Isometric Dilation and Von Neumann Inequality

Sibaprasad Barik

Mathematics Department, IIT Bombay

Diamond Jubilee Symposium Mathematics Department, IIT Bombay

January 4, 2019

(Joint work with B.K. Das, K. Haria and J. Sarkar)

- Isometric dilations.
- Isometric dilations for finite rank tuples in $\mathcal{T}_{p,q}^{n}(\mathcal{H})$.
- Sometric dilations for arbitrary tuples in $\mathcal{T}_{p,q}^{n}(\mathcal{H})$.
- Von Neumann inequality for tuples in $\mathcal{T}_{p,q}^{n}(\mathcal{H})$.

Introduction.

- Normal operators (*T* is normal if $TT^* = T^*T$) are well-understood by spectral theory.
- In many situation dilation enables us to reduce problems of tuple of commuting non-normal operators to simpler problems involving tuple of commuting normal operators.
- One such problem is characterization of tuples of commuting contractions which satisfies the von Neumann inequality.
- If a tuple of commuting contractions has an isometric dilation then it satisfies the von Neumann inequality.

Let $\mathcal H$ be a Hilbert space and $\mathcal T:\mathcal H\to\mathcal H$ be a contraction.

• $V : \mathcal{K} \to \mathcal{K} (\mathcal{K} \supseteq \mathcal{H})$ is a *dilation* of T if

 $T^k = P_{\mathcal{H}}V^k|_{\mathcal{H}} \quad \forall \ k \in \mathbb{Z}_+.$

i.e,

$$V^k = \left[egin{array}{cc} T^k & * \ * & * \end{array}
ight] \quad orall \; k \in \mathbb{Z}_+$$

with respect to the decomposition $\mathcal{K}=\mathcal{H}\oplus(\mathcal{K}\ominus\mathcal{H}).$

• If V is an isometry (respectively unitary) and satisfies the above relation then V is an isometric (respectively unitary) dilation of T.

Let \mathcal{H} be a Hilbert space and $T : \mathcal{H} \to \mathcal{H}$ be a contraction.

• $V : \mathcal{K} \to \mathcal{K} (\mathcal{K} \supseteq \mathcal{H})$ is a *dilation* of T if

$$T^k = P_{\mathcal{H}}V^k|_{\mathcal{H}} \quad \forall k \in \mathbb{Z}_+.$$

i.e,

$$V^k = \left[egin{array}{cc} T^k & * \ * & * \end{array}
ight] \quad orall \ k \in \mathbb{Z}_+$$

with respect to the decomposition $\mathcal{K} = \mathcal{H} \oplus (\mathcal{K} \ominus \mathcal{H}).$

• If V is an isometry (respectively unitary) and satisfies the above relation then V is an isometric (respectively unitary) dilation of T.

Let \mathcal{H} be a Hilbert space and $T : \mathcal{H} \to \mathcal{H}$ be a contraction.

• $V : \mathcal{K} \to \mathcal{K} (\mathcal{K} \supseteq \mathcal{H})$ is a *dilation* of T if

$$T^k = P_{\mathcal{H}}V^k|_{\mathcal{H}} \quad \forall k \in \mathbb{Z}_+.$$

i.e,

$$V^k = \left[egin{array}{cc} T^k & * \ * & * \end{array}
ight] \quad orall \ k \in \mathbb{Z}_+$$

with respect to the decomposition $\mathcal{K} = \mathcal{H} \oplus (\mathcal{K} \ominus \mathcal{H}).$

• If V is an isometry (respectively unitary) and satisfies the above relation then V is an isometric (respectively unitary) dilation of T.

For a Hilbert space ${\mathcal H}$ define,

 $\mathcal{T}^n(\mathcal{H}) = \{(T_1,\ldots,T_n): T_i \in \mathcal{B}(\mathcal{H}), \|T_i\| \leq 1, T_i T_j = T_j T_i, 1 \leq i, j \leq n\}.$

• $V \in \mathcal{T}^n(\mathcal{K})$ $(\mathcal{K} \supseteq \mathcal{H})$ is a *dilation* of $T \in \mathcal{T}^n(\mathcal{H})$ if

$$T^{\boldsymbol{k}} = P_{\mathcal{H}} V^{\boldsymbol{k}}|_{\mathcal{H}} \quad \forall \, \boldsymbol{k} \in \mathbb{Z}_{+}^{\boldsymbol{n}}.$$

i.e,

$$V^{\boldsymbol{k}} = \begin{bmatrix} T^{\boldsymbol{k}} & \ast \\ \ast & \ast \end{bmatrix} \quad \forall \ \boldsymbol{k} \in \mathbb{Z}_{+}^{n}$$

with respect to the decomposition $\mathcal{K} = \mathcal{H} \oplus (\mathcal{K} \ominus \mathcal{H}).$

• If V is an *n*-tuple of isometries (respectively unitaries) satisfies the above relation then V is an isometric (respectively unitary) dilation of T.

For a Hilbert space ${\mathcal H}$ define,

$$\mathcal{T}^n(\mathcal{H}) = \{(T_1,\ldots,T_n): T_i \in \mathcal{B}(\mathcal{H}), \|T_i\| \leq 1, T_i T_j = T_j T_i, 1 \leq i, j \leq n\}.$$

• $V \in \mathcal{T}^n(\mathcal{K})$ $(\mathcal{K} \supseteq \mathcal{H})$ is a *dilation* of $T \in \mathcal{T}^n(\mathcal{H})$ if

$$T^{\boldsymbol{k}} = P_{\mathcal{H}}V^{\boldsymbol{k}}|_{\mathcal{H}} \quad \forall \, \boldsymbol{k} \in \mathbb{Z}_{+}^{n}.$$

i.e,

$$V^{\boldsymbol{k}} = \begin{bmatrix} T^{\boldsymbol{k}} & * \\ * & * \end{bmatrix} \quad \forall \ \boldsymbol{k} \in \mathbb{Z}_+^n$$

with respect to the decomposition $\mathcal{K} = \mathcal{H} \oplus (\mathcal{K} \ominus \mathcal{H}).$

• If V is an *n*-tuple of isometries (respectively unitaries) satisfies the above relation then V is an isometric (respectively unitary) dilation of T.

For a Hilbert space ${\mathcal H}$ define,

$$\mathcal{T}^n(\mathcal{H}) = \{(T_1,\ldots,T_n): T_i \in \mathcal{B}(\mathcal{H}), \|T_i\| \leq 1, T_i T_j = T_j T_i, 1 \leq i, j \leq n\}.$$

• $V \in \mathcal{T}^n(\mathcal{K})$ $(\mathcal{K} \supseteq \mathcal{H})$ is a *dilation* of $T \in \mathcal{T}^n(\mathcal{H})$ if

$$T^{\boldsymbol{k}} = P_{\mathcal{H}}V^{\boldsymbol{k}}|_{\mathcal{H}} \quad \forall \, \boldsymbol{k} \in \mathbb{Z}_{+}^{n}.$$

i.e,

$$V^{\boldsymbol{k}} = \left[\begin{array}{cc} T^{\boldsymbol{k}} & * \\ * & * \end{array} \right] \quad \forall \ \boldsymbol{k} \in \mathbb{Z}_+^n$$

with respect to the decomposition $\mathcal{K} = \mathcal{H} \oplus (\mathcal{K} \ominus \mathcal{H}).$

• If V is an *n*-tuple of isometries (respectively unitaries) satisfies the above relation then V is an isometric (respectively unitary) dilation of T.

Existence of isometric dilation.

Theorem (Sz.-Nagy and Foias)

A contraction on a Hilbert space always possesses an isometric dilation.

Theorem (Ando)

Every pair of commuting contractions on a Hilbert space has an isometric dilation.

• Counter example of Parrot shows that, for $n \ge 3$, an *n*-tuple of commuting contractions does not possess an isometric dilation in general.

Existence of isometric dilation.

Theorem (Sz.-Nagy and Foias)

A contraction on a Hilbert space always possesses an isometric dilation.

Theorem (Ando)

Every pair of commuting contractions on a Hilbert space has an isometric dilation.

• Counter example of Parrot shows that, for *n* ≥ 3, an *n*-tuple of commuting contractions does not possess an isometric dilation in general.

Existence of isometric dilation.

Theorem (Sz.-Nagy and Foias)

A contraction on a Hilbert space always possesses an isometric dilation.

Theorem (Ando)

Every pair of commuting contractions on a Hilbert space has an isometric dilation.

• Counter example of Parrot shows that, for *n* ≥ 3, an *n*-tuple of commuting contractions does not possess an isometric dilation in general.

Hardy space.

• $H^2(\mathbb{D})$: Space of all $f = \sum_{k \in \mathbb{Z}_+} a_k z^k$ $(a_k \in \mathbb{C})$ on \mathbb{D} such that

 $\sum_{k\in\mathbb{Z}_+}|a_k|^2<\infty.$

• $H^2_{\mathcal{E}}(\mathbb{D}^n)$: Space of all $f = \sum_{k \in \mathbb{Z}^n_+} a_k z^k$ $(a_k \in \mathcal{E})$ on \mathbb{D}^n such that

$$\sum_{\boldsymbol{k}\in\mathbb{Z}^n_+}\|\boldsymbol{a}_{\boldsymbol{k}}\|^2<\infty.$$

For all i = 1,..., n, M_{zi} : H²_E(Dⁿ) → H²_E(Dⁿ), called Hardy shifts on H²_E(Dⁿ), are defined by

 $(M_{z_i}f)(\boldsymbol{w}) = w_if(\boldsymbol{w}) \quad (\boldsymbol{w} \in \mathbb{D}^n).$

Hardy space.

•
$$H^2(\mathbb{D})$$
 : Space of all $f=\sum_{k\in\mathbb{Z}_+}a_kz^k\;(a_k\in\mathbb{C})$ on \mathbb{D} such that

$$\sum_{k\in\mathbb{Z}_+}|a_k|^2<\infty.$$

• $H^2_{\mathcal{E}}(\mathbb{D}^n)$: Space of all $f = \sum_{k \in \mathbb{Z}^n_+} a_k z^k$ $(a_k \in \mathcal{E})$ on \mathbb{D}^n such that $\sum_{k \in \mathbb{Z}^n_+} \|a_k\|^2 < \infty.$

For all
$$i = 1, ..., n$$
, $M_{z_i} : H^2_{\mathcal{E}}(\mathbb{D}^n) \to H^2_{\mathcal{E}}(\mathbb{D}^n)$, called *Hardy shifts on* $H^2_{\mathcal{E}}(\mathbb{D}^n)$, are defined by

 $(M_{z_i}f)(\boldsymbol{w}) = w_if(\boldsymbol{w}) \quad (\boldsymbol{w} \in \mathbb{D}^n).$

Hardy space.

•
$$H^2(\mathbb{D})$$
 : Space of all $f=\sum_{k\in\mathbb{Z}_+}a_kz^k$ $(a_k\in\mathbb{C})$ on \mathbb{D} such that

$$\sum_{k\in\mathbb{Z}_+}|a_k|^2<\infty.$$

• $H^2_{\mathcal{E}}(\mathbb{D}^n)$: Space of all $f = \sum_{k \in \mathbb{Z}^n_+} a_k z^k$ $(a_k \in \mathcal{E})$ on \mathbb{D}^n such that

$$\sum_{\boldsymbol{k}\in\mathbb{Z}_+^n}\|\boldsymbol{a}_{\boldsymbol{k}}\|^2<\infty.$$

• For all i = 1, ..., n, $M_{z_i} : H^2_{\mathcal{E}}(\mathbb{D}^n) \to H^2_{\mathcal{E}}(\mathbb{D}^n)$, called Hardy shifts on $H^2_{\mathcal{E}}(\mathbb{D}^n)$, are defined by

$$(M_{z_i}f)(\boldsymbol{w}) = w_if(\boldsymbol{w}) \quad (\ \boldsymbol{w} \in \mathbb{D}^n).$$

Szegö positivity.

• Szegö kernel on \mathbb{D}^n , denoted as \mathbb{S}_n is

$$\mathbb{S}_n(\pmb{z},\pmb{w}) = \prod_{i=1}^n (1-z_i ar{w}_i)^{-1} \quad (ext{for all } \pmb{z},\pmb{w} \in \mathbb{D}^n).$$

• $T \in \mathcal{T}^n(\mathcal{H})$ satisfies Szegö positivity if

$$\mathbb{S}_n^{-1}(T, T^*) := \sum_{F \subset \{1, \dots, n\}} (-1)^{|F|} T_F T_F^* \ge 0.$$

For n=2: $T = (T_1, T_2)$ and $\mathbb{S}_n^{-1}(T, T^*) := I - T_1 T_1^* - T_2 T_2^* + T_1 T_2 T_1^* T_2^* \ge 0.$

• $T \in \mathcal{T}^n(\mathcal{H})$ is pure if for all i = 1, ..., n and for all $h \in \mathcal{H}$, $||T_i^{*m}(h)|| \to 0$ as $m \to \infty$.

Theorem (R. E. Curto and F. H. Vasilescu) Let $T \in \mathcal{T}^n(\mathcal{H})$ be a pure tuple satisfying Szegö positivity. Let

$$\mathcal{D}_T = \overline{ran} \, \mathbb{S}_n^{-1}(T, T^*).$$

Then T dilates to $(M_{z_1}, \ldots, M_{z_n})$ on $H^2_{\mathcal{D}_T}(\mathbb{D}^n)$.

• $T \in \mathcal{T}^n(\mathcal{H})$ is *pure* if for all i = 1, ..., n and for all $h \in \mathcal{H}$, $||T_i^{*m}(h)|| \to 0$ as $m \to \infty$.

Theorem (R. E. Curto and F. H. Vasilescu) Let $T \in T^n(\mathcal{H})$ be a pure tuple satisfying Szegö positivity. Let

$$\mathcal{D}_T = \overline{ran} \, \mathbb{S}_n^{-1}(T, T^*).$$

Then T dilates to $(M_{z_1}, \ldots, M_{z_n})$ on $H^2_{\mathcal{D}_T}(\mathbb{D}^n)$.

Let $T \in \mathcal{T}^n(\mathcal{H})$. For each $i \in \{1, \ldots, n\}$, we denote

$$\hat{T}_i := (T_1, \ldots, T_{i-1}, T_{i+1}, \ldots, T_n) \in \mathcal{T}^{(n-1)}(\mathcal{H}).$$

Our class : For fixed $1 \leq p < q \leq n$,

 $\mathcal{T}_{p,q}^n(\mathcal{H}) = \{ T \in \mathcal{T}^n(\mathcal{H}) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity and } \hat{T}_p \text{ is pure} \}.$

• Our class contains the class

 $\mathcal{P}_{p,q}^{n}(\mathcal{H}) = \{ T \in \mathcal{T}^{n}(\mathcal{H}) : \|T_{i}\| < 1 \forall i \& \hat{T}_{p}, \hat{T}_{q} \text{ satisfy Szegö positivity} \}.$

Let $T \in \mathcal{T}^n(\mathcal{H})$. For each $i \in \{1, \ldots, n\}$, we denote

$$\hat{T}_i := (T_1, \ldots, T_{i-1}, T_{i+1}, \ldots, T_n) \in \mathcal{T}^{(n-1)}(\mathcal{H}).$$

Our class : For fixed $1 \leq p < q \leq n$,

 $\mathcal{T}_{p,q}^n(\mathcal{H}) = \{ T \in \mathcal{T}^n(\mathcal{H}) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity and } \hat{T}_p \text{ is pure} \}.$

• Our class contains the class

 $\mathcal{P}_{p,q}^{n}(\mathcal{H}) = \{ T \in \mathcal{T}^{n}(\mathcal{H}) : \|T_{i}\| < 1 \forall i \& \hat{T}_{p}, \hat{T}_{q} \text{ satisfy Szegö positivity} \}.$

Let $T \in \mathcal{T}^n(\mathcal{H})$. For each $i \in \{1, \ldots, n\}$, we denote

$$\hat{T}_i := (T_1, \ldots, T_{i-1}, T_{i+1}, \ldots, T_n) \in \mathcal{T}^{(n-1)}(\mathcal{H}).$$

Our class : For fixed $1 \leq p < q \leq n$,

 $\mathcal{T}_{p,q}^n(\mathcal{H}) = \{ T \in \mathcal{T}^n(\mathcal{H}) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity and } \hat{T}_p \text{ is pure} \}.$

• Our class contains the class

 $\mathcal{P}_{p,q}^n(\mathcal{H}) = \{ T \in \mathcal{T}^n(\mathcal{H}) : \| T_i \| < 1 \, \forall i \And \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity} \}.$

Let $T \in \mathcal{T}^n(\mathcal{H})$. For each $i \in \{1, \ldots, n\}$, we denote

$$\hat{T}_i := (T_1, \ldots, T_{i-1}, T_{i+1}, \ldots, T_n) \in \mathcal{T}^{(n-1)}(\mathcal{H}).$$

Our class : For fixed $1 \leq p < q \leq n$,

 $\mathcal{T}_{p,q}^n(\mathcal{H}) = \{ T \in \mathcal{T}^n(\mathcal{H}) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity and } \hat{T}_p \text{ is pure} \}.$

• Our class contains the class

 $\mathcal{P}_{p,q}^{n}(\mathcal{H}) = \{ T \in \mathcal{T}^{n}(\mathcal{H}) : \|T_{i}\| < 1 \, \forall i \& \hat{T}_{p}, \hat{T}_{q} \text{ satisfy Szegö positivity} \}.$

Isometric dilation of Finite rank tuples in $\mathcal{T}_{p,q}^n(\mathcal{H})$.

We say $T \in \mathcal{T}_{p,q}^{n}(\mathcal{H})$ is of *finite rank* if for all i = p, q, dim $\mathcal{D}_{\hat{T}_{i}} < \infty$.

Theorem (B-, Das, Haria and Sarkar)

If $T \in \mathcal{T}^n_{p,q}(\mathcal{H})$ is a finite rank tuple, then T dilates to the n-tuple of commuting isometries

$$(M_{z_1}, \ldots, M_{z_{p-1}}, M_{\Phi_p}, M_{z_p}, \ldots, M_{z_{n-1}})$$
 on $H^2_{\mathcal{D}_{\hat{T}_p}}(\mathbb{D}^{n-1})$

where

$$\Phi_p(\boldsymbol{z}) = \varphi(z_{q-1}) \quad \forall \ \boldsymbol{z} \in \mathbb{D}^{n-1}$$

for some inner function $\varphi \in H^{\infty}_{\mathcal{B}(\mathcal{D}_{\hat{\tau}})}(\mathbb{D}).$

Isometric dilation of Finite rank tuples in $\mathcal{T}_{p,q}^n(\mathcal{H})$.

We say $T \in \mathcal{T}_{p,q}^{n}(\mathcal{H})$ is of *finite rank* if for all i = p, q, dim $\mathcal{D}_{\hat{T}_{i}} < \infty$.

Theorem (B-, Das, Haria and Sarkar)

If $T \in \mathcal{T}_{p,q}^n(\mathcal{H})$ is a finite rank tuple, then T dilates to the n-tuple of commuting isometries

$$(M_{z_1}, \ldots, M_{z_{p-1}}, M_{\Phi_p}, M_{z_p}, \ldots, M_{z_{n-1}})$$
 on $H^2_{\mathcal{D}_{\hat{\tau}_p}}(\mathbb{D}^{n-1})$

where

$$\Phi_p(\boldsymbol{z}) = arphi(z_{q-1}) \quad orall \ \boldsymbol{z} \in \mathbb{D}^{n-1}$$

for some inner function $\varphi \in H^{\infty}_{\mathcal{B}(\mathcal{D}_{\hat{\tau}_{n}})}(\mathbb{D}).$

Isometric dilation for tuples in $\mathcal{T}_{p,q}^n(\mathcal{H})$.

Theorem (B-, Das, Haria and Sarkar)

Let \mathcal{H} be a Hilbert space, and let $T \in \mathcal{T}_{p,q}^{n}(\mathcal{H})$. Then, there exists some Hilbert space \mathcal{E} such that T dilates to the isometric tuple

$$(M_{z_1}, \ldots, M_{z_{p-1}}, M_{\Phi_p}, M_{z_{p+1}}, \ldots, M_{z_{q-1}}, M_{\Phi_q}, M_{z_q}, \ldots, M_{z_{n-1}})$$
 on $H^2_{\mathcal{E}}(\mathbb{D}^{n-1})$

where Φ_p and Φ_q in $H^{\infty}_{\mathcal{B}(\mathcal{E})}(\mathbb{D}^{n-1})$ are inner polynomials in z_p of degree at most one and

$$\Phi_{
ho}(oldsymbol{z})\Phi_q(oldsymbol{z})=\Phi_q(oldsymbol{z})\Phi_{
ho}(oldsymbol{z})=z_{
ho}I_{\mathcal{E}} \quad (ext{ for all }oldsymbol{z}\in\mathbb{D}^{n-1}).$$

We say $T \in \mathcal{T}^n(\mathcal{H})$ satisfies von Neummann inequality if

 $\|p(T)\|_{\mathcal{B}(\mathcal{H})} \leq \sup_{\boldsymbol{z}\in\mathbb{D}^n} |p(\boldsymbol{z})|$

for all $p \in \mathbb{C}[z_1, \ldots, z_n]$.

- A single contraction or a pair of commuting contractions always satisfies the von Neumann inequality.
- Von Neumann inequality does not hold in general for *n*-tuple of commuting contractions where n ≥ 3.

Theorem (B-, Das, Haria and Sarkar)

If $T \in \mathcal{T}^n_{p,q}(\mathcal{H})$, then for all $p \in \mathbb{C}[z_1, \ldots, z_n]$, the following holds:

 $\|p(T)\|_{\mathcal{B}(\mathcal{H})} \leq \sup_{z\in\mathbb{D}^n} |p(z)|.$

We say $T \in \mathcal{T}^n(\mathcal{H})$ satisfies von Neummann inequality if

$$\|p(T)\|_{\mathcal{B}(\mathcal{H})} \leq \sup_{oldsymbol{z}\in\mathbb{D}^n}|p(oldsymbol{z})|$$

for all $p \in \mathbb{C}[z_1, \ldots, z_n]$.

- A single contraction or a pair of commuting contractions always satisfies the von Neumann inequality.
- Von Neumann inequality does not hold in general for *n*-tuple of commuting contractions where n ≥ 3.

```
Theorem (B-, Das, Haria and Sarkar)
```

```
If T \in \mathcal{T}^n_{p,q}(\mathcal{H}), then for all p \in \mathbb{C}[z_1, \ldots, z_n], the following holds:
```

 $\|p(T)\|_{\mathcal{B}(\mathcal{H})} \leq \sup_{z \in \mathbb{D}^n} |p(z)|.$

We say $T \in \mathcal{T}^n(\mathcal{H})$ satisfies von Neummann inequality if

$$\|p(T)\|_{\mathcal{B}(\mathcal{H})} \leq \sup_{oldsymbol{z}\in\mathbb{D}^n}|p(oldsymbol{z})|$$

for all $p \in \mathbb{C}[z_1, \ldots, z_n]$.

- A single contraction or a pair of commuting contractions always satisfies the von Neumann inequality.
- Von Neumann inequality does not hold in general for *n*-tuple of commuting contractions where $n \ge 3$.

Theorem (B-, Das, Haria and Sarkar)

```
If T \in \mathcal{T}^n_{p,q}(\mathcal{H}), then for all p \in \mathbb{C}[z_1, \ldots, z_n], the following holds:
```

 $\|p(T)\|_{\mathcal{B}(\mathcal{H})} \leq \sup_{z\in\mathbb{D}^n} |p(z)|.$

We say $T \in \mathcal{T}^n(\mathcal{H})$ satisfies von Neummann inequality if

$$\|p(T)\|_{\mathcal{B}(\mathcal{H})} \leq \sup_{oldsymbol{z}\in\mathbb{D}^n}|p(oldsymbol{z})|$$

for all $p \in \mathbb{C}[z_1, \ldots, z_n]$.

- A single contraction or a pair of commuting contractions always satisfies the von Neumann inequality.
- Von Neumann inequality does not hold in general for *n*-tuple of commuting contractions where $n \ge 3$.

Theorem (B-, Das, Haria and Sarkar)

If
$$T \in \mathcal{T}^n_{p,q}(\mathcal{H})$$
, then for all $p \in \mathbb{C}[z_1, \ldots, z_n]$, the following holds:

$$\|p(T)\|_{\mathcal{B}(\mathcal{H})} \leq \sup_{\boldsymbol{z}\in\mathbb{D}^n} |p(\boldsymbol{z})|.$$

Refined von Neumann inequality for finite rank tuples.

Theorem (B-, Das, Haria and Sarkar)

If $T \in \mathcal{T}_{p,q}^{n}(\mathcal{H})$ is a finite rank operator, then there exists an algebraic variety V in $\overline{\mathbb{D}}^{n}$ such that for all $p \in \mathbb{C}[z_{1}, \ldots, z_{n}]$, the following holds:

 $\|p(T)\| \leq \sup_{z \in V} |p(z)|.$

If, in addition, T_p is a pure contraction, then there exists a distinguished variety V' in \mathbb{D}^2 such that

$$V = V' \times \mathbb{D}^{n-2} \subseteq \mathbb{D}^n.$$

Note : A *distinguished variety* is an algebraic variety V such that

$$V=\{(z_1,z_2)\in \mathbb{D}^2: \textit{p}(z_1,z_2)=0\} \quad \text{and} \quad \overline{V}\cap \partial \mathbb{D}^2=\overline{V}\cap (\partial \mathbb{D}\times \partial \mathbb{D}),$$

where $p \in \mathbb{C}[z_1, z_2]$ and \overline{V} is the closure of V in $\overline{\mathbb{D}^2}$.

References.

- S. Barik, B. K. Das, K. J. Haria and J. Sarkar, *Isometric dilations and von Neumann inequality for a class of tuples in the polydisc*, Tran. Amer. Math. Soc. (to appear)
- A. Grinshpan, D.S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov and H.J. Woerdeman, *Classes of tuples of commuting contractions satisfying the multivariable von Neumann inequality*, J. Funct. Anal. 256 (2009), 3035-3054.
- B.K. Das and J. Sarkar, Ando dilations, von Neumann inequality, and distinguished varieties, J. Funct. Anal. 272 (2017), 2114-2131.
- R. E. Curto and F. H. Vasilescu, *Standard operator models in the polydisc*, Indiana Univ. Math. J. 42 (1993), 791-810.

THANK YOU !