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Introduction

Field F (arbitrary)

Finite grid (nonempty, finite set) S = S1 × · · · × Sn = {p1, . . . , pk} ⊆ Fn

f : S → Fxy
f = (f (p1), . . . , f (pk))xy

f = P : S → F
(polynomial function)

degXi
P(X) ≤ |Si | − 1, ∀ i ∈ [n]

0 |S1| − 1

|S2| − 1

MS = {Xα = Xα1
1 · · ·Xαn

n : αi ≤ |Si |−1, ∀ i ∈ [n]}

{S → F} ' spanFMS

{S → F} = spanFMS



Introduction

S = S1 × · · · × Sn ⊆ Fn, ki = |Si |, ∀ i ∈ [n], k = |S | = k1 · · · kn

MS = {Xα = Xα1
1 · · ·Xαn

n : αi ≤ ki − 1, ∀ i ∈ [n]} = F-basis of {S → F}

S ⊆ F2

k1

k2

MS ⊆ N2

0 k1 − 1

k2 − 1



Introduction

Definition (Reed-Muller Code on S)

RM(S , d) = {P(X) ∈ spanFMS | degP ≤ d}, d ≤
n∑

i=1

(ki − 1)

RM(S , d) is a subspace of spanFMS ' Fk , i.e. it is a linear code.

RM(S , d) = spanFMS ,d , where MS ,d =

{
Xα ∈MS : |α| =

n∑
i=1

αi ≤ d

}
.

Note that

Xα ∈MS,d , X
β | Xα (i.e. β ≤ α in natural partial order) =⇒ Xβ ∈MS,d .

So MS,d is a down-closed set (downset).



Downset and Downset Code

Definition (Downset)
A nonempty set of monomials D is called a downset if

Xα ∈ D, Xβ | Xα (β ≤ α) =⇒ Xβ ∈ D.

Definition (Downset code on S)

C(S ,D) = spanFD, where D ⊆MS is a downset

C(S ,D) is a subspace of spanFMS ' Fk , i.e., it is a linear code.

The downset D is an F-basis of C(S ,D).



Examples of Downsets and Downset codes

Eg. n = 2, S = S1 × S2, |S1| = 8, |S2| = 7, MS = {0, . . . , 7} × {0, . . . , 6}

MS



Examples of Downsets and Downset codes

Eg. n = 2, S = S1 × S2, |S1| = 8, |S2| = 7, MS = {0, . . . , 7} × {0, . . . , 6}

D =MS , C(S ,D) = {S → F}



Examples of Downsets and Downset codes

Eg. n = 2, S = S1 × S2, |S1| = 8, |S2| = 7, MS = {0, . . . , 7} × {0, . . . , 6}

D = {Xα ∈MS : |α| ≤ 5}, C(S ,D) = RM(S , 5)



Examples of Downsets and Downset codes

Eg. n = 2, S = S1 × S2, |S1| = 8, |S2| = 7, MS = {0, . . . , 7} × {0, . . . , 6}

D = {Xα ∈MS : |α| ≤ 5, α1 ≤ 3, α2 ≤ 4}, C(S ,D)



Examples of Downsets and Downset codes

Eg. n = 2, S = S1 × S2, |S1| = 8, |S2| = 7, MS = {0, . . . , 7} × {0, . . . , 6}

D, C(S ,D)



What is (unique) decoding?

Linear code C

Definition (Hamming distance (metric))

∆(f , g) = |{x ∈ S : f (x) 6= g(x)}|, f , g ∈ C

The Hamming weight of f ∈ C is ‖f ‖ = |supp(f )| = ∆(f , 0).

Definition (Minimum distance of a linear code)

µ(C) = min{∆(f , g) : f , g ∈ C, f 6= g} = min{‖f ‖ : f ∈ C, f 6= 0}



What is (unique) decoding?

Linear code C ⊆ Fk , µ = µ(C ), f ∈ Fk

B(f , µ/2) = {g ∈ Fk : ∆(f , g) < µ/2}

µ/2
f

Case (I) B(f , µ/2) with B(f , µ/2) ∩ C = ∅, NO DECODING



What is (unique) decoding?
Linear code C ⊆ Fk , µ = µ(C ), f ∈ Fk , P ,Q ∈ C, P 6= Q

B(f , µ/2) = {g ∈ Fk : ∆(f , g) < µ/2}

µ/2
f

P

Q

Case (II) B(f , µ/2) with B(f , µ/2) ∩ C ⊇ {P ,Q}, NOT POSSIBLE

∆(P ,Q) ≤ ∆(f ,P) + ∆(f ,Q) < µ/2 + µ/2 = µ NOT TRUE



What is (unique) decoding?

Linear code C ⊆ Fk , µ = µ(C ), f ∈ Fk , P ,Q ∈ C, P 6= Q

B(f , µ/2) = {g ∈ Fk : ∆(f , g) < µ/2}

µ/2
f

P

Case (III) B(f , µ/2) with B(f , µ/2) ∩ C = {P}, UNIQUE DECODING



Theorem (A template)
For ’appropriate’ dimension n, field F, finite grid S ⊆ Fn and the corresponding linear code
C ⊆ {S → F}, there is an algorithm which, given f : S → F with the ’promise’ that there
exists a (unique) P ∈ C such that ∆(f ,P) < µ(C)/2, returns P ’efficiently’.

n F S D C(S ,D)

Reed (1954) arbitrary F2 Fn
2 MS ,d RM(Fn

2, d)
arbitrary arbitrary {0, 1}n MS ,d RM({0, 1}n, d)

Forney (1966)1 1 Fq Fq MS ,d RS(Fq, d)
1 arbitrary arbitrary MS ,d RS(S , d)

Berlekamp, Welch (1983) 1 Fq Fq MS ,d RS(Fq, d)
1 Fq arbitrary MS ,d RS(Fq, d)

Kim, Kopparty (2017) arbitrary arbitrary arbitrary MS ,d RM(S , d)

Our result2 arbitrary arbitrary arbitrary arbitrary C(S ,D)

1with weights/uncertainties on words.
2joint work with Srikanth Srinivasan and Utkarsh Tripathi, both from Dept. of Mathematics, IIT Bombay.



Main Theorem

Theorem (Our Result)
There is a deterministic polynomial time algorithm such that, given a finite grid
S = S1 × · · · × Sn ⊆ Fn, a downset D ⊆MS , and f : S → F, the algorithm outputs

C ∈ C(S ,D) such that ∆(f ,C ) <
µ(S ,D)

2
, if such a C exists. If such a C does not exist,

then the algorithm outputs an arbitrary polynomial.

We will prove a slightly stronger version of the above involving a weighted word as input.



Weighted word and weighted distance

Definition

Word b : S → F
Weighted word (a,w) : S → F× [0, 1]

Weighted distance ∆((a,w), b) =
∑

a(x)=b(x)

(
w(x)

2

)
+

∑
a(x)6=b(x)

(
1− w(x)

2

)

Fact (Triangle Inequality)
Let (a,w) : S → F× [0, 1] be a weighted word and b, c : S → F be words. Then

∆((a,w), b) + ∆((a,w), c) ≥ ∆(b, c).

Further if b, c ∈ C(S ,D) and b 6= c, then

∆((a,w), b) + ∆((a,w), c) ≥ ∆(b, c) ≥ µ(S ,D).

In particular, ∆((a,w), b) < µ(S ,D)/2 and ∆((a,w), c) < µ(S ,D)/2 is not possible.



Main Theorem (Weighted version)

Theorem (Our Result)
There is a deterministic polynomial time algorithm such that, given a finite grid
S = S1 × · · · × Sn ⊆ Fn, a downset D ⊆MS , and f : S → F, the algorithm outputs

C ∈ C(S ,D) such that ∆(f ,C ) <
µ(S ,D)

2
, if such a C exists. If such a C does not exist,

then the algorithm outputs an arbitrary polynomial.

Theorem (Our Result, weighted version)
There is a deterministic polynomial time algorithm such that, given a finite grid
S = S1 × · · · × Sn ⊆ Fn, a downset D ⊆MS , and a weighted word (a,w) : S → F, the

algorithm outputs C ∈ C(S ,D) such that ∆((a,w),C ) <
µ(S ,D)

2
, if such a C exists. If

such a C does not exist, then the algorithm outputs an arbitrary polynomial.

We will proceed by induction on n. The base case uses Forney’s weighted Reed-Solomon
decoder, mentioned earlier. For this talk, this decoder is a BLACK BOX.



Some more facts

• Let D ⊆ MS be a downset and
degnD = max{αn : α ∈ D}. Define

Di = {β ∈MS : (β, i) ∈ D},

for i ∈ {0, . . . , d = degnD}.
Then

(i) Di is a downset, for all i , since D is
a downset.

(ii) D0 ⊇ · · · ⊇ Dd . D0 · x02

D1 · x12

D2 · x22

D3 · x32

D4 · x42

D5 · x52

D6 · x62

• Let S̃ = S1 × · · · × Sn−1. For every i ∈ {0, . . . , d = degnD}, we have

µ(S ,D) ≤ µ(S̃ ,Di) · µ(Sn, {0, . . . , i}).



The Decoding Algorithm (An outline)

Base Case. n = 1. In this case, the algorithm is Forney’s weighted decoding algorithm.
Induction Hypothesis. The weighted decoding algorithm works in the case n = 2.

Suppose n = 3.
Input: (S1 × S2 × S3,D, (a,w)), the grid, the downset and the weighted word.

Let d = deg3D.

Let the correct codeword be

C (x , y , z) =
d∑

j=0

Qj(x , y)z j , ∀ (x , y , z) ∈ S1 × S2 × S3.

It is then enough to find Qj : S1 × S2 → F, j = 0, . . . , d . We will run i ↘ d , . . . , 0.

It is here, in finding Qj -s that we use the inductive hypothesis, since the Qj -s are 2-variate.
In order to do this, we need to find suitable weighted words.



The Decoding Algorithm (An outline)

Now consider a fixed i and suppose that at the i -th stage, the functions
Qj(x , y), j ↘ d , . . . , i + 1 are known. When i = d , nothing is known (that’s fine!). Let

ai(x , y , z) = a(x , y , z)−
d∑

j=i+1

Qj(x , y)z j .

For every (x , y) ∈ S1 × S2, define

ai ,(x ,y)(z) = ai(x , y , z), w(x ,y)(z) = w(x , y , z).

Then we use Forney’s algorithm for the one variable case. Apply the algorithm on the input
(S3, {0, . . . , i}, ai ,(x ,y)) to get the ‘possibly correct 1-variate’ word Gi ,(x ,y) : S3 → F.

We have thus computed a 1-variate word Gi ,(x ,y) : S3 → F for each (x , y) ∈ S1 × S2.



The Decoding Algorithm (An outline)

We now ‘compare’ weighted distances and determine the ‘input’ weighted words to be
passed on to the (correct) 2-variable weighted decoder. Let

∆i ,(x ,y) = ∆(ai ,(x ,y),Gi ,(x ,y)), µi =
µ(Sn, {0, . . . , i})

2
.

If ∆i ,(x ,y) < µi , let σi(x , y) = [z i ](Gi ,(x ,y)), δi(x , y) =
∆i ,(x ,y)

µi
.

If ∆i ,(x ,y) ≥ µi , let σi(x , y) = 0, δi(x , y) = 1.

We have thus computed a 2-variate weighted word (σi , δi) : S1 × S2 → F. We then give the
input (S1 × S2,Di , (σi , δi)) to the 2-variate weighted decoder to get the output function
Pi : S1 × S2 → F.

Since by inductive assumption, the algorithm is correct for the 2-variate case, we have
Pi = Qi . (It is a routine case analysis to check that ∆(Pi ,Qi) < µ(S1 × S2,Di)/2. This is
why the correct decoder gives the correct output!)

Running through i ↘ d , . . . , 0 gives the correct codeword C (x , y , z) =
∑d

j=0Qj(x , y)z j .

Thank You!


