Department of Mathematics, IIT Bombay

Screening Test for PhD Admissions (9 May, 2016)

Time allowed: 2 hours and 30 minutes

Maximum Marks: 40

Name:

Choice: Math Stat

- Write your name in the blank space at the top of this question-paper, and also tick 'Math' or 'Stat' to indicate your first choice of one of the 2 PhD programs. Do the same on the attached answer-sheet.
- All questions carry 2 marks.
- The answer to each question is a number, function, set, inequality, random variable etc. Record only your answers on the answer-sheet as indicated. You are being given a separate work-sheet for doing rough work (this will not be collected).

- Q.1 Consider the vector space \mathbb{R}^{2016} over the field \mathbb{R} of real numbers. What is the smallest positive integer k for which the following statement is true: given any k vectors $v_1, \ldots, v_k \in \mathbb{R}^{2016}$, there exist real numbers a_1, \ldots, a_k , not all zero, such that $a_1v_1 + \cdots + a_kv_k = 0$ and $a_1 + \cdots + a_k = 0$.
- Q.2 Find all complex triples (a, b, c) such that the following matrix is diagonalizable

1	a	b	
0	2	c	
0	0	1	

Q.3 For what values of k does the linear system

$$x - 3z = -3$$
$$2x + ky - z = -2$$
$$x + 2y + kz = 1$$

in unknowns x, y, z have no solution?

- Q.4 Let V and W be subspaces of the vector space \mathbb{R}^9 over the field \mathbb{R} of real numbers with dim V = 5 and dim W = 6. Then what is the smallest possible dimension of $V \cap W$?
- Q.5 Consider the inner product

$$\langle (a_1, a_2), (b_1, b_2) \rangle = 2a_1b_1 - a_1b_2 - a_2b_1 + 5a_2b_2$$

on \mathbb{R}^2 . Write down a vector which is orthogonal to (1,0) and has norm 1.

Q.6 Find all values $\alpha \in \mathbb{R}$ for which the matrix

$$\begin{array}{cccc} \alpha & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 4 \end{array}$$

is positive definite.

Q.7 Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
 be a real matrix and c_1, c_2, c_3 be the scalars
 $c_1 = \det\left(\begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix}\right), c_2 = \det\left(\begin{bmatrix} a_{13} & a_{11} \\ a_{23} & a_{21} \end{bmatrix}\right), c_3 = \det\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right).$

Find all triples (c_1, c_2, c_3) so that rank A = 2.

Q.8 Let A be the complex 3×3 matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ a & 2 & 0 \\ b & c & -1 \end{bmatrix}.$$

Find all triples (a, b, c) for which the characteristic and minimal polynomials of A are different.

Q.9 Given $\epsilon > 0$, what is the largest δ which fits the definition of continuity of the function

$$f(x) = \begin{cases} \frac{x+3}{2} & \text{if } x \le 1\\ \frac{7-x}{3} & \text{if } 1 \le x \end{cases}$$

at x = 1, that is, the largest $\delta > 0$ for which the implication $|x - 1| < \delta \implies$ $|f(x) - f(1)| < \epsilon$ holds?

Q.10 A point ω is said to be a *fixed point* of a function f if $f(\omega) = \omega$. Given that the function

$$f(x) = \frac{x^3 + 1}{3}$$

has three fixed points α, β, γ in (-2, -1), (0, 1) and (1, 2) respectively, let us define a sequence of real numbers $\{x_n\}$ as

$$x_1 = \gamma - 0.01$$
, $x_{n+1} = f(x_n)$ $n = 1, 2, 3, \dots$

Given that the sequence converges, find

 $\lim_{n \to \infty} x_n.$

Q.11 Suppose f is a real valued continuously differentiable function on [0, 1] with f(0) = f(1) = 0 and

$$\int_0^1 f^2(x) \, dx = 1.$$

Find the value of $\int_0^1 x f(x) f'(x) dx$.

Q.12 Let

$$y_n = \frac{n^2}{n^3 + n + 1} + \frac{n^2}{n^3 + n + 2} + \dots + \frac{n^2}{n^3 + 2n}$$

Find $\lim_{n\to\infty} y_n = ?$

Q.13 Find all values of x > 0 for which the series

$$1 + \frac{x}{1!} + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \dots + \frac{n^n x^n}{n!} + \dots$$

converges.

Q.14 Find all values of (p,q) for which the integral

$$\int_0^1 x^p \, \log^q(1/x) \, dx$$

converges.

- Q.15 Suppose X, Y, Z are i.i.d. Uniform[0, 1] random variables. What is the probability $\mathbb{P}(XY < Z^2)$? Write down your answer as a fraction.
- Q.16 Suppose X_1, X_2, \ldots, X_n are i.i.d. random variables for which $\mathbb{E}(X_1^{-1}) < \infty$, where \mathbb{E} denotes expectation. Let $S_i := X_1 + X_2 + \cdots + X_i$. For m < n calculate $\mathbb{E}(S_m/S_n)$.
- Q.17 Suppose the distribution of Y, conditional on X = x, is Poisson(x) and random variable X is exponentially distributed with rate parameter 1. Find the correlation between X and Y.

- Q.18 Let U_1, U_2, \ldots, U_n be i.i.d. Uniform $(0, \theta), \ \theta > 0$ random variables. Find the uniformly minimum variance unbiased estimator (UMVUE) of θ^2 .
- Q.19 Let X_1, X_2, \ldots, X_n be i.i.d. random variables with one of two possible probability density functions $f(x|\theta)$. If $\theta = 0$, then $f(x|\theta) = I_{(0,1)}(x)$ while if $\theta = 1$, then $f(x|\theta) = \frac{1}{2\sqrt{x}}I_{(0,1)}(x)$. Find the maximum likelihood estimator $\hat{\theta}$ of θ .
- Q.20 Suppose that the random variables Y_1, \ldots, Y_n satisfy

$$Y_i = \beta x_i + \epsilon_i, \qquad i = 1, \dots, n_i$$

where x_1, \ldots, x_n are fixed known constants, and $\epsilon_1, \ldots, \epsilon_n$ are i.i.d. $N(0, \sigma^2), \sigma^2$ known. What is the distribution of MLE of β ?