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Introduction

Definition (Reed-Muller Code on S)
M(S,d) = {P(X) € spanyMs |deg P < d}, d< Z(k,— -1)
i=1

RM(S, d) is a subspace of spanyMs ~ F¥ ie. it is a linear code.

RM(S, d) = spanyMs 4, where Ms 4 = {XO‘ € Ms: |a] = Za; < d} .
i=1

Note that

X € Msgq, XP| X* (i.e. B <« innatural partial order) = X’ & Ms,.

So M5 4 is a down-closed set (downset).



Downset and Downset Code

Definition (Downset)
A nonempty set of monomials D is called a downset if

X*eD, XP|X* (B<a) = XPeD.

Definition (Downset code on S)
C(S,D) = spanyD, where D C M5 is a downset
C(S,D) is a subspace of spanyMs ~ T, i.e., it is a linear code.

The downset D is an F-basis of C(S, D).



Examples of Downsets and Downset codes

L7 x {0,...,6}

(...

Ms

51 X 52, |51’ = 8, ’52| = 7,

S —

n=2,

Eg.
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Examples of Downsets and Downset codes

.6}

7} xH{0,..

Ms = {0, ..

51 X 52, |51| = 8, |52| = 7,

S:

n=2,
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C(S,D)={S — F}

D:M57



Examples of Downsets and Downset codes

L7 x {0,...,6}

(...

Ms

51 X 52, ‘51’ = 8, ’52‘ = 7,

S —

n=2,

Eg.

e -0
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C(S,D) = RM(S, 5)

D ={X*e Ms : |a| <5},



Examples of Downsets and Downset codes

L7y % {0,...,6}

(...

Ms

51 X 52, ‘51’ = 8, ’52‘ = 7,

S —

n=2,
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(S, D)

D={X*e Ms:|a| <5, a; <3, ap, < 4},



Examples of Downsets and Downset codes

L7 x {0,...,6}

(...

Ms

51 X 52, ‘51’ = 8, ’52‘ = 7,

S —

n=2,

Eg.

(S, D)

D,



What is (unique) decoding?

Linear code C

Definition (Hamming distance (metric))

Af,g) ={xeS:f(x) #g(x)}, f.geC

The Hamming weight of f € C is ||f]| = |supp(f)| = A(f,0).

Definition (Minimum distance of a linear code)

w(C) =min{A(f,g): f,g€C, f#g}t=min{||f|: f €C, f#0}



What is (unique) decoding?
Linear code C CFX,  pu=pu(C), f €Tk
B(f.u/2) ={g € F*: A(f,g) < n/2}
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Case () B(f,;1/2) with B(f,11/2) NC =@, NO DECODING



What is (unique) decoding?

Linear code C CF%, pu=pu(C), feFs P,QeC, P#Q
B(f,1/2) = {g € F*: A(f,g) < p1/2}
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Case (I1) B(f,p/2) with B(f,1/2)nC 2 {P,Q}, NOT POSSIBLE
AP, Q) < A(f,P)+ A(f, Q) < /2 + p/2 = NOT TRUE



What is (unique) decoding?

Linear code C CF%, p=pu(C), feFx P,QeC, P#Q
B(f,n/2) ={g € F*: A(f.g) < u/2}
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Case (IIl)  B(f, 1/2) with B(f,;1/2) nC = {P}, UNIQUE DECODING



Theorem (A template)

For "appropriate’ dimension n, field IF, finite grid S C F" and the corresponding linear code
C C {S — F}, there is an algorithm which, given f : S — F with the 'promise’ that there
exists a (unique) P € C such that A(f, P) < u(C)/2, returns P 'efficiently’.

n F ) D C(S,D)
Reed (1954) arbitrary F F3 Ms 4 RM(F5, d)
arbitrary | arbitrary | {0,1}" | Ms, | RM({0,1}".d)
Forney (1966)* 1 F, F, Ms g RS(F,, d)
1 arbitrary | arbitrary | Mg 4 RS(S, d)
Berlekamp, Welch (1983) 1 F, F, Ms g RS(Fq, d)
1 Fy, arbitrary | Mg 4 RS(Fq, d)

Kim, Kopparty (2017) | arbitrary | arbitrary | arbitrary | Ms 4 RM(S, d)

Our result? arbitrary | arbitrary | arbitrary | arbitrary C(S,D)

lwith weights/uncertainties on words.
2joint work with Srikanth Srinivasan and Utkarsh Tripathi, both from Dept. of Mathematics, IIT Bombay.



Main Theorem

Theorem (Our Result)

There is a deterministic polynomial time algorithm such that, given a finite grid
§5=5 x---x85,CF", adownset D C Ms, and f : S — F, the algorithm outputs

S,D
C € C(S, D) such that A(f, C) < i 2’ ) if such a C exists. If such a C does not exist,
then the algorithm outputs an arbitrary polynomial.

We will prove a slightly stronger version of the above involving a weighted word as input.



Weighted word and weighted distance

Definition

Word b:S = F
Weighted word  (a,w) : S — F x [0, 1]

Weighted distance  A((a,w),b) = Y (ng)>+ T (1_W(2X)>

a(x)=b(x) a(x)#b(x)

Fact (Triangle Inequality)
Let (a,w): S — F x [0,1] be a weighted word and b,c : S — F be words. Then

A((a,w), b) + A((a, w), c) > A(b, c).
Further if b,c € C(S,D) and b # ¢, then
A((a,w), b) + A((a,w), c) > A(b, c) > u(S, D).

In particular, A((a, w), b) < (S, D)/2 and A((a, w), c) < u(S,D)/2 is not possible.



Main Theorem (Weighted version)

Theorem (Our Result)

There is a deterministic polynomial time algorithm such that, given a finite grid
§5=5 x---x85,CF", adownset D C Ms, and f : S — F, the algorithm outputs

D
C € C(S, D) such that A(f, C) < ,u(52, ) if such a C exists. If such a C does not exist,

then the algorithm outputs an arbitrary polynomial.

Theorem (Our Result, weighted version)

There is a deterministic polynomial time algorithm such that, given a finite grid
S=5 x---x5,CF" adownset D C Ms, and a weighted word (a,w) : S — T, the

D
algorithm outputs C € C(S, D) such that A((a, w), C) < M(Sz’ ) if such a C exists. If

such a C does not exist, then the algorithm outputs an arbitrary polynomial.

We will proceed by induction on n. The base case uses Forney's weighted Reed-Solomon
decoder, mentioned earlier. For this talk, this decoder is a BLACK BOX.



Some more facts

o Let D C Ms be a downset and De - X3 o e e e e e e
deg, D = max{a, : a € D}. Define B
Ds - x3 oo\ .

D,:{ﬂEMs(ﬁ,I)E'D}, D4X§+ :. : ‘:

for i € {0,...,d = deg, D}. Dy 3 oes .
Then A l
Dy - X2 oo .

(i) D;jis a downset, for all i, since D is } ; ; |

a downset. Dy - X} oee .

(i) Dg 2 -2 Dy. Dy 30 o—o—e .

° Let§:51 X -+ xS, 1. Forevery i € {0,...,d = deg, D}, we have

M(S’D) < u(g,D;)-u(Sn,{O,...,i}).



The Decoding Algorithm (An outline)

Base Case. n = 1. In this case, the algorithm is Forney's weighted decoding algorithm.
Induction Hypothesis. The weighted decoding algorithm works in the case n = 2.

Suppose n = 3.
Input: (51 x S, x 53,D, (a,w)), the grid, the downset and the weighted word.

Let d = deg; D.

Let the correct codeword be

d
C(x,y,z ZQJ V(x,y,z) € 51 X S5 x S3.

J=0

It is then enough to find Q;: 51 x 5, = F, j=0,...,d. Wewillruni\,d,...,0.

It is here, in finding Q;-s that we use the inductive hypothesis, since the Q;-s are 2-variate.
In order to do this, we need to find suitable weighted words.



The Decoding Algorithm (An outline)

Now consider a fixed i and suppose that at the i-th stage, the functions
Qi(x,y), N\« d,...,i+1 are known. When i = d, nothing is known (that's fine!). Let

d

a,-(x,y,z) = a(XayaZ) - Z Qj(X,y)Zj.
Jj=i+1
For every (x,y) € S; X S, define
ai,(x,y)(z) - a,-(x,y,z), W(X,y)(z) - W(X,y,Z).

Then we use Forney's algorithm for the one variable case. Apply the algorithm on the input
(53,{0,...,i}, ai(x,y)) to get the ‘possibly correct 1-variate’ word Gj ) : S3 — F.

We have thus computed a 1-variate word G;j () : S3 — F for each (x,y) € 5; x S,.



The Decoding Algorithm (An outline)

We now ‘compare’ weighted distances and determine the ‘input’ weighted words to be
passed on to the (correct) 2-variable weighted decoder. Let

(S, {0, ..., /})
2

Ai,(x,y) - A(ai,(x,y)> Gi,(x,y))a Hi =

Ai,(x,y) )

If Ai,(x,y) < Wi, let a,-(x,y) = [Zi](Gi,(x,y))7 5i(Xay) =
If Aixy) > pi, let oi(x,y) =0, 6i(x,y) = 1.

i

We have thus computed a 2-variate weighted word (0;,9;) : S; X S, — F. We then give the
input (S1 X Sy, D;, (07,0;)) to the 2-variate weighted decoder to get the output function
P,' : 51 X 52 — .

Since by inductive assumption, the algorithm is correct for the 2-variate case, we have
P; = Q;. (It is a routine case analysis to check that A(P;, Q;) < u(S1 x S5, D;)/2. This is
why the correct decoder gives the correct output!)

Running through i N\, d, ..., 0 gives the correct codeword C(x,y,z) = 27:0 Qi(x,y)Z.

Thank You!



