When does the equality $I^3 = QI^2$ hold true
for the ideals $I = Q : m^2$?

Shiro Goto

November 20, Essen

This is a joint work [GMT] with Naoyuki Matsuoka and Ryo Takahashi.

Let (A, m) be a Cohen-Macaulay local ring with the maximal ideal m and $d = \text{dim} A$. Let Q be a parameter ideal in A and we put $I = Q : m^2$. We can then ask the following questions:

Question 1.

(1) Is Q a reduction of I?

(2) When this is the case, what is the reduction number $r_Q(I) = \min\{n \geq 0 | I^{n+1} = QI^n\}$ of I with respect to Q?

(3) Are the graded rings $G(I) = \bigoplus_{n \geq 0} I^n/I^{n+1}$, $R(I) = \bigoplus_{n \geq 0} I^n$, and $F(I) = \bigoplus_{n \geq 0} I^n/mI^n$ Cohen-Macaulay rings?

We may also ask the same questions for the ideals $Q : m^n$ where n is an arbitrary positive integer. In this talk let me, however, restrict my attention to the case where $n = 2$.

If we take $I = Q : m$ (not $Q : m^2$), then we have a complete answer to the questions; the following theorem is due to Alberto Corso, Claudia Polini, Craig Huneke, Wolmer Vasconcelos, and a little bit to myself.

Theorem 2 ([CHV], [CP], [CPV], [G]). Let Q be a parameter ideal in a Cohen-Macaulay local ring (A, m) with the maximal ideal m and let $I = Q : m$. Then the following three conditions are equivalent to each other.

(1) $I^2 \neq QI$.

(2) $\overline{Q} = Q$.

(3) A is a RLR and $\mu_A(m/Q) \leq 1$.

Corollary 3. Let (A, m) be a Cohen-Macaulay local ring and assume that A is not a RLR. Then $I^2 = QI$ for every parameter ideal Q in A, so that $G(I)$ and $F(I)$ are Cohen-Macaulay rings, where $I = Q : m$. The Rees algebra $R(I)$ is also a Cohen-Macaulay ring, if $d = \text{dim} A \geq 2$.

1
The equality \(I^2 = QI \) remains true in certain cases, even though the local ring \(A \) is not a Cohen-Macaulay ring. For example, Sakurai and myself [GSa1, GSa2, GSa3] investigated the case where \(A \) is a Buchsbaum local ring and gave the following result.

Theorem 4 ([GSa1, GSa2, GSa3]). Let \((A, \mathfrak{m}) \) be a Buchsbaum local ring and assume that either \(\dim A \geq 2 \) or \(\dim A = 1 \) but \(e_0^0(\mathfrak{m}) \geq 2 \). Then there exists an integer \(n > 0 \) such that for every parameter ideal \(Q \) of \(A \) which is contained in \(\mathfrak{m}^n \), you have the equality \(I^2 = QI \), so that the graded rings \(G(I) \), \(R(I) \), and \(F(I) \) are all Buchsbaum rings, where \(I = Q : \mathfrak{m} \).

In my talk I shall give a natural generalization of these results. Unfortunately, my answer will show you that we can expect such a generalization only in the case where the local ring \(A \) is a Gorenstein ring. Unless \(A \) is Gorenstein, the situation is totally different and at this moment I have no idea to control the non-Gorenstein case. (I will give two examples, which shows the non-Gorenstein case is wild.)

Let me now state my own result.

Theorem 5. Let \((A, \mathfrak{m}) \) be a Gorenstein local ring with \(e_0^0(\mathfrak{m}) \geq 3 \) and \(d = \dim A > 0 \). Let \(Q \) be a parameter ideal in \(A \) and put \(I = Q : \mathfrak{m}^2 \). We then have the following.

1. \(m^2I = m^2Q \) and \(I^3 = QI^2 \).
2. \(G(I) \) and \(F(I) \) are both Cohen-Macaulay rings.
3. \(R(I) \) is a Cohen-Macaulay ring, if \(d \geq 3 \).

As a direct consequence of this result, we get the following.

Corollary 6. Let \((A, \mathfrak{m}) \) be a Gorenstein local ring with \(d = \dim A \geq 3 \). Then \(I^2 = QI \) for every parameter ideal \(Q \) of \(A \) which is contained in \(\mathfrak{m}^2 \), where \(I = Q : \mathfrak{m}^2 \).

References

