On the Positivity and Vanishing of the Coefficients of Normal Hilbert Polynomials

Kriti Goel and J. K. Verma

Indian Institute of Technology Bombay

joint work with Vivek Mukundan (University of Virginia)

Diamond Jubilee Symposium

<u>4-6 January 2019</u>

Kriti Goel and J. K. Verma (IIT Bombay)

Normal Hilbert polynomial

Outline

- Integral closure of Ideals
- Computation of Integral closure of ideals using lattice points
- Normal Hilbert Polynomial of an ideal
- Graded algebras associated with the normal filtration
- The postulation number and reduction number of the normal filtration
- The normal Hilbert polynomial of a monomial ideal using Ehrhart polynomial
- Results of Itoh about vanishing of $\overline{e}_1(I)$ and $\overline{e}_2(I)$
- Itoh's theorem on non-negativity of $\overline{e}_3(I)$
- Itoh's conjecture about $\overline{e}_3(I)$ in Gorenstein local rings and partial solutions
- The condition HI_r and normal Hilbert polynomial
- The condition HI_r via local cohomology of extended Rees algebra
- Main Theorem about $\overline{e}_k(I) = 0 \Leftrightarrow \overline{r}(I) \le k 1$ in Gorenstein local rings
- An example

A D F A B F A B F A B

Let *R* be a commutative ring, *I* an ideal of *R*. An element $a \in R$ is called integral over *I*, if *a* satisfies an equation:

$$x^n + a_1 x^{n-1} + \dots + a_n = 0$$

where $a_i \in I^i$ for i = 1, 2, ..., n. The integral closure \overline{I} of I, is the ideal

 $\overline{I} = \{ a \in R \mid a \text{ is integral over } I \}.$

An ideal I is called complete if $\overline{I} = I$.

O. Zariski, *Polynomial ideals defined by infinitely near base points*, American Journal of Mathematics (1938), 151-204. In this paper, he studied integral closures of ideals in k[x, y], where k is an algebraically closed field of characteristic zero.

These results were generalized to two dimensional regular local rings in Zariski-Samuel, Volume II.

Integral closure and convex hull

The integral closure of a monomial ideal has a nice description in convex geometry.

Let R = k[x, y] and $I = (x^8, x^2y^3, y^6)$.

The monomials corresponding to the lattice points in the blue area are the monomials which when added to I generate the integral closure of I. Therefore $\overline{I} = I + (x^6y, x^4y^2, xy^5)$.

The Newton polyhedron of a monomial ideal

Let $R = k[x_1, x_2, ..., x_n]$ be a polynomial ring over a field. For a subset X of R, put

$$\Gamma(X) = \{ \alpha \in \mathbb{N}^n \mid x^\alpha \in X \}.$$

The Newton Polyhedron NP(I) of a monomial ideal I of R is defined to be the convex hull in \mathbb{R}^n of $\Gamma(I)$.

Theorem: (B. Teissier, 1975) Let I be a monomial ideal of R. Then the integral closure of I is also a monomial ideal and $\Gamma(\overline{I}) = NP(I) \cap \mathbb{N}^n$.

Theorem: (L. Reid, L.G. Roberts, M. A. Vitulli, 2003) Let I be a monomial ideal in R. Suppose that I, I^2, \ldots, I^{n-1} are complete then $I^r = \overline{I^r}$ for all $r \ge n$.

Theorem: (S. K. Masuti, T. J. Puthenpurakal, J. K. Verma, 2015) Let k be a field, R = k[x, y, z] and $\mathfrak{m} = (x, y, z)$. Suppose that I, J, K are m-primary monomial ideals of R such that $I^r J^s K^t$ is complete for all $r + s + t \leq 2$. Then $I^r J^s K^t$ is complete for all $r, s, t \geq 0$.

Normal Hilbert polynomials

For any m-primary ideal I in an analytically unramified local ring (R, \mathfrak{m}) of dimension d, the normal Hilbert function $\overline{H}_I(n) = \lambda(R/\overline{I^n})$ for large n, is given by the normal Hilbert polynomial $\overline{P}_I(x)$:

$$\overline{P}_{I}(x) = \overline{e}_{0}(I)\binom{x+d-1}{d} - \overline{e}_{1}(I)\binom{x+d-2}{d-1} + \dots + (-1)^{d}\overline{e}_{d}(I),$$

for some integers $\overline{e}_0(I), \overline{e}_1(I), \dots, \overline{e}_d(I)$ called the normal Hilbert coefficients of I.

Theorem: (Rees, 1981) A 2-dimensional normal, analytically unramified local ring (R, \mathfrak{m}) is pseudo-rational if and only if $\overline{e}_2(I) = 0$ for all \mathfrak{m} -primary ideals. Moreover, for any \mathfrak{m} -primary ideal I, $\overline{H}_I(n) = \overline{P}_I(n)$ for all $n \ge 0$ and

$$\overline{P}_{I}(n) = e(I)\binom{n+1}{2} - \overline{e}_{1}(I)n.$$

Graded algebras for the normal filtration of an ideal

Let $\mathcal{F} = \{\overline{I^n}\}$ be the normal filtration of an ideal I and t be an indeterminate. We use three blow up algebras associated to \mathcal{F} .

Rees algebra of
$$\mathcal{F} = \overline{\mathcal{R}}(I) = \bigoplus_{\substack{n=0\\\infty \in \mathbb{Z}}}^{\infty} \overline{I^n} t^n$$

Extended Rees algebra of $\mathcal{F} = \overline{\mathcal{R}'}(I) = \bigoplus_{\substack{n \in \mathbb{Z}\\\infty \in \mathbb{Z}}}^{\infty} \overline{I^n} t^n$
Associated graded ring of $\mathcal{F} = \overline{G}(I) = \bigoplus_{\substack{n=0\\n=0}}^{\infty} \overline{I^n} / \overline{I^{n+1}}$

Theorem: (Rees, 1961) Let (R, \mathfrak{m}) be an analytically unramified local ring and \mathcal{F} be the normal filtration of an ideal *I*. Then (1) $\overline{\mathcal{R}}(I), \overline{\mathcal{R}'}(I)$ are finite modules over $\mathcal{R}(I)$ and $\mathcal{R}'(I)$ respectively. (2) $\overline{G}(I)$ is a finite module over G(I). (3) dim $\mathcal{R}'(\mathcal{F}) - 1 = \dim G(\mathcal{F}) = d$. Theorem: (Valla, 1979) dim $\mathcal{R}(\mathcal{F}) = d + 1 \Leftrightarrow I_1 \nsubseteq \bigcap \{\mathfrak{p} \mid \dim R/\mathfrak{p} = \dim R\}$.

Postulation number and reduction number of $\{\overline{I^n}\}$

Let (R, \mathfrak{m}) be a *d*-dimensional analytically unramified Noetherian local ring and let $\mathcal{F} = \{\overline{I^n}\}$ be the normal filtration of an \mathfrak{m} -primary ideal *I*. The Postulation number of $\mathcal{F} := \overline{n}(I) = \max\{n \mid \overline{P}_I(n) \neq \overline{H}_I(n)\}$. An ideal $J \subset I$ is called a reduction of \mathcal{F} if $J\overline{I^n} = \overline{I^{n+1}}$ for all large *n*. The reduction number of \mathcal{F} with respect to *J* is defined as

$$\overline{r}_J(I) = \min\{m \mid J\overline{I^n} = \overline{I^{n+1}} \text{ for all } n \geq m\}.$$

Let *I* be generated by a system of parameters. Then the normal reduction number of *I* is defined as $\overline{r}(I) = \overline{r}_I(I)$.

Theorem: (S. Huckaba, T. Marley, 1988) Let R be an analytically unramified CM local ring of dimension d. Suppose depth $\overline{G}(I) \ge d - 1$. Then

(1)
$$\overline{r}(I) = \overline{n}(I) + d.$$

(2) $\overline{e}_k(I) = 0 \iff \overline{r}(I) \le k - 1.$

Two polytopes associated to monomial ideals

Let $R = k[x_1, x_2, \ldots, x_d]$ be a polynomial ring over a field k. Let $v_1, v_2, \ldots, v_q \in \mathbb{N}^d$ and $I = (x^{v_1}, x^{v_2}, \ldots, x^{v_q})$ be an m-primary ideal. Then there are natural numbers a_1, a_2, \ldots, a_d such that $v_i = a_i e_i$ for $i = 1, 2, \ldots, d$. Put $a = (1/a_1, 1/a_2, 1/a_3, \ldots, 1/a_d)$. Let $\langle v_i, a \rangle < 1$ for $i = d + 1, \ldots, s$ and $\langle v_i, a \rangle \ge 1$ for $i = s + 1, \ldots, q$. Let $P = \operatorname{conv}(v_1, v_2, \ldots, v_s)$, $S = \operatorname{conv}(0, v_1, v_2, \ldots, v_d)$ and $Q = \mathbb{Q}^d_+ + \operatorname{conv}(v_1, v_2, \ldots, v_q) = \mathbb{Q}^d_+ + P$.

Example. Let
$$R = k[x, y]$$
 and $I = (x^{11}, y^8, x^5y, xy^4)$.

The coloured area denotes S and the shaded area denotes P.

Theorem: (Ehrhart, 1962) Let P be an integral convex polytope of dimension d. Then the function

$$E_P(n) = |nP \cap \mathbb{Z}^d|$$

is a polynomial function in n of degree d with rational coefficients.

Theorem: (Villarreal, 2008) $\lambda(R/\overline{I^n}) = |\mathbb{N}^d \setminus nQ| = E_S(n) - E_P(n) \forall n$ and

 $\overline{P}_{I}(n) = [\operatorname{vol}(S) - \operatorname{vol}(P)]n^{d} + \text{lower degree terms.}$

Theorem: (W. V. Vasconcelos, 2005) $\overline{r}(I) \leq d - 1$.

Theorem: (Villarreal, 2008) $\overline{e}_i(I) \ge 0$, for all *i*. Proof: We may assume without loss of generality that *k* is infinite. The Rees algebra $\overline{\mathcal{R}}(I) = \bigoplus_{n=0}^{\infty} \overline{I^n} t^n$ is a normal semigroup ring.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hence by Hochster's theorem, $\overline{\mathcal{R}}(I)$ is Cohen-Macaulay. This implies that the associated graded ring $\overline{G}(I)$ is Cohen-Macaulay.

Let J be a minimal reduction of I. Then the initial forms of generators of J in degree one component of G(I) form a $\overline{G}(I)$ -regular sequence. Therefore, we have the following formula for the Hilbert series

$$(1-z)^{d}H(\overline{G}(I),z) = H(\overline{G}(I)/J\overline{G}(I),z)$$
$$= \lambda\left(\frac{R}{\overline{I}}\right) + \lambda\left(\frac{\overline{I}}{J+\overline{I^{2}}}\right)z + \dots + \lambda\left(\frac{\overline{I^{d-1}}}{J\overline{I^{d-2}} + \overline{I^{d}}}\right)z^{d-1}$$
$$= f(z)$$

Since
$$\overline{e}_i(I) = \frac{f^{(i)}(1)}{i!}$$
, we get $\overline{e}_i(I) \ge 0$.
Note that $\overline{H}_I(n) = \overline{P}_I(n)$ for all $n \ge 0$ and $\overline{e}_d(I) = 0$.

Theorem: (Itoh, 1988, 1992) Let (R, \mathfrak{m}) be an analytically unramified CM local ring of dimension $d \ge 2$ and let I be an ideal generated by a system of parameters. Then

- $\overline{e}_1(I) \ge \lambda(\overline{I}/I) + \lambda(\overline{I^2}/I\overline{I})$. Equality holds if and only if $\overline{r}(I) \le 2$.
- $\overline{e}_2(I) \geq \overline{e}_1(I) \lambda(\overline{I}/I)$. Equality holds if and only if $\overline{r}(I) \leq 2$.
- If $\overline{r}(I) \leq 2$, then $\overline{G}(I)$ and $\overline{\mathcal{R}}(I)$ are Cohen-Macaulay. In this case, $\overline{P}_I(n) = \overline{H}_I(n)$ for all $n \geq 1$ and

$$\overline{P}_{I}(n) = e(I)\binom{n+d-1}{d} - \overline{e}_{1}(I)\binom{n+d-2}{d-1} + \overline{e}_{2}(I)\binom{n+d-3}{d-2}$$

Positivity and vanishing of $\overline{e}_3(I)$

The type of a Cohen-Macaulay local ring (R, \mathfrak{m}) is defined to be dim Soc $(R/J) = \dim(\frac{J:\mathfrak{m}}{J})$, where J is a system of parameters of R. A Cohen-Macaulay ring R is called Gorenstein if type(R) = 1.

Theorem: (Itoh, 1992) Let (R, \mathfrak{m}) be an analytically unramified Cohen-Macaulay local ring of dimension $d \ge 3$ and let I be an ideal generated by a system of parameters. Then

$$(1) \ \overline{e}_3(I) \geq 0.$$

- (2) if $\overline{e}_3(I) = 0$, then $\overline{I^{n+2}} \subseteq I^n$ for all $n \ge 0$.
- (3) if R is Gorenstein and $\overline{l} = \mathfrak{m}$, then $\overline{e}_3(l) = 0 \iff \overline{r}(l) \leq 2$.

Conjecture: (Itoh, 1992) Let (R, \mathfrak{m}) be an analytically unramified, Gorenstein local ring of dimension $d \ge 3$ and let I be an ideal generated by a system of parameters. Then

$$\overline{e}_3(I) = 0 \iff \overline{r}(I) \leq 2.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem: (Corso, Polini and Rossi, 2014) Let I be an m-primary ideal in a Cohen-Macaulay, analytically unramified local ring of dimension $d \ge 3$. Let $\overline{I} = \mathfrak{m}$ and type $(R) \le \lambda(\overline{I^2}/\mathfrak{m}I) + 1$. Then

$$\overline{e}_3(I) = 0 \iff \overline{r}(I) \leq 2.$$

Theorem: (M. Kummini, S. K. Masuti, 2015) Let R be a 3-dimensional analytically unramified Cohen-Macaulay local ring and $\overline{l} = \mathfrak{m}$ with $\overline{e}_3(l) = 0$. Then (1) $\overline{e}_2(\mathfrak{m}) \leq \text{type } R$. (2) If $\overline{e}_2(\mathfrak{m}) \leq \lambda(\overline{l^2}/\mathfrak{m}l) + 2$, then $\overline{r}(l) \leq 2$. Theorem: (Huneke - Itoh Intersection Theorem, 1988) Let R be a Noetherian ring and x_1, x_2, \ldots, x_r be an R-sequence with $r \ge 2$. Let $I = (x_1, x_2, \ldots, x_r)$. Then for all $n \ge 1$,

$$I^n \cap \overline{I^{n+1}} = I^n \overline{I}.$$

Definition: Let *R* be a Noetherian ring and *I* be an *R*-ideal. Let $\mathcal{F} = \{I_n\}_{n \in \mathbb{Z}}$ be an *I*-admissible filtration, where $I_n = R$ for all $n \leq 0$. For $r \geq 1$, the filtration \mathcal{F} is said to satisfy the condition HI_r if for all $n \geq 0$,

$$I^n \cap I_{n+r} = I^n I_r.$$

The condition HI_r and normal Hilbert polynomial

Theorem: (--, V. Mukundan, J. K. Verma) Let R be a d-dimensional analytically unramified, Cohen-Macaulay local ring and I be an ideal generated by an R-regular sequence. Let $\mathcal{F} = \{\overline{I^n}\}$ satisfy the conditions HI_p for all $p \le k - 2$ and let $k \le d - 1$. Then for all $n \ge k - 2$,

$$\ell\left(\frac{R}{\overline{I^{n+1}}}\right) \leq \ell\left(\frac{R}{I}\right) \binom{n+d}{d} - \alpha_1(\mathcal{F})\binom{n+d-1}{d-1} + \cdots + (-1)^{k-1}\alpha_{k-1}(\mathcal{F})\binom{n+d-(k-1)}{d-(k-1)}$$
(1)

where $\alpha_j(\mathcal{F}) = \sum_{i=j-1}^{k-2} {i \choose j-1} \ell(\overline{I^{i+1}}/I\overline{I^i})$ for all $j = 1, \dots, k-1$. The

equality holds in the equation (1) if and only if $\overline{r}(I) \leq k - 1$. In this case, $\overline{G}(I)$ is Cohen-Macaulay.

Theorem: (--, V. Mukundan, J. K. Verma) Let R be an equidimensional, universally catenary, and an analytically unramified Noetherian local ring of dimension d. Let I be an ideal generated by an R-regular sequence and $\mathcal{F} = \{\overline{I^n}\}$. Then (1) if ht(I) = 1, then \mathcal{F} satisfies the condition HI_r for all $r \ge 1$. (2) let ht(I) ≥ 2 and for some $r \ge 1$,

 $\mathrm{H}^{i}_{J}(\overline{\mathcal{R}'}(I))_{j}=0 \quad \forall i,j \text{ such that } i+j=r+1 \text{ and } 0 \leq i \leq \mathrm{ht}(I),$

where $J = (t^{-1}, lt)$. Then \mathcal{F} satisfies the condition HI_r .

Theorem: (—, V. Mukundan, J. K. Verma) Let (R, \mathfrak{m}) be a *d*-dimensional analytically unramified, Cohen-Macaulay local ring with $d \ge 3$, and *I* be an *R*-ideal generated by an *R*-regular sequence such that $\overline{I} = \mathfrak{m}$.

Suppose that for some 2 ≤ k ≤ d, Hⁱ_J(Rⁱ(I))_j = 0 for all i, j such that 3 ≤ i + j ≤ k − 1 and 2 ≤ i ≤ d.
ℓ (I^{k-1}/I^{k-2}) ≥ type(R) − 1.

Then $\overline{e}_k(I) = 0$ if and only if $\overline{r}(I) \le k - 1$. In this case, $\overline{G}(I)$ is Cohen-Macaulay.

Example

Let $R = k[[x_0, x_1, ..., x_d]]/(x_0^n + \dots + x_d^n)$, where char k = 0, $d \ge 3$ and $n \le d$. Then R is a d-dimensional analytically unramified CM local ring. $\mathfrak{m} = (x_0, \dots, x_d)$ be the maximal homogeneous ideal of R. $G(\mathfrak{m}) = k[x_0, \dots, x_d]/(x_0^n + \dots + x_d^n)$ is a d-dimensional CM domain.

Hence, $\overline{\mathfrak{m}^n} = \mathfrak{m}^n$ for all *n*.

Let I be a parameter ideal of R such that $\overline{I} = \mathfrak{m}$. Then $\mathcal{F} = {\overline{I^n}} = {\mathfrak{m}^n}$.

$$H(\overline{G}(I),t) = H(G(\mathfrak{m}),t) = \frac{(1-t^n)}{(1-t)^{d+1}} = \frac{1+t+t^2+\cdots+t^{n-1}}{(1-t)^d}$$

Then $\overline{e}_n(I) = e_n(\mathfrak{m}) = 0$. Moreover, $\overline{e}_k = 0$, for all $n \le k \le d$. Also, $\overline{n}(I) = n - 1 - d$. Since $\overline{G}(I)$ is CM, we get $\overline{r}(I) = \overline{n}(I) + d = n - 1$. As $\overline{r}(I) < d$, and $\overline{G}(I)$ is CM, we get $\overline{\mathcal{R}'}(I)$ is Cohen-Macaulay. Hence $H^i_J(\overline{\mathcal{R}'}(I))$ is non-zero if and only if i = d + 1. Therefore, the filtration \mathcal{F} satisfies *the condition* HI_r for all r.

3

< □ > < □ > < □ > < □ > < □ > < □ >