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1. Introduction

The first important result on elliptic curves E over number fields K is
the theorem of the title. It says that E(K) is a finitely generated abelian
group. In other words, E(K) ∼= Z

r⊕F where F is a finite abelian group,
the torsion subgroup. One refers to E(K) as the Mordell-Weil group of
E over K. Geometrically, if one is given a system of generators for E(K),
then one can produce all the points by the chord and tangent process.
This means that one can obtain any point of E(K) by drawing tangents
at these points and chords between them, continuing this with the re-
sulting points and repeating this procedure finitely many times. The
Mordell-Weil theorem was proved by Mordell for K = Q and by Weil in
general. In the previous chapter, we saw a proof of a weaker statement
- the so-called weak Mordell-Weil theorem - which asserts that for any
integer m, the group E(K)/mE(K) is finite. To prove the full theorem,
one tries to find a ‘size’ function on E(K) with the following properties:
(i) there are only finitely many elements of a bounded size and,
(ii) for coset representatives P1, . . . , Pr in E(K) for the finite group
E(K)/mE(K), one can subtract from any element P of E(K), an inte-
gral linear combination of the Pi’s such that the resulting element is of
size bounded by a constant C independently of P .
Once such a size function is produced, it is quite easy to deduce that the
Pi’s together with the finite set of elements of size at most C generate
the Mordell-Weil group E(K). A point to be noted is that there is no
known effective way of computing the Mordell-Weil group E(K). The
main reason is that there is no known effective way of computing the
quotient E(K)/mE(K) for any m ≥ 2. We partly follow [S] and partly
[M ] for the proof of the Mordell-Weil theorem.
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2. Heights on projective spaces

The ‘size’ we talked about is encrypted in the notion of the height of a
point in E(K). We shall define the height of a point in Pn(K). Following
that, we shall define the height of a point on an elliptic curve by means
of a morphism to P

1. The height function on P
2 also proves useful

in deducing how the height of points an elliptic curve behaves under its
group law. We start with Q first. For any point P in the projective space
P
n(Q), one can find homogeneous co-ordinates [x0 : · · · : xn] where xi

are integers with no factor common to all of them. This co-ordinate is
unique up to changing the sign throughout. One defines the height of P
as h(P ) = log max{|xi|; 0 ≤ i ≤ n}. It is clear that there are only finitely
many points in the projective space which have height bounded by any
constant. Note that we have used the property that Z is a PID to produce
homogeneous co-ordinates which are coprime integers. This property
does not hold in general for rings of integers in number fields and thus we
take another approach which will take care of general number fields also.
If a point P ∈ Pn(Q) is given in some homogeneous co-ordinates [x0 :
· · · : xn] (not necessarily the coprime integral co-ordinates as above),
then one can express the height in terms of the xi’s in the following
manner:

h(P ) = log max{|xi|; 0 ≤ i ≤ n}+
∑

p prime

log max{|xi|p; 0 ≤ i ≤ n}.

Here |x|p denotes the normalized p-adic absolute value defined on any
non-zero rational number x = pna/b to be p−n where (p, ab) = 1. The
fact that the definition does not change when the homogeneous co-
ordinates are multiplied by any t ∈ Q∗, is a consequence of the product
formula |t|

∏
p |t|p = 1 or, equivalently, of the fundamental theorem of

arithmetic. Starting from this definition of height on P
n(Q), one can

define a height function on E(Q) for an elliptic curve E over Q. It is
possible to do explicit computations then and prove the Mordell-Weil
theorem over Q. However, we develop the basic theory of heights and
prove the Mordell-Weil theorem for general number fields.

Let K be a number field and VK , its set of places. Recall that any
nonarchimedean place v of K corresponds to a prime ideal P of the
ring of integers OK of K and there is a prime number p ∈ Z such that
P ∩ Z = pZ. Further, the absolute value v is normalized by putting
|p|v = |p|p = 1/p. Let Kv be the completion of K with respect to v, one
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denotes by nv, the degree [Kv : Qp] for nonarchimedean v ∈ VK . For
archimedean places v in VK , Kv = C or R and let us write nv = [Kv : R].
The product law on K is then the statement that∏

v

|x|nvv = 1 for x ∈ K∗.

For a number field L ⊃ K, the number nv for places of K and the
numbers nw for places of L lying above v are related by

∑
w nw = [L :

K]nv where the sum is over all places of L which lie over v. For P ∈
P
n(K) with homogeneous co-ordinates [x0 : · · · : xn].

With these notations, we define :
Definition 1. the height of P relative to K is defined as

hK(P ) =
∑
v∈VK

nv log max{|xi|v; 0 ≤ i ≤ n}.

Lemma 1. (a) Let P ∈ Pn(K). Then, hK(P ) is independent of the
choice of the homogeneous co-ordinates.
(b) Let P ∈ Pn(K). Then, hK(P ) ≥ 0.
(c) For a number field L ⊃ K, and a point P ∈ P

n(K), we have
hL(P ) = [L : K]hK(P ).
(d) hK(P )

[K:Q] does not depend on the choice of the field K in which the
homogeneous co-ordinates of P lie. In other words, if Q̄ denotes an al-
gebraic closure of Q, then for any P ∈ Pn(Q̄) and any number field K

such that P ∈ Pn(K), the absolute height h(P ) := hK(P )
[K:Q] is defined in-

dependently of K.
(e) The absolute height satisfies h(P ) = h(P σ) for any P ∈ Pn(Q̄) and
any σ ∈ Gal(Q̄/Q) where Gal(Q̄/Q) is the group of all field automor-
phisms of Q̄ which are identity on Q .
Proof: As mentioned above for Q, (a) is a consequence of the product
law on K.
To show (b), note that one can choose one of the homogeneous co-
ordinates of P to be 1. Then, every term in the sum defining hK(P ) is
non-negative.
(c) follows as an application of the fact noted above that

∑
w nw = [L :

K]nv where the sum is over all places of L which lie over v.
(d) is an immediate consequence of (c).
To prove (e), note that if P ∈ P

n(K), then σ identifies the sets VK
and VKσ by |x|v = |xσ|vσ for x ∈ K. As nv = nvσ , it follows that
hK(P ) = hKσ(P σ).
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It is clear from the definition of height that when K = Q, just looking
at the archimedean place shows us that there are only many finitely
points of bounded height. We would like to prove this for general K
too. For this, it is convenient to use the absolute height. For any point
P ∈ Pn(Q̄), we shall denote by Q(P ) the minimal field of definition of
P ; if [x0 : · · · : xn] are homogeneous co-ordinates for P with x0 6= 0 say,
then Q(P ) = Q(x1/x0, . . . , xn/x0). One calls the degree of this extension
over Q to be the degree of P .

Proposition 1. For any C,D > 0, the set

{P ∈ Pn(Q̄) : h(P ) ≤ C, [Q(P ) : Q] ≤ D}

is finite. In particular, for any number field K, the set {P ∈ Pn(K) :
h(P ) ≤ C} is finite for every C > 0.
Proof: Let us reduce the assertion from Q̄ to Q. Consider the set of
points [x0 : · · · : xn] whose degree equals d. For any such point P , we
shall associate a point of the projective space PN (Q) where N =

(n+d
d

)
−1

and then show that the set of points of degree d, with height bounded by
some constant map in a finite-to-one manner into a set of points of PN (Q)
whose heights are bounded by some other constant. Let Sd ⊂ Pn(Q̄) be
the set of all points of degree d over Q. Consider the map

φd : Sd → P
N (Q) ; P = [x0 : · · · : xn] 7→ [f0 : · · · : fN ]

where
∏
σ

∑n
i=0 x

σ
i Ti =

∑N
i=0 fiXi and Ti are indeterminates and the

product is over all embeddings σ of Q(P ) in Q̄ which extend the inclusion
of Q. Note that the monomials Xi’s form a basis of the vector space of
all homogeneous polynomials of degree d in the Ti’s. The transformation
φd has finite fibres because only the points [xσ0 : · · · : xσn] map onto the
same point that [x0 : · · · : xn] maps to. In this manner, the assertion
reduces to Q once we can show that points of bounded height map to
points of bounded height. Let us now prove this. Consider any place
v of K = Q(P ). Observe that log |x + y|v ≤ max(log |x|v, log |y|v) + cv
for all x, y ∈ K, where cv can be taken to be 0 for nonarchimedean v
and log 2 for archimedean v. Using this, it follows that for each place
v ∈ VK ,

max0≤i≤N log|fi|v ≤ d maxσmax0≤i≤nlog|xσi |vσ + dv,

for some dv which can be taken to be zero for nonarchimedean v. Thus,
we get

h([f0 : · · · : fN ]) ≤ d1h([x0 : · · · : xn]) + d2
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for some constants d1, d2 which can be computed in terms of n and the
degree d of P . This proves that points in Pn(Q̄) of a given degree and
height bounded by some constant map to points in P

N (Q) of height
bounded by some other constant. This latter set we know, is finite. The
proposition is proved.

3. Heights on elliptic curves

Our aim now is to define a height function on an elliptic curve E over
a field number field K and study its behaviour under the addition law.
Note that E ⊂ P2

K is given by the equation Y 2Z = X3 +AXZ2 +BZ3.

Definition 2. The height function of an elliptic curve E over a number
field K is the function hE : E(Q̄)→ R; P 7→ h(x(P )) where x(P ) is the
x-coordinate function in P

2(Q̄). An analogous definition can be given
for any non constant rational function f ∈ Q̄(E) but we do not need it
here.
As P 7→ x(P ) is a finite-to-one map, we immediately obtain :

Corollary 1. For any C > 0, the set

{P ∈ E(K) : hE(P ) ≤ C}

is finite.

The main properties of the height function are exhibited in the following
result :

Theorem 1. Let E be an elliptic curve over a number field K. Then,
for all P,Q ∈ E(K),

hE(P +Q) + hE(P −Q) = 2hE(P ) + 2hE(Q) +O(1)

where the constant does not depend on the points P,Q.

Remarks 1.
(a) Note that if P = Q in the theorem, then hE([2]P ) = 4hE(P )+O(1).
More generally, for any n ∈ Z, one can show by induction using the above
theorem that hE([n]P ) = n2hE(P )+O(1). Here, for a natural number n,
[n]P denotes P + · · ·+P added n times and [−n]P = (−P )+ · · ·+(−P )
added n times in the group law in E. It turns out (although we do not
go into it) that there is a canonical height called the Neron-Tate height
which is indeed a quadratic form.



78 D. S. Nagaraj and B. Sury

(b) Evidently, the theorem involves writing the x co-ordinates of P +Q,
P−Q etc. and we are led to some morphisms on P2 under which we need
to know how the height changes. This will be a result of independent
interest which will also prove the theorem.

Before studying the behaviour of height under morphisms, we show how
the main theorem of the article follows from the above theorem.

Mordell-Weil Theorem. If E is an elliptic curve over an algebraic
number field K, then E(K) is a finitely generated abelian group.

Proof: We shall use the weak Mordell-Weil theorem only for m = 2
i.e, we have E(K)/2E(K) is finite. We observe:
(i) For Q ∈ E(K), there is a constant C1, depending only on E and
the point Q such that for every P ∈ E(K), we have hE(P + Q) ≤
2hE(P )+C1. This is from the previous theorem since the height function
is nonnegative.
(ii) There is a constant C2 depending on E such that for every P ∈ E(K),
we have hE([2]P ) ≥ 4hE(P ) − C2. This is simply by taking P = Q in
the previous theorem.
(iii) We have already observed that for any C3 > 0, the set {P ∈ E(K) :
hE(P ) ≤ C3} is finite.
From these 3 observations and the fact that E(K)/2E(K) is finite, we
now prove the theorem. Choose representatives Q1, . . . , Qr ∈ E(K) for
the finite group E(K)/2E(K). Let P be any element of E(K). Write
P = [2]P1 + Qi1 for some i1 ≤ r and some P1 ∈ E(K). Continue as
P1 = [2]P2 +Qi2 etc. At the j-th stage, we have

hE(Pj) ≤
1
4

(hE([2]Pj) + C2)

=
1
4

(hE(Pj−1 −Qij ) + C2)

≤ 1
4

(2hE(Pj−1) + C ′1 + C2),

where C ′1 is the maximum of the constants in the observation (i) above
with Q = −Q1, . . . ,−Qr.
Now, we start with Pn for any n and apply the above inequality repeat-
edly to obtain

hE(Pn) ≤ 1
2n
hE(P ) +

n∑
k=1

2k−1

22k
(C ′1 + C2)
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≤ 1
2n
hE(P ) +

1
2

(C ′1 + C2) ≤ 1 +
1
2

(C ′1 + C2)

for large enough n depending on P . As P = [2n]Pn +
∑n
j=1 2j−1Qij , it

follows that the finite set

{Q1, . . . , Qr} ∪ {Q ∈ E(K) : hE(Q) ≤ 1 +
1
2

(C ′1 + C2)}

generates E(K). This proves the theorem.

We are left with proving the previous theorem for which we recall the
following definition from chapter 1 :

Definition 3. A map F : P
n −→ P

m defined by F (P ) =
[f0(P ) : · · · : fm(P )] where fi ∈ Q̄[X0, . . . , Xn] are homogeneous poly-
nomials of degree d with no common nontrivial zero in Q̄ is said to be
a morphism of degree d. If the polynomials fi can be chosen to have
coefficients in a subfield K of Q̄, then F is said to be defined over K.
For the theorem that we are trying to prove, we need to find out how
the height changes under a certain morphism of degree 2. We put this
as a general result.

Theorem 2. Let F : Pn → P
m be a morphism of degree d. Then, there

are constants C1 and C2 depending on F such that for any P ∈ Pn(Q̄),
we have

C1 + dh(P ) ≤ h(F (P )) ≤ C2 + dh(P ).

Proof: Let P = [x0 : · · · : xn] ∈ Pn(Q̄) look at a number field K which
contains all the xi’s as well as all the coefficients of the fi’s which define
F . For any place v of K, let us define

|P |v = max
i≤n
|xi|v , |F (P )|v = max

j≤m
|fj(P )|v

and |F |v = max{|a|v : a is coefficient of some fj}. Then, by definition,

h(P ) =
∑
v∈VK

nv log |P |v , h(F (P )) =
∑
v∈VK

nv log |F (P )|v.

We shall first prove the upper bound; this does not need the assumption
that the fi’s have no nontrivial common zero. We denote by εv either
1 or 0 according as whether v is archimedean or not. The notational
advantage is that the triangle inequality can be uniformly expressed as

|x1 + · · ·+ xn|v ≤ nεv max{|x1|v, . . . , |xn|v}.
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Then, clearly |fi(P )|v ≤ Cεv1 |F |v|P |dv for each place v since fi is homo-
geneous of degree d. One can take C1 to be the number of monomials in
fi - this is at the most

(n+d
d

)
. Using this for each fi, we get |F (P )|v ≤

Cεv1 |F |v|P |dv. This gives us h(F (P )) ≤ logC1 +
∑
v nv log |F |v + dh(P )

as
∑
v εvnv = [K : Q]. This proves the upper bound.

To obtain the lower bound, note that by Hilbert’s Nullstellensatz, the
ideal generated by f0, . . . , fm in Q̄[X0, . . . , Xn] contains a power of each
Xi as the fi’s have no common nontrivial zero. Therefore, for some
e ≥ 1, one can write Xe

i =
∑m
j=0 gijfj for i = 0, 1, . . . , n where gij ∈

Q̄[X0, . . . , Xn]. Now, all the coefficients of all the gij ’s lie in some finite
extension of Q and, we may assume that this is K (by replacing K by a
finite extension). Further, one can throw out the parts of each gij which
are not homogeneous of degree e−d. In other words, we can assume each
gij is homogeneous of degree e−d. Now, since P = [x0 : · · · : xn], we have
for each i that |xi|ev = |

∑m
j=0 gij(P )fj(P )|v ≤ Cεv2 maxj |gij(P )fj(P )|v.

Taking the maximum over i, we get

|P |ev ≤ C
εv
2 |F (P )|v max{|gij(P )|v; 0 ≤ i ≤ n, 0 ≤ j ≤ m}.

As each gij is homogeneous of degree e− d, the triangle inequality gives

|gij(P )|v ≤ Cεv3 |G|v|P |
e−d
v .

Here, we have denoted by |G|v the maximum of the v-absolute value of
the coefficients of all the gij ’s. Using this in the earlier inequality, we
have

|P |dv ≤ C
εv
4 |G|v|F (P )|v.

As before, if we take logarithms, multiply by nv and add up, we will
obtain the lower bound

h(F (P )) ≥ logC4 +
∑
v

nv log |G|v + dh(P ).

This completes the proof.

Proof of Theorem 1: Let us choose a Weierstrass equation for E
over K of the form y2 = x3 + Ax+B. Let O ∈ E(K) denote the point
at infinity which is the identity element for the group law on E(K).
Now, by definition, we have hE(O) = 0 and hE(−P ) = hE(P ) for each
P ∈ E(K). Thus, the result holds if either P or Q is O. Assume now
that P,Q 6= O. Let us write

x(P ) = [x1 : 1] , x(Q) = [x2 : 1] , x(P+Q) = [x3 : 1] , x(P−Q) = [x4 : 1].
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Here we understand that x3 (respectively, x4) is ∞ if P = −Q (respec-
tively, P = Q). Note that when P 6= ±Q, we have

x3 =
(y2 − y1)2

(x2 − x1)2
− x1 − x2

x4 =
(y2 + y1)2

(x2 − x1)2
− x1 − x2

which shows that

x3 + x4 =
2(x1 + x2)(A+ x1x2) + 4B

(x1 + x2)2 − 4x1x2

x3x4 =
(x1x2 −A)2 − 4B(x1 + x2)

(x1 + x2)2 − 4x1x2

The idea of the proof is now to look at the map which transforms x1 +x2

and x1x2 to x3 + x4 and x3x4 and show that it defines a morphism g
of degree 2 on P2 for which one could apply the previous theorem. In
order to define this g, consider the map σ : E × E → P

1 × P1 → P
2

which is the composite of (P,Q) 7→ (x(P ), x(Q)) and ([x1 : y1], [x2 :
y2]) 7→ [y1y2, : x1y2 + x2y1 : x1x2]. If G : E × E → E × E is the map
(P,Q) 7→ (P +Q,P −Q), and g : P2 → P

2 is the map

[t : u : v] 7→ [u2 − 4tv : 2u(At+ v) + 4Bt2 : (v −At)2 − 4Btu],

then we see that σ ◦G = g ◦ σ. Note that the above expression for g is
gotten by thinking of t, u, v as 1, x1 + x2, x1x2 and of g([t : u : v]) as
1, x3 +x4, x3x4. To verify that g is indeed a morphism, we need to verify
that there are no nontrivial common zeroes for the three homogeneous
polynomials defining g. Suppose now that g([t : u : v]) = 0. If t = 0,
then evidently u = v = 0. So, we may assume that t 6= 0. It is convenient
to define a new quantity s = u/2t (observe that thinking of t, u, v as
1, x1 + x2, x1x2, the equation u2 − 4tv = 0 becomes x1 = x2 = u/2t
which means that we are dealing with the case P = ±Q.) One can look
at the two equations 2u(At + v) + 4Bt2 = 0 = (v − At)2 − 4Btu and
rewrite them in terms of s. We obtain

ψ(s) = 4s3 + 4As+ 4B = 0

φ(s) = s4 − 2As2 − 8Bs+A2 = 0



82 D. S. Nagaraj and B. Sury

We need to check whether the polynomials φ(X) and ψ(X) have common
roots. A simple but tedious calculation gives us the identities

(12X2 + 16A)φ(X)− (3X3 − 5AX − 27B)ψ(X) = 4(4A3 + 27B2).

Evidently, the nonsingularity of the Weierstrass equation then shows
that φ(X) and ψ(X) cannot have common roots. Hence g is indeed a
morphism on P2. Therefore, we have

h(σ ◦G(P,Q)) = h(g ◦ σ(P,Q)) = 2h(σ(P,Q)) +O(1)

by theorem 2, as g is a morphism of degree 2 on P2. If we show that
for any R1, R2 ∈ E(Q̄), one has the relation h(σ(R1, R2)) = hE(R1) +
hE(R2) + O(1), then applying this to both sides of the identity h(σ ◦
G(P,Q)) = 2h(σ(P,Q)) +O(1), the theorem would follow. The claimed
relation is evidently valid even without the O(1) term when one of R1, R2

is O. Thus, let us assume R1 6= O 6= R2. Then, we may write x(Ri) =
[ri : 1] for i = 1, 2. Note that

σ(R1, R2) = [1 : r1 + r2 : r1r2].

Thus, hE(σ(R1, R2)) = h([1 : r1 + r2 : r1r2]) and hE(R1) + hE(R2) =
h(r1) + h(r2). The following will then complete the result :
Claim:

h(r1) + h(r2)− log 4 ≤ h([1 : r1 + r2 : r1r2]) ≤ h(r1) + h(r2) + log 2.

We may restrict to the field K = Q(r1, r2) and prove this for hK . Note
that by the definition of the height function hK , we need to prove that
for each archimedean place v of K, we have the inequalities

log max(|r1|v, 1) + log max(|r2|v, 1)− log 4
≤ log max(|r1 + r2|v, |r1r2|v, 1)
≤ log max(|r1|v, 1) + log max(|r2|v, 1) + log 2

and for nonarchimedean places v, the equality

log max(|r1|v, 1) + log max(|r2|v, 1) = log max(|r1 + r2|v, |r1r2|v, 1).

For, once this is done, one can multiply by nv and add over all v to
deduce the claim. Thus, let us fix a place v of K. These inequalities
will follow from the triangle inequalities. Let us suppose |r1|v ≥ |r2|v
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without loss of generality.
Look at a nonarchimedean place v first.
If |r1|v ≤ 1, then clearly

log max(|r1|v, 1) + log max(|r2|v, 1) = 0 = log max(|r1 + r2|v, |r1r2|v, 1).

On the other hand, if |r1|v > 1 ≥ |r2|v, then |r1 + r2|v = |r1|v so that

log max(|r1|v, 1) + log max(|r2|v, 1) = log |r1|v
= log max(|r1 + r2|v, |r1r2|v, 1).

Similarly, if |r1|v ≥ |r2|v > 1, then

log max(|r1|v, 1) + log max(|r2|v, 1) = log |r1r2|v
= log max(|r1 + r2|v, |r1r2|v, 1).

If v is archimedean, then let us look at the upper bound. This is
clear because

log max(|r1 + r2|v, |r1r2|v, 1)
≤ log 2 max(|r1|v, 1) + log max(|r2|2, 1)
= log max(|r1|v, 1) + log max(|r2|v, 1) + log 2.

For the lower bound, if |r1|v ≤ 2, then

log max(|r1|v, 1) + log max(|r2|v, 1)
≤ 2 log max(|r1|v, 1)
≤ 2 log 2
≤ 2 log 2 + log max(|r1 + r2|v, |r1r2|v, 1).

If |r1|v > 2, and |r2|v ≤ 2, then we have

log max(|r1 + r2|v, |r1r2|v, 1)

≥ log
|r1|v

2
= log |r1|v − log 2

≥ log max(|r1|v, 1) + log max(|r2|v, 1)− 2 log 2.

Finally, if |r1|v ≥ |r2|v > 2, then

log max(|r1|v, 1) + log max(|r2|v, 1)− log 4
= log |r1r2|v/4 ≤ log max(|r1 + r2|v, |r1r2|v, 1).

Thus, the claim is proved and so is the theorem.
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