Department of Mathematics, IIT Bombay

Screening Test for PhD Admissions (2 Dec, 2015)

Time allowed: 2 hours and 30 minutes

Note: Q.1-12 carry 3 marks each. Q. 13 carries 4 marks.
Q. 1 Let A be a 5×5 matrix s.t. $A^{2}=0$. Compute the least upper bound for its rank.
Q. 2 Gram-Schmidt process is applied to the ordered basis $\{\mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{i}+\mathbf{j}, \mathbf{i}\}$ in \mathbb{R}^{3}. Find the resulting orthonormal basis.
Q. 3 Let $A=\left[a_{i j}\right]$ be a square matrix of order n whose entries are given as follows. For $1 \leq i, j \leq n$ we have

$$
a_{i j}=\left\{\begin{array}{c}
i j \text { if } i \neq j \\
1+i j \text { if } i=j
\end{array}\right.
$$

Evaluate the determinant of A .
Q. 4 Arrange the following matrices with their ranks in a non-decreasing order.

$$
P=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], Q=\left[\begin{array}{lll}
2 & 2^{2} & 2^{3} \\
2^{4} & 2^{5} & 2^{6} \\
2^{7} & 2^{8} & 2^{9}
\end{array}\right], R=\left[\begin{array}{ccc}
1^{2} & 2^{2} & 3^{2} \\
4^{2} & 5^{2} & 6^{2} \\
7^{2} & 8^{2} & 9^{2}
\end{array}\right] .
$$

Q. 5 If $a_{1} \geq 0, a_{2} \geq 0$ and $a_{n+2}=\sqrt{a_{n} a_{n+1}}$, find the limit of the sequence $\left\{a_{n}\right\}$.
Q. 6 Let $\left\{P_{n}\right\}$ be a sequence of polynomials such that for $n=0,1,2, \ldots$

$$
P_{0}=0 \text { and } P_{n+1}(x)=P_{n}(x)+\frac{x^{2}-P_{n}^{2}(x)}{2} .
$$

Assuming the fact that $\left\{P_{n}\right\}$ is convergent point-wise, find the limit function $\lim _{n \rightarrow \infty} P_{n}(x)$.
Q. 7 Find the values of $x, \quad(x \in \mathbb{R})$ for which the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2}+n}{n^{2}}
$$

is convergent.
Q. 8 Find the range of values of α for which $\int_{0}^{\infty} \frac{\sin x}{x^{\alpha}}$ is convergent (i.e. is finite).
Q. 9 A point X is picked uniformly at random from the perimeter of a unit circle. Find the expected value of $|X|$.
Q. 10 Suppose the distribution of Y, conditional on $X=x$, is $\operatorname{Normal}\left(x, x^{2}\right)$ and the marginal distribution of X is $\operatorname{Uniform}(0,1)$. Find the $\operatorname{Cov}(X, Y)$.
Q. 11 Let X be an observation from the probability density function

$$
f(x \mid \theta)=\left(\frac{\theta}{2}\right)^{|x|}(1-\theta)^{1-|x|}, \quad x=-1,0,1 ; \quad 0 \leq \theta \leq 1 .
$$

Find the maximum likelihood estimator (mle) of θ and its expectation.
Q. 12 Let $U_{1}, U_{2}, \ldots, U_{n}$ be i.i.d. $\operatorname{Uniform}(0, \theta), \theta>0$, random variables. Find the uniformly minimum variance unbiased estimator (UMVUE) of $\cos \theta$.
Q. 13 Let $A=\left[\begin{array}{lll}1 & r & r \\ r & 1 & r \\ r & r & 1\end{array}\right]$. Find the range of values of r so that A is positive definite.

