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Integral closure of Ideals

Let R be a commutative ring, I an ideal of R. An element a ∈ R is called
integral over I , if a satisfies an equation:

xn + a1x
n−1 + · · ·+ an = 0

where ai ∈ I i for i = 1, 2, . . . , n. The integral closure I of I , is the ideal

I = {a ∈ R | a is integral over I}.

An ideal I is called complete if I = I .
O. Zariski, Polynomial ideals defined by infinitely near base points,
American Journal of Mathematics (1938), 151-204. In this paper, he
studied integral closures of ideals in k[x , y ], where k is an algebraically
closed field of characteristic zero.
These results were generalized to two dimensional regular local rings in
Zariski-Samuel, Volume II.
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Integral closure and convex hull

The integral closure of a monomial ideal has a nice description in convex
geometry.
Let R = k[x , y ] and I = (x8, x2y3, y6).

X

Y

(0, 6)

(2, 3)

(8, 0)

The monomials corresponding to the lattice points in the blue area are the
monomials which when added to I generate the integral closure of I .
Therefore I = I + (x6y , x4y2, xy5).
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The Newton polyhedron of a monomial ideal

Let R = k[x1, x2, . . . , xn] be a polynomial ring over a field. For a subset X
of R, put

Γ(X ) = {α ∈ Nn | xα ∈ X}.

The Newton Polyhedron NP(I ) of a monomial ideal I of R is defined to be
the convex hull in Rn of Γ(I ).

Theorem: (B. Teissier, 1975) Let I be a monomial ideal of R. Then the
integral closure of I is also a monomial ideal and Γ(I ) = NP(I ) ∩ Nn.

Theorem: (L. Reid, L.G. Roberts, M. A. Vitulli, 2003) Let I be a
monomial ideal in R. Suppose that I , I 2, . . . , I n−1 are complete then
I r = I r for all r ≥ n.

Theorem: (S. K. Masuti, T. J. Puthenpurakal, J. K. Verma, 2015) Let k
be a field, R = k[x , y , z ] and m = (x , y , z). Suppose that I , J,K are
m-primary monomial ideals of R such that I rJsK t is complete for all
r + s + t ≤ 2. Then I rJsK t is complete for all r , s, t ≥ 0.
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Normal Hilbert polynomials

For any m-primary ideal I in an analytically unramified local ring (R,m) of
dimension d , the normal Hilbert function H I (n) = λ(R/I n) for large n, is
given by the normal Hilbert polynomial P I (x) :

P I (x) = e0(I )

(
x + d − 1

d

)
− e1(I )

(
x + d − 2

d − 1

)
+ · · ·+ (−1)ded(I ),

for some integers e0(I ), e1(I ), . . . , ed(I ) called the normal Hilbert
coefficients of I .

Theorem: (Rees, 1981) A 2-dimensional normal, analytically unramified
local ring (R,m) is pseudo-rational if and only if e2(I ) = 0 for all
m-primary ideals. Moreover, for any m-primary ideal I , H I (n) = P I (n) for
all n ≥ 0 and

P I (n) = e(I )

(
n + 1

2

)
− e1(I )n.
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Graded algebras for the normal filtration of an ideal

Let F = {I n} be the normal filtration of an ideal I and t be an
indeterminate. We use three blow up algebras associated to F .

Rees algebra of F = R(I ) =
∞⊕
n=0

I ntn

Extended Rees algebra of F = R′(I ) =
⊕
n∈Z

I ntn

Associated graded ring of F = G (I ) =
∞⊕
n=0

I n/I n+1

Theorem: (Rees, 1961) Let (R,m) be an analytically unramified local ring
and F be the normal filtration of an ideal I . Then
(1) R(I ),R′(I ) are finite modules over R(I ) and R′(I ) respectively.
(2) G (I ) is a finite module over G (I ).
(3) dimR′(F)− 1 = dimG (F) = d .

Theorem: (Valla, 1979)
dimR(F) = d + 1⇔ I1 *

⋂
{p | dimR/p = dimR}.
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Postulation number and reduction number of {I n}

Let (R,m) be a d-dimensional analytically unramified Noetherian local
ring and let F = {I n} be the normal filtration of an m-primary ideal I .

The Postulation number of F := n(I ) = max{n | P I (n) 6= H I (n)}.
An ideal J ⊂ I is called a reduction of F if JI n = I n+1 for all large n. The
reduction number of F with respect to J is defined as

rJ(I ) = min{m | JI n = I n+1 for all n ≥ m}.

Let I be generated by a system of parameters. Then the normal reduction
number of I is defined as r(I ) = r I (I ).

Theorem: (S. Huckaba, T. Marley, 1988) Let R be an analytically
unramified CM local ring of dimension d . Suppose depthG (I ) ≥ d − 1.
Then
(1) r(I ) = n(I ) + d .
(2) ek(I ) = 0 ⇐⇒ r(I ) ≤ k − 1.
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Two polytopes associated to monomial ideals

Let R = k[x1, x2, . . . , xd ] be a polynomial ring over a field k. Let
v1, v2, . . . , vq ∈ Nd and I = (xv1 , xv2 , . . . , xvq) be an m-primary ideal.
Then there are natural numbers a1, a2, . . . , ad such that vi = aiei for
i = 1, 2, . . . , d . Put a = (1/a1, 1/a2, 1/a3, . . . , 1/ad).
Let 〈vi , a〉 < 1 for i = d + 1, . . . , s and 〈vi , a〉 ≥ 1 for i = s + 1, . . . , q.

Let P = conv (v1, v2, . . . , vs), S = conv (0, v1, v2, . . . , vd) and

Q = Qd
+ + conv(v1, v2, . . . , vq) = Qd

+ + P.

Example. Let R = k[x , y ] and
I = (x11, y8, x5y , xy4).

The coloured area denotes S and
the shaded area denotes P.
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Normal Hilbert polynomial of a monomial ideal

Theorem: (Ehrhart, 1962) Let P be an integral convex polytope of
dimension d . Then the function

EP(n) = |nP ∩ Zd |

is a polynomial function in n of degree d with rational coefficients.

Theorem: (Villarreal, 2008) λ(R/I n) = |Nd \ nQ| = ES(n)− EP(n) ∀n and

P I (n) = [vol(S)− vol(P)]nd + lower degree terms.

Theorem: (W. V. Vasconcelos, 2005) r(I ) ≤ d − 1.

Theorem: (Villarreal, 2008) e i (I ) ≥ 0, for all i .
Proof: We may assume without loss of generality that k is infinite. The
Rees algebra R(I ) =

⊕∞
n=0 I

ntn is a normal semigroup ring.
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Normal Hilbert polynomial of monomial ideal

Hence by Hochster’s theorem, R(I ) is Cohen-Macaulay. This implies that
the associated graded ring G (I ) is Cohen-Macaulay.

Let J be a minimal reduction of I . Then the initial forms of generators of
J in degree one component of G (I ) form a G (I )-regular sequence.
Therefore, we have the following formula for the Hilbert series

(1− z)dH(G (I ), z) = H(G (I )/JG (I ), z)

= λ

(
R

I

)
+ λ

(
I

J + I 2

)
z + · · ·+ λ

(
I d−1

JI d−2 + I d

)
zd−1

= f (z)

Since e i (I ) =
f (i)(1)

i !
, we get e i (I ) ≥ 0.

Note that H I (n) = P I (n) for all n ≥ 0 and ed(I ) = 0.

Kriti Goel and J. K. Verma (IIT Bombay) Normal Hilbert polynomial January 15, 2019 11 / 19



Results of Itoh about e1(I ) and e2(I )

Theorem: (Itoh, 1988, 1992) Let (R,m) be an analytically unramified CM
local ring of dimension d ≥ 2 and let I be an ideal generated by a system
of parameters. Then

e1(I ) ≥ λ(I/I ) + λ(I 2/I I ). Equality holds if and only if r(I ) ≤ 2.

e2(I ) ≥ e1(I )− λ(I/I ). Equality holds if and only if r(I ) ≤ 2.

If r(I ) ≤ 2, then G (I ) and R(I ) are Cohen-Macaulay. In this case,

P I (n) = H I (n) for all n ≥ 1 and

P I (n) = e(I )

(
n + d − 1

d

)
− e1(I )

(
n + d − 2

d − 1

)
+ e2(I )

(
n + d − 3

d − 2

)
.
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Positivity and vanishing of e3(I )

The type of a Cohen-Macaulay local ring (R,m) is defined to be
dim Soc(R/J) = dim( J:mJ ), where J is a system of parameters of R. A
Cohen-Macaulay ring R is called Gorenstein if type(R) = 1.

Theorem: (Itoh, 1992) Let (R,m) be an analytically unramified
Cohen-Macaulay local ring of dimension d ≥ 3 and let I be an ideal
generated by a system of parameters. Then

(1) e3(I ) ≥ 0.

(2) if e3(I ) = 0, then I n+2 ⊆ I n for all n ≥ 0.

(3) if R is Gorenstein and I = m, then e3(I ) = 0 ⇐⇒ r(I ) ≤ 2.

Conjecture: (Itoh, 1992) Let (R,m) be an analytically unramified,
Gorenstein local ring of dimension d ≥ 3 and let I be an ideal generated
by a system of parameters. Then

e3(I ) = 0 ⇐⇒ r(I ) ≤ 2.
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Recent progress on Itoh’s conjecture e3(I )

Theorem: (Corso, Polini and Rossi, 2014) Let I be an m-primary ideal

in a Cohen-Macaulay, analytically unramified local ring of dimension

d ≥ 3. Let I = m and type(R) ≤ λ(I 2/mI ) + 1. Then

e3(I ) = 0 ⇐⇒ r(I ) ≤ 2.

Theorem: (M. Kummini, S. K. Masuti, 2015) Let R be a

3-dimensional analytically unramified Cohen-Macaulay local ring and

I = m with e3(I ) = 0. Then

(1) e2(m) ≤ type R.

(2) If e2(m) ≤ λ(I 2/mI ) + 2, then r(I ) ≤ 2.
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Theorems of Huneke and Itoh

Theorem: (Huneke - Itoh Intersection Theorem, 1988) Let R be a
Noetherian ring and x1, x2, . . . , xr be an R-sequence with r ≥ 2. Let
I = (x1, x2, . . . , xr ). Then for all n ≥ 1,

I n ∩ I n+1 = I nI .

Definition: Let R be a Noetherian ring and I be an R-ideal. Let
F = {In}n∈Z be an I -admissible filtration, where In = R for all n ≤ 0. For
r ≥ 1, the filtration F is said to satisfy the condition HIr if for all n ≥ 0,

I n ∩ In+r = I nIr .
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The condition HIr and normal Hilbert polynomial

Theorem: (—, V. Mukundan, J. K. Verma) Let R be a d-dimensional

analytically unramified, Cohen-Macaulay local ring and I be an ideal

generated by an R-regular sequence. Let F = {I n} satisfy the conditions

HIp for all p ≤ k − 2 and let k ≤ d − 1. Then for all n ≥ k − 2,

`

(
R

I n+1

)
≤ `

(
R

I

)(
n + d

d

)
− α1(F)

(
n + d − 1

d − 1

)
+ · · ·

+(−1)k−1αk−1(F)

(
n + d − (k − 1)

d − (k − 1)

)
(1)

where αj(F) =
k−2∑
i=j−1

(
i

j − 1

)
`(I i+1/I I i ) for all j = 1, . . . , k − 1. The

equality holds in the equation (1) if and only if r(I ) ≤ k − 1. In this case,

G (I ) is Cohen-Macaulay.
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The condition HIr via local cohomology modules

Theorem: (—, V. Mukundan, J. K. Verma) Let R be an equidimensional,

universally catenary, and an analytically unramified Noetherian local ring

of dimension d . Let I be an ideal generated by an R-regular sequence and

F = {I n}. Then

(1) if ht(I ) = 1, then F satisfies the condition HIr for all r ≥ 1.

(2) let ht(I ) ≥ 2 and for some r ≥ 1,

Hi
J(R′(I ))j = 0 ∀i , j such that i + j = r + 1 and 0 ≤ i ≤ ht(I ),

where J = (t−1, It). Then F satisfies the condition HIr .

Kriti Goel and J. K. Verma (IIT Bombay) Normal Hilbert polynomial January 15, 2019 17 / 19



Main Theorem

Theorem: (—, V. Mukundan, J. K. Verma) Let (R,m) be a d-dimensional

analytically unramified, Cohen-Macaulay local ring with d ≥ 3, and I be

an R-ideal generated by an R-regular sequence such that I = m.

Suppose that for some 2 ≤ k ≤ d , Hi
J(R′(I ))j = 0 for all i , j such

that 3 ≤ i + j ≤ k − 1 and 2 ≤ i ≤ d .

`

(
I k−1

I I k−2

)
≥ type(R)− 1.

Then ek(I ) = 0 if and only if r(I ) ≤ k − 1. In this case, G (I ) is
Cohen-Macaulay.
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Example

Let R = k[[x0, x1, . . . , xd ]]/(xn0 + · · ·+ xnd ), where char k = 0, d ≥ 3 and
n ≤ d . Then R is a d-dimensional analytically unramified CM local ring.
m = (x0, . . . , xd) be the maximal homogeneous ideal of R.

G (m) = k[x0, . . . , xd ]/(xn0 + · · ·+ xnd ) is a d-dimensional CM domain.

Hence, mn = mn for all n.

Let I be a parameter ideal of R such that I = m. Then F = {I n} = {mn}.

H(G (I ), t) = H(G (m), t) =
(1− tn)

(1− t)d+1
=

1 + t + t2 + · · ·+ tn−1

(1− t)d
.

Then en(I ) = en(m) = 0. Moreover, ek = 0, for all n ≤ k ≤ d .

Also, n(I ) = n− 1− d . Since G (I ) is CM, we get r(I ) = n(I ) + d = n− 1.

As r(I ) < d , and G (I ) is CM, we get R′(I ) is Cohen-Macaulay. Hence
Hi
J(R′(I )) is non-zero if and only if i = d + 1. Therefore, the filtration F

satisfies the condition HIr for all r .
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