# GRADED COMPONENTS OF LOCAL COHOMOLOGY MODULES OF INVARIANT RINGS 

## Sudeshna Roy

Joint work with Prof. Tony J. Puthenpurakal


Diamond Jubilee Symposium<br>Department of Mathematics, IIT Bombay

January 5, 2019

## List of notations

$R$ commutative Noetherian ring, $M$ an $R$-module and $I$ an ideal in $R$.

## List of notations

$R$ commutative Noetherian ring, $M$ an $R$-module and $I$ an ideal in $R$.

- $H_{I}^{i}(M)$ : the $i^{\text {th }}$ local cohomology module with respect to $I$, defined as

$$
H_{I}^{i}(M)=\underset{\overrightarrow{n \geq 1}}{\lim } \operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)
$$

## List of notations

$R$ commutative Noetherian ring, $M$ an $R$-module and $I$ an ideal in $R$.

- $H_{I}^{i}(M)$ : the $i^{\text {th }}$ local cohomology module with respect to $I$, defined as

$$
H_{I}^{i}(M)=\underset{\overrightarrow{n \geq 1}}{\lim } \operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)
$$

- $\mu_{j}(P, M)$ : the $j^{\text {th }}$ Bass number of $M$ with respect to a prime ideal $P$, defined as

$$
\mu_{j}(P, M)=\operatorname{dim}_{k(P)} \operatorname{Ext}_{R_{P}}^{j}\left(k(P), M_{P}\right)
$$

where $k(P)$ is the residue field of $R_{P}$.

## List of notations

$R$ commutative Noetherian ring, $M$ an $R$-module and $I$ an ideal in $R$.

- $H_{I}^{i}(M)$ : the $i^{\text {th }}$ local cohomology module with respect to $I$, defined as

$$
H_{I}^{i}(M)=\underset{\overrightarrow{n \geq 1}}{\lim } \operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)
$$

- $\mu_{j}(P, M)$ : the $j^{\text {th }}$ Bass number of $M$ with respect to a prime ideal $P$, defined as

$$
\mu_{j}(P, M)=\operatorname{dim}_{k(P)} \operatorname{Ext}_{R_{P}}^{j}\left(k(P), M_{P}\right)
$$

where $k(P)$ is the residue field of $R_{P}$.

- Ass $M=\left\{P \in \operatorname{Spec} R \mid P=\operatorname{ann}_{R}(u)\right.$ for some $\left.0 \neq u \in M\right\}$. $P \in$ Ass $M$ is called an associated prime of $M$.


## List of notations

$R$ commutative Noetherian ring, $M$ an $R$-module and $I$ an ideal in $R$.

- $H_{I}^{i}(M)$ : the $i^{\text {th }}$ local cohomology module with respect to $I$, defined as

$$
H_{I}^{i}(M)=\underset{\overrightarrow{n \geq 1}}{\lim } \operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)
$$

- $\mu_{j}(P, M)$ : the $j^{\text {th }}$ Bass number of $M$ with respect to a prime ideal $P$, defined as

$$
\mu_{j}(P, M)=\operatorname{dim}_{k(P)} \operatorname{Ext}_{R_{P}}^{j}\left(k(P), M_{P}\right)
$$

where $k(P)$ is the residue field of $R_{P}$.

- Ass $M=\left\{P \in \operatorname{Spec} R \mid P=\operatorname{ann}_{R}(u)\right.$ for some $\left.0 \neq u \in M\right\}$. $P \in$ Ass $M$ is called an associated prime of $M$.
- $\operatorname{Supp}_{R} M=\left\{P \mid M_{P} \neq 0\right.$ and $P$ is a prime in $\left.R\right\}$


## List of notations

$R$ commutative Noetherian ring, $M$ an $R$-module and $I$ an ideal in $R$.

- $H_{I}^{i}(M)$ : the $i^{\text {th }}$ local cohomology module with respect to $I$, defined as

$$
H_{I}^{i}(M)=\underset{\overrightarrow{n \geq 1}}{\lim } \operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)
$$

- $\mu_{j}(P, M)$ : the $j^{\text {th }}$ Bass number of $M$ with respect to a prime ideal $P$, defined as

$$
\mu_{j}(P, M)=\operatorname{dim}_{k(P)} \operatorname{Ext}_{R_{P}}^{j}\left(k(P), M_{P}\right)
$$

where $k(P)$ is the residue field of $R_{P}$.

- Ass $M=\left\{P \in \operatorname{Spec} R \mid P=\operatorname{ann}_{R}(u)\right.$ for some $\left.0 \neq u \in M\right\}$. $P \in$ Ass $M$ is called an associated prime of $M$.
- $\operatorname{Supp}_{R} M=\left\{P \mid M_{P} \neq 0\right.$ and $P$ is a prime in $\left.R\right\}$
- $\operatorname{dim}_{R} M$ : the dimension of $\operatorname{Supp}_{R} M$ as a subspace of $\operatorname{Spec} R$.


## List of notations

$R$ commutative Noetherian ring, $M$ an $R$-module and $I$ an ideal in $R$.

- $H_{I}^{i}(M)$ : the $i^{\text {th }}$ local cohomology module with respect to $I$, defined as

$$
H_{I}^{i}(M)=\underset{\overrightarrow{n \geq 1}}{\lim } \operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)
$$

- $\mu_{j}(P, M)$ : the $j^{\text {th }}$ Bass number of $M$ with respect to a prime ideal $P$, defined as

$$
\mu_{j}(P, M)=\operatorname{dim}_{k(P)} \operatorname{Ext}_{R_{P}}^{j}\left(k(P), M_{P}\right)
$$

where $k(P)$ is the residue field of $R_{P}$.

- Ass $M=\left\{P \in \operatorname{Spec} R \mid P=\operatorname{ann}_{R}(u)\right.$ for some $\left.0 \neq u \in M\right\}$. $P \in$ Ass $M$ is called an associated prime of $M$.
- $\operatorname{Supp}_{R} M=\left\{P \mid M_{P} \neq 0\right.$ and $P$ is a prime in $\left.R\right\}$
- $\operatorname{dim}_{R} M$ : the dimension of $\operatorname{Supp}_{R} M$ as a subspace of $\operatorname{Spec} R$.
- $\operatorname{Aut}(R)$ : the group of automorphisms of $R$.


## Introduction

$S=\bigoplus_{n \geq 0} S_{n}$ standard graded Noetherian ring, $S_{+}=\bigoplus_{n>0} S_{n}$ it's irrelevant ideal and $M$ a finitely generated graded $S$-module. Then for all $i \geq 0$,
(1) $H_{S_{+}}^{i}(M)_{n}$ is a finitely generated $S_{0}$-module for all $n \in \mathbb{Z}$,
(2) $H_{S_{+}}^{i}(M)_{n}=0$ for all $n \gg 0$.

[^0]
## Introduction

$S=\bigoplus_{n \geq 0} S_{n}$ standard graded Noetherian ring, $S_{+}=\bigoplus_{n>0} S_{n}$ it's irrelevant ideal and $M$ a finitely generated graded $S$-module. Then for all $i \geq 0$,
(1) $H_{S_{+}}^{i}(M)_{n}$ is a finitely generated $S_{0}$-module for all $n \in \mathbb{Z}$,
(2) $H_{S_{+}}^{i}(M)_{n}=0$ for all $n \gg 0$.

Question Does $H_{I}^{i}(M)_{n}$ exhibit similar (or predictable) results for an arbitrary homogeneous ideals $I$ in $S$ ?

[^1]
## Introduction

$S=\bigoplus_{n>0} S_{n}$ standard graded Noetherian ring, $S_{+}=\bigoplus_{n>0} S_{n}$ it's irrelevant ideal and $M$ a finitely generated graded $S$-module. Then for all $i \geq 0$,
(1) $H_{S_{+}}^{i}(M)_{n}$ is a finitely generated $S_{0}$-module for all $n \in \mathbb{Z}$,
(2) $H_{S_{+}}^{i}(M)_{n}=0$ for all $n \gg 0$.

Question Does $H_{I}^{i}(M)_{n}$ exhibit similar (or predictable) results for an arbitrary homogeneous ideals $I$ in $S$ ?

Example 1 (Brodmann and Sharp ${ }^{1}$ )
Take $S=A[X, Y]$ where $A$ is any commutative Noetherian ring and $I=(X)$. Then the $A=S_{0}$ module $H_{(X)}^{1}(S)_{n}$ is free but not finitely generated for all $n \in \mathbb{Z}$.

- Negative answer even in the case when $S$ is a polynomial ring.

[^2]- Puthenpurakal (2017) studied $H_{I}^{i}(S)_{n}$ when $S=A\left[X_{1}, \ldots, X_{m}\right]$, $A$ is a regular ring containing a field $K$ with char $K=0$ and showed that $H_{I}^{i}(S)_{n}$ exhibits striking good behavior.
- Puthenpurakal (2017) studied $H_{I}^{i}(S)_{n}$ when $S=A\left[X_{1}, \ldots, X_{m}\right]$, $A$ is a regular ring containing a field $K$ with char $K=0$ and showed that $H_{I}^{i}(S)_{n}$ exhibits striking good behavior.
Note. Let $R$ be a regular ring containing a field $K$ and $I$ be an ideal in $R$. Then
- Huneke and Sharp (1993) showed $H_{I}^{i}(R)$ has good properties (e.g., finiteness of (i) injdim, (ii) Bass numbers, (iii) associated primes etc.) if char $K=p>0$.
- Lyubeznik showed $\mathcal{T}(R)$ has similar good properties in both cases when char $K=0$ (1993) and char $K=p>0$ (1997).
- Puthenpurakal (2017) studied $H_{I}^{i}(S)_{n}$ when $S=A\left[X_{1}, \ldots, X_{m}\right]$, $A$ is a regular ring containing a field $K$ with char $K=0$ and showed that $H_{I}^{i}(S)_{n}$ exhibits striking good behavior.
Note. Let $R$ be a regular ring containing a field $K$ and $I$ be an ideal in $R$. Then
- Huneke and Sharp (1993) showed $H_{I}^{i}(R)$ has good properties (e.g., finiteness of (i) injdim, (ii) Bass numbers, (iii) associated primes etc.) if char $K=p>0$.
- Lyubeznik showed $\mathcal{T}(R)$ has similar good properties in both cases when char $K=0$ (1993) and char $K=p>0$ (1997).

For singular rings analogous results are in general false.

- Hartshorne (1969) gave example of a singular ring $R$ such that $\mu_{0}\left(\mathfrak{m}, H_{I}^{2}(R)\right)$ is infinite, Singh (2000) and Katzman (2002) gave examples of a singular rings $R$ such that $\operatorname{Ass}_{R} H_{I}^{i}(R)$ is infinite.
- Puthenpurakal (2017) studied $H_{I}^{i}(S)_{n}$ when $S=A\left[X_{1}, \ldots, X_{m}\right]$, $A$ is a regular ring containing a field $K$ with char $K=0$ and showed that $H_{I}^{i}(S)_{n}$ exhibits striking good behavior.
Note. Let $R$ be a regular ring containing a field $K$ and $I$ be an ideal in $R$. Then
- Huneke and Sharp (1993) showed $H_{I}^{i}(R)$ has good properties (e.g., finiteness of (i) injdim, (ii) Bass numbers, (iii) associated primes etc.) if char $K=p>0$.
- Lyubeznik showed $\mathcal{T}(R)$ has similar good properties in both cases when char $K=0$ (1993) and char $K=p>0$ (1997).
For singular rings analogous results are in general false.
- Hartshorne (1969) gave example of a singular ring $R$ such that $\mu_{0}\left(\mathfrak{m}, H_{I}^{2}(R)\right)$ is infinite, Singh (2000) and Katzman (2002) gave examples of a singular rings $R$ such that $\operatorname{Ass}_{R} H_{I}^{i}(R)$ is infinite.
- Betancourt (2012) and Puthenpurakal (2014) showed that $H_{I}^{i}\left(R^{G}\right)$ has similar good properties, where $R$ is a regular ring containing a field $K$ with char $K=0, G \subseteq \operatorname{Aut}(R)$ finite and $I$ is an ideal in $R^{G}$.
- Puthenpurakal (2017) studied $H_{I}^{i}(S)_{n}$ when $S=A\left[X_{1}, \ldots, X_{m}\right]$, $A$ is a regular ring containing a field $K$ with char $K=0$ and showed that $H_{I}^{i}(S)_{n}$ exhibits striking good behavior.
Note. Let $R$ be a regular ring containing a field $K$ and $I$ be an ideal in $R$. Then
- Huneke and Sharp (1993) showed $H_{I}^{i}(R)$ has good properties (e.g., finiteness of (i) injdim, (ii) Bass numbers, (iii) associated primes etc.) if char $K=p>0$.
- Lyubeznik showed $\mathcal{T}(R)$ has similar good properties in both cases when char $K=0$ (1993) and char $K=p>0$ (1997).
For singular rings analogous results are in general false.
- Hartshorne (1969) gave example of a singular ring $R$ such that $\mu_{0}\left(\mathfrak{m}, H_{I}^{2}(R)\right)$ is infinite, Singh (2000) and Katzman (2002) gave examples of a singular rings $R$ such that $\operatorname{Ass}_{R} H_{I}^{i}(R)$ is infinite.
- Betancourt (2012) and Puthenpurakal (2014) showed that $H_{I}^{i}\left(R^{G}\right)$ has similar good properties, where $R$ is a regular ring containing a field $K$ with char $K=0, G \subseteq \operatorname{Aut}(R)$ finite and $I$ is an ideal in $R^{G}$.
- In view of this, we studied some other properties of $H_{I}^{i}(S)_{n}$ when $A=B^{G}$ where $B$ regular ring containing a field $K$ with char $K=0$, $G \subseteq \operatorname{Aut}(B)$ finite.


## Basic Definitions and Results

Let $A$ be a ring (not necessarily commutative) and $G \subseteq \operatorname{Aut}(A)$ is finite with $|G|$ is invertible in $A$.

- The skew-group ring of $A$ (with respect to $G$ ) is

$$
A * G=\left\{\sum_{\sigma \in G} a_{\sigma} \sigma \mid a_{\sigma} \in A \text { for all } \sigma\right\},
$$

with multiplication defined as

$$
\left(a_{\sigma} \sigma\right)\left(a_{\tau} \tau\right)=a_{\sigma} \sigma\left(a_{\tau}\right) \sigma \tau
$$

- An $A * G$ module $M$ is an $A$-module on which $G$ acts such that for all $\sigma \in G$,

$$
\sigma(a m)=\sigma(a) \sigma(m) \quad \text { for all } a \in A \text { and } m \in M .
$$

## Basic Definitions and Results

Let $A$ be a ring (not necessarily commutative) and $G \subseteq \operatorname{Aut}(A)$ is finite with $|G|$ is invertible in $A$.

- The skew-group ring of $A$ (with respect to $G$ ) is

$$
A * G=\left\{\sum_{\sigma \in G} a_{\sigma} \sigma \mid a_{\sigma} \in A \text { for all } \sigma\right\},
$$

with multiplication defined as

$$
\left(a_{\sigma} \sigma\right)\left(a_{\tau} \tau\right)=a_{\sigma} \sigma\left(a_{\tau}\right) \sigma \tau
$$

- An $A * G$ module $M$ is an $A$-module on which $G$ acts such that for all $\sigma \in G$,

$$
\sigma(a m)=\sigma(a) \sigma(m) \quad \text { for all } a \in A \text { and } m \in M .
$$

Definition Let $M$ be an $A * G$-module. Then

$$
M^{G}=\{m \in M \mid \sigma(m)=m \text { for all } \sigma \in G\} .
$$

- Set $A^{G}$ to be the ring of invariants of $G$.


## § Graded Lyubeznik functors:

- Let $R=B\left[X_{1}, \ldots, X_{m}\right]$ be standard graded.
- $Y$ is homogeneous closed subset of $\operatorname{Spec}(R)$ if $Y=V\left(f_{1}, \ldots, f_{s}\right)$, where $f_{i}$ 's are homogeneous polynomials in $R$.
- $Y$ is homogeneous locally closed subset of $\operatorname{Spec}(R)$ if $Y=Y^{\prime \prime}-Y^{\prime}$, where $Y^{\prime} \subset Y^{\prime \prime}$ are homogeneous closed subsets of $\operatorname{Spec}(R)$.


## § Graded Lyubeznik functors:

- Let $R=B\left[X_{1}, \ldots, X_{m}\right]$ be standard graded.
- $Y$ is homogeneous closed subset of $\operatorname{Spec}(R)$ if $Y=V\left(f_{1}, \ldots, f_{s}\right)$, where $f_{i}$ 's are homogeneous polynomials in $R$.
- $Y$ is homogeneous locally closed subset of $\operatorname{Spec}(R)$ if $Y=Y^{\prime \prime}-Y^{\prime}$, where $Y^{\prime} \subset Y^{\prime \prime}$ are homogeneous closed subsets of $\operatorname{Spec}(R)$.

Definition A graded Lyubeznik functor is $\mathcal{T}=\mathcal{T}_{1} \circ \mathcal{T}_{2} \circ \cdots \circ \mathcal{T}_{m}$ where each $\mathcal{T}_{j}$ is either $H_{Y_{j}}^{i}(-)$ for some homogeneous locally closed subset $Y_{j}$ of $\operatorname{Spec}(R)$ or the kernel, image or cokernel of any arrow appearing in

$$
\cdots \rightarrow H_{Y_{j}^{\prime}}^{i}(-) \xrightarrow{\phi_{i j}^{\prime}} H_{Y_{j}^{\prime \prime}}^{i}(-) \xrightarrow{\phi_{i j}^{\prime \prime}} H_{Y_{j}}^{i}(-) \xrightarrow{\phi_{i j}} H_{Y_{j}^{\prime}}^{i+1}(-) \rightarrow \cdots,
$$

where $Y_{j}=Y_{j}^{\prime \prime}-Y_{j}^{\prime}$ and $Y_{j}^{\prime} \subset Y_{j}^{\prime \prime}$ are homogeneous closed subsets of $\operatorname{Spec}(R)$.

## Standard assumption

- Let $A$ be a regular domain containing a field $K$ with char $K=0$.
- $G$ is a finite subgroup of $\operatorname{Aut}(A)$.
- $B=A^{G}$ the ring of invariants of $G$.
- $S=A\left[X_{1}, \ldots, X_{m}\right]$ and $R=B\left[X_{1}, \ldots, X_{m}\right]$ standard graded with $\operatorname{deg} A=0, \operatorname{deg} B=0$ and $\operatorname{deg} X_{i}=1$ for all $i$.
- Extend the action of $G$ on $A$ to $S$ by fixing $X_{i}$ 's. Note $S^{G}=R$.


## Standard assumption

- Let $A$ be a regular domain containing a field $K$ with char $K=0$.
- $G$ is a finite subgroup of $\operatorname{Aut}(A)$.
- $B=A^{G}$ the ring of invariants of $G$.
- $S=A\left[X_{1}, \ldots, X_{m}\right]$ and $R=B\left[X_{1}, \ldots, X_{m}\right]$ standard graded with $\operatorname{deg} A=0, \operatorname{deg} B=0$ and $\operatorname{deg} X_{i}=1$ for all $i$.
- Extend the action of $G$ on $A$ to $S$ by fixing $X_{i}$ 's. Note $S^{G}=R$.
- Set $M=T(R)=\bigoplus_{n \in \mathbb{Z}} M_{n}$ where

$$
T(-)=H_{I_{1}}^{i_{1}}\left(H_{I_{2}}^{i_{2}}\left(\cdots H_{I_{r}}^{i_{r}}(-) \cdots\right)\right.
$$

for some homogeneous ideals $I_{1}, \ldots, I_{r}$ in $R$ and $i_{1}, \ldots, i_{r} \geq 0$.

- Set $N=T^{\prime}(S)=\bigoplus_{n \in \mathbb{Z}} N_{n}$ where

$$
T^{\prime}(-)=H_{I_{1} S}^{i_{1}}\left(H_{I_{2} S}^{i_{2}}\left(\cdots H_{I_{r} S}^{i_{r}}(-) \cdots\right)\right.
$$

## Standard assumption

- Let $A$ be a regular domain containing a field $K$ with char $K=0$.
- $G$ is a finite subgroup of $\operatorname{Aut}(A)$.
- $B=A^{G}$ the ring of invariants of $G$.
- $S=A\left[X_{1}, \ldots, X_{m}\right]$ and $R=B\left[X_{1}, \ldots, X_{m}\right]$ standard graded with $\operatorname{deg} A=0, \operatorname{deg} B=0$ and $\operatorname{deg} X_{i}=1$ for all $i$.
- Extend the action of $G$ on $A$ to $S$ by fixing $X_{i}$ 's. Note $S^{G}=R$.
- Set $M=T(R)=\bigoplus_{n \in \mathbb{Z}} M_{n}$ where

$$
T(-)=H_{I_{1}}^{i_{1}}\left(H_{I_{2}}^{i_{2}}\left(\cdots H_{I_{r}}^{i_{r}}(-) \cdots\right)\right.
$$

for some homogeneous ideals $I_{1}, \ldots, I_{r}$ in $R$ and $i_{1}, \ldots, i_{r} \geq 0$.

- Set $N=T^{\prime}(S)=\bigoplus_{n \in \mathbb{Z}} N_{n}$ where

$$
T^{\prime}(-)=H_{I_{1} S}^{i_{1}}\left(H_{I_{2} S}^{i_{2}}\left(\cdots H_{I_{r} S}^{i_{r}}(-) \cdots\right) .\right.
$$

Observation: $N_{n}$ is an $A * G$-module and $N_{n}^{G}=M_{n}$ for all $n$.

## Bass numbers

Theorem 2 (with standard assumption)
Let $P$ be a prime ideal in $B$ such that $B_{P}$ is Gorenstein. Fix $j \geq 0$. Then EXACTLY one of the following holds:
(i) $\mu_{j}\left(P, M_{n}\right)=\infty, \quad \forall n \in \mathbb{Z}$.
(ii) $\mu_{j}\left(P, M_{n}\right)<\infty, \quad \forall n \in \mathbb{Z}$.

## Bass numbers

## Theorem 2 (with standard assumption)

Let $P$ be a prime ideal in $B$ such that $B_{P}$ is Gorenstein. Fix $j \geq 0$. Then EXACTLY one of the following holds:
(i) $\mu_{j}\left(P, M_{n}\right)=\infty, \quad \forall n \in \mathbb{Z}$.
(ii) $\mu_{j}\left(P, M_{n}\right)<\infty, \quad \forall n \in \mathbb{Z}$.

In this case EXACTLY one of the following holds:
(a) $\mu_{j}\left(P, M_{n}\right)=0, \quad \forall n \in \mathbb{Z}$.
(b) $\mu_{j}\left(P, M_{n}\right) \neq 0, \quad \forall n \in \mathbb{Z}$.
(c) $\mu_{j}\left(P, M_{n}\right) \neq 0, \quad \forall n \geq 0 \quad$ and $\quad \mu_{j}\left(P, M_{n}\right)=0, \quad \forall n<0$.
(d) $\mu_{j}\left(P, M_{n}\right) \neq 0, \quad \forall n \leq-m \quad$ and $\quad \mu_{j}\left(P, M_{n}\right)=0, \quad \forall n>-m$.
(e) $\mu_{j}\left(P, M_{n}\right) \neq 0, \quad \forall n \leq-m, \mu_{j}\left(P, M_{n}\right)=0, \quad \forall n \geq 0$ and $\mu_{j}\left(P, M_{n}\right)=0$ for all $n$ with $-m<n<0$.

## Bass numbers

## Theorem 2 (with standard assumption)

Let $P$ be a prime ideal in $B$ such that $B_{P}$ is Gorenstein. Fix $j \geq 0$. Then EXACTLY one of the following holds:
(i) $\mu_{j}\left(P, M_{n}\right)=\infty, \quad \forall n \in \mathbb{Z}$.
(ii) $\mu_{j}\left(P, M_{n}\right)<\infty, \quad \forall n \in \mathbb{Z}$.

In this case EXACTLY one of the following holds:
(a) $\mu_{j}\left(P, M_{n}\right)=0, \quad \forall n \in \mathbb{Z}$.
(b) $\mu_{j}\left(P, M_{n}\right) \neq 0, \quad \forall n \in \mathbb{Z}$.
(c) $\mu_{j}\left(P, M_{n}\right) \neq 0, \quad \forall n \geq 0 \quad$ and $\quad \mu_{j}\left(P, M_{n}\right)=0, \quad \forall n<0$.
(d) $\mu_{j}\left(P, M_{n}\right) \neq 0, \quad \forall n \leq-m \quad$ and $\quad \mu_{j}\left(P, M_{n}\right)=0, \quad \forall n>-m$.
(e) $\mu_{j}\left(P, M_{n}\right) \neq 0, \quad \forall n \leq-m, \mu_{j}\left(P, M_{n}\right)=0, \quad \forall n \geq 0$ and $\mu_{j}\left(P, M_{n}\right)=0$ for all $n$ with $-m<n<0$.


The $m$-th Weyl algebra over $K$ is the ring

$$
A_{m}(K)=K\left\langle X_{1}, \ldots, X_{m}, \partial_{1}, \ldots, \partial_{m}\right\rangle / \mathfrak{a},
$$

where $\mathfrak{a}$ is the two-sided ideal generated by the elements

$$
X_{i} \cdot X_{j}-X_{j} \cdot X_{i}, \quad \partial_{i} \cdot X_{j}-X_{j} \cdot \partial_{i}-\delta_{i, j}, \quad \partial_{i} \cdot \partial_{j}-\partial_{j} \cdot \partial_{i},
$$

with $\delta_{i, j}$ is the Kronecker delta.
Consider $A_{m}(K)$ as graded with $\operatorname{deg} K=0, \operatorname{deg} X_{i}=1, \operatorname{deg} \partial_{i}=-1$. Let $E=\oplus_{n \in \mathbb{Z}} E_{n}$ be a graded $A_{m}(K)$-module. Then $E$ is

- holonomic if $E$ is finitely generated and $\operatorname{dim} E=m$.
- Eulerian (Ma and Zhang) if $\mathcal{E}_{m} e=n e$ for each $e \in E_{n}$
- generalized Eulerian (Puthenpurakal) if for each $e \in E_{n}$, $\exists a \in \mathbb{Z}_{>0}$ (depending on $e$ ) s.t. $\left(\mathcal{E}_{m}-n\right)^{a} \cdot e=0$
where $\mathcal{E}_{m}:=\sum_{i=1}^{m} X_{i} \partial_{i}$ is the Euler operator on $A_{m}(K)$.

Puthenpurakal proved the followings:
Let $E=\oplus_{n \in \mathbb{Z}} E_{n}$ be a graded holonomic generalized Eulerian
$A_{m}(K)$-module.
Theorem (Vanishing)
$E_{n}=0$ for all $|n| \gg 0 \Longrightarrow E=0$.
Theorem (Rigidity)

- $E_{r} \neq 0$ for some $r \leq-m \Longleftrightarrow E_{n} \neq 0$ for all $n \leq-m$.
- $E_{s} \neq 0$ for some $s \geq 0 \Longleftrightarrow E_{n} \neq 0$ for all $n \geq 0$.
- $E_{t} \neq 0$ for some $t$ with $-m<t<0 \Longleftrightarrow E_{n} \neq 0$ for all $n \in \mathbb{Z}$.

Puthenpurakal proved the followings:
Let $E=\oplus_{n \in \mathbb{Z}} E_{n}$ be a graded holonomic generalized Eulerian
$A_{m}(K)$-module.
Theorem (Vanishing)
$E_{n}=0$ for all $|n| \gg 0 \Longrightarrow E=0$.
Theorem (Rigidity)

- $E_{r} \neq 0$ for some $r \leq-m \Longleftrightarrow E_{n} \neq 0$ for all $n \leq-m$.
- $E_{s} \neq 0$ for some $s \geq 0 \Longleftrightarrow E_{n} \neq 0$ for all $n \geq 0$.
- $E_{t} \neq 0$ for some $t$ with $-m<t<0 \Longleftrightarrow E_{n} \neq 0$ for all $n \in \mathbb{Z}$.


Puthenpurakal proved the followings:
Let $E=\oplus_{n \in \mathbb{Z}} E_{n}$ be a graded holonomic generalized Eulerian
$A_{m}(K)$-module.
Theorem (Vanishing)
$E_{n}=0$ for all $|n| \gg 0 \Longrightarrow E=0$.
Theorem (Rigidity)

- $E_{r} \neq 0$ for some $r \leq-m \Longleftrightarrow E_{n} \neq 0$ for all $n \leq-m$.
- $E_{s} \neq 0$ for some $s \geq 0 \Longleftrightarrow E_{n} \neq 0$ for all $n \geq 0$.
- $E_{t} \neq 0$ for some $t$ with $-m<t<0 \Longleftrightarrow E_{n} \neq 0$ for all $n \in \mathbb{Z}$.


Puthenpurakal proved the followings:
Let $E=\oplus_{n \in \mathbb{Z}} E_{n}$ be a graded holonomic generalized Eulerian $A_{m}(K)$-module.
Theorem (Vanishing)
$E_{n}=0$ for all $|n| \gg 0 \Longrightarrow E=0$.
Theorem (Rigidity)

- $E_{r} \neq 0$ for some $r \leq-m \Longleftrightarrow E_{n} \neq 0$ for all $n \leq-m$.
- $E_{s} \neq 0$ for some $s \geq 0 \Longleftrightarrow E_{n} \neq 0$ for all $n \geq 0$.
- $E_{t} \neq 0$ for some $t$ with $-m<t<0 \Longleftrightarrow E_{n} \neq 0$ for all $n \in \mathbb{Z}$.



## Proof of Theorem 2

- Take $M_{n} \neq 0$. Since $\mu_{j}\left(P, M_{n}\right)=\mu_{j}\left(P R_{P},\left(M_{n}\right)_{P}\right)$ so we only prove for $\mathfrak{m}$ considering $(B, \mathfrak{m})$ is Gorenstein local.

Theorem (Tony, 2014)

- A normal domain, $G \subseteq \operatorname{Aut}(A)$ finite and $|G|$ invertible in $A$.
- $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{r}$ are all the maximal ideals of $A$ lying above $\mathfrak{m}$, a maximal ideal of $A^{G}$.
- $M$ an $A * G$-module.

Then $H_{\mathfrak{m} A}^{j}(M)=\bigoplus_{l=1}^{r} H_{\mathfrak{n}_{l}}^{j}(M)=\bigoplus_{l=1}^{r} E_{A}\left(A / \mathfrak{n}_{l}\right)^{s_{j}(n)}$ for all $j \geq 0$.

## Proof of Theorem 2

- Take $M_{n} \neq 0$. Since $\mu_{j}\left(P, M_{n}\right)=\mu_{j}\left(P R_{P},\left(M_{n}\right)_{P}\right)$ so we only prove for $\mathfrak{m}$ considering ( $B, \mathfrak{m}$ ) is Gorenstein local.


## Proof of Theorem 2

- Take $M_{n} \neq 0$. Since $\mu_{j}\left(P, M_{n}\right)=\mu_{j}\left(P R_{P},\left(M_{n}\right)_{P}\right)$ so we only prove for $\mathfrak{m}$ considering $(B, \mathfrak{m})$ is Gorenstein local.
- $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{r}$ all the maximal ideals of $A$ lying over $\mathfrak{m}$. Then $H_{\mathfrak{m} A}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} H_{\mathfrak{n}_{l}}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} E_{A}\left(A / \mathfrak{n}_{l}\right)^{s_{j}(n)}$ for all $j \geq 0$.


## Lemma (with standard assumption)

Let height $P=g$. Then

$$
\left(H_{P}^{j}\left(N_{n}^{G}\right)\right)_{P}=H_{P B_{P}}^{g}\left(B_{P}\right)^{s_{j}(n)} \quad \text { for some } s_{j}(n) \geq 0
$$

Here $s_{j}(n)$ is some cardinal (possibly infinite).

Lemma (with standard assumption)
Let $P$ be a prime ideal in $B$ such that $B_{P}$ is Gorenstein. Then

$$
\mu_{j}\left(P, M_{n}\right)=\mu_{0}\left(P, H_{P}^{j}\left(M_{n}\right)\right) \quad \text { for all } j \geq 0 .
$$

## Proof of Theorem 2

- Take $M_{n} \neq 0$. Since $\mu_{j}(P, M)=\mu_{j}\left(P R_{P}, M_{P}\right)$ so we only prove for $\mathfrak{m}$ considering $(B, \mathfrak{m})$ is Gorenstein local.
- $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{r}$ all the maximal ideals of $A$ lying over $\mathfrak{m}$. Then $H_{\mathfrak{m} A}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} H_{\mathfrak{n}_{l}}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} E_{A}\left(A / \mathfrak{n}_{l}\right)^{s_{j}(n)}$ for all $j \geq 0$.
- $H_{\mathfrak{m}}^{j}\left(M_{n}\right)=H_{\mathfrak{m}}^{g}(B)^{s_{j}(n)}$ where $\operatorname{dim} B=g$.
- $\mu_{j}\left(\mathfrak{m}, M_{n}\right)=\mu_{0}\left(\mathfrak{m}, H_{\mathfrak{m}}^{j}\left(M_{n}\right)\right)$ for all $j \geq 0$.


## Proof of Theorem 2

- Take $M_{n} \neq 0$. Since $\mu_{j}(P, M)=\mu_{j}\left(P R_{P}, M_{P}\right)$ so we only prove for $\mathfrak{m}$ considering $(B, \mathfrak{m})$ is Gorenstein local.
- $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{r}$ all the maximal ideals of $A$ lying over $\mathfrak{m}$. Then $H_{\mathfrak{m} A}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} H_{\mathfrak{n}_{l}}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} E_{A}\left(A / \mathfrak{n}_{l}\right)^{s_{j}(n)}$ for all $j \geq 0$.
- $H_{\mathfrak{m}}^{j}\left(M_{n}\right)=H_{\mathfrak{m}}^{g}(B)^{s_{j}(n)}$ where $\operatorname{dim} B=g$.
- $\mu_{j}\left(\mathfrak{m}, M_{n}\right)=\mu_{0}\left(\mathfrak{m}, H_{\mathfrak{m}}^{j}\left(M_{n}\right)\right)$ for all $j \geq 0$.
- $(B, \mathfrak{m})$ Gorenstein $\Longrightarrow H_{\mathfrak{m}}^{g}(B) \cong E_{B}(B / \mathfrak{m})$
$\Longrightarrow \mu_{0}\left(\mathfrak{m}, H_{\mathfrak{m}}^{j}\left(M_{n}\right)\right)=s_{j}(n)=\mu_{0}\left(\mathfrak{n}_{l}, H_{\mathfrak{m} A}^{j}\left(N_{n}\right)\right)$ for any $l$.


## Proof of Theorem 2

- Take $M_{n} \neq 0$. Since $\mu_{j}(P, M)=\mu_{j}\left(P R_{P}, M_{P}\right)$ so we only prove for $\mathfrak{m}$ considering $(B, \mathfrak{m})$ is Gorenstein local.
- $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{r}$ all the maximal ideals of $A$ lying over $\mathfrak{m}$. Then $H_{\mathfrak{m} A}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} H_{\mathfrak{n}_{l}}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} E_{A}\left(A / \mathfrak{n}_{l}\right)^{s_{j}(n)}$ for all $j \geq 0$.
- $H_{\mathfrak{m}}^{j}\left(M_{n}\right)=H_{\mathfrak{m}}^{g}(B)^{s_{j}(n)}$ where $\operatorname{dim} B=g$.
- $\mu_{j}\left(\mathfrak{m}, M_{n}\right)=\mu_{0}\left(\mathfrak{m}, H_{\mathfrak{m}}^{j}\left(M_{n}\right)\right)$ for all $j \geq 0$.
- $(B, \mathfrak{m})$ Gorenstein $\Longrightarrow H_{\mathfrak{m}}^{g}(B) \cong E_{B}(B / \mathfrak{m})$
$\Longrightarrow \mu_{0}\left(\mathfrak{m}, H_{\mathfrak{m}}^{j}\left(M_{n}\right)\right)=s_{j}(n)=\mu_{0}\left(\mathfrak{n}_{l}, H_{\mathfrak{m} A}^{j}\left(N_{n}\right)\right)$ for any $l$.
- Note $H_{\mathfrak{m} A}^{j}\left(N_{n}\right)=\left(H_{\mathfrak{m} S}^{j}(N)\right)_{n}=\left(H_{\mathfrak{m} S}^{j}\left(T^{\prime}(S)\right)\right)_{n}$. Fix $l$.


## Proof of Theorem 2

- Take $M_{n} \neq 0$. Since $\mu_{j}(P, M)=\mu_{j}\left(P R_{P}, M_{P}\right)$ so we only prove for $\mathfrak{m}$ considering $(B, \mathfrak{m})$ is Gorenstein local.
- $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{r}$ all the maximal ideals of $A$ lying over $\mathfrak{m}$. Then $H_{\mathfrak{m} A}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} H_{\mathfrak{n}_{l}}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} E_{A}\left(A / \mathfrak{n}_{l}\right)^{s_{j}(n)}$ for all $j \geq 0$.
- $H_{\mathfrak{m}}^{j}\left(M_{n}\right)=H_{\mathfrak{m}}^{g}(B)^{s_{j}(n)}$ where $\operatorname{dim} B=g$.
- $\mu_{j}\left(\mathfrak{m}, M_{n}\right)=\mu_{0}\left(\mathfrak{m}, H_{\mathfrak{m}}^{j}\left(M_{n}\right)\right)$ for all $j \geq 0$.
- $(B, \mathfrak{m})$ Gorenstein $\Longrightarrow H_{\mathfrak{m}}^{g}(B) \cong E_{B}(B / \mathfrak{m})$
$\Longrightarrow \mu_{0}\left(\mathfrak{m}, H_{\mathfrak{m}}^{j}\left(M_{n}\right)\right)=s_{j}(n)=\mu_{0}\left(\mathfrak{n}_{l}, H_{\mathfrak{m} A}^{j}\left(N_{n}\right)\right)$ for any $l$.
- Note $H_{\mathfrak{m} A}^{j}\left(N_{n}\right)=\left(H_{\mathfrak{m} S}^{j}(N)\right)_{n}=\left(H_{\mathfrak{m} S}^{j}\left(T^{\prime}(S)\right)\right)_{n}$. Fix $l$. $\xrightarrow{(T o n y, 2017)} \mu_{0}\left(\mathfrak{n}_{l}, H_{\mathfrak{m} A}^{j}\left(N_{r}\right)\right)=s_{j}(r)<\infty \forall r \in \mathbb{Z}$ and satisfies one of $(a),(b),(c),(d),(e)$.


## Proof of Theorem 2

- Take $M_{n} \neq 0$. Since $\mu_{j}(P, M)=\mu_{j}\left(P R_{P}, M_{P}\right)$ so we only prove for $\mathfrak{m}$ considering $(B, \mathfrak{m})$ is Gorenstein local.
- $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{r}$ all the maximal ideals of $A$ lying over $\mathfrak{m}$. Then $H_{\mathfrak{m} A}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} H_{\mathfrak{n}_{l}}^{j}\left(N_{n}\right)=\bigoplus_{l=1}^{r} E_{A}\left(A / \mathfrak{n}_{l}\right)^{s_{j}(n)}$ for all $j \geq 0$.
- $H_{\mathfrak{m}}^{j}\left(M_{n}\right)=H_{\mathfrak{m}}^{g}(B)^{s_{j}(n)}$ where $\operatorname{dim} B=g$.
- $\mu_{j}\left(\mathfrak{m}, M_{n}\right)=\mu_{0}\left(\mathfrak{m}, H_{\mathfrak{m}}^{j}\left(M_{n}\right)\right)$ for all $j \geq 0$.
- $(B, \mathfrak{m})$ Gorenstein $\Longrightarrow H_{\mathfrak{m}}^{g}(B) \cong E_{B}(B / \mathfrak{m})$
$\Longrightarrow \mu_{0}\left(\mathfrak{m}, H_{\mathfrak{m}}^{j}\left(M_{n}\right)\right)=s_{j}(n)=\mu_{0}\left(\mathfrak{n}_{l}, H_{\mathfrak{m} A}^{j}\left(N_{n}\right)\right)$ for any $l$.
- Note $H_{\mathfrak{m} A}^{j}\left(N_{n}\right)=\left(H_{\mathfrak{m} S}^{j}(N)\right)_{n}=\left(H_{\mathfrak{m} S}^{j}\left(T^{\prime}(S)\right)\right)_{n}$. Fix $l$. $\xrightarrow{(T o n y, 2017)} \mu_{0}\left(\mathfrak{n}_{l}, H_{\mathfrak{m} A}^{j}\left(N_{r}\right)\right)=s_{j}(r)<\infty \forall r \in \mathbb{Z}$ and satisfies one of $(a),(b),(c),(d),(e)$.
$\Longrightarrow \mu_{j}\left(\mathfrak{m}, M_{r}\right)=s_{j}(r)<\infty \forall r$ and satisfies one of $(a),(b),(c),(d),(e)$.
$\star$ Theorem 2 is NOT true in general.


## Example 3

- Take a Noetherian local ring $(A, \mathfrak{m})$ with $\mu_{0}\left(\mathfrak{m}, H_{J}^{i}(A)\right)=\infty$.
- $R=A\left[X_{1}, \ldots, X_{m}\right]$ be standard graded with $m \geq 1$.
- Set $M=H_{J R}^{i}(R)=H_{J}^{i}(A) \otimes_{A} R=\bigoplus_{n \in \mathbb{N}} M_{n}$.

So in this case $\mu_{0}\left(\mathfrak{m}, M_{n}\right)=0$ for $n<0\left(\right.$ as $\left.M_{n}=0\right)$ and $\mu_{0}\left(\mathfrak{m}, M_{n}\right)=\infty \quad \forall n \geq 0$.

## Growth of Bass numbers

- Growth of the function $n \mapsto \mu_{j}\left(P, M_{n}\right)$ as $n \rightarrow-\infty$ and when $n \mapsto \infty$.
Theorem 4 (with standard assumption)
- $P$ prime ideal in $B$ such that $B_{P}$ is Gorenstein.
- Fix $j \geq 0$.
- Suppose $\mu_{j}\left(P, M_{n}\right)<\infty, \quad \forall n \in \mathbb{Z}$.


## Growth of Bass numbers

- Growth of the function $n \mapsto \mu_{j}\left(P, M_{n}\right)$ as $n \rightarrow-\infty$ and when $n \mapsto \infty$.
Theorem 4 (with standard assumption)
- $P$ prime ideal in $B$ such that $B_{P}$ is Gorenstein.
- Fix $j \geq 0$.
- Suppose $\mu_{j}\left(P, M_{n}\right)<\infty, \quad \forall n \in \mathbb{Z}$.

Then there exist polynomials $f_{M}^{j, P}(Z), g_{M}^{j, P}(Z) \in \mathbb{Q}[Z]$ of degree $\leq m-1$ such that

$$
\begin{aligned}
& f_{M}^{j, P}(n)=\mu_{j}\left(P, M_{n}\right) \text { for all } n \ll 0 \quad \text { AND } \\
& g_{M}^{j, P}(n)=\mu_{j}\left(P, M_{n}\right) \text { for all } n \gg 0 .
\end{aligned}
$$

## Theorem 5 (with standard assumption)

- P prime ideal in B such that $B_{P}$ is Gorenstein.
- Fix $j \geq 0$.
- Suppose $\mu_{j}\left(P, M_{c}\right)=0$ for some $c$.

Then

$$
\begin{array}{lll}
f_{M}^{j, P}(Z)=0 & \text { or } & \operatorname{deg} f_{M}^{j, P}(Z)=m-1, \\
g_{M}^{j, P}(Z)=0 & \text { or } & \operatorname{deg} g_{M}^{j, P}(Z)=m-1 .
\end{array}
$$

Theorem 6 (with standard assumption)

- Assume $m=1$.
- Fix $j \geq 0$.
- Let $B$ be Cohen-Macaulay but not necessarily Gorenstein and $P$ be a prime ideal in $B$.

Then $\mu_{j}\left(P, M_{n}\right)<\infty \quad \forall n \in \mathbb{Z}$.

Theorem 6 (with standard assumption)

- Assume $m=1$.
- Fix $j \geq 0$.
- Let $B$ be Cohen-Macaulay but not necessarily Gorenstein and $P$ be a prime ideal in $B$.
Then $\mu_{j}\left(P, M_{n}\right)<\infty \quad \forall n \in \mathbb{Z}$.
- The above result gives us a sufficient condition under which for any fixed $j$ and prime ideal $P$ in $B$,

$$
\mu_{j}\left(P, M_{n}\right)<\infty \quad \forall n \in \mathbb{Z}
$$

## Theorem 7 (with standard assumption)

- Assume $m=1$.
- $P$ prime ideal in $B$ such that $B_{P}$ is not Gorenstein.
- Fix $n \in \mathbb{Z}$.

Then EXACTLY one of the following holds:
(i) $\mu_{j}\left(P, M_{n}\right)=0, \quad \forall j$.
(ii) there exists $c$ such that

$$
\begin{aligned}
& \mu_{j}\left(P, M_{n}\right)=0 \text { for } j<c \quad \text { and } \\
& \mu_{j}\left(P, M_{n}\right)>0, \quad \forall j \geq c .
\end{aligned}
$$

## Theorem 7 (with standard assumption)

- Assume $m=1$.
- $P$ prime ideal in $B$ such that $B_{P}$ is not Gorenstein.
- Fix $n \in \mathbb{Z}$.

Then EXACTLY one of the following holds:
(i) $\mu_{j}\left(P, M_{n}\right)=0, \quad \forall j$.
(ii) there exists $c$ such that

$$
\begin{aligned}
& \mu_{j}\left(P, M_{n}\right)=0 \text { for } j<c \quad \text { and } \\
& \mu_{j}\left(P, M_{n}\right)>0, \quad \forall j \geq c .
\end{aligned}
$$

- Let $M_{n} \neq 0$ and $\operatorname{injdim}_{B} M_{n}<\infty$ for some $n$. Then

$$
\mu_{j}\left(P, M_{n}\right) \neq 0 \text { for some } j \Longrightarrow B_{P} \text { is Gorenstein. }
$$

## Dimension of Supports and injective dimension

Theorem 8 (with standard assumption)
If $B$ is Gorenstein, then the following hold:
(i) $\operatorname{injdim} M_{c} \leq \operatorname{dim} M_{c}$ for all $c \in \mathbb{Z}$.
(ii) $\operatorname{injdim} M_{n}=\operatorname{injdim} M_{-m}$ for all $n \leq-m$.
(iii) $\operatorname{injdim} M_{n}=\operatorname{injdim} M_{0}$ for all $n \geq 0$.
(iv) If $m \geq 2$ and $-m<r, s<0$, then
(a) $\operatorname{injdim} M_{r}=\operatorname{injdim} M_{s}$.
(b) $\operatorname{injdim} M_{r} \leq \min \left\{\operatorname{injdim} M_{-m}, \operatorname{injdim} M_{0}\right\}$.
$\star$ Theorem 8 is NOT true if $B$ is not Gorenstein.

Example 9

- $A=\mathbb{C}\left[\left[Y_{1}, \ldots, Y_{n}\right]\right]$ and $G \subseteq G l_{n}(\mathbb{C})$ acting linearly with $A^{G}$ NOT Gorenstein.
- $\mathfrak{m}$ and $\mathfrak{m}^{G}$ be maximal ideals of $A$ and $A^{G}=B$ respectively.
- Set $S=A\left[X_{1}, \ldots, X_{m}\right]$ and $R=B\left[X_{1}, \ldots, X_{m}\right]$.
- Set $M=H_{\mathfrak{m}^{G} R}^{n}(R)=H_{\mathfrak{m}^{G}}^{n}(B) \otimes_{B} R$.

As $A^{G}$ is NOT Gorenstein we have injdim $H_{\mathfrak{m} G}^{n}(B)=\infty$. It follows that $\operatorname{injdim}_{B} M_{0}=\infty$.

## Associate primes

Theorem 10 (with standard assumption) Assume that either $A$ is local or a smooth affine algebra over a field $K$ of characteristic zero. Then $\bigcup_{n \in \mathbb{Z}} \operatorname{Ass}_{B} M_{n}$ is a finite set.

## Associate primes

Theorem 10 (with standard assumption)
Assume that either $A$ is local or a smooth affine algebra over a field $K$ of characteristic zero. Then $\bigcup_{n \in \mathbb{Z}} \operatorname{Ass}_{B} M_{n}$ is a finite set.
Moreover, if $B$ is Gorenstein then
(1) $\operatorname{Ass}_{B} M_{n}=\operatorname{Ass}_{B} M_{-m}, \quad \forall n \leq-m$.
(2) $\operatorname{Ass}_{B} M_{n}=\operatorname{Ass}_{B} M_{0}, \quad \forall n \geq 0$.

## Infinite generation

Theorem 11 (with standard assumption II)

- $J$ homogeneous ideal in $R$ such that $J \cap B \neq 0$.
- B Gorenstein.
- $H_{J}^{i}(R)_{c} \neq 0$.

Then $H_{J}^{i}(R)_{c}$ is NOT finitely generated as a B-module.

- This is one sufficient condition for infinite generation of a component of graded local cohomology module over $R$.
$\star$ Theorem 11 is NOT true in general.

Example 12

- $(A, \mathfrak{m})$ be a local domain with dimension $d>0$ such that $H_{\mathfrak{m}}^{i}(A)$ is finitely generated and non-zero for some $i<d$.
- $R=A\left[X_{1}, \ldots, X_{m}\right]$ be standard graded with $m \geq 1$.
- Set $M=H_{\mathfrak{m} R}^{i}(R)=H_{\mathfrak{m}}^{i}(A) \otimes_{A} R$.

Then $M_{0}=H_{\mathfrak{m}}^{i}(A)$ is non-zero and finitely generated as an $A$-module.

## Latest work

Later on, Puthenpurakal studied graded local cohomology modules in the following case:

- $A$ is a regular ring containing a field $K$ with char $K=0$.
- $G$ a finite group with a group homomorphism $\phi: G \rightarrow G L_{m}(A)$.
- $R=A\left[X_{1}, \ldots, X_{m}\right]$ is standard graded with $\operatorname{deg} A=0$ and $\operatorname{deg} X_{i}=1$ for all $i$.
- $G$ acts linearly on $R$ fixing $A$.
- Set $S=R^{G}$.

Note: $S$ is usually not standard graded.

## References

吴
M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 2013.

S. B. Iyengar, G. J. Leuschke, A. Leykin, C. Miller, E. Miller, A. K. Singh and U. Walther, Twenty Four Hours of Local Cohomology, Graduate Studies in Mathematics, Vol. 87, American Mathematical Society, 2011.
T. J. Puthenpurakal, Local cohomology modules of invariant rings, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 160 (2016), No. 2, 299-314.
T. J. Puthenpurakal, Graded components of local cohomology modules, Preprint: arXiv:1701.01270.
目 L. Ma and W. Zhang, Eulerian graded D-modules, Math. Res. Lett., Vol. 21 (2014), No. 1, 149-167.
G. Lyubeznik, Finiteness Properties of Local Cohomology Modules (an Application of $D$-modules to Commutative Algebra), Inv. Math., Vol. 113 (1993), 41-55.

## References contd...

G. Lyubeznik, F-modules: applications to local cohomology and D-modules in characteristic $p>0$, J. Reine Angew. Math., Vol. 491 (1997), 65-130.
C. Huneke and R. Sharp, Bass Numbers of Local Cohomology Modules, AMS Transactions, Vol. 339 (1993), 765-779.
目
R. Hartshorne, Affine duality and cofiniteness, Invent. Math., Vol. 9 (1969/1970), 145-164.

M. Katzman, An example of an infinite set of associated primes of a local cohomology module, J. Algebra 252 (2002), no. 1, 161-166.
A. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000), no. 2-3, 165-176.
$\square$ T. J. Puthenpurakal and S. Roy, Graded components of local cohomology modules II, Preprint: arXiv:1708.01396.

T. J. Puthenpurakal and S. Roy, Graded components of local cohomology modules of invariant rings, Preprint: arXiv:1709.09894.
T. J. Puthenpurakal, Graded components of local cohomology modules over invariant rings-II, Preprint: arXiv:1712.09197.

## Thank

 you


[^0]:    ${ }^{1}$ M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications.

[^1]:    ${ }^{1}$ M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications.

[^2]:    ${ }^{1}$ M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications.

