Interpolation from affine hypersurfaces

Vamsi Pritham Pingali

IISc

æ

• • = • • =

• Given a sequence (usually lattice) of points $z_n \in \mathbb{C}$ and complex numbers $f_n \in \mathbb{C}$

• • = • • = •

• Given a sequence (usually lattice) of points $z_n \in \mathbb{C}$ and complex numbers $f_n \in \mathbb{C}$ satisfying $\sum_n |f_n|^2 e^{-|z_n|^2} < \infty$

• Given a sequence (usually lattice) of points $z_n \in \mathbb{C}$ and complex numbers $f_n \in \mathbb{C}$ satisfying $\sum_n |f_n|^2 e^{-|z_n|^2} < \infty$, find

an entire function f such that

• Given a sequence (usually lattice) of points $z_n \in \mathbb{C}$ and complex numbers $f_n \in \mathbb{C}$ satisfying $\sum_n |f_n|^2 e^{-|z_n|^2} < \infty$, find an entire function f such that $f(z_n) = f_n$ and $\int_{\mathbb{C}} |f|^2 e^{-|z|^2} < \infty$.

Given a sequence (usually lattice) of points z_n ∈ C and complex numbers f_n ∈ C satisfying ∑_n |f_n|²e^{-|z_n|²} < ∞, find an entire function f such that f(z_n) = f_n and ∫_C |f|²e^{-|z|²} < ∞.
Ex : z_n = n and f_n = n². f(z) = z².

- Given a sequence (usually lattice) of points z_n ∈ C and complex numbers f_n ∈ C satisfying ∑_n |f_n|²e^{-|z_n|²} < ∞, find an entire function f such that f(z_n) = f_n and ∫_C |f|²e^{-|z|²} < ∞.
 Ex : z_n = n and f_n = n². f(z) = z².
- Counterexample : $z_n = \frac{1}{n}$ and $f_n = 0$ for n > 1, $f_1 = 1$.

- Given a sequence (usually lattice) of points $z_n \in \mathbb{C}$ and complex numbers $f_n \in \mathbb{C}$ satisfying $\sum_n |f_n|^2 e^{-|z_n|^2} < \infty$, find an entire function f such that $f(z_n) = f_n$ and $\int_{\mathbb{C}} |f|^2 e^{-|z|^2} < \infty$.
- Ex: $z_n = n$ and $f_n = n^2$. $f(z) = z^2$.
- Counterexample : $z_n = \frac{1}{n}$ and $f_n = 0$ for n > 1, $f_1 = 1$.
- These functions give examples of "coherent states" in quantum optics,

- Given a sequence (usually lattice) of points $z_n \in \mathbb{C}$ and complex numbers $f_n \in \mathbb{C}$ satisfying $\sum_n |f_n|^2 e^{-|z_n|^2} < \infty$, find an entire function f such that $f(z_n) = f_n$ and $\int_{\mathbb{C}} |f|^2 e^{-|z|^2} < \infty$.
- Ex : $z_n = n$ and $f_n = n^2$. $f(z) = z^2$.
- Counterexample : $z_n = \frac{1}{n}$ and $f_n = 0$ for n > 1, $f_1 = 1$.
- These functions give examples of "coherent states" in quantum optics, this problem apparently plays a role in signal processing,

- Given a sequence (usually lattice) of points $z_n \in \mathbb{C}$ and complex numbers $f_n \in \mathbb{C}$ satisfying $\sum_n |f_n|^2 e^{-|z_n|^2} < \infty$, find an entire function f such that $f(z_n) = f_n$ and $\int_{\mathbb{C}} |f|^2 e^{-|z|^2} < \infty$.
- Ex: $z_n = n$ and $f_n = n^2$. $f(z) = z^2$.
- Counterexample : $z_n = \frac{1}{n}$ and $f_n = 0$ for n > 1, $f_1 = 1$.
- These functions give examples of "coherent states" in quantum optics, this problem apparently plays a role in signal processing, and the higher dimensional version of this problem might help with the minimal model programme (Demailley-Hacon-Paun).

周 ト イ ヨ ト イ ヨ ト

]]) → ((]]

Weierstrass says that if |z_n| → ∞ there exists an entire function g with zeroes (of order 1) only at z_n.

- Weierstrass says that if |z_n| → ∞ there exists an entire function g with zeroes (of order 1) only at z_n.
- Mittag-Leffler says (implies) that if |z_n| → ∞ then there is a meromorphic function h with principal part ^{f_n}/_{g'(z_n)(z-z_n)} at z_n.

- Weierstrass says that if |z_n| → ∞ there exists an entire function g with zeroes (of order 1) only at z_n.
- Mittag-Leffler says (implies) that if |z_n| → ∞ then there is a meromorphic function h with principal part ^{f_n}/_{g'(z_n)(z-z_n)} at z_n.
- f = hg interpolates f_n .

- Weierstrass says that if |z_n| → ∞ there exists an entire function g with zeroes (of order 1) only at z_n.
- Mittag-Leffler says (implies) that if $|z_n| \to \infty$ then there is a meromorphic function *h* with principal part $\frac{f_n}{g'(z_n)(z-z_n)}$ at z_n .
- f = hg interpolates f_n .
- The problem is with the L^2 bound !

3 🕨 🖌 3

• The points must be uniformly separated (otherwise two f_n can be wildly different for nearby points but the analytic function cannot change much so quickly).

- The points must be uniformly separated (otherwise two f_n can be wildly different for nearby points but the analytic function cannot change much so quickly).
- Indeed, the proof is roughly Construct a sequence of functions $g_i(z)$ such that $g_i(z_k) = \delta_{ik} e^{|z_n|^2}$.

- The points must be uniformly separated (otherwise two f_n can be wildly different for nearby points but the analytic function cannot change much so quickly).
- Indeed, the proof is roughly Construct a sequence of functions $g_i(z)$ such that $g_i(z_k) = \delta_{ik} e^{|z_n|^2}$. This contradicts a derivative estimate on g_i coming from the L^2 estimate.

- The points must be uniformly separated (otherwise two f_n can be wildly different for nearby points but the analytic function cannot change much so quickly).
- Indeed, the proof is roughly Construct a sequence of functions $g_i(z)$ such that $g_i(z_k) = \delta_{ik} e^{|z_n|^2}$. This contradicts a derivative estimate on g_i coming from the L^2 estimate. (A fancy version of Cauchy's estimates.)

- The points must be uniformly separated (otherwise two f_n can be wildly different for nearby points but the analytic function cannot change much so quickly).
- Indeed, the proof is roughly Construct a sequence of functions $g_i(z)$ such that $g_i(z_k) = \delta_{ik} e^{|z_n|^2}$. This contradicts a derivative estimate on g_i coming from the L^2 estimate. (A fancy version of Cauchy's estimates.)
- They must not be too dense, i.e., $\limsup_{r \to \infty} \sup_{z} \frac{\#D(z,r)}{\pi r^2} < \frac{1}{\pi}.$

Main question in higher dimensions

]]) → ((]]

• Give a non-constant entire function T, and a holomorphic function $f: T^{-1}(0) \to \mathbb{C}$ satisfying $\int_{T^{-1}(0)} |f|^2 e^{-|z|^2} d\sigma < \infty$, extend it to an entire function F satisfying $\int_{\mathbb{C}^n} |F|^2 e^{-|z|^2} < \infty$.

5/10

- Give a non-constant entire function T, and a holomorphic function $f: T^{-1}(0) \to \mathbb{C}$ satisfying $\int_{T^{-1}(0)} |f|^2 e^{-|z|^2} d\sigma < \infty$, extend it to an entire function F satisfying $\int_{\mathbb{C}^n} |F|^2 e^{-|z|^2} < \infty$.
- No necessary conditions are known.

- Give a non-constant entire function T, and a holomorphic function $f: T^{-1}(0) \to \mathbb{C}$ satisfying $\int_{T^{-1}(0)} |f|^2 e^{-|z|^2} d\sigma < \infty$, extend it to an entire function F satisfying $\int_{\mathbb{C}^n} |F|^2 e^{-|z|^2} < \infty$.
- No necessary conditions are known.
- Some sufficient conditions are known (Ortega-Cerda-Schuster-Varolin, Pingali-Varolin).

]]) → ((]]

• If *T* is a polynomial, then the "density" obstruction is automatically met.

- If *T* is a polynomial, then the "density" obstruction is automatically met.
- The analogue of uniform separation is "uniform flatness", i.e., a uniform-sized tubular neighbourhood.

- If *T* is a polynomial, then the "density" obstruction is automatically met.
- The analogue of uniform separation is "uniform flatness", i.e., a uniform-sized tubular neighbourhood.
- Theorem : (OSV, PV) A uniformly flat smooth algebraic hypersurface is interpolating.

- If *T* is a polynomial, then the "density" obstruction is automatically met.
- The analogue of uniform separation is "uniform flatness", i.e., a uniform-sized tubular neighbourhood.
- Theorem : (OSV, PV) A uniformly flat smooth algebraic hypersurface is interpolating.
- Actually, the above theorem works for certain singular algebraic hypersurfaces too (PV).

Examples and counterexamples

æ

]]) → ((]]

Examples and counterexamples

• Examples :
$$T(x, y) = y - x^{57} - 4x^3 + 2x^2 + 1$$
.

æ

]]) → ((]]

• Examples : $T(x, y) = y - x^{57} - 4x^3 + 2x^2 + 1$. Any graph of one variable in \mathbb{C}^2 is an example.

Examples and counterexamples

- Examples : $T(x, y) = y x^{57} 4x^3 + 2x^2 + 1$. Any graph of one variable in \mathbb{C}^2 is an example.
- Counterexamples : $T(x, y) = xy^2 1$, $T(x, y) = x^2y^2 1$, $T(x, y, z) = xy^2 - z$, $T(x, y, z) = x^2y^2 - z$ etc.

Examples and counterexamples

- Examples : $T(x, y) = y x^{57} 4x^3 + 2x^2 + 1$. Any graph of one variable in \mathbb{C}^2 is an example.
- Counterexamples : $T(x, y) = xy^2 1$, $T(x, y) = x^2y^2 1$, $T(x, y, z) = xy^2 - z$, $T(x, y, z) = x^2y^2 - z$ etc.
- However, $T = xy^2 1$ and $T = xy^2 z$ are interpolating despite being non-uniformly flat ! (Pingali-Varolin)

- Examples : $T(x, y) = y x^{57} 4x^3 + 2x^2 + 1$. Any graph of one variable in \mathbb{C}^2 is an example.
- Counterexamples : $T(x, y) = xy^2 1$, $T(x, y) = x^2y^2 1$, $T(x, y, z) = xy^2 - z$, $T(x, y, z) = x^2y^2 - z$ etc.
- However, $T = xy^2 1$ and $T = xy^2 z$ are interpolating despite being non-uniformly flat ! (Pingali-Varolin)
- On the other hand, the other two are not interpolating.

- Examples : $T(x, y) = y x^{57} 4x^3 + 2x^2 + 1$. Any graph of one variable in \mathbb{C}^2 is an example.
- Counterexamples : $T(x, y) = xy^2 1$, $T(x, y) = x^2y^2 1$, $T(x, y, z) = xy^2 - z$, $T(x, y, z) = x^2y^2 - z$ etc.
- However, $T = xy^2 1$ and $T = xy^2 z$ are interpolating despite being non-uniformly flat ! (Pingali-Varolin)
- On the other hand, the other two are not interpolating.
- For singular hypersurfaces, here is a counterexample due to Ohsawa -

- Examples : $T(x, y) = y x^{57} 4x^3 + 2x^2 + 1$. Any graph of one variable in \mathbb{C}^2 is an example.
- Counterexamples : $T(x, y) = xy^2 1$, $T(x, y) = x^2y^2 1$, $T(x, y, z) = xy^2 - z$, $T(x, y, z) = x^2y^2 - z$ etc.
- However, $T = xy^2 1$ and $T = xy^2 z$ are interpolating despite being non-uniformly flat ! (Pingali-Varolin)
- On the other hand, the other two are not interpolating.
- For singular hypersurfaces, here is a counterexample due to Ohsawa - Suppose W has an isolated singularity at z = 0, then there is a polynomial P such that f - P can be interpolated to G.

・ 同 ト ・ 三 ト ・ 三 ト

- Examples : $T(x, y) = y x^{57} 4x^3 + 2x^2 + 1$. Any graph of one variable in \mathbb{C}^2 is an example.
- Counterexamples : $T(x, y) = xy^2 1$, $T(x, y) = x^2y^2 1$, $T(x, y, z) = xy^2 - z$, $T(x, y, z) = x^2y^2 - z$ etc.
- However, $T = xy^2 1$ and $T = xy^2 z$ are interpolating despite being non-uniformly flat ! (Pingali-Varolin)
- On the other hand, the other two are not interpolating.
- For singular hypersurfaces, here is a counterexample due to Ohsawa - Suppose W has an isolated singularity at z = 0, then there is a polynomial P such that f - P can be interpolated to G. Therefore F = G + P.

A brief idea of the proofs

æ

.

• Uniformly flat ones : It is easy to construct smooth interpolating functions.

Image: Image:

 Uniformly flat ones : It is easy to construct smooth interpolating functions. Take such a function G and solve \overline{G}G = \overline{\overline{D}H}\$ where H vanishes on the surface.

8/10

• Uniformly flat ones : It is easy to construct smooth interpolating functions. Take such a function G and solve $\bar{\partial}G = \bar{\partial}H$ where H vanishes on the surface. Then G - H is the desired answer.

- Uniformly flat ones : It is easy to construct smooth interpolating functions. Take such a function G and solve $\bar{\partial}G = \bar{\partial}H$ where H vanishes on the surface. Then G H is the desired answer.
- Actually, the real deal is a far more complicated version of this strategy.

- Uniformly flat ones : It is easy to construct smooth interpolating functions. Take such a function G and solve $\bar{\partial}G = \bar{\partial}H$ where H vanishes on the surface. Then G H is the desired answer.
- Actually, the real deal is a far more complicated version of this strategy.
- The Ohsawa-Takegoshi extension theorem implies that interpolation can be done for algebraic hypersurfaces if $|dT|^2 e^{-\int_{B(z,r)} \ln(|T|^2)} \ge C.$

- Uniformly flat ones : It is easy to construct smooth interpolating functions. Take such a function G and solve $\bar{\partial}G = \bar{\partial}H$ where H vanishes on the surface. Then G H is the desired answer.
- Actually, the real deal is a far more complicated version of this strategy.
- The Ohsawa-Takegoshi extension theorem implies that interpolation can be done for algebraic hypersurfaces if $|dT|^2 e^{-\int_{\mathcal{B}(z,r)} \ln(|T|^2)} \ge C.$
- Uniform flatness implies the desired lower bound.

Vamsi Pritham Pingali Interpolation from affine hypersurfaces

9/10

æ

• The non-uniformly flat hypersurface $xy^2 = z$ is uniformly flat away from a neighbourhood of y = z = 0. • The non-uniformly flat hypersurface $xy^2 = z$ is uniformly flat away from a neighbourhood of y = z = 0. But y = z = 0 is itself uniformly flat ! So one uses a patching up method.

- The non-uniformly flat hypersurface $xy^2 = z$ is uniformly flat away from a neighbourhood of y = z = 0. But y = z = 0 is itself uniformly flat ! So one uses a patching up method.
- To prove that $x^2y^2 = 1$ is not interpolating, use the fact that it has two components.

- The non-uniformly flat hypersurface $xy^2 = z$ is uniformly flat away from a neighbourhood of y = z = 0. But y = z = 0 is itself uniformly flat ! So one uses a patching up method.
- To prove that $x^2y^2 = 1$ is not interpolating, use the fact that it has two components. Using Hörmander's theorem construct a function that is large at (δ^{-1}, δ) and 0 at $(\delta^{-1}, -\delta)$.

- The non-uniformly flat hypersurface $xy^2 = z$ is uniformly flat away from a neighbourhood of y = z = 0. But y = z = 0 is itself uniformly flat ! So one uses a patching up method.
- To prove that $x^2y^2 = 1$ is not interpolating, use the fact that it has two components. Using Hörmander's theorem construct a function that is large at (δ^{-1}, δ) and 0 at $(\delta^{-1}, -\delta)$. This contradicts the fact that the derivative cannot be too large.

Thank you

æ