Department of Mathematics, IIT Bombay
 Screening Test for PhD Admissions (9 May, 2016)

Time allowed: 2 hours and 30 minutes
Maximum Marks: 40

Name: Choice: | Math | Stat |
| :--- | :--- |

- Write your name in the blank space at the top of this question-paper, and also tick 'Math' or 'Stat' to indicate your first choice of one of the 2 PhD programs. Do the same on the attached answer-sheet.
- All questions carry 2 marks.
- The answer to each question is a number, function, set, inequality, random variable etc. Record only your answers on the answer-sheet as indicated. You are being given a separate work-sheet for doing rough work (this will not be collected).
Q. 1 Consider the vector space \mathbb{R}^{2016} over the field \mathbb{R} of real numbers. What is the smallest positive integer k for which the following statement is true: given any k vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{2016}$, there exist real numbers a_{1}, \ldots, a_{k}, not all zero, such that $a_{1} v_{1}+\cdots+a_{k} v_{k}=0$ and $a_{1}+\cdots+a_{k}=0$.
Q. 2 Find all complex triples (a, b, c) such that the following matrix is diagonalizable

$$
\left[\begin{array}{lll}
1 & a & b \\
0 & 2 & c \\
0 & 0 & 1
\end{array}\right] .
$$

Q. 3 For what values of k does the linear system

$$
\begin{gathered}
x-3 z=-3 \\
2 x+k y-z=-2 \\
x+2 y+k z=1
\end{gathered}
$$

in unknowns x, y, z have no solution?
Q. 4 Let V and W be subspaces of the vector space \mathbb{R}^{9} over the field \mathbb{R} of real numbers with $\operatorname{dim} V=5$ and $\operatorname{dim} W=6$. Then what is the smallest possible dimension of $V \cap W ?$
Q. 5 Consider the inner product

$$
\left\langle\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle=2 a_{1} b_{1}-a_{1} b_{2}-a_{2} b_{1}+5 a_{2} b_{2}
$$

on \mathbb{R}^{2}. Write down a vector which is orthogonal to $(1,0)$ and has norm 1 .
Q. 6 Find all values $\alpha \in \mathbb{R}$ for which the matrix

$$
\left[\begin{array}{ccc}
\alpha & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 4
\end{array}\right]
$$

is positive definite.
Q. 7 Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$ be a real matrix and c_{1}, c_{2}, c_{3} be the scalars

$$
c_{1}=\operatorname{det}\left(\left[\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right]\right), c_{2}=\operatorname{det}\left(\left[\begin{array}{ll}
a_{13} & a_{11} \\
a_{23} & a_{21}
\end{array}\right]\right), c_{3}=\operatorname{det}\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right) .
$$

Find all triples $\left(c_{1}, c_{2}, c_{3}\right)$ so that rank $A=2$.
Q. 8 Let A be the complex 3×3 matrix

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
a & 2 & 0 \\
b & c & -1
\end{array}\right]
$$

Find all triples (a, b, c) for which the characteristic and minimal polynomials of A are different.
Q. 9 Given $\epsilon>0$, what is the largest δ which fits the definition of continuity of the function

$$
f(x)= \begin{cases}\frac{x+3}{2} & \text { if } x \leq 1 \\ \frac{7-x}{3} & \text { if } 1 \leq x\end{cases}
$$

at $x=1$, that is, the largest $\delta>0$ for which the implication $|x-1|<\delta \Longrightarrow$ $|f(x)-f(1)|<\epsilon$ holds?
Q. 10 A point ω is said to be a fixed point of a function f if $f(\omega)=\omega$. Given that the function

$$
f(x)=\frac{x^{3}+1}{3}
$$

has three fixed points α, β, γ in $(-2,-1),(0,1)$ and $(1,2)$ respectively, let us define a sequence of real numbers $\left\{x_{n}\right\}$ as

$$
x_{1}=\gamma-0.01, x_{n+1}=f\left(x_{n}\right) \quad n=1,2,3, \ldots
$$

Given that the sequence converges, find

$$
\lim _{n \rightarrow \infty} x_{n} .
$$

Q. 11 Suppose f is a real valued continuously differentiable function on $[0,1]$ with $f(0)=$ $f(1)=0$ and

$$
\int_{0}^{1} f^{2}(x) d x=1
$$

Find the value of $\int_{0}^{1} x f(x) f^{\prime}(x) d x$.
Q. 12 Let

$$
y_{n}=\frac{n^{2}}{n^{3}+n+1}+\frac{n^{2}}{n^{3}+n+2}+\cdots+\frac{n^{2}}{n^{3}+2 n} .
$$

Find $\lim _{n \rightarrow \infty} y_{n}=$?
Q. 13 Find all values of $x>0$ for which the series

$$
1+\frac{x}{1!}+\frac{2^{2} x^{2}}{2!}+\frac{3^{3} x^{3}}{3!}+\cdots+\frac{n^{n} x^{n}}{n!}+\cdots
$$

converges.
Q. 14 Find all values of (p, q) for which the integral

$$
\int_{0}^{1} x^{p} \log ^{q}(1 / x) d x
$$

converges.
Q. 15 Suppose X, Y, Z are i.i.d. Uniform[0,1] random variables. What is the probability $\mathbb{P}\left(X Y<Z^{2}\right)$? Write down your answer as a fraction.
Q. 16 Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. random variables for which $\mathbb{E}\left(X_{1}^{-1}\right)<\infty$, where \mathbb{E} denotes expectation. Let $S_{i}:=X_{1}+X_{2}+\cdots+X_{i}$. For $m<n$ calculate $\mathbb{E}\left(S_{m} / S_{n}\right)$.
Q. 17 Suppose the distribution of Y, conditional on $X=x$, is $\operatorname{Poisson}(x)$ and random variable X is exponentially distributed with rate parameter 1 . Find the correlation between X and Y.
Q. 18 Let $U_{1}, U_{2}, \ldots, U_{n}$ be i.i.d. Uniform $(0, \theta), \theta>0$ random variables. Find the uniformly minimum variance unbiased estimator (UMVUE) of θ^{2}.
Q. 19 Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with one of two possible probability density functions $f(x \mid \theta)$. If $\theta=0$, then $f(x \mid \theta)=I_{(0,1)}(x)$ while if $\theta=1$, then $f(x \mid \theta)=\frac{1}{2 \sqrt{x}} I_{(0,1)}(x)$. Find the maximum likelihood estimator $\hat{\theta}$ of θ.
Q. 20 Suppose that the random variables Y_{1}, \ldots, Y_{n} satisfy

$$
Y_{i}=\beta x_{i}+\epsilon_{i}, \quad i=1, \ldots, n
$$

where x_{1}, \ldots, x_{n} are fixed known constants, and $\epsilon_{1}, \ldots, \epsilon_{n}$ are i.i.d. $N\left(0, \sigma^{2}\right), \sigma^{2}$ known. What is the distribution of MLE of β ?

