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Main question in C

Given a sequence (usually lattice) of points zn ∈ C and

complex numbers fn ∈ C satisfying
∑
n

|fn|2e−|zn|
2
<∞ , find

an entire function f such that f (zn) = fn andˆ
C
|f |2e−|z|2 <∞.

Ex : zn = n and fn = n2. f (z) = z2.

Counterexample : zn = 1
n and fn = 0 for n > 1, f1 = 1.

These functions give examples of “coherent states” in
quantum optics, this problem apparently plays a role in signal
processing, and the higher dimensional version of this problem
might help with the minimal model programme
(Demailley-Hacon-Paun).
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Why is this not trivial by Mittag-Leffler/Weierstrass or
something ?

Weierstrass says that if |zn| → ∞ there exists an entire
function g with zeroes (of order 1) only at zn.

Mittag-Leffler says (implies) that if |zn| → ∞ then there is a
meromorphic function h with principal part fn

g ′ (zn)(z−zn)
at zn.

f = hg interpolates fn.

The problem is with the L2 bound !
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Seip’s necessary and sufficient conditions in C

The points must be uniformly separated (otherwise two fn can
be wildly different for nearby points but the analytic function
cannot change much so quickly).

Indeed, the proof is roughly - Construct a sequence of
functions gi (z) such that gi (zk) = δike

|zn|2 . This contradicts a
derivative estimate on gi coming from the L2 estimate. (A
fancy version of Cauchy’s estimates.)

They must not be too dense, i.e., lim sup
r→∞

sup
z

#D(z , r)

πr2
<

1

π
.
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Main question in higher dimensions

Give a non-constant entire function T , and a holomorphic

function f : T−1(0)→ C satisfying

ˆ
T−1(0)

|f |2e−|z|2dσ <∞,

extend it to an entire function F satisfyingˆ
Cn

|F |2e−|z|2 <∞.

No necessary conditions are known.

Some sufficient conditions are known
(Ortega-Cerda-Schuster-Varolin, Pingali-Varolin).
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A sufficient condition for algebraic hypersurfaces

If T is a polynomial, then the “density” obstruction is
automatically met.

The analogue of uniform separation is “uniform flatness”, i.e.,
a uniform-sized tubular neighbourhood.

Theorem : (OSV, PV) A uniformly flat smooth algebraic
hypersurface is interpolating.

Actually, the above theorem works for certain singular
algebraic hypersurfaces too (PV).
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Examples and counterexamples

Examples : T (x , y) = y − x57 − 4x3 + 2x2 + 1. Any graph of
one variable in C2 is an example.

Counterexamples : T (x , y) = xy2 − 1, T (x , y) = x2y2 − 1,
T (x , y , z) = xy2 − z , T (x , y , z) = x2y2 − z etc.

However, T = xy2 − 1 and T = xy2 − z are interpolating
despite being non-uniformly flat ! (Pingali-Varolin)

On the other hand, the other two are not interpolating.

For singular hypersurfaces, here is a counterexample due to
Ohsawa - Suppose W has an isolated singularity at z = 0,
then there is a polynomial P such that f − P can be
interpolated to G . Therefore F = G + P.
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A brief idea of the proofs

Uniformly flat ones : It is easy to construct smooth
interpolating functions. Take such a function G and solve
∂̄G = ∂̄H where H vanishes on the surface. Then G − H is
the desired answer.

Actually, the real deal is a far more complicated version of this
strategy.

The Ohsawa-Takegoshi extension theorem implies that
interpolation can be done for algebraic hypersurfaces if

|dT |2e−
ffl
B(z,r) ln(|T |2) ≥ C .

Uniform flatness implies the desired lower bound.
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The non-uniformly flat hypersurface xy2 = z is uniformly flat
away from a neighbourhood of y = z = 0. But y = z = 0 is
itself uniformly flat ! So one uses a patching up method.

To prove that x2y2 = 1 is not interpolating, use the fact that
it has two components. Using Hörmander’s theorem construct
a function that is large at (δ−1, δ) and 0 at (δ−1,−δ). This
contradicts the fact that the derivative cannot be too large.
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a function that is large at (δ−1, δ) and 0 at (δ−1,−δ). This
contradicts the fact that the derivative cannot be too large.

Vamsi Pritham Pingali Interpolation from affine hypersurfaces 9/10



The non-uniformly flat hypersurface xy2 = z is uniformly flat
away from a neighbourhood of y = z = 0. But y = z = 0 is
itself uniformly flat ! So one uses a patching up method.

To prove that x2y2 = 1 is not interpolating, use the fact that
it has two components. Using Hörmander’s theorem construct
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a function that is large at (δ−1, δ) and 0 at (δ−1,−δ). This
contradicts the fact that the derivative cannot be too large.

Vamsi Pritham Pingali Interpolation from affine hypersurfaces 9/10



Thank you
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