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Knots in the three-sphere

Definition

A knot is an embedding of a circle S1 in the 3-sphere S3, and
two knots K1, K2 are considered equivalent if there is an
orientation preserving diffeomorphism f : S3 → S3, such that
f(K1) = K2.

Remark

Diagram moves may help show equivalence between knots.

Lift up this piece
without touching any
other part of the thread,
and move it over to the right
as indicated by arrows.

new
crossing

This eliminates crossings 
marked 3 and 4, and 
introduces the new 
crossing shown. 
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Knot theory

Remark

Scientists’ interest in understanding the world resulted in
tabulations of knots with low number of crossings.

Although all of the original scientific theories are now outdated,
new applications exist within mathematics and other sciences.

Effects of certain enzymes on DNA

Structures of neural networks

Altering chemical and physical properties of compounds
through synthesis of topologically different molecules

Understanding 3- and 4-dimensional manifolds
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Classical knot invariants

Minimal number of crossings

Unknotting number

Polynomial invariants: Alexander, Conway, Jones,
2-variable

Exterior of the knot in S3

Fundamental group of the exterior/complement

Infinite cyclic cover

Cyclic branched covers,

homology of -
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Links, 3-manifolds, 4-manifolds

Links are possibly entwined, disjoint unions of knots.

In early 1960s mathematicians Lickorish and Wallace,
independently and by different methods, proved that any
closed (compact without boundary), orientable, connected,
3-dimensional manifold may be obtained by removing a
thickened link from S3 and filling in the holes differently.

Closed M3 ! link diagram with surgery instructions
Compact orientable four-manifolds with boundary can be
built from the 4-ball B4 by attaching 1−, 2− and
3−handles; 3−handles are attached uniquely; a 2−handle
D2 ×D2 is attached along an attaching S1 ×D2, and
gluing instructions are framings.

The boundary of a B4 with 2−handles is a surgery on S3

along a link.

Closed 4−manifolds are obtained by capping the tops with
4-balls.
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Heegaard Floer homology

HF homology groups HF∞, HF−, HF+, ĤF

(M, s), closed, oriented spinc 3-manifold; ex. 2-fold
branched cover of S3 along a knot
Each of HF ◦(M, s) is the homology group of a chain
complex (CF ◦(M, s), ∂◦) associated to a pointed Heegaard
diagram of M

HF ◦(M, s) have a relative Zd–grading gr where
d = gcd{〈c1(s), h〉 |h ∈ H2(M ;Z)}.

If (the first Chern class of) s is torsion, the gr lifts to an
absolute Q–grading g̃r.

HF homology groups fit into a TQFT framework when
3-manifolds M1 and M2 cobound a spinc 4-manifold
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Heegaard Floer Correction Terms

The HF groups are related by means of long exact sequences.
For example, HF±(M, s) and HF∞(M, s) fit into the sequence

...→ HF−(M, s)→ HF∞(M, s)
π→ HF+(M, s)→ HF−(M, s)→ ...

If s is torsion then the maps preserve the absolute grading g̃r
except for HF+(M, s)→ HF−(M, s) which drops degree by 1.

Definition

The correction term d(M, s) for a torsion Spinc-structure
s ∈ Spinc(M) is defined as

d(M, s) = min{g̃r(π(x)) |x ∈ HF∞(M, s)},

where π is from the above LES.
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Applications of HF

Theorem

If a rational homology 3-sphere M bounds a rational homology
4-ball X, then |H2(M ;Z)| = n2 for some n and ∃P ≤ H2(M ;Z)
of order n such that

d(M, s) = 0 ∀ s ∈ P

under a suitable identification Spinc(M) ∼= H2(M ;Z).

Detecting the unknot, other low crossing knots
Fibering a 3-manifold over S1

Characterization of Seifert fibrations admitting tight
contact structures
Seifert genus
Thurston norms
Simpler proofs in case of older results (ex. Milnor
conjecture)
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Periodic Knots

In the remainder of this talk, we will describe how the HF
invariants relate to a type of symmetry of knots and improve
obstructions resulting from the classical invariants.

Definition

A periodic knot of period p ≥ 2 is a knot K ⊂ S3 for which
there exists a orientation preserving diffeomorphism
f : S3 → S3 of order p, such that f(K) = K and the fixed point
set of f is Fix(f) ∼= S1.

K

B

K

B
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Classical obstructions to periodicity

M

F

++

n-fold cyclic
cover, branched

along K
℘

��

p-fold cyclic cover,

branched along ℘̄−1(B)

Π
//M

n-fold cyclic
cover, branched

along K
℘̄

��
S3

f

44
p-fold cyclic cover,

branched along B

π // S3
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Classical obstructions to periodicity

Let K have a period p = qr with q prime.

Murasugi’s Alexander polynomial condition:
∆K(t) |∆K(t).
∆K(t)

.≡ (1 + t+ t2 + · · ·+ tλ−1)p−1 · (∆K(t))
p

( mod q),
where λ = |`k(K,B)|. Also, gcd(λ, p) = 1.

Edmonds’ genus condition:

g(K) = g(K) +
(p− 1)(k − 1)

2
, k ≥ λ, k ≡ λmod 2

Davis condition on homology: A lift F of the periodic map
induces F∗, a Zp action on H1(M); for a prime ` 6 |p, we

have Fix
(
F
∣∣
H1(M)`

)
∼= H1(M)`, where Hl is the ` primary

subgroup of H.
(Davis-N) Let m = mp(`) ∈ N be the smallest number such
that `m ≡ ±1 (mod p). Then there exist integers
t, a1, . . . , at ≥ 0 such that

H1(M)`/H1(M)` ∼= Z2ma1
` ⊕ Z2ma2

`2
⊕ · · · ⊕ Z2mat

`t .

Swatee Naik IITB Diamond Jubilee Symposium



Classical obstructions to periodicity

Let K have a period p = qr with q prime.

Murasugi’s Alexander polynomial condition:
∆K(t) |∆K(t).
∆K(t)

.≡ (1 + t+ t2 + · · ·+ tλ−1)p−1 · (∆K(t))
p

( mod q),
where λ = |`k(K,B)|. Also, gcd(λ, p) = 1.

Edmonds’ genus condition:

g(K) = g(K) +
(p− 1)(k − 1)

2
, k ≥ λ, k ≡ λmod 2

Davis condition on homology: A lift F of the periodic map
induces F∗, a Zp action on H1(M); for a prime ` 6 |p, we

have Fix
(
F
∣∣
H1(M)`

)
∼= H1(M)`, where Hl is the ` primary

subgroup of H.
(Davis-N) Let m = mp(`) ∈ N be the smallest number such
that `m ≡ ±1 (mod p). Then there exist integers
t, a1, . . . , at ≥ 0 such that

H1(M)`/H1(M)` ∼= Z2ma1
` ⊕ Z2ma2

`2
⊕ · · · ⊕ Z2mat

`t .

Swatee Naik IITB Diamond Jubilee Symposium



Classical obstructions to periodicity

Let K have a period p = qr with q prime.

Murasugi’s Alexander polynomial condition:
∆K(t) |∆K(t).
∆K(t)

.≡ (1 + t+ t2 + · · ·+ tλ−1)p−1 · (∆K(t))
p

( mod q),
where λ = |`k(K,B)|. Also, gcd(λ, p) = 1.

Edmonds’ genus condition:

g(K) = g(K) +
(p− 1)(k − 1)

2
, k ≥ λ, k ≡ λmod 2

Davis condition on homology: A lift F of the periodic map
induces F∗, a Zp action on H1(M); for a prime ` 6 |p, we

have Fix
(
F
∣∣
H1(M)`

)
∼= H1(M)`, where Hl is the ` primary

subgroup of H.
(Davis-N) Let m = mp(`) ∈ N be the smallest number such
that `m ≡ ±1 (mod p). Then there exist integers
t, a1, . . . , at ≥ 0 such that

H1(M)`/H1(M)` ∼= Z2ma1
` ⊕ Z2ma2

`2
⊕ · · · ⊕ Z2mat

`t .

Swatee Naik IITB Diamond Jubilee Symposium



Classical obstructions to periodicity

Let K have a period p = qr with q prime.

Murasugi’s Alexander polynomial condition:
∆K(t) |∆K(t).
∆K(t)

.≡ (1 + t+ t2 + · · ·+ tλ−1)p−1 · (∆K(t))
p

( mod q),
where λ = |`k(K,B)|. Also, gcd(λ, p) = 1.

Edmonds’ genus condition:

g(K) = g(K) +
(p− 1)(k − 1)

2
, k ≥ λ, k ≡ λmod 2

Davis condition on homology: A lift F of the periodic map
induces F∗, a Zp action on H1(M); for a prime ` 6 |p, we

have Fix
(
F
∣∣
H1(M)`

)
∼= H1(M)`, where Hl is the ` primary

subgroup of H.
(Davis-N) Let m = mp(`) ∈ N be the smallest number such
that `m ≡ ±1 (mod p). Then there exist integers
t, a1, . . . , at ≥ 0 such that

H1(M)`/H1(M)` ∼= Z2ma1
` ⊕ Z2ma2

`2
⊕ · · · ⊕ Z2mat

`t .

Swatee Naik IITB Diamond Jubilee Symposium



Heegaard Floer obstructions to periodicity

Kristen Hendricks used link Floer homology on K ∪B for a
2-periodic knot K and its axis B, to obtain a spectral
sequence with E1 page the link Floer homology of K ∪B,
and which converges to the link Floer homology of K ∪B.

Hendricks’ results generalize the Muragsugi condition on
the Alexander polynomials ∆K and ∆K .

Jabuka-Naik used the order p lift to the 2-fold branched
cover and examined its interaction with the Heegaard Floer
homology of M .

Notice that any diffeomorphism g : M →M induces a
pull-back map g∗ : Spinc(M)→ Spinc(M).
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Heegaard Floer obstructions to periodicity

Theorem (Jabuka-N)

Let M be an oriented, closed 3-manifold, s ∈ Spinc(M) a
Spinc-structure on M , and F : M →M an orientation
preserving diffeomorphism. Then there are induced
isomorphisms F ◦ : HF ◦(M,F ∗(s))→ HF ◦(M, s) of relatively
Z/d(s)Z-graded Z[U ]⊗Z Λ∗H1(M ;Z)-modules, for any

◦ ∈ {∞,±,̂}.
Here d(s) = gcd{〈c1(s), h〉 |h ∈ H2(M ;Z)}.

The isomorphisms F ◦ fit into the commutative diagrams

HF−(d)(M,F ∗(s)) //

F−

��

HF∞(d)(M,F ∗(s)) //

F∞

��

HF+
(d)(M,F ∗(s))

F+

��
HF−(d)(M, s) // HF∞(d)(M, s) // HF+

(d)(M, s)
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Heegaard Floer obstructions to periodicity

and

ĤF (d)(M,F ∗(s)) //

F̂
��

HF+
(d)(M,F ∗(s))

U //

F+

��

HF+
(d−2)(M,F ∗(s))

F+

��
ĤF (d)(M, s) // HF+

(d)(M, s)
U // HF+

(d−2)(M, s)

Corollary

Under the assumptions of the previous theorem, and with M a
rational homology 3-sphere, we obtain

d(M,F ∗(s)) = d(M, s), ∀s ∈ Spinc(M).

Going forward, we shall identify Spinc(M) with H1(M ;Z)
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Heegaard Floer obstructions to periodicity

Theorem (Jabuka-N)

Let K be a p-periodic knot with associated order p
diffeomorphism f : S3 → S3. Let ℘ : M → S3 be the n-fold
cyclic cover with branching set K and let F : M →M be
induced by f . Let ` be a prime not dividing p, and assume that
H1(M ;Z)` = 0 (as happens if ∆K(t) = 1).

There there is a free action of Zp on H1(M ;Z)` leaving the
associated Heegaard Floer groups invariant.

Corollary

With the assumptions as above, there is a free Zp-action on
H1(M ;Z)` such that d(M,F ∗(s)) = d(M, s) for all
s ∈ H1(M ;Z)`.

In particular, the correction terms of M have values that
come in multiples of p.
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Heegaard Floer obstructions to periodicity

Theorem (Jabuka-N)
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Heegaard Floer obstructions to periodicity

Example

Consider the knot K = 12a100 from the knot tables. This knot
satisfies

the Murasugi condition with p = 3, ∆K = 1 and λ = 2.

the Davis-Naik condition with p = 3 since

51 ≡ −1(mod 3) and H1(M ;Z)5
∼= Z2

5.

The “classical obstructions”do not prevent it from being of
period 3.
However, the correction terms of its 2-fold cyclic branched cover
(and their multiplicities) corresponding to spinc-structures
s ∈ H1(M ;Z)5, are

d(M, s) −4
5 −2

5 0 2
5

4
5

Multiplicity of d(M, s) 2 6 6 6 4
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Application to branched covers

See how the previous argument applies to a more general case:

Theorem

Let q be a prime and let M be the q-fold cyclic cover of S3

branched along a knot K, and assume that H1(M ;Z)2 = 0.
Then for every prime `, the isomorphism type of each Heegaard
Floer group HF ◦(M, s) with s ∈ H1(M ;Z)` − {0} and
◦ ∈ {∞,−,+,̂} occurs with a multiplicity that is divisible by
q. Likewise, the correction terms d(M, s) with
s ∈ H1(M ;Z)` − {0} also occur with multiplicities divisible by q.

Example

In particular, the 2-fold cyclic cover M of S3 branched over the
knot K = 12a100 cannot be a q-fold branched cover of S3 over
any knot, for q > 2.
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Heegaard Floer obstructions to periodicity

Can one still obstruct p-periodicity when H1(M ;Z)` 6= 0?

Theorem (Jabuka-N)

Let K be a p-periodic knot with p a prime and let ` be a prime
different from p. Then there exists a subgroup H of H1(M ;Z)`
(and H ∼= H1(M ;Z)`) such that if n1, . . . , nk are the
multiplicities of the various correction terms d(M, s) with
s ∈ H1(M ;Z)`, and m1, . . . ,mk are their mod p reductions, then

m1 + · · ·+mk ≤ |H|.

Accordingly, p-periodicity of K can be obstructed by
showing that no such subgroup H exists.
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Heegaard Floer obstructions to periodicity

Example

Let K1 = 74 and K2 = 92 and K = K1#K1#K2. Note that

∆Ki = 4− 7t+ 4t2, i = 1, 2,

H1(Mi;Z) ∼= Z5 ⊕ Z3, Mi = 2-fold branched cover of Ki .

Thus K passes the “classical”(algebraic) conditions for
3-periodicity with ∆K(t) = 4− 7t+ 4t2 and λ = 1 Let
M = M1#M1#M2, then the correction terms d(M, s) with
s ∈ H1(M ;Z)5

∼= Z3
5, and their multiplicities are

−29
10 −5

2 −17
10 −13

10 − 9
10 −1

2 − 1
10

3
10

7
10

11
10

3
2

8 8 20 24 8 16 20 10 6 4 1

The sum of the mod 3 multiplicities gives

2+2+2+2+1+2+1+1+1 = 14 > 5 = |H| = |H1(M ;Z)5| = |Z5|.
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Thank you
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