Monojit Bhattacharjee

Unitary Invariants for Commuting tuples of Hypercontractions

Monojit Bhattacharjee

Indian Institute of Technology Bombay

Diamond Jubilee Symposium January 2019

(A joint work with Bata Krishna Das and Jaydeb Sarkar)

Invariant Subspaces of $H^2(E)$

Let *E* be a separable Hilbert space of infinite dimension and $H^2(E)$ be the *E*-valued Hardy space, that is,

$$H^{2}(E) := \{f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} \mid \sum_{n=0}^{\infty} \|a_{n}\|_{E}^{2} < \infty, z \in \mathbb{D}\}.$$

Invariant Subspaces of $H^2(E)$

Let *E* be a separable Hilbert space of infinite dimension and $H^2(E)$ be the *E*-valued Hardy space, that is,

$$H^{2}(E) := \{f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} \mid \sum_{n=0}^{\infty} \|a_{n}\|_{E}^{2} < \infty, z \in \mathbb{D}\}.$$

Definition

A closed subspace $M \subseteq H^2(E)$ is said to be invariant if $M_z M \subseteq M$, where M_z denotes the multiplication operator on $H^2(E)$.

Invariant Subspaces of $H^2(E)$

Let *E* be a separable Hilbert space of infinite dimension and $H^2(E)$ be the *E*-valued Hardy space, that is,

$$H^{2}(E) := \{f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} \mid \sum_{n=0}^{\infty} \|a_{n}\|_{E}^{2} < \infty, z \in \mathbb{D}\}.$$

Definition

A closed subspace $M \subseteq H^2(E)$ is said to be invariant if $M_z M \subseteq M$, where M_z denotes the multiplication operator on $H^2(E)$.

Theorem (Beurling-Lax-Halmos)

A closed subspace $M \subseteq H^2(E)$ is invariant under M_z if and only if there exists a separable Hilbert space E_* and an inner multiplier Θ such that $M = \Theta H^2(E_*)$.

Definition

A bounded linear operator T on a Hilbert space \mathcal{H} is said to be in pure if $||T^{*n}h|| \to 0$ as $n \to \infty$ for all $h \in \mathcal{H}$.

Definition

A bounded linear operator T on a Hilbert space \mathcal{H} is said to be in pure if $||T^{*n}h|| \to 0$ as $n \to \infty$ for all $h \in \mathcal{H}$.

• The Sz.-Nagy and Foias analytic model: If *T* is a pure contraction then

$$T\cong P_{\mathcal{Q}}M_{z}|_{\mathcal{Q}}$$

where $\mathcal{Q} \subseteq H^2(\mathcal{E}_*)$ is an M_z^* -invariant closed subspace.

Definition

A bounded linear operator T on a Hilbert space \mathcal{H} is said to be in pure if $||T^{*n}h|| \to 0$ as $n \to \infty$ for all $h \in \mathcal{H}$.

• The Sz.-Nagy and Foias analytic model: If *T* is a pure contraction then

$$T\cong P_{\mathcal{Q}}M_{z}|_{\mathcal{Q}}$$

where $\mathcal{Q} \subseteq H^2(\mathcal{E}_*)$ is an M_z^* -invariant closed subspace.

Moreover, using Beurling-Lax-Halmos theorem, we have a Hilbert space \mathcal{E} and a $\mathcal{B}(\mathcal{E}, \mathcal{E}_*)$ -valued inner multiplier Θ such that

$$\mathcal{Q}^{\perp} = \Theta H^2(\mathcal{E}).$$

Characteristic Function for contraction

For a contraction $T \in \mathcal{B}(\mathcal{H})$, consider the following contractive analytic function from \mathcal{D}_T to \mathcal{D}_{T^*} ,

$$\Theta_{\mathcal{T}}(z) = [-\mathcal{T} + z \mathcal{D}_{\mathcal{T}^*} (1 - z \mathcal{T}^*)^{-1} \mathcal{D}_{\mathcal{T}}]|_{\mathcal{D}_{\mathcal{T}}} \quad ext{for } z \in \mathbb{D},$$

where $D_T = (I - T^*T)^{\frac{1}{2}}$, $D_{T^*} = (I - TT^*)^{\frac{1}{2}}$, $\mathcal{D}_T = \overline{\operatorname{ran}} D_T$ and $\mathcal{D}_{T^*} = \overline{\operatorname{ran}} D_{T^*}$. It is known as the Characteristic Function for a contraction T.

Characteristic Function for contraction

For a contraction $T \in \mathcal{B}(\mathcal{H})$, consider the following contractive analytic function from \mathcal{D}_T to \mathcal{D}_{T^*} ,

$$\Theta_{\mathcal{T}}(z) = [-\mathcal{T} + z \mathcal{D}_{\mathcal{T}^*} (1 - z \mathcal{T}^*)^{-1} \mathcal{D}_{\mathcal{T}}]|_{\mathcal{D}_{\mathcal{T}}} \quad ext{for } z \in \mathbb{D}_{\mathbb{T}}$$

where $D_T = (I - T^*T)^{\frac{1}{2}}$, $D_{T^*} = (I - TT^*)^{\frac{1}{2}}$, $\mathcal{D}_T = \overline{\operatorname{ran}} D_T$ and $\mathcal{D}_{T^*} = \overline{\operatorname{ran}} D_{T^*}$. It is known as the Characteristic Function for a contraction T.

 Modified Sz.-Nagy-Foias model: If T is a pure contraction on a seperable Hilbert space H, then there exist a co-invariant subspace Q of H²(D_{T*}) such that

$$T\cong P_{\mathcal{Q}}M_{z}|_{\mathcal{Q}}.$$

And also the co-invariant subspace Q can be expressed in terms of the characteristic function of T, that is,

$$\mathcal{Q}^{\perp} = \Theta_T H^2(\mathcal{D}_T).$$

For an *n*-tuple of commuting bounded linear operators $T = (T_1, ..., T_n) \in \mathcal{B}(\mathcal{H})^n$, we say T is a row contraction if the operator

$$\mathcal{H}^n \to \mathcal{H}, \ (h_1, \ldots, h_n) \mapsto \sum_{i=1}^n T_i h_i$$

is a contraction. That is, the operator viewed as a row operator $T: \mathcal{H}^n \to \mathcal{H}$ is a contraction.

For an *n*-tuple of commuting bounded linear operators $T = (T_1, ..., T_n) \in \mathcal{B}(\mathcal{H})^n$, we say T is a row contraction if the operator

$$\mathcal{H}^n \to \mathcal{H}, \ (h_1, \ldots, h_n) \mapsto \sum_{i=1}^n T_i h_i$$

is a contraction. That is, the operator viewed as a row operator $T: \mathcal{H}^n \to \mathcal{H}$ is a contraction. Consider the associated map

$$\sigma_{\mathcal{T}}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}), X \mapsto \sum_{i=1}^{n} T_{i}XT_{i}^{*}.$$

Using the map σ_T , for each $k \in \mathbb{N}$, we are going to define the defect operators of different orders of T.

m-Hypercontraction Operators

Let us consider the operator for a positive integer k,

$$\Delta_T^{(k)} = (1 - \sigma_T)^k (I_{\mathcal{H}}).$$

m-Hypercontraction Operators

Let us consider the operator for a positive integer k,

$$\Delta_T^{(k)} = (1 - \sigma_T)^k (I_{\mathcal{H}}).$$

Definition

An *n*-tuple of commuting bounded linear operators T is said to be a *m*-hypercontraction if $\Delta_T^{(1)} \ge 0$ and $\Delta_T^{(m)} \ge 0$.

The defect operator of order m is $D_{m,T^*} = (\Delta_T^{(m)})^{\frac{1}{2}}$ and the defect space is $\mathcal{D}_{m,T^*} = \overline{\operatorname{ran}}(\Delta_T^{(m)})^{\frac{1}{2}}$.

m-Hypercontraction Operators

Let us consider the operator for a positive integer k,

$$\Delta_T^{(k)} = (1 - \sigma_T)^k (I_{\mathcal{H}}).$$

Definition

An *n*-tuple of commuting bounded linear operators T is said to be a *m*-hypercontraction if $\Delta_T^{(1)} \ge 0$ and $\Delta_T^{(m)} \ge 0$.

The defect operator of order m is $D_{m,T^*} = (\Delta_T^{(m)})^{\frac{1}{2}}$ and the defect space is $\mathcal{D}_{m,T^*} = \overline{\operatorname{ran}}(\Delta_T^{(m)})^{\frac{1}{2}}$.

• An *m*-hypercontraction $T \in \mathcal{B}(\mathcal{H})^n$ is said to be pure if

$$\operatorname{SOT} - \lim_{k \to \infty} \sigma_T^k(I_{\mathcal{H}}) = 0.$$

Model for *m*-Hypercontraction operators

Theorem (Muller and Vasilescu)

Let T be a pure m-hypercontraction on a Hilbert space \mathcal{H} . Then there exists a co-invariant subspace \mathcal{Q} of $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ such that $T \cong (P_{\mathcal{Q}}M_{z_1}|_{\mathcal{Q}}, \ldots, P_{\mathcal{Q}}M_{z_n}|_{\mathcal{Q}}).$

The \mathcal{E} -valued weighted Bergman space

$$\mathbb{H}_{\ell}(\mathbb{B}^n,\mathcal{E}) := \Big\{ f = \sum_{\alpha \in \mathbb{N}^n} f_{\alpha} z^{\alpha} \in \mathcal{O}(\mathbb{B}^n,\mathcal{E}) : \|f\|^2 = \sum_{\alpha \in \mathbb{N}^n} \frac{\|f_{\alpha}\|^2}{\rho_{\ell}(\alpha)} < \infty \Big\},$$

where $\rho_{\ell}(\alpha) = \frac{(\ell+|\alpha|-1)!}{\alpha!(\ell-1)!}$.

Theorem (Muller and Vasilescu)

Let T be a pure m-hypercontraction on a Hilbert space \mathcal{H} . Then there exists a co-invariant subspace \mathcal{Q} of $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ such that $T \cong (P_{\mathcal{Q}}M_{z_1}|_{\mathcal{Q}}, \ldots, P_{\mathcal{Q}}M_{z_n}|_{\mathcal{Q}}).$

The \mathcal{E} -valued weighted Bergman space

$$\mathbb{H}_{\ell}(\mathbb{B}^n,\mathcal{E}) := \Big\{ f = \sum_{\alpha \in \mathbb{N}^n} f_{\alpha} z^{\alpha} \in \mathcal{O}(\mathbb{B}^n,\mathcal{E}) : \|f\|^2 = \sum_{\alpha \in \mathbb{N}^n} \frac{\|f_{\alpha}\|^2}{\rho_{\ell}(\alpha)} < \infty \Big\},$$

where $\rho_{\ell}(\alpha) = \frac{(\ell+|\alpha|-1)!}{\alpha!(\ell-1)!}$.

• It is also a reproducing kernel Hilbert space with kernel

$$\mathcal{K}_\ell: \mathbb{B}^n imes \mathbb{B}^n o \mathcal{B}(\mathcal{E}), \quad \mathcal{K}_\ell(z,w) = rac{1_\mathcal{E}}{(1-\langle z,w
angle)^\ell}.$$

 In particular, if ℓ = 1, 𝔄₁(𝔅ⁿ, 𝔅) is known as the Drury-Arveson space and we use H²_n(𝔅) to denote it.

Invariant Subspaces of Weighted Bergman space

Theorem (Sarkar)

A closed subspace of $M \subseteq \mathbb{H}_m(\mathbb{B}^n, \mathcal{E})$ is a joint $(M_{z_1} \otimes I_{\mathcal{E}}, \ldots, M_{z_n} \otimes I_{\mathcal{E}})$ -invariant subspace if and only if there exists a Hilbert space \mathcal{E}_* and a partial isometric multiplier Φ from $H^2_n(\mathcal{E}_*)$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{E})$ such that $M = \Phi H^2_n(\mathcal{E}_*)$.

Theorem (Sarkar)

A closed subspace of $M \subseteq \mathbb{H}_m(\mathbb{B}^n, \mathcal{E})$ is a joint $(M_{z_1} \otimes I_{\mathcal{E}}, \ldots, M_{z_n} \otimes I_{\mathcal{E}})$ -invariant subspace if and only if there exists a Hilbert space \mathcal{E}_* and a partial isometric multiplier Φ from $H^2_n(\mathcal{E}_*)$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{E})$ such that $M = \Phi H^2_n(\mathcal{E}_*)$.

 Combining above two results we have that given a *m*-hypercontraction *T* there exists a Hilbert space *E*_{*} and a partial isometric multiplier Φ from *H*²_n(*E*_{*}) to *H*_m(*B*ⁿ, *E*) such that

$$T_i \cong P_{(\Phi H^2_n(\mathcal{E}_*))^{\perp}} M_{z_i}|_{(\Phi H^2_n(\mathcal{E}_*))^{\perp}} \qquad (i = 1, \dots, n).$$

Theorem (Sarkar)

A closed subspace of $M \subseteq \mathbb{H}_m(\mathbb{B}^n, \mathcal{E})$ is a joint $(M_{z_1} \otimes I_{\mathcal{E}}, \ldots, M_{z_n} \otimes I_{\mathcal{E}})$ -invariant subspace if and only if there exists a Hilbert space \mathcal{E}_* and a partial isometric multiplier Φ from $H^2_n(\mathcal{E}_*)$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{E})$ such that $M = \Phi H^2_n(\mathcal{E}_*)$.

 Combining above two results we have that given a *m*-hypercontraction *T* there exists a Hilbert space *E*_{*} and a partial isometric multiplier Φ from *H*²_n(*E*_{*}) to *H*_m(*B*ⁿ, *E*) such that

$$T_i \cong P_{(\Phi H^2_n(\mathcal{E}_*))^{\perp}} M_{z_i}|_{(\Phi H^2_n(\mathcal{E}_*))^{\perp}} \qquad (i = 1, \dots, n).$$

• Is there is any explicit description of that multiplier (analogous to the characteristic function for contraction)?

• For a *m*-hypercontraction T on \mathcal{H} , one can canonically define the operator $C_{m,T} : \mathcal{H} \to l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$ such that $\begin{bmatrix} T^*\\ C_{m,T} \end{bmatrix} : \mathcal{H} \to \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$ is an isometry.

- For a *m*-hypercontraction *T* on *H*, one can canonically define the operator $C_{m,T} : \mathcal{H} \to l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$ such that $\begin{bmatrix} T^*\\ C_{m,T} \end{bmatrix} : \mathcal{H} \to \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$ is an isometry.
- By adding a suitable Hilbert space \mathcal{E} , we can find $B \in \mathcal{B}(\mathcal{E}, \mathcal{H}^n)$, $D \in \mathcal{B}(\mathcal{E}, l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*}))$ such that

$$U = \begin{bmatrix} T^* & B \\ C_{m,T} & D \end{bmatrix} : \mathcal{H} \oplus \mathcal{E} \to \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$$

is a unitary.

- For a *m*-hypercontraction T on \mathcal{H} , one can canonically define the operator $C_{m,T} : \mathcal{H} \to l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$ such that $\begin{bmatrix} T^*\\ C_{m,T} \end{bmatrix} : \mathcal{H} \to \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$ is an isometry.
- By adding a suitable Hilbert space \mathcal{E} , we can find $B \in \mathcal{B}(\mathcal{E}, \mathcal{H}^n)$, $D \in \mathcal{B}(\mathcal{E}, l^2(\mathbb{N}^n, \mathcal{D}_{m, \mathcal{T}^*}))$ such that

$$U = \begin{bmatrix} T^* & B \\ C_{m,T} & D \end{bmatrix} : \mathcal{H} \oplus \mathcal{E} \to \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$$

is a unitary.

Definition (Characteristic triple)

We call those triple (\mathcal{E}, B, D) consists of a Hilbert space \mathcal{E} and operators $B \in \mathcal{B}(\mathcal{E}, \mathcal{H}^n)$, $D \in \mathcal{B}(\mathcal{E}, l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*}))$ is a characteristic triple.

For a characteristic triple (\mathcal{E}, B, D) of \mathcal{T} , let us define an operator-valued analytic function $\Phi : \mathbb{B}^n \to \mathcal{B}(\mathcal{E}, \mathcal{D}_{m, \mathcal{T}^*})$ by

$$\Phi(z) = \sum_{\alpha \in \mathbb{N}^n} \rho_{m-1}(\alpha)^{\frac{1}{2}} D_{\alpha} z^{\alpha} + D_{m,T^*} (1 - ZT^*)^{-m} ZB \qquad (z \in \mathbb{B}^n).$$

For a characteristic triple (\mathcal{E}, B, D) of \mathcal{T} , let us define an operator-valued analytic function $\Phi : \mathbb{B}^n \to \mathcal{B}(\mathcal{E}, \mathcal{D}_{m, \mathcal{T}^*})$ by

$$\Phi(z) = \sum_{\alpha \in \mathbb{N}^n} \rho_{m-1}(\alpha)^{\frac{1}{2}} D_{\alpha} z^{\alpha} + D_{m,T^*} (1 - ZT^*)^{-m} ZB \qquad (z \in \mathbb{B}^n).$$

Theorem

Let T be a pure m-hypercontraction on \mathcal{H} . Suppose (\mathcal{E}, B, D) is a characteristic triple of T. Then the above defined function Φ defines a partial isometric multiplier from $H_n^2(\mathcal{E})$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ such that $\mathcal{Q}^{\perp} = \Phi H_n^2(\mathcal{E})$, where \mathcal{Q} is the model space for T.

For a characteristic triple (\mathcal{E}, B, D) of \mathcal{T} , let us define an operator-valued analytic function $\Phi : \mathbb{B}^n \to \mathcal{B}(\mathcal{E}, \mathcal{D}_{m, \mathcal{T}^*})$ by

$$\Phi(z) = \sum_{\alpha \in \mathbb{N}^n} \rho_{m-1}(\alpha)^{\frac{1}{2}} D_{\alpha} z^{\alpha} + D_{m,T^*} (1 - ZT^*)^{-m} ZB \qquad (z \in \mathbb{B}^n).$$

Theorem

Let T be a pure m-hypercontraction on \mathcal{H} . Suppose (\mathcal{E}, B, D) is a characteristic triple of T. Then the above defined function Φ defines a partial isometric multiplier from $H_n^2(\mathcal{E})$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ such that $\mathcal{Q}^{\perp} = \Phi H_n^2(\mathcal{E})$, where \mathcal{Q} is the model space for T.

Theorem

For an another characteristic triple $(\mathcal{E}_1, B_1, D_1)$, consider the partial isometric multiplier Φ_1 from $H^2_n(\mathcal{E})$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ defined analogously. Then there exists a unitary $I \otimes U : H^2_n(\mathcal{E}_1) \to H^2_n(\mathcal{E})$ such that $M_{\Phi_1} = M_{\Phi}(I \otimes U)$.

Unitary Equivalence

Two row contractions $T = (T_1, \dots, T_n)$ and $R = (R_1, \dots, R_n)$ on \mathcal{H} are said to be unitary equivalent if there exist a unitary U on \mathcal{H} such that $T_i = UR_iU^*$, for all $i = 1, \dots, n$.

Unitary Equivalence

Two row contractions $T = (T_1, \dots, T_n)$ and $R = (R_1, \dots, R_n)$ on \mathcal{H} are said to be unitary equivalent if there exist a unitary U on \mathcal{H} such that $T_i = UR_iU^*$, for all $i = 1, \dots, n$.

Definition

The characteristic functions Φ_T and Φ_R of two pure *m*-hypercontractions T and R are said to coincide if there exists two unitary $\Gamma : (\text{Ker}M_{\Phi_R})^{\perp} \rightarrow (\text{Ker}M_{\Phi_T})^{\perp}$ and $\tau : \mathcal{D}_{m,T^*} \rightarrow \mathcal{D}_{m,R^*}$ such that

$$M_{\Phi_R}|_{(\operatorname{Ker} M_{\Phi_R})^{\perp}} = (I \otimes \tau) M_{\Phi_T} \Gamma.$$

Unitary Equivalence

Two row contractions $T = (T_1, \dots, T_n)$ and $R = (R_1, \dots, R_n)$ on \mathcal{H} are said to be unitary equivalent if there exist a unitary U on \mathcal{H} such that $T_i = UR_iU^*$, for all $i = 1, \dots, n$.

Definition

The characteristic functions Φ_T and Φ_R of two pure *m*-hypercontractions T and R are said to coincide if there exists two unitary $\Gamma : (\text{Ker}M_{\Phi_R})^{\perp} \rightarrow (\text{Ker}M_{\Phi_T})^{\perp}$ and $\tau : \mathcal{D}_{m,T^*} \rightarrow \mathcal{D}_{m,R^*}$ such that

$$M_{\Phi_R}|_{(\operatorname{Ker} M_{\Phi_R})^{\perp}} = (I \otimes \tau) M_{\Phi_T} \Gamma.$$

Theorem

Two pure m-hypercontractions are unitarily equivalent if and only if their characteristic functions coincide.

Factorization w.r.t invariant subspace

• We are going to produce a necessary and sufficient condition for the existence of an joint invariant subspace of a pure *m*-hypercontraction in terms of a factorization the characteristic function.

Factorization w.r.t invariant subspace

• We are going to produce a necessary and sufficient condition for the existence of an joint invariant subspace of a pure *m*-hypercontraction in terms of a factorization the characteristic function.

Theorem

Let $T = (T_1, ..., T_n)$ be a pure m-hypercontraction on \mathcal{H} . Then T has a joint invariant subspace if and only if there exists two Hilbert spaces \mathcal{E}_T and \mathcal{E} , and two multipliers Φ_1 from $H^2_n(\mathcal{E}_T)$ to $H^2_n(\mathcal{E}_2)$ and Φ_2 from $H^2_n(\mathcal{E}_2)$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ such that the characteristic function of T has a factorization, that is,

$$\Phi_{\mathcal{T}} = \Phi_2 \Phi_1.$$

- M. Bhattacharjee, B. Krishna Das and Jaydeb Sarkar, Unitary Invariants for Commuting tuples of Hypercontractions, Arxiv:1812.08143.
- [2] V. Muller and F.-H. Vasilescu, Standard models for some commuting multioperators, Proc. Amer. Math. Soc. 117 (1993), 979–989.
- [3] J. Sarkar, An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces - I, J. Operator Theory 73 (2015), 433–441.
- [4] J. Sarkar, An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces - II, Complex Analysis and Operator Theory 10(2016), 769–782.

THANK YOU FOR YOUR ATTENTION