Quadratic Finite Element Methods for the Obstacle Problem

Thirupathi Gudi

Department of Mathematics
Indian Institute of Science Bangalore
Joint work with Sharat Gaddam
Diamond Jubilee Symposium
Department of Mathematics,IIT Bombay

Outline

- The Obstacle Problem
- Conforming Linear and Quadratic Methods
- Error Estimates
- Conclusions

Obstacle Problem

Find $u \in \mathcal{K}$ such that

$$
J(u)=\min _{v \in \mathcal{K}} J(v),
$$

where

$$
\begin{gathered}
J(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} f v d x, \\
f \in L^{2}(\Omega), g \in H^{1 / 2}(\partial \Omega), \\
\chi \in H^{1}(\Omega) \cap C(\bar{\Omega}) \text { with } \chi \leq g \text { on } \partial \Omega, \\
H^{1}(\Omega):=\left\{v \in L^{2}(\Omega): \nabla v \in\left[L^{2}(\Omega)\right]^{d}\right\}, \\
\mathcal{K}:=\left\{v \in H^{1}(\Omega): v \geq \chi \text { a.e. in } \Omega, v=g \text { on } \partial \Omega\right\},
\end{gathered}
$$

Ω is a polyhedral domain in $\mathbb{R}^{d}(1 \leq d \leq 3)$.

Obstacle Problem

- The obstacle problem is a prototype model for variational inequalities of the first kind.
- The obstacle problem arises in contact mechanics, fluid flow and finance.
- Numerical approximation of the obstacle problem is interesting due to the existence of free boundary.

Obstacle Problem

The weak formulation of the obstacle problem is to find $u \in \mathcal{K}$ such that

$$
a(u, v-u) \geq(f, v-u) \quad \forall v \in \mathcal{K} .
$$

Here

$$
\begin{gathered}
\mathcal{K}:=\left\{v \in H^{1}(\Omega): v \geq \chi \text { a.e. in } \Omega, v=g \text { on } \partial \Omega\right\}, \\
a(w, v)=\int_{\Omega} \nabla w \cdot \nabla v d x, \\
(f, v)=\int_{\Omega} f v d x .
\end{gathered}
$$

Obstacle Problem

The weak formulation of the obstacle problem is to find $u \in \mathcal{K}$ such that

$$
a(u, v-u) \geq(f, v-u) \quad \forall v \in \mathcal{K} .
$$

If $u \in H^{2}(\Omega)$, then

$$
\begin{aligned}
&-\Delta u \geq f \quad \text { in } \quad \Omega, \\
&-\Delta u=f \text { in } \quad\{u>\chi\}, \\
&(-\Delta u-f, u-\chi)=0, \\
& \llbracket \nabla u \rrbracket=0 \quad \text { on } \quad \partial\{u=\chi\}, \\
& \llbracket u \rrbracket=0 \text { on } \quad
\end{aligned} \quad\{u=\chi\} .
$$

Obstacle Problem

The weak formulation of the obstacle problem is to find $u \in \mathcal{K}$ such that

$$
a(u, v-u) \geq(f, v-u) \quad \forall v \in \mathcal{K} .
$$

Define $\lambda \in H^{-1}(\Omega)$ by

$$
\langle\lambda, v\rangle=a(u, v)-(f, v) \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Then

$$
\begin{aligned}
\langle\lambda, v-u\rangle & \geq 0 \quad \forall v \in \mathcal{K}, \\
\langle\lambda, v\rangle & \geq 0 \quad \forall v \in H_{0}^{1}(\Omega) \text { with } v \geq 0 .
\end{aligned}
$$

Obstacle Problem

Unlike linear elliptic problems, C^{∞} data do not imply a C^{∞} solution for obstacle problem.

Regularity Result : If $f \in L^{\infty}(\Omega) \cap B V(\Omega)$ and $\chi \in C^{3}(\bar{\Omega})$ and $\partial \Omega$ is sufficiently smooth, then $u \in W^{s, p}(\Omega)$ for all $1<p<\infty$ and $s<2+1 / p$. (Brezis 1971)

Example: Let $\Omega=(-1,1), f \equiv 0$ and $\chi(x)=1-2 x^{2}$.

$$
u(x):= \begin{cases}-4\left(-1+\frac{1}{\sqrt{2}}\right)(1+x) & \text { if } x<-1+\frac{1}{\sqrt{2}}, \\ -4\left(1-\frac{1}{\sqrt{2}}\right)(x-1) & \text { if } x>1-\frac{1}{\sqrt{2}}, \\ 1-2 x^{2} & \text { otherwise. }\end{cases}
$$

Obstacle Problem

FEM and Approximation

Let \mathcal{T}_{h} be regular triangulation of Ω. For $r \geq 1$, define finite element space

$$
V_{h}:=\left\{v \in C(\bar{\Omega}):\left.v\right|_{T} \in P_{r}(T), \forall T \in \mathcal{T}_{h}\right\},
$$

where $P_{r}(T)$ is the space of polynomials of total degree less than or equal to r.
The following approximation holds: Let $v \in H^{m}(T)$. Then there is some $I_{h} v \in V_{h}$ such that

$$
\left\|v-I_{h} v\right\|_{H^{k}(T)} \leq C h_{T}^{\mu-k}|v|_{H^{m}(T)}
$$

where $\mu=\min \{m, r+1\}, 0 \leq k \leq \mu, h_{T}$ is the diameter of T and C is a positive constant independent of T and \mathcal{T}_{h}.

Numerical Methods

- Falk, 1974: A conforming linear finite element method is studied. Linear order of convergence is derived with obstacle constraints at the vertices. This approach works in both two and three dimensions.
- Brezzi, Hager and Raviart,1977: Conforming quadratic finite element methods were studied. The quadratic FEM in two dimensions incorporate obstacle constraints at the midpoints of the edges. Error estimate of order $h^{3 / 2-\epsilon}$ is derived.
- Wang 2002: Revisited the analysis in Brezzi et al, 1977, the error analysis relaxes the assumption that the length of the free boundary is finite.

Numerical Methods

- Wang, Han and Cheng, 2010: Studied linear and quadratic DG methods for two dimensional problem.
- Antonietti, Beirao da Veiga, and Verani, 2013. Studied the first order mimetic difference methods.
- Carstensen and Köhler, 2017. Linear CR Nonconforming FEM for two dimensional problem.
- Gustafsson, Stenberg, and Videman, 2017. Study mixed and stabilized methods for two dimensional problem.
- Gaddam and Gudi, 2018. Bubbles enriched quadratic FEM for three dimensional problem.
- Wang et al. 2018. Linear and quadratic virtual element methods for two dimensional problem are studied.

Linear FEM

$\mathcal{T}_{h}=$ regular triangulation of Ω,
$\mathcal{V}_{h}=$ set of vertices in \mathcal{T}_{h}.

Define

$$
\begin{aligned}
V_{h} & =\left\{v_{h} \in H_{0}^{1}(\Omega):\left.v_{h}\right|_{T} \in P_{1}(T), T \in \mathcal{T}_{h}\right\}, \\
\mathcal{K}_{h} & =\left\{v_{h} \in V_{h}: v_{h}(p) \geq \chi(p), \forall p \in \mathcal{V}_{h}\right\} .
\end{aligned}
$$

FEM: Find $u_{h} \in \mathcal{K}_{h}$ such that (Falk 1974)

$$
a\left(u_{h}, v_{h}-u_{h}\right) \geq\left(f, v_{h}-u_{h}\right) \quad \forall v_{h} \in \mathcal{K}_{h} .
$$

A priori Error Analysis

Let $I_{h} u$ be the Lagrange interpolation of u, i.e.,

$$
I_{h} u(p)=u(p) \text { for all } p \in \mathcal{V}_{h} .
$$

It is easy to see that $I_{h} u \geq I_{h} \chi$ and $u_{h} \geq I_{h} \chi$ in Ω.
Define the sets $\mathcal{T}_{+}, \mathcal{T}_{0}$ and \mathcal{T}_{f} by

$$
\begin{aligned}
\mathcal{T}_{+} & =\left\{T \in \mathcal{T}_{h}: u>\chi \text { on } T\right\}, \\
\mathcal{T}_{0} & =\left\{T \in \mathcal{T}_{h}: u \equiv \chi \text { on } T\right\}, \\
\mathcal{T}_{f} & =\left\{T \in \mathcal{T}_{h}: T \notin \mathcal{T}_{+} \text {and } T \notin \mathcal{T}_{0}\right\} .
\end{aligned}
$$

Let $u, \chi \in H^{2}(\Omega)$. Now if $\lambda:=-\Delta u-f$, then

$$
\lambda \geq 0 \text { in } \Omega \text { and } \lambda \equiv 0 \text { on any } T \in \mathcal{T}_{+} .
$$

A priori Error Analysis

Note that

$$
\begin{aligned}
\left\|\nabla\left(u-u_{h}\right)\right\|^{2}= & a\left(u-u_{h}, u-I_{h} u\right)+a\left(u, I_{h} u-u_{h}\right) \\
& \quad-a\left(u_{h}, I_{h} u-u_{h}\right) \\
\leq & a\left(u-u_{h}, u-I_{h} u\right)+a\left(u, I_{h} u-u_{h}\right)-\left(f, I_{h} u-u_{h}\right) \\
\leq & a\left(u-u_{h}, u-I_{h} u\right)+\left(\lambda, I_{h} u-u_{h}\right) \\
\lesssim & h|u|_{H^{2}(\Omega)}\left\|\nabla\left(u-u_{h}\right)\right\|+\left(\lambda, I_{h} u-u_{h}\right) \\
\lesssim & h|u|_{H^{2}(\Omega)}\left\|\nabla\left(u-u_{h}\right)\right\|+\sum_{T \in \mathcal{T}_{0}} \int_{T} \lambda\left(I_{h} u-u_{h}\right) d x \\
& +\sum_{T \in \mathcal{T}_{f}} \int_{T} \lambda\left(I_{h} u-u_{h}\right) d x .
\end{aligned}
$$

A priori Error Analysis

Since for any $T \in \mathcal{T}_{0}$, there holds $u \equiv \chi$ on T and

$$
\int_{T} \lambda\left(I_{h} u-u_{h}\right) d x=\int_{T} \lambda\left(I_{h} \chi-u_{h}\right) d x \leq 0 .
$$

For any $T \in \mathcal{T}_{f}$,

$$
\begin{aligned}
\int_{T} \lambda\left(I_{h} u-u_{h}\right) d x & =\int_{T} \lambda\left(I_{h}(u-\chi)+I_{h} \chi-u_{h}\right) d x \\
& \leq \int_{T} \lambda I_{h}(u-\chi) d x \\
& =\int_{T} \lambda\left(I_{h}(u-\chi)-(u-\chi)\right) d x \\
& \lesssim h^{2}\|\lambda\||u-\chi|_{H^{2}(\Omega)} .
\end{aligned}
$$

A priori Error Analysis

Therefore

$$
\left\|\nabla\left(u-u_{h}\right)\right\| \lesssim h\left(|u|_{H^{2}(\Omega)}+|\chi|_{H^{2}(\Omega)}+\|f\|\right) .
$$

(Falk 1974)

Quadratic FEM

$\mathcal{T}_{h}=$ regular triangulation of $\Omega \subset \mathbb{R}^{2}$,
$\mathcal{V}_{h}=\left\{\right.$ vertices of triangles in $\left.\mathcal{T}_{h}\right\}$,
$\mathcal{M}_{h}=\left\{\right.$ mid points of the edges in $\left.\mathcal{T}_{h}\right\}$.

Define

$$
\begin{aligned}
V_{h} & =\left\{v_{h} \in H_{0}^{1}(\Omega):\left.v_{h}\right|_{T} \in P_{2}(T), T \in \mathcal{T}_{h}\right\}, \\
\mathcal{K}_{h} & =\left\{v_{h} \in V_{h}: v_{h}(p) \geq \chi(p), \forall p \in \mathcal{M}_{h}\right\} .
\end{aligned}
$$

FEM: Find $u_{h} \in \mathcal{K}_{h}$ such that (Brezzi et al. 1977)

$$
a\left(u_{h}, v_{h}-u_{h}\right) \geq\left(f, v_{h}-u_{h}\right) \quad \forall v_{h} \in \mathcal{K}_{h} .
$$

Quadratic FEM

The quadrature formula

$$
\int_{T} w d x \approx \frac{|T|}{3} \sum_{p \in \mathcal{M}_{T}} w(p)
$$

is exact for quadratic polynomials. Here \mathcal{M}_{T} is the set of the midpoints of the three edges of T.

This implies if a quadratic polynomial v is nonnegative at the midpoints of a triangle T, then

$$
\int_{T} v d x \geq 0 .
$$

A priori Error Analysis

Let $I_{h} u$ be the Lagrange interpolation of u, i.e.,

$$
I_{h} u(p)=u(p) \text { for all } p \in \mathcal{V}_{h} \cup \mathcal{M}_{h} .
$$

Now $I_{h} u \nsupseteq I_{h} \chi$ and $u_{h} \nsupseteq I_{h} \chi$ in Ω, but $I_{h} u \in \mathcal{K}_{h}$. This implies for any $T \in \mathcal{T}_{h}$ that

$$
\begin{array}{r}
\int_{T}\left(I_{h} u-I_{h} \chi\right) d x \geq 0, \\
\int_{T}\left(u_{h}-I_{h} \chi\right) d x \geq 0 .
\end{array}
$$

A priori Error Analysis

Recall the sets $\mathcal{T}_{+}, \mathcal{T}_{0}$ and \mathcal{T}_{f} by

$$
\begin{aligned}
\mathcal{T}_{+} & =\left\{T \in \mathcal{T}_{h}: u>\chi \text { on } T\right\}, \\
\mathcal{T}_{0} & =\left\{T \in \mathcal{T}_{h}: u \equiv \chi \text { on } T\right\}, \\
\mathcal{T}_{f} & =\left\{T \in \mathcal{T}_{h}: T \notin \mathcal{T}_{+} \text {and } T \notin \mathcal{T}_{0}\right\} .
\end{aligned}
$$

Let $f \in H^{1}(\Omega), \chi \in H^{3}(\Omega)$.
Then $u \in H^{5 / 2-\epsilon}(\Omega)$ and $\lambda:=-\Delta u-f \in H^{1 / 2-\epsilon}(\Omega)$ for any $\epsilon>0$. Further

$$
\lambda \geq 0 \text { in } \Omega \text { and } \lambda \equiv 0 \text { on any } T \in \mathcal{T}_{+} .
$$

A priori Error Analysis

Note that with $s=5 / 2-\epsilon$,

$$
\begin{aligned}
\left\|\nabla\left(u-u_{h}\right)\right\|^{2}= & a\left(u-u_{h}, u-I_{h} u\right)+a\left(u, I_{h} u-u_{h}\right) \\
& -a\left(u_{h}, I_{h} u-u_{h}\right) \\
\leq & a\left(u-u_{h}, u-I_{h} u\right)+a\left(u, I_{h} u-u_{h}\right)-\left(f, I_{h} u-u_{h}\right) \\
\leq & a\left(u-u_{h}, u-I_{h} u\right)+\left(\lambda, I_{h} u-u_{h}\right) \\
\lesssim & h^{s-1}|u|_{H^{s}(\Omega)}\left\|\nabla\left(u-u_{h}\right)\right\|+\left(\lambda, I_{h} u-u_{h}\right) \\
\lesssim & h^{s-1}|u|_{H^{s}(\Omega)}\left\|\nabla\left(u-u_{h}\right)\right\|+\sum_{T \in \mathcal{T}_{0}} \int_{T} \lambda\left(I_{h} u-u_{h}\right) d x \\
& +\sum_{T \in \mathcal{T}_{f}} \int_{T} \lambda\left(I_{h} u-u_{h}\right) d x .
\end{aligned}
$$

A priori Error Analysis

For any $T \in \mathcal{T}_{0}$, there holds $u \equiv \chi$ on T and

$$
\begin{aligned}
\int_{T} \lambda\left(I_{h} u-u_{h}\right) d x & =\int_{T} \lambda\left(I_{h} \chi-u_{h}\right) d x \\
& \leq \int_{T}(\lambda-\bar{\lambda})\left(I_{h} \chi-u_{h}\right) d x \\
& =\int_{T}(\lambda-\bar{\lambda})\left(I_{h} u-u_{h}\right) d x \\
& =\int_{T}(\lambda-\bar{\lambda})\left(\left(I_{h} u-u_{h}\right)-\overline{\left(I_{h} u-u_{h}\right)}\right) d x \\
& \lesssim h^{3 / 2-\epsilon}|\lambda|_{H^{1 / 2-\epsilon}(\Omega)}| | \nabla\left(I_{h} u-u_{h}\right) \|, \\
& \text { where }\left.\quad \bar{v}\right|_{T}:=\frac{1}{|T|} \int_{T} v d x
\end{aligned}
$$

A priori Error Analysis

For any $T \in \mathcal{T}_{f}$, similarly

$$
\begin{aligned}
\int_{T} \lambda\left(I_{h} u-u_{h}\right) d x \lesssim & h^{3-\epsilon}|\lambda|_{H^{1 / 2-\epsilon}(\Omega)}\left(|\chi|_{H^{3}(\Omega)}+|u|_{H^{5 / 2-\epsilon}(\Omega)}\right) \\
& +h^{3 / 2-\epsilon}|\lambda|_{H^{1 / 2-\epsilon}(\Omega)}\left\|\nabla\left(I_{h} u-u_{h}\right)\right\| .
\end{aligned}
$$

A priori error estimate: If $f \in H^{1}(\Omega)$ and $\chi \in H^{3}(\Omega)$ and $u \in W^{s, p}(\Omega)$ for all $1<p<\infty$ and $s<2+1 / p$, then

$$
\left\|u-u_{h}\right\|_{1} \leq C h^{3 / 2-\epsilon}, \text { for all } \epsilon>0 .
$$

(Brezzi et al. 1977) (Wang 2002)

Numerical Results

Let Ω be the square with corners
$\{(-1,0),(0,-1),(1,0),(0,1)\}$. Let $\chi=1-2 r^{2}$, where $r=\sqrt{x^{2}+y^{2}}$. Let $r_{0}=(\sqrt{2}-1) / \sqrt{2}$.
The load function f is taken as

$$
f(r):= \begin{cases}4 & \text { if } r<r_{0}, \\ 4 r_{0} / r & \text { if } r \geq r_{0} .\end{cases}
$$

Then the solution u is given by

$$
u(r):= \begin{cases}1-2 r^{2} & \text { if } r<r_{0} \\ 4 r_{0}(1-r) & \text { if } r \geq r_{0}\end{cases}
$$

Numerical Results

Order of convergence:

h	$\left\\|\nabla\left(u-u_{h}\right)\right\\|$	order of conv.
$\sqrt{2} / 4$	0.206211469561149	-
$\sqrt{2} / 8$	0.058342275497902	1.821
$\sqrt{2} / 16$	0.025124856349493	1.215
$\sqrt{2} / 32$	0.007971135017375	1.656
$\sqrt{2} / 64$	0.002583671405642	1.625
$\sqrt{2} / 128$	0.000931014496396	1.472
$\sqrt{2} / 256$	0.000323678406046	1.524

Quadratic FEM for 3D Problem

Let \mathcal{T}_{h} be a regular triangulation of $\Omega \subset \mathbb{R}^{3}$.
For any $T \in \mathcal{T}_{h}$, let $b_{T} \in H_{0}^{1}(T)$ be a quartic bubble function. Define

$$
\begin{aligned}
V_{h} & =\left\{v_{h} \in H_{0}^{1}(\Omega):\left.v_{h}\right|_{T} \in P_{2}(T) \oplus b_{T}, T \in \mathcal{T}_{h}\right\}, \\
\mathcal{K}_{h} & =\left\{v_{h} \in V_{h}: \int_{T} v_{h} d x \geq \int_{T} \chi d x, \forall v \in \mathcal{T}_{h}\right\} .
\end{aligned}
$$

FEM: Find $u_{h} \in \mathcal{K}_{h}$ such that (Gaddam and Gudi, 2016)

$$
a\left(u_{h}, v_{h}-u_{h}\right) \geq\left(f, v_{h}-u_{h}\right) \quad \forall v_{h} \in \mathcal{K}_{h} .
$$

Quadratic FEM for 3D Problem

Define $I_{h} u \in V_{h}$ to be the interpolation of u by

$$
\begin{aligned}
& I_{h} u(p):=u(p) \text { for all vertices of } \mathcal{T}_{h}, \\
& I_{h} u(p):=u(p) \text { for all midpoints of the edges of } \mathcal{T}_{h},
\end{aligned}
$$

and

$$
\int_{T} I_{h} u d x=\int_{T} u d x \text { for all } T \in \mathcal{T}_{h} .
$$

Degrees of freedom for I_{h} on each T is 11 which is the same as the dimension of $P_{2}(T) \oplus b_{T}$.

Further since $u \geq \chi$ in Ω, we have

$$
\int_{T} I_{h} u d x=\int_{T} u d x \geq \int_{T} \chi d x \text { for all } T \in \mathcal{T}_{h} .
$$

A Priori Error Estimate

Let $f \in H^{1}(\Omega)$ and $\chi \in H^{3}(\Omega)$ and $u \in H^{5 / 2-\epsilon}(\Omega)$ for any $\epsilon>0$. Further assume that $u \in W^{s, p}(\Omega)$, where $s<2+1 / p$ and $1<p<\infty$.

Then there holds

$$
\left\|u-u_{h}\right\|_{1} \leq C h^{3 / 2-\epsilon} \text { for all } \epsilon>0 .
$$

Numerical Experiment

Let $\Omega=(0,1)^{3}$ and the obstacle function be $\chi \equiv 0$. The forcing function f is taken to be

$$
f(x, y, z):= \begin{cases}-4\left(2 r^{2}+3\left(r^{2}-r_{0}^{2}\right)\right) & \text { if } r>r_{0}, \\ -8 r_{0}^{2}\left(1-r^{2}+r_{0}^{2}\right) & \text { if } r \leq r_{0},\end{cases}
$$

where $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ and $r_{0}=0.7$.
The nonhomogeneous Dirichlet boundary condition is taken in such a way that the solution u is given by

$$
u(x, y, z)=\left(\max \left(r^{2}-r_{0}^{2}, 0\right)\right)^{2} .
$$

Numerical Experiment

Order of convergence:

h	$\left\\|\nabla\left(u-u_{h}\right)\right\\|_{L^{2}(\Omega)}$	order
0.3467	$1.8500 \mathrm{e}-001$	-
0.1733	$5.6046 \mathrm{e}-002$	1.3596
0.0867	$1.9210 \mathrm{e}-002$	1.4112
0.0433	$7.1151 \mathrm{e}-003$	1.3636

Numerical Experiment

Conclusions

A quadratic finite element enriched with element wise bubble functions with integral constraints is designed and shown to be optimal (up to the regularity)

Numerical experiments confirm the theoretical results.
A reliable and efficient (partially) a posteriori error estimator for these methods is also derived.

Reference

- S. Gaddam and T. Gudi. Bubbles enriched quadratic finite element method for the 3D-elliptic obstacle problem. Comput. Meth. Appl. Math., 18 (2018), pp. 223-236

