Department of Mathematics, IIT Bombay
 Screening Test for PhD Admissions (Dec 1, 2016)

Time allowed: 2 hours and 30 minutes
Maximum Marks: 40

Name:
Choice: Math Stat

- Write your name in the blank space at the top of this question-paper, and also tick 'Math' or 'Stat' to indicate your first choice of one of the 2 PhD programs. Do the same on the attached answer-sheet.
- All questions carry 2 marks. There will be no partial credit. Simplify all your answers. In particular, the answer should not be in the form of a sum or product.
- The answer to each question is a number or a set or a yes/no statement. Record only your answers on the answer-sheet as indicated. You are being given a separate work-sheet for doing rough work (this will not be collected).

1. Let

$$
A=\left[\begin{array}{rrr}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]
$$

(i) What is the minimal polynomial of A ?
(ii) Is A diagonalizable over \mathbb{R} ?
2. For each real number α, we define the bilinear form $F_{\alpha}: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ by

$$
\begin{gathered}
F_{\alpha}\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)=2 x_{1} x_{2}+(\alpha+5) x_{1} y_{2}+x_{1} y_{3}+(\alpha+5) x_{2} y_{1} \\
-(2 \alpha+4) x_{2} y_{2}+2 x_{2} y_{3}+x_{3} y_{1}+2 x_{3} y_{2}+2 x_{3} y_{3} .
\end{gathered}
$$

Find the set of $\alpha \in \mathbb{R}$ such that F_{α} is positive definite.
3. What is the number of non-conjugate 6×6 complex matrices having the characteristic polynomial $(x-5)^{6}=0$?
4. Let S be a subspace of the vector space of all 11×11 real matrices such that (i) every matrix in S is symmetric and (ii) S is closed under matrix multiplication. What is the maximum possible dimension of S ?
5. Let A be a 55×55 diagonal matrix with characteristic polynomial

$$
\left(x-c_{1}\right)\left(x-c_{2}\right)^{2}\left(x-c_{3}\right)^{3} \ldots\left(x-c_{10}\right)^{10},
$$

where c_{1}, \ldots, c_{10} are all distinct. Let V be the vector space of all 55×55 matrices B such that $A B=B A$. What is the dimension of V ?
6. Let A be the complex square matrix of size 2016 whose diagonal entries are all -2016 and off-diagonal entries are all 1 . What are the eigenvalues of A and their geometric multiplicities?
7. Let V be a subspace of \mathbb{R}^{13} of dimension 6 , and W be a subspace of \mathbb{R}^{31} of dimension 29. What is the dimension of the space of all linear maps from \mathbb{R}^{13} to \mathbb{R}^{31} whose kernel contains V and whose image is contained in W ?
8. Let V (resp. W) be the real vector space of all polynomials in two commuting (resp. noncommuting) variables with real coefficients and of degree strictly less than 100 . What are the dimensions of V and W ?
9. Find the number of connected components of the set

$$
\left\{x \in \mathbb{R}: x^{3}\left(x^{2}+5 x-\frac{65}{3}\right)>70 x^{2}-300 x-297\right\}
$$

under the usual topology on \mathbb{R}.
10. Let $P_{n}(x)$ be the Taylor polynomial at $x=0$ for the exponential function e^{x}. Compute the least n such that $\left|e-P_{n}(1)\right|<10^{-5}$.
11. Find the set of values of the real number a for which $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\sin \frac{1}{n}\right)^{a}$ converges.
12. Let $p(x)$ be a polynomial of degree 7 with real coefficients such that $p(\pi)=\sqrt{3}$ and

$$
\int_{-\pi}^{\pi} x^{k} p(x) d x=0 \quad \text { for } 0 \leq k \leq 6
$$

What are the values of $p(0)$ and $p(-\pi)$?
13. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{57^{\left(x^{2}+1\right)}+3}{e^{x^{2}}+1113337 x^{2}+1113339 x^{3 / 2}+1113341 x+1} .
$$

Find the value of $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f(x)^{n} d x\right)^{\frac{1}{n}}$.
14. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{1 / 3}$. Let $g(x)=\sum_{n=0}^{\infty} a_{n}(x-3 / 2)^{n}$, where $a_{n}=\frac{f^{(n)}(3 / 2)}{n!}$ for $n \geq 0$. What is the largest open set contained in $\{x \mid f(x)=g(x)\}$?
15. An urn contains 11 balls numbered $1,2, \ldots, 11$. We remove 4 balls at random without replacement and add their numbers. Compute the mean of the total.
16. Let X, Y and Z be independent, identically distributed random variables, each having the Bernoulli distribution with parameter $p, 0<p<1$. Put $T=X+Y+Z$ and $S=X Y Z$.

Find $P(T=2 \mid S=0)$.
17. Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of identically and independently distributed random variables with uniform distribution on $(0,1)$. Suppose $Y_{n}=\left(X_{1} X_{2} \ldots X_{n}\right)^{1 / n}$, (i.e., Y_{n} is the geometric mean of $X_{1}, X_{2}, \ldots, X_{n}$). Find the number c such that Y_{n} converges to c with probability 1 .
18. Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of identically and independently distributed random variables having Poisson distribution with mean 1. Let $\bar{X}_{n}=\frac{X_{1}+\ldots+X_{n}}{n}$. Find the limit of $P\left(\bar{X}_{n} \geq 1\right)$ as n goes to ∞.
19. Suppose that the joint probability function of two random variables X and Y is

$$
f(x, y)=\frac{x y^{x-1}}{3}, x=1,2,3 \text { and } 0<y<1 .
$$

Find the variance of X.
20. Suppose that the random variables X and Y are independent and identically distributed and that the moment generating function (mgf) of each is

$$
\psi(t)=e^{t^{2}+3 t}, \text { for }-\infty<t<\infty
$$

Find the mgf of $Z=2 X-3 Y+4$ at $t=1$.

