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Introduction

Eigenvalue Problems that depend on parameters arise in a
variety of physical problems.

Examples include motion of electrons in semiconductors, wave
motion in periodic media, etc.

Knowledge of dependence of eigenvalues and eigenfunctions
on parameters is crucial for understanding physics.

Such problems pose significant mathematical challenges.
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Periodic Elliptic Operators

We shall consider operators A : D(A) ⊂ L2(Rd)→ L2(Rd)
defined by

Au := − ∂

∂yk

(
akl(y)

∂u

∂yl

)
where A = (akl) is a coercive real symmetric matrix with
entries in L∞] (Y ), Y = [0, 2π)d.

The spectrum of A has a band structure.
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Spectral Theory of Periodic Operators

The periodic symmetry of the operator induces a direct integral
decomposition of the space

L2(Rd) ∼=
∫ ⊕
Y ′
L2
] (η, Y ) ∼= L2(Y

′
, L2

] (Y )).

and a corresponding decomposition of the operator A as

A =

∫ ⊕
Y ′
A(η)dη

where A(η) = − (∇+ iη) · (A (∇+ iη)) is an unbounded operator
in L2

] (Y ).

As a consequence, the spectrum of A is the union of spectra of

A(η) as η varies over Y
′

=
[
−1

2 ,
1
2

)d
.
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Bloch Spectrum of A

For η ∈ Y ′
, the operator A(η) = − (∇+ iη) · (A (∇+ iη)) .

is an unbounded self-adjoint operator on L2
] (Y ) with a

compact resolvent.

By the spectral theorem of compact self-adjoint operators,
A(η) has a sequence of countably many eigenvalues diverging
to ∞,

0 ≤ λ1(η) ≤ λ2(η) ≤ . . . λn(η) ≤ . . .

The functions η 7→ λm(η),m ∈ N are known as Bloch
eigenvalues of the operator A.
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Spectral gaps of A

Let σ−n = minη∈Y ′ λn(η) and σ+n = maxη∈Y ′ λn(η), then

spectrum of the operator A, σ(A) =
⋃
n∈N

[σ−n , σ
+
n ]

Spectrum of A has a band structure, i.e., it is a union of
intervals1.

The complement is a union of open intervals known as
spectral gaps, whose endpoints are called spectral edges.

1Reed, M.; Simon, B., Methods of modern mathematical physics. IV.
Analysis of operators, Academic Press: 1978, pp xv+396.
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Spectral Edges

In material science, homogenization is interpreted as a spectral
edge phenomena, whereas in solid state physics, spectral edges
are attached to the notion of effective mass and localization.

In Solid State Physics, electric and magnetic potentials V are
objects of interest, whereas in material science, the
coefficients of the elliptic operator are important.

The regularity properties of spectral edges determine the
physical phenomena.
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Regularity Properties of Spectral edges

A spectral edge is expected to have the following regularity
properties generically2.

Spectral edge is isolated, i.e., the spectral edge is attained at
finitely many points by the Bloch eigenvalues.

Spectral edge is simple, i.e., it is attained by a single Bloch
eigenvalue.

Spectral edge is non-degenerate, i.e., The Bloch eigenvalue is
strongly convex when it is close to the spectral edge.

2Kuchment, P. Bull. Amer. Math. Soc. (N.S.) 2016, 53, 343–414.
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What is known?

Filonov & Kachkovskiy3 proved that the spectral edge is
isolated for periodic operators in dimension 2.

Klopp & Ralston4 proved that a spectral edge can be made
simple through a small perturbation of the potential term in
the operator −∆ + V .

Parnovski and Shterenberg5 proved that in dimension 2, a
perturbation by a potential of a larger period makes a spectral
edge non-degenerate.

3Filonov, N.; Kachkovskiy, I. On the structure of band edges of 2d periodic
elliptic operators., 2015.

4Klopp, F.; Ralston, J. Methods Appl. Anal. 2000, 7, 459–463.
5Parnovski, L.; Shterenberg, R. J. Funct. Anal. 2017, 273, 444–470.

Spectral Theory of Periodic Elliptic Operators 10/28



INDIAN INSTITUTE OF TECHNOLOGY BOMBAY January 5, 2019

What is known?

Filonov & Kachkovskiy3 proved that the spectral edge is
isolated for periodic operators in dimension 2.

Klopp & Ralston4 proved that a spectral edge can be made
simple through a small perturbation of the potential term in
the operator −∆ + V .

Parnovski and Shterenberg5 proved that in dimension 2, a
perturbation by a potential of a larger period makes a spectral
edge non-degenerate.

3Filonov, N.; Kachkovskiy, I. On the structure of band edges of 2d periodic
elliptic operators., 2015.

4Klopp, F.; Ralston, J. Methods Appl. Anal. 2000, 7, 459–463.
5Parnovski, L.; Shterenberg, R. J. Funct. Anal. 2017, 273, 444–470.

Spectral Theory of Periodic Elliptic Operators 10/28



INDIAN INSTITUTE OF TECHNOLOGY BOMBAY January 5, 2019

What is known?

Filonov & Kachkovskiy3 proved that the spectral edge is
isolated for periodic operators in dimension 2.

Klopp & Ralston4 proved that a spectral edge can be made
simple through a small perturbation of the potential term in
the operator −∆ + V .

Parnovski and Shterenberg5 proved that in dimension 2, a
perturbation by a potential of a larger period makes a spectral
edge non-degenerate.

3Filonov, N.; Kachkovskiy, I. On the structure of band edges of 2d periodic
elliptic operators., 2015.

4Klopp, F.; Ralston, J. Methods Appl. Anal. 2000, 7, 459–463.
5Parnovski, L.; Shterenberg, R. J. Funct. Anal. 2017, 273, 444–470.

Spectral Theory of Periodic Elliptic Operators 10/28



Perturbation Theory of Periodic
Operators



INDIAN INSTITUTE OF TECHNOLOGY BOMBAY January 5, 2019

Local Simplicity

Global Simplicity

Simplicity of Spectral Edge
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Theorem (S. Sivaji Ganesh & T., 2018)
Let A = (aij) ∈ L∞] (Y ) be a positive definite matrix. Let

η0 ∈ Y
′

and λm(η0) be a Bloch eigenvalue of the operator
−∇ · (A∇) of multiplicty h. Then, there exists a diagonal matrix
B = (bij) ∈ L∞] (Y ) such that the Bloch eigenvalue λ̃m(η0) of the
perturbed operator −∇ · (A+ tB)∇ is simple for small t > 0.

Perturbation Theory of Periodic Operators 12/28
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Figure: Perturbed Eigenvalues
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Theorem (S. Sivaji Ganesh & T., 2018)
Let A = (aij) ∈ L∞] (Y ) be a real symmetric positive definite
matrix. Let λm(η) be a Bloch eigenvalue of the operator
−∇ · (A∇) =

∫ ⊕
Y ′ A(η). Then, there is a measurable family of

matrices Bη, such that the perturbed operator
∫ ⊕
Y ′ Ã(η) has

simple Bloch eigenvalue λ̃m(η) for all η ∈ Y ′
for small τ > 0,

where

Ã(η) := −(∇+ iη) · (A+ τBη)(∇+ iη)

Perturbation Theory of Periodic Operators 14/28
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Theorem (S. Sivaji Ganesh & T., 2018)
Let A = (aij) be a positive definite real symmetric matrix. Let
(λ−, λ+) be a spectral gap of the operator −∇ · (A∇). Suppose that
either

aij ∈W 1,∞
] (Y ), or

aij ∈ L∞] (Y ) and the spectral edge is attained at finitely
many points.

Then, there exists a diagonal matrix B = (bij) ∈ L∞] (Y ) such that

the new spectral edge λ̃+ of the perturbed operator ∇ · (A+ tB)∇ is
simple for small t > 0.

Perturbation Theory of Periodic Operators 15/28
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Ideas behind the proof

For aij ∈W 1,∞
] (Y ), a global perturbation is obtained. The

proof relies on the interior Hölder continuity of the
eigenfunctions and its derivatives. Hence the requirement of
W 1,∞
] (Y ) coefficients.

For aij ∈ L∞] (Y ), fiberwise perturbations are used to obtain
simplicity of the spectral edge.

Variational characterization of the eigenvalues
(Courant-Fischer minmax principle) and perturbation theory is
used.
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Simplicity implies Differentiability

Given an eigenvalue problem depending smoothly (or C1, Cω)
on multiple parameters, simplicity of the eigenvalue ensures
smoothness (or C1, Cω) of the eigenvalues.

The proof requires Implicit Function Theorem in an
appropriate category. For matrices, we use the determinant in
the IFT.

This may be generalized to operators in the von
Neumann-Schatten class of operators, where a notion of
determinant exists6.

6Reed, M.; Simon, B., Methods of modern mathematical physics. IV.
Analysis of operators, Academic Press: 1978.
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Analytic Eigenvectors

For a closed operator A, if λ is an isolated point of the
spectrum σ(A), the Projection operator

Pλ = − 1

2πi

∮
|λ−µ|=r

(A− µ)−1dµ

exists, where r is the radius of a circle containing λ alone.

For an analytic family of operators, the family of projection
operators, Pλ(η), is also analytic.

If the eigenspace is one-dimensional, we obtain an analytic
choice of eigenvectors by defining φ(y, η) = Pλ(η)φ(y, 0).

Consequences of Simplicity 18/28
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Introduction to homogenization

Homogenization is the study of the limits of solutions to
equations with highly oscillatory coefficients.

For example, consider the problem

−div(A
(
x
ε

)
∇uε(x)) = f in Ω

uε = 0 on ∂Ω

where A is a periodic matrix with bounded measurable
coefficients.

Bloch wave homogenization 19/28
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Introduction to homogenization

The sequence of solutions uε is bounded in H1
0 (Ω)

independent of ε, hence converges for a subsequence to u0.

The theory of homogenization identifies matrices A∗ such that
the limit u0 satisfies the equation

−div(A∗∇u0(x)) = f in Ω
u0 = 0 on ∂Ω

Bloch wave homogenization 20/28
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Bloch wave homogenization

Bloch wave homogenization is a spectral method of achieving
homogenization.

In particular, Bloch wave homogenization identifies the
homogenized tensor with the Hessian of the first Bloch
eigenvalue at 0 ∈ Y ′

.

a∗kl =
1

2

∂2λ1
∂ηkηl

(0).

Bloch wave homogenization 21/28
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Internal edge homogenization

Hessian of the lowest Bloch eigenvalue is a measure of the
convexity of the lowest spectral edge. Hence, homogenization
may be interpreted as a phenomena governed by the regularity
properties of the lowest spectral edge.

Birman and Suslina7 extended the notion of homogenization
to internal edges of the spectrum by proposing an effective
operator to the highly oscillating operator at internal edges.

7Birman, M. S.; Suslina, T. A. J. Math. Sci. 2006, 136, 3682–3690.
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INDIAN INSTITUTE OF TECHNOLOGY BOMBAY January 5, 2019

Internal edge homogenization

Hessian of the lowest Bloch eigenvalue is a measure of the
convexity of the lowest spectral edge. Hence, homogenization
may be interpreted as a phenomena governed by the regularity
properties of the lowest spectral edge.

Birman and Suslina7 extended the notion of homogenization
to internal edges of the spectrum by proposing an effective
operator to the highly oscillating operator at internal edges.

7Birman, M. S.; Suslina, T. A. J. Math. Sci. 2006, 136, 3682–3690.

Bloch wave homogenization 22/28



INDIAN INSTITUTE OF TECHNOLOGY BOMBAY January 5, 2019

��

�2

�3

�4

�5

� Lowest edge of the spectrum

Internal edges

Bloch wave homogenization 23/28



INDIAN INSTITUTE OF TECHNOLOGY BOMBAY January 5, 2019

Internal edge homogenization

Convergence to the effective operator depends on the
regularity properties of the spectral edge. In particular,
Birman and Suslina assume that the internal spectral edge is
simple, isolated and non-degenerate.

We have extended the theorem of Birman and Suslina to
spectral edges with multiplicity greater than 1 by using a
perturbation of the operator which renders the multiple edge
simple.

Bloch wave homogenization 24/28
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Questions

The matrix A represents a particular configuration or
microstructure.

Given a microstructure A, how does one physically or
geometrically realize the perturbed media A+B?

These questions seem to point towards regularity of A?

Bloch wave homogenization 25/28
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Questions

The elasticity operator with periodic coefficients has a
multiple spectral edge with multiplicity 3. In particular, the
lowest Bloch eigenvalue may not be smooth enough to
compute its Hessian. This difficulty was circumvented earlier
by using directional smoothness of the Bloch eigenvalues8.

A proposal is to consider a zeroth order perturbation of the
elasticity operator which would make its spectral edge simple
and use the corresponding Hessian to approximate the
homogenized coefficients for the elasticity operator.

8Sivaji Ganesh, S.; Vanninathan, M. ESAIM Control Optim. Calc. Var.
2005, 11, 542–573 (electronic).
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