Decoding Downset Codes over Finite Grids

S. Venkitesh
Department of Mathematics, IIT Bombay

Diamond Jubilee Symposium
Department of Mathematics, IIT Bombay
January 4, 2019

Introduction

Field \mathbb{F} (arbitrary)
Finite grid (nonempty, finite set) $S=S_{1} \times \cdots \times S_{n}=\left\{p_{1}, \ldots, p_{k}\right\} \subseteq \mathbb{F}^{n}$

Introduction

$$
S=S_{1} \times \cdots \times S_{n} \subseteq \mathbb{F}^{n}, \quad k_{i}=\left|S_{i}\right|, \forall i \in[n], \quad k=|S|=k_{1} \cdots k_{n}
$$

$$
\mathcal{M}_{S}=\left\{\mathbf{X}^{\alpha}=X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}: \alpha_{i} \leq k_{i}-1, \forall i \in[n]\right\}=\mathbb{F} \text {-basis of }\{S \rightarrow \mathbb{F}\}
$$

$$
S \subseteq \mathbb{F}^{2}
$$

$$
\mathcal{M}_{S} \subseteq \mathbb{N}^{2}
$$

Introduction

Definition (Reed-Muller Code on S)

$$
R M(S, d)=\left\{P(\mathbf{X}) \in \operatorname{span}_{\mathbb{F}} \mathcal{M}_{S} \mid \operatorname{deg} P \leq d\right\}, \quad d \leq \sum_{i=1}^{n}\left(k_{i}-1\right)
$$

$R M(S, d)$ is a subspace of $\operatorname{span}_{\mathbb{F}} \mathcal{M}_{S} \simeq \mathbb{F}^{k}$, i.e. it is a linear code.

$$
R M(S, d)=\operatorname{span}_{\mathbb{F}} \mathcal{M}_{S, d}, \quad \text { where } \mathcal{M}_{S, d}=\left\{\mathbf{X}^{\alpha} \in \mathcal{M}_{S}:|\alpha|=\sum_{i=1}^{n} \alpha_{i} \leq d\right\}
$$

Note that

$$
\mathbf{X}^{\alpha} \in \mathcal{M}_{S, d}, \mathbf{X}^{\beta} \mid \mathbf{X}^{\alpha} \text { (i.e. } \beta \leq \alpha \text { in natural partial order) } \quad \Longrightarrow \quad \mathbf{X}^{\beta} \in \mathcal{M}_{s, d}
$$

So $\mathcal{M}_{S, d}$ is a down-closed set (downset).

Downset and Downset Code

Definition (Downset)

A nonempty set of monomials \mathcal{D} is called a downset if

$$
\mathbf{X}^{\alpha} \in \mathcal{D}, \mathbf{X}^{\beta} \mid \mathbf{X}^{\alpha}(\beta \leq \alpha) \quad \Longrightarrow \quad \mathbf{X}^{\beta} \in \mathcal{D} .
$$

Definition (Downset code on S)

$$
\mathcal{C}(S, \mathcal{D})=\operatorname{span}_{\mathbb{F}} \mathcal{D}, \quad \text { where } \mathcal{D} \subseteq \mathcal{M}_{S} \text { is a downset }
$$

$\mathcal{C}(S, \mathcal{D})$ is a subspace of $\operatorname{span}_{\mathbb{F}} \mathcal{M}_{S} \simeq \mathbb{F}^{k}$, i.e., it is a linear code.
The downset \mathcal{D} is an \mathbb{F}-basis of $\mathcal{C}(S, \mathcal{D})$.

Examples of Downsets and Downset codes
Eg. $n=2, \quad S=S_{1} \times S_{2},\left|S_{1}\right|=8,\left|S_{2}\right|=7, \quad \mathcal{M}_{S}=\{0, \ldots, 7\} \times\{0, \ldots, 6\}$

\mathcal{M}_{s}

Examples of Downsets and Downset codes
Eg. $n=2, \quad S=S_{1} \times S_{2},\left|S_{1}\right|=8,\left|S_{2}\right|=7, \quad \mathcal{M}_{S}=\{0, \ldots, 7\} \times\{0, \ldots, 6\}$

$$
\mathcal{D}=\mathcal{M}_{S}, \quad \mathcal{C}(S, \mathcal{D})=\{S \rightarrow \mathbb{F}\}
$$

Examples of Downsets and Downset codes
Eg. $n=2, \quad S=S_{1} \times S_{2},\left|S_{1}\right|=8,\left|S_{2}\right|=7, \quad \mathcal{M}_{S}=\{0, \ldots, 7\} \times\{0, \ldots, 6\}$

Examples of Downsets and Downset codes
Eg. $n=2, \quad S=S_{1} \times S_{2},\left|S_{1}\right|=8,\left|S_{2}\right|=7, \quad \mathcal{M}_{S}=\{0, \ldots, 7\} \times\{0, \ldots, 6\}$

$$
\mathcal{D}=\left\{\mathbf{X}^{\alpha} \in \mathcal{M}_{S}:|\alpha| \leq 5, \alpha_{1} \leq 3, \alpha_{2} \leq 4\right\}, \quad \mathcal{C}(S, \mathcal{D})
$$

Examples of Downsets and Downset codes
Eg. $n=2, \quad S=S_{1} \times S_{2},\left|S_{1}\right|=8,\left|S_{2}\right|=7, \quad \mathcal{M}_{S}=\{0, \ldots, 7\} \times\{0, \ldots, 6\}$

What is (unique) decoding?

Linear code \mathcal{C}
Definition (Hamming distance (metric))

$$
\Delta(f, g)=|\{x \in S: f(x) \neq g(x)\}|, \quad f, g \in \mathcal{C}
$$

The Hamming weight of $f \in \mathcal{C}$ is $\|f\|=|\operatorname{supp}(f)|=\Delta(f, 0)$.

Definition (Minimum distance of a linear code)

$$
\mu(\mathcal{C})=\min \{\Delta(f, g): f, g \in \mathcal{C}, f \neq g\}=\min \{\|f\|: f \in \mathcal{C}, f \neq 0\}
$$

What is (unique) decoding?

$$
\begin{gathered}
\text { Linear code } \mathcal{C} \subseteq \mathbb{F}^{k}, \quad \mu=\mu(C), \quad f \in \mathbb{F}^{k} \\
B(f, \mu / 2)=\left\{g \in \mathbb{F}^{k}: \Delta(f, g)<\mu / 2\right\}
\end{gathered}
$$

Case (I) $B(f, \mu / 2)$ with $B(f, \mu / 2) \cap \mathcal{C}=\emptyset, \quad$ NO DECODING

What is (unique) decoding?
Linear code $\mathcal{C} \subseteq \mathbb{F}^{k}, \quad \mu=\mu(C), \quad f \in \mathbb{F}^{k}, \quad P, Q \in \mathcal{C}, P \neq Q$

$$
B(f, \mu / 2)=\left\{g \in \mathbb{F}^{k}: \Delta(f, g)<\mu / 2\right\}
$$

Case (II) $B(f, \mu / 2)$ with $B(f, \mu / 2) \cap \mathcal{C} \supseteq\{P, Q\}$, NOT POSSIBLE $\Delta(P, Q) \leq \Delta(f, P)+\Delta(f, Q)<\mu / 2+\mu / 2=\mu \quad$ NOT TRUE

What is (unique) decoding?

$$
\begin{gathered}
\text { Linear code } \mathcal{C} \subseteq \mathbb{F}^{k}, \quad \mu=\mu(C), \quad f \in \mathbb{F}^{k}, \quad P, Q \in \mathcal{C}, P \neq Q \\
B(f, \mu / 2)=\left\{g \in \mathbb{F}^{k}: \Delta(f, g)<\mu / 2\right\}
\end{gathered}
$$

Case (III) $B(f, \mu / 2)$ with $B(f, \mu / 2) \cap \mathcal{C}=\{P\}, \quad$ UNIQUE DECODING

Theorem (A template)

For 'appropriate' dimension n, field \mathbb{F}, finite grid $S \subseteq \mathbb{F}^{n}$ and the corresponding linear code $\mathcal{C} \subseteq\{S \rightarrow \mathbb{F}\}$, there is an algorithm which, given $f: S \rightarrow \mathbb{F}$ with the 'promise' that there exists a (unique) $P \in \mathcal{C}$ such that $\Delta(f, P)<\mu(\mathcal{C}) / 2$, returns P 'efficiently'.

	n	\mathbb{F}	S	\mathcal{D}	$\mathcal{C}(S, \mathcal{D})$
Reed (1954)	arbitrary	\mathbb{F}_{2}	\mathbb{F}_{2}^{n}	$\mathcal{M}_{S, d}$	$R M\left(\mathbb{F}_{2}^{n}, d\right)$
arbitrary	arbitrary	$\{0,1\}^{n}$	$\mathcal{M}_{S, d}$	$R M\left(\{0,1\}^{n}, d\right)$	
Forney (1966)		1	\mathbb{F}_{q}	\mathbb{F}_{q}	$\mathcal{M}_{S, d}$
Berlekamp, Welch (1983)	1	arbitrary	arbitrary	$\mathcal{M}_{S, d}$	$R S\left(\mathbb{F}_{q}, d\right)$
	1	\mathbb{F}_{q}	\mathbb{F}_{q}	$\mathcal{M}_{S, d}$	$R S\left(\mathbb{F}_{q}, d\right)$
Kim, Kopparty (2017)	arbitrary	arbitrary	arbitrary	$\mathcal{M}_{S, d}$	$R M(S, d)$
Our result ${ }^{2}$	arbitrary	arbitrary	arbitrary	arbitrary	$\mathcal{C}(S, \mathcal{D})$

[^0]
Main Theorem

Theorem (Our Result)

There is a deterministic polynomial time algorithm such that, given a finite grid $S=S_{1} \times \cdots \times S_{n} \subseteq \mathbb{F}^{n}$, a downset $\mathcal{D} \subseteq \mathcal{M}_{S}$, and $f: S \rightarrow \mathbb{F}$, the algorithm outputs $C \in \mathcal{C}(S, \mathcal{D})$ such that $\Delta(f, C)<\frac{\mu(S, \mathcal{D})}{2}$, if such a C exists. If such a C does not exist, then the algorithm outputs an arbitrary polynomial.

We will prove a slightly stronger version of the above involving a weighted word as input.

Weighted word and weighted distance

Definition

Word $\quad b: S \rightarrow \mathbb{F}$
Weighted word $(a, w): S \rightarrow \mathbb{F} \times[0,1]$
Weighted distance $\Delta((a, w), b)=\sum_{a(x)=b(x)}\left(\frac{w(x)}{2}\right)+\sum_{a(x) \neq b(x)}\left(1-\frac{w(x)}{2}\right)$

Fact (Triangle Inequality)
Let $(a, w): S \rightarrow \mathbb{F} \times[0,1]$ be a weighted word and $b, c: S \rightarrow \mathbb{F}$ be words. Then

$$
\Delta((a, w), b)+\Delta((a, w), c) \geq \Delta(b, c)
$$

Further if $b, c \in \mathcal{C}(S, \mathcal{D})$ and $b \neq c$, then

$$
\Delta((a, w), b)+\Delta((a, w), c) \geq \Delta(b, c) \geq \mu(S, \mathcal{D})
$$

In particular, $\Delta((a, w), b)<\mu(S, \mathcal{D}) / 2$ and $\Delta((a, w), c)<\mu(S, \mathcal{D}) / 2$ is not possible.

Main Theorem (Weighted version)

Theorem (Our Result)

There is a deterministic polynomial time algorithm such that, given a finite grid $S=S_{1} \times \cdots \times S_{n} \subseteq \mathbb{F}^{n}$, a downset $\mathcal{D} \subseteq \mathcal{M}_{S}$, and $f: S \rightarrow \mathbb{F}$, the algorithm outputs $C \in \mathcal{C}(S, \mathcal{D})$ such that $\Delta(f, C)<\frac{\mu(S, \mathcal{D})}{2}$, if such a C exists. If such a C does not exist, then the algorithm outputs an arbitrary polynomial.

Theorem (Our Result, weighted version)

There is a deterministic polynomial time algorithm such that, given a finite grid $S=S_{1} \times \cdots \times S_{n} \subseteq \mathbb{F}^{n}$, a downset $\mathcal{D} \subseteq \mathcal{M}_{S}$, and a weighted word $(a, w): S \rightarrow \mathbb{F}$, the algorithm outputs $C \in \mathcal{C}(S, \mathcal{D})$ such that $\Delta((a, w), C)<\frac{\mu(S, \mathcal{D})}{2}$, if such a C exists. If such a C does not exist, then the algorithm outputs an arbitrary polynomial.

We will proceed by induction on n. The base case uses Forney's weighted Reed-Solomon decoder, mentioned earlier. For this talk, this decoder is a BLACK BOX.

Some more facts

- Let $\mathcal{D} \subseteq \mathcal{M}_{S}$ be a downset and $\operatorname{deg}_{n} \mathcal{D}=\max \left\{\alpha_{n}: \alpha \in \mathcal{D}\right\}$. Define

$$
\mathcal{D}_{i}=\left\{\beta \in \mathcal{M}_{S}:(\beta, i) \in \mathcal{D}\right\}
$$

for $i \in\left\{0, \ldots, d=\operatorname{deg}_{n} \mathcal{D}\right\}$.
Then
(i) \mathcal{D}_{i} is a downset, for all i, since \mathcal{D} is a downset.
(ii) $\mathcal{D}_{0} \supseteq \cdots \supseteq \mathcal{D}_{d}$.

- Let $\widetilde{S}=S_{1} \times \cdots \times S_{n-1}$. For every $i \in\left\{0, \ldots, d=\operatorname{deg}_{n} \mathcal{D}\right\}$, we have

$$
\mu(S, \mathcal{D}) \leq \mu\left(\widetilde{S}, \mathcal{D}_{i}\right) \cdot \mu\left(S_{n},\{0, \ldots, i\}\right)
$$

The Decoding Algorithm (An outline)

Base Case. $n=1$. In this case, the algorithm is Forney's weighted decoding algorithm. Induction Hypothesis. The weighted decoding algorithm works in the case $n=2$.
Suppose $n=3$.
Input: $\left(S_{1} \times S_{2} \times S_{3}, \mathcal{D},(a, w)\right)$, the grid, the downset and the weighted word.
Let $d=\operatorname{deg}_{3} \mathcal{D}$.
Let the correct codeword be

$$
C(x, y, z)=\sum_{j=0}^{d} Q_{j}(x, y) z^{j}, \quad \forall(x, y, z) \in S_{1} \times S_{2} \times S_{3}
$$

It is then enough to find $Q_{j}: S_{1} \times S_{2} \rightarrow \mathbb{F}, j=0, \ldots, d$. We will run $i \searrow d, \ldots, 0$.
It is here, in finding Q_{j}-s that we use the inductive hypothesis, since the Q_{j}-s are 2-variate. In order to do this, we need to find suitable weighted words.

The Decoding Algorithm (An outline)

Now consider a fixed i and suppose that at the i-th stage, the functions $Q_{j}(x, y), j \searrow d, \ldots, i+1$ are known. When $i=d$, nothing is known (that's fine!). Let

$$
a_{i}(x, y, z)=a(x, y, z)-\sum_{j=i+1}^{d} Q_{j}(x, y) z^{j}
$$

For every $(x, y) \in S_{1} \times S_{2}$, define

$$
a_{i,(x, y)}(z)=a_{i}(x, y, z), \quad w_{(x, y)}(z)=w(x, y, z)
$$

Then we use Forney's algorithm for the one variable case. Apply the algorithm on the input $\left(S_{3},\{0, \ldots, i\}, a_{i,(x, y)}\right)$ to get the 'possibly correct 1 -variate' word $G_{i,(x, y)}: S_{3} \rightarrow \mathbb{F}$.
We have thus computed a 1 -variate word $G_{i,(x, y)}: S_{3} \rightarrow \mathbb{F}$ for each $(x, y) \in S_{1} \times S_{2}$.

The Decoding Algorithm (An outline)

We now 'compare' weighted distances and determine the 'input' weighted words to be passed on to the (correct) 2-variable weighted decoder. Let

$$
\Delta_{i,(x, y)}=\Delta\left(a_{i,(x, y)}, G_{i,(x, y)}\right), \quad \mu_{i}=\frac{\mu\left(S_{n},\{0, \ldots, i\}\right)}{2}
$$

If $\Delta_{i,(x, y)}<\mu_{i}$, let $\sigma_{i}(x, y)=\left[z^{i}\right]\left(G_{i,(x, y)}\right), \delta_{i}(x, y)=\frac{\Delta_{i,(x, y)}}{\mu_{i}}$.
If $\Delta_{i,(x, y)} \geq \mu_{i}$, let $\sigma_{i}(x, y)=0, \delta_{i}(x, y)=1$.
We have thus computed a 2 -variate weighted word $\left(\sigma_{i}, \delta_{i}\right): S_{1} \times S_{2} \rightarrow \mathbb{F}$. We then give the input $\left(S_{1} \times S_{2}, \mathcal{D}_{i},\left(\sigma_{i}, \delta_{i}\right)\right)$ to the 2-variate weighted decoder to get the output function $P_{i}: S_{1} \times S_{2} \rightarrow \mathbb{F}$.
Since by inductive assumption, the algorithm is correct for the 2-variate case, we have $P_{i}=Q_{i}$. (It is a routine case analysis to check that $\Delta\left(P_{i}, Q_{i}\right)<\mu\left(S_{1} \times S_{2}, \mathcal{D}_{i}\right) / 2$. This is why the correct decoder gives the correct output!)
Running through $i \searrow d, \ldots, 0$ gives the correct codeword $C(x, y, z)=\sum_{j=0}^{d} Q_{j}(x, y) z^{j}$.

Thank You!

[^0]: ${ }^{1}$ with weights/uncertainties on words.
 ${ }^{2}$ joint work with Srikanth Srinivasan and Utkarsh Tripathi, both from Dept. of Mathematics, IIT Bombay.

