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List of notations
R commutative Noetherian ring, M an R-module and I an ideal in R.

I Hi
I(M): the ith local cohomology module with respect to I,

defined as
Hi
I(M) = lim

−→
n≥1

ExtiR(R/In,M).

I µj(P,M): the jth Bass number of M with respect to a prime
ideal P , defined as

µj(P,M) = dimk(P ) ExtjRP
(k(P ),MP )

where k(P ) is the residue field of RP .

I AssM = {P ∈ SpecR | P = annR(u) for some 0 6= u ∈M}.
P ∈ AssM is called an associated prime of M .

I SuppRM ={P |MP 6= 0 and P is a prime in R}

I dimRM : the dimension of SuppRM as a subspace of SpecR.

I Aut(R): the group of automorphisms of R.
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Introduction

S =
⊕

n≥0 Sn standard graded Noetherian ring, S+ =
⊕

n>0 Sn it’s
irrelevant ideal and M a finitely generated graded S-module. Then
for all i ≥ 0,

(1) Hi
S+

(M)n is a finitely generated S0-module for all n ∈ Z,

(2) Hi
S+

(M)n = 0 for all n� 0.

Question Does Hi
I(M)n exhibit similar (or predictable) results for

an arbitrary homogeneous ideals I in S?

Example 1 (Brodmann and Sharp1)
Take S = A[X,Y ] where A is any commutative Noetherian ring and
I = (X). Then the A = S0 module H1

(X)(S)n is free but not finitely
generated for all n ∈ Z.

I Negative answer even in the case when S is a polynomial ring.

1M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic
introduction with geometric applications.
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• Puthenpurakal (2017) studied Hi
I(S)n when S = A[X1, . . . , Xm],

A is a regular ring containing a field K with charK = 0 and showed
that Hi

I(S)n exhibits striking good behavior.

Note. Let R be a regular ring containing a field K and I be an ideal
in R. Then

• Huneke and Sharp (1993) showed Hi
I(R) has good properties (e.g.,

finiteness of (i) injdim, (ii) Bass numbers, (iii) associated primes etc.)
if charK = p > 0.

• Lyubeznik showed T (R) has similar good properties in both cases
when charK = 0 (1993) and charK = p > 0 (1997).

For singular rings analogous results are in general false.

• Hartshorne (1969) gave example of a singular ring R such that
µ0(m, H2

I (R)) is infinite, Singh (2000) and Katzman (2002) gave
examples of a singular rings R such that AssRH

i
I(R) is infinite.

• Betancourt (2012) and Puthenpurakal (2014) showed that Hi
I(R

G)
has similar good properties, where R is a regular ring containing a
field K with charK = 0, G ⊆ Aut(R) finite and I is an ideal in RG.

I In view of this, we studied some other properties of Hi
I(S)n when

A = BG where B regular ring containing a field K with charK = 0,
G ⊆ Aut(B) finite.
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Basic Definitions and Results
Let A be a ring (not necessarily commutative) and G ⊆ Aut(A) is
finite with |G| is invertible in A.

I The skew-group ring of A (with respect to G) is

A ∗G = {
∑
σ∈G

aσσ | aσ ∈ A for all σ},

with multiplication defined as

(aσσ)(aττ) = aσσ(aτ )στ.

I An A ∗G module M is an A-module on which G acts such that
for all σ ∈ G,

σ(am) = σ(a)σ(m) for all a ∈ A and m ∈M.

Definition Let M be an A ∗G-module. Then

MG = {m ∈M | σ(m) = m for all σ ∈ G}.

• Set AG to be the ring of invariants of G.
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§ Graded Lyubeznik functors:

• Let R = B[X1, . . . , Xm] be standard graded.

• Y is homogeneous closed subset of Spec(R) if Y = V (f1, . . . , fs),
where fi’s are homogeneous polynomials in R.

• Y is homogeneous locally closed subset of Spec(R) if Y = Y ′′ − Y ′,
where Y ′ ⊂ Y ′′ are homogeneous closed subsets of Spec(R).

Definition A graded Lyubeznik functor is T = T1 ◦ T2 ◦ · · · ◦ Tm
where each Tj is either Hi

Yj
(−) for some homogeneous locally closed

subset Yj of Spec(R) or the kernel, image or cokernel of any arrow
appearing in

· · · → Hi
Y ′j

(−)
φ′ij−→ Hi

Y ′′j
(−)

φ′′ij−→ Hi
Yj

(−)
φij−→ Hi+1

Y ′j
(−)→ · · ·,

where Yj = Y ′′j − Y ′j and Y ′j ⊂ Y ′′j are homogeneous closed subsets of
Spec(R).
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Standard assumption
I Let A be a regular domain containing a field K with charK = 0.

I G is a finite subgroup of Aut(A).

I B = AG the ring of invariants of G.

I S = A[X1, . . . , Xm] and R = B[X1, . . . , Xm] standard graded
with degA = 0, degB = 0 and degXi = 1 for all i.

I Extend the action of G on A to S by fixing Xi’s. Note SG = R.

I Set M = T (R) =
⊕

n∈ZMn where

T (−) = Hi1
I1

(Hi2
I2

(· · ·Hir
Ir

(−) · · · )

for some homogeneous ideals I1, . . . , Ir in R and i1, . . . , ir ≥ 0.

I Set N = T ′(S) =
⊕

n∈ZNn where

T ′(−) = Hi1
I1S

(Hi2
I2S

(· · ·Hir
IrS

(−) · · · ).

Observation: Nn is an A ∗G-module and NG
n = Mn for all n.
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Bass numbers
Theorem 2 (with standard assumption)
Let P be a prime ideal in B such that BP is Gorenstein. Fix j ≥ 0.
Then EXACTLY one of the following holds:

(i) µj(P,Mn) =∞, ∀n ∈ Z.

(ii) µj(P,Mn) <∞, ∀n ∈ Z.

In this case EXACTLY one of the following holds:

(a) µj(P,Mn) = 0, ∀n ∈ Z.

(b) µj(P,Mn) 6= 0, ∀n ∈ Z.

(c) µj(P,Mn) 6= 0, ∀n ≥ 0 and µj(P,Mn) = 0, ∀n < 0.

(d) µj(P,Mn) 6= 0, ∀n ≤ −m and µj(P,Mn) = 0, ∀n > −m.

(e) µj(P,Mn) 6= 0, ∀n ≤ −m, µj(P,Mn) = 0, ∀n ≥ 0 and
µj(P,Mn) = 0 for all n with −m < n < 0.

n•0 n•0(a) (b)

n••−m 0
n•0(c) (d)

n••−m 0
(e) = 0, 6= 0
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The m-th Weyl algebra over K is the ring

Am(K) = K〈X1, . . . , Xm, ∂1, . . . , ∂m〉/a,

where a is the two-sided ideal generated by the elements

Xi ·Xj −Xj ·Xi, ∂i ·Xj −Xj · ∂i − δi,j , ∂i · ∂j − ∂j · ∂i,

with δi,j is the Kronecker delta.

Consider Am(K) as graded with degK = 0,degXi = 1,deg ∂i = −1.
Let E = ⊕n∈ZEn be a graded Am(K)-module. Then E is

• holonomic if E is finitely generated and dimE = m.

• Eulerian (Ma and Zhang) if Eme = ne for each e ∈ En
• generalized Eulerian (Puthenpurakal) if for each e ∈ En,
∃ a ∈ Z>0 (depending on e) s.t. (Em − n)a · e = 0

where Em :=
∑m
i=1Xi∂i is the Euler operator on Am(K).
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Puthenpurakal proved the followings:

Let E = ⊕n∈ZEn be a graded holonomic generalized Eulerian
Am(K)-module.

Theorem (Vanishing)
En = 0 for all |n| � 0 =⇒ E = 0.

Theorem (Rigidity)
• Er 6= 0 for some r ≤ −m ⇐⇒ En 6= 0 for all n ≤ −m.
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• Take Mn 6= 0. Since µj(P,Mn) = µj(PRP , (Mn)P ) so we only prove
for m considering (B,m) is Gorenstein local.
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Theorem (Tony, 2014)

• A normal domain, G ⊆ Aut(A) finite and |G| invertible in A.

• n1, . . . , nr are all the maximal ideals of A lying above m, a
maximal ideal of AG.

• M an A ∗G-module.

Then Hj
mA(M) =

⊕r
l=1H

j
nl

(M) =
⊕r

l=1EA(A/nl)
sj(n) for all j ≥ 0.
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Lemma (with standard assumption)
Let heightP = g. Then(

Hj
P (NG

n )
)
P

= Hg
PBP

(BP )sj(n) for some sj(n) ≥ 0.

Here sj(n) is some cardinal (possibly infinite).

Lemma (with standard assumption)
Let P be a prime ideal in B such that BP is Gorenstein. Then

µj(P,Mn) = µ0(P,Hj
P (Mn)) for all j ≥ 0.
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m(B) ∼= EB(B/m)

=⇒ µ0(m, Hj
m(Mn)) = sj(n) = µ0(nl, H

j
mA(Nn)) for any l.

• Note Hj
mA(Nn) = (Hj

mS(N))n = (Hj
mS(T ′(S)))n. Fix l.

(Tony,2017)
=⇒ µ0(nl, H

j
mA(Nr)) = sj(r) <∞ ∀r ∈ Z and satisfies one

of (a), (b), (c), (d), (e).
=⇒ µj(m,Mr) = sj(r) <∞ ∀r and satisfies one of
(a), (b), (c), (d), (e).
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F Theorem 2 is NOT true in general.

Example 3

• Take a Noetherian local ring (A,m) with µ0(m, Hi
J(A)) =∞.

• R = A[X1, . . . , Xm] be standard graded with m ≥ 1.

• Set M = Hi
JR(R) = Hi

J(A)⊗A R =
⊕

n∈NMn.

So in this case µ0(m,Mn) = 0 for n < 0 (as Mn = 0) and
µ0(m,Mn) =∞ ∀n ≥ 0.
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Growth of Bass numbers

• Growth of the function n 7→ µj(P,Mn) as n→ −∞ and when
n 7→ ∞.

Theorem 4 (with standard assumption)

• P prime ideal in B such that BP is Gorenstein.

• Fix j ≥ 0.

• Suppose µj(P,Mn) <∞, ∀n ∈ Z.

Then there exist polynomials f j,PM (Z), gj,PM (Z) ∈ Q[Z] of degree
≤ m− 1 such that

f j,PM (n) = µj(P,Mn) for all n� 0 AND

gj,PM (n) = µj(P,Mn) for all n� 0.
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Theorem 5 (with standard assumption)

• P prime ideal in B such that BP is Gorenstein.

• Fix j ≥ 0.

• Suppose µj(P,Mc) = 0 for some c.

Then

f j,PM (Z) = 0 or deg f j,PM (Z) = m− 1,

gj,PM (Z) = 0 or deg gj,PM (Z) = m− 1.

13 / 23



Theorem 6 (with standard assumption)

• Assume m = 1.

• Fix j ≥ 0.

• Let B be Cohen-Macaulay but not necessarily Gorenstein and P
be a prime ideal in B.

Then µj(P,Mn) <∞ ∀n ∈ Z.

I The above result gives us a sufficient condition under which for any
fixed j and prime ideal P in B,

µj(P,Mn) <∞ ∀n ∈ Z.
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Theorem 7 (with standard assumption)

• Assume m = 1.

• P prime ideal in B such that BP is not Gorenstein.

• Fix n ∈ Z.

Then EXACTLY one of the following holds:

(i) µj(P,Mn) = 0, ∀j.
(ii) there exists c such that

µj(P,Mn) = 0 for j < c and

µj(P,Mn) > 0, ∀j ≥ c.

I Let Mn 6= 0 and injdimBMn <∞ for some n. Then

µj(P,Mn) 6= 0 for some j =⇒ BP is Gorenstein.
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Dimension of Supports and injective dimension

Theorem 8 (with standard assumption)
If B is Gorenstein, then the following hold:

(i) injdimMc ≤ dimMc for all c ∈ Z.

(ii) injdimMn = injdimM−m for all n ≤ −m.

(iii) injdimMn = injdimM0 for all n ≥ 0.

(iv) If m ≥ 2 and −m < r, s < 0, then

(a) injdimMr = injdimMs.

(b) injdimMr ≤ min{injdimM−m, injdimM0}.
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F Theorem 8 is NOT true if B is not Gorenstein.

Example 9

• A = C[[Y1, . . . , Yn]] and G ⊆ Gln(C) acting linearly with AG

NOT Gorenstein.

• m and mG be maximal ideals of A and AG = B respectively.

• Set S = A[X1, . . . , Xm] and R = B[X1, . . . , Xm].

• Set M = Hn
mGR(R) = Hn

mG(B)⊗B R.

As AG is NOT Gorenstein we have injdimHn
mG(B) =∞. It follows

that injdimBM0 =∞.
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Associate primes

Theorem 10 (with standard assumption)
Assume that either A is local or a smooth affine algebra over a field K
of characteristic zero. Then

⋃
n∈Z AssBMn is a finite set.

Moreover, if B is Gorenstein then

(1) AssBMn = AssBM−m, ∀n ≤ −m.

(2) AssBMn = AssBM0, ∀n ≥ 0.
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Infinite generation

Theorem 11 (with standard assumption II)

• J homogeneous ideal in R such that J ∩B 6= 0.

• B Gorenstein.

• Hi
J(R)c 6= 0.

Then Hi
J(R)c is NOT finitely generated as a B-module.

I This is one sufficient condition for infinite generation of a
component of graded local cohomology module over R.
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F Theorem 11 is NOT true in general.

Example 12

• (A,m) be a local domain with dimension d > 0 such that Hi
m(A)

is finitely generated and non-zero for some i < d.

• R = A[X1, . . . , Xm] be standard graded with m ≥ 1.

• Set M = Hi
mR(R) = Hi

m(A)⊗A R.

Then M0 = Hi
m(A) is non-zero and finitely generated as an A-module.
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Latest work

Later on, Puthenpurakal studied graded local cohomology modules in
the following case:

• A is a regular ring containing a field K with charK = 0.

• G a finite group with a group homomorphism φ : G→ GLm(A).

• R = A[X1, . . . , Xm] is standard graded with degA = 0 and
degXi = 1 for all i.

• G acts linearly on R fixing A.

• Set S = RG.

Note: S is usually not standard graded.
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