq \cdots \supseteq \mathcal{D}_d$.

• Let
$$\widetilde{S} = S_1 \times \cdots \times S_{n-1}$$
. For every $i \in \{0, \dots, d = \deg_n \mathcal{D}\}$, we have

$$\mu(S, \mathcal{D}) \le \mu(\widetilde{S}, \mathcal{D}_i) \cdot \mu(S_n, \{0, \dots, i\}).$$

The Decoding Algorithm (An outline)

Base Case. n = 1. In this case, the algorithm is Forney's weighted decoding algorithm. **Induction Hypothesis.** The weighted decoding algorithm works in the case n = 2.

Suppose n = 3. Input: $(S_1 \times S_2 \times S_3, \mathcal{D}, (a, w))$, the grid, the downset and the weighted word. Let $d = \deg_3 \mathcal{D}$.

Let the correct codeword be

$$C(x,y,z) = \sum_{j=0}^{d} Q_j(x,y) z^j, \quad \forall (x,y,z) \in S_1 imes S_2 imes S_3.$$

It is then enough to find $Q_j: S_1 \times S_2 \to \mathbb{F}, j = 0, \dots, d$. We will run $i \searrow d, \dots, 0$.

It is here, in finding Q_j -s that we use the inductive hypothesis, since the Q_j -s are 2-variate. In order to do this, we need to find suitable weighted words.

The Decoding Algorithm (An outline)

Now consider a fixed *i* and suppose that at the *i*-th stage, the functions $Q_j(x, y), j \searrow d, \ldots, i+1$ are known. When i = d, nothing is known (that's fine!). Let

$$a_i(x,y,z) = a(x,y,z) - \sum_{j=i+1}^d Q_j(x,y)z^j.$$

For every $(x, y) \in S_1 \times S_2$, define

$$a_{i,(x,y)}(z) = a_i(x,y,z), \quad w_{(x,y)}(z) = w(x,y,z).$$

Then we use Forney's algorithm for the one variable case. Apply the algorithm on the input $(S_3, \{0, \ldots, i\}, a_{i,(x,y)})$ to get the 'possibly correct 1-variate' word $G_{i,(x,y)} : S_3 \to \mathbb{F}$. We have thus computed a 1-variate word $G_{i,(x,y)} : S_3 \to \mathbb{F}$ for each $(x, y) \in S_1 \times S_2$.

The Decoding Algorithm (An outline)

We now 'compare' weighted distances and determine the 'input' weighted words to be passed on to the (correct) 2-variable weighted decoder. Let

$$\Delta_{i,(x,y)} = \Delta(a_{i,(x,y)}, G_{i,(x,y)}), \quad \mu_i = \frac{\mu(S_n, \{0, \dots, i\})}{2}.$$

If $\Delta_{i,(x,y)} < \mu_i$, let $\sigma_i(x,y) = [z^i](G_{i,(x,y)}), \ \delta_i(x,y) = \frac{\Delta_{i,(x,y)}}{\mu_i}$. If $\Delta_{i,(x,y)} \ge \mu_i$, let $\sigma_i(x,y) = 0, \ \delta_i(x,y) = 1$.

We have thus computed a 2-variate weighted word $(\sigma_i, \delta_i) : S_1 \times S_2 \to \mathbb{F}$. We then give the input $(S_1 \times S_2, \mathcal{D}_i, (\sigma_i, \delta_i))$ to the 2-variate weighted decoder to get the output function $P_i : S_1 \times S_2 \to \mathbb{F}$.

Since by inductive assumption, the algorithm is correct for the 2-variate case, we have $P_i = Q_i$. (It is a routine case analysis to check that $\Delta(P_i, Q_i) < \mu(S_1 \times S_2, D_i)/2$. This is why the correct decoder gives the correct output!)

Running through $i \searrow d, \ldots, 0$ gives the correct codeword $C(x, y, z) = \sum_{j=0}^{d} Q_j(x, y) z^j$.

Thank You!