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Abstract. Criteria are given in terms of certain Hilbert coefficients for the fiber cone F (I) of an

m-primary ideal I in a Cohen-Macaulay local ring (R,m) so that it is Cohen-Macaulay or has depth

at least dim(R) − 1. A version of Huneke’s fundamental lemma is proved for fiber cones. S. Goto’s

results concerning Cohen-Macaulay fiber cones of ideals with minimal multiplicity are obtained as

consequences.

1. Introduction

Let (R,m) be a d-dimensional Cohen-Macaulay local ring having infinite residue field R/m. Let
I be an m-primary ideal. The objective of this paper is to explore some connections between the
coefficients of the polynomial Pm(I, n) corresponding to the function Hm(I, n) = λ(R/mIn) and depth
of the fiber cone F (I) = ⊕n≥0I

n/mIn of I. The relation between Hilbert coefficients and depth has
been a subject of several papers in the context of associated graded rings and Rees algebras of ideals.
That conditions on Hilbert coefficients could force high depth for associated graded rings was first
observed by J. D. Sally in [S1]. Since then numerous conditions have been provided for the Hilbert
coefficients so that the associated graded ring of I, G(I) = ⊕n≥0I

n/In+1, is either Cohen-Macaulay or
has almost maximal depth, i.e. the grade of the maximal homogeneous ideal of G(I) is at least d− 1.

Let J be a minimal reduction of I. In their elegant paper [HM] S. Huckaba and T. Marley provided
necessary and sufficient conditions on the coefficients of the Hilbert polynomial P (I, n) corresponding
to the Hilbert function H(I, n) = λ(R/In) so that G(I) is Cohen-Macaulay and has almost maximal
depth. We shall write the Hilbert polynomial P (I, n) in the following way:

P (I, n) = e0(I)
(
n+ d− 1

d

)
− e1(I)

(
n+ d− 2
d− 1

)
+ · · ·+ (−1)ded.

Huckaba and Marley showed:
(i) G(I) is Cohen-Macaulay if and only if e1(I) =

∑
n≥1 λ(In + J/J)

(i) G(I) has almost maximal depth if and only if e1(I) =
∑

n≥1 λ(In/JIn−1).
Their results unify several results known in the literature and provide an effective approach to

dealing with such questions. In the paper [JSV], we have provided elementary proofs of these theorems
of Huckaba and Marley.

The relation between Hilbert coefficients and depth of F (I) is not well understood. The papers
[CZ], [G], [DV] and [DRV] provide sufficient conditions in terms of certain Hilbert coefficients for the
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Cohen-Macaulay property of F (I). The form ring G(I) and the fiber cone F (I) coincide when I = m.

This indicates that there may be analogues of results of Huckaba and Marley for the fiber cone. The
first guess for the appropriate Hilbert function to be used is naturally the Hilbert function of F (I).
However we have observed that this does not seem to be of much help in predicting depth. We will
show that the coefficients of the polynomial Pm(I, n) corresponding to the function λ(R/mIn) control
the Cohen-Macaulay and almost maximal depth properties of F (I).

We now describe the main results of this paper. Write the polynomial Pm(I, n) as

Pm(I, n) = g0(I)
(
n+ d− 1

d

)
− g1(I)

(
n+ d− 2
d− 1

)
+ · · ·+ (−1)dgd(I).

Let grade G(I)+ ≥ d− 1. In sections 4 and 5 we shall prove that
(i) F (I) is Cohen-Macaulay if and only if g1(I) =

∑
n≥1 λ(mIn + JIn−1/JIn−1)− 1 and

(ii) F (I) has almost maximal depth if and only if g1(I) =
∑

n≥1 λ(mIn/mJIn−1)− 1.
It can be seen that the minimal number of generators of I, µ(I) ≤ e0(I) + d− λ(R/I). S. Goto in

[G] defined an ideal I in a Cohen-Macaulay local ring to have minimal multiplicity if equality holds
in the above inequality. He showed that if I has minimal multiplicity then F (I) is Cohen-Macaulay if
and only if G(I) has almost maximal depth. We shall recover this result in section 6 as a consequence
of our criterion for Cohen-Macaulayness in terms of g1(I). In fact we shall prove that I has minimal
multiplicity if and only if g1(I) = −1.

Since the criteria for Cohen-Macaulay and almost maximal depth properties of F (I) require one to
know the coefficient g1(I), it is desirable to have an effective method of its computation. In Section 5
we shall show that in a one dimensional Cohen-Macaulay local ring g1(I) =

∑
n≥1 λ(mIn/JmIn−1)−1.

We will also present a simple proof of a criterion due to T. Cortadellas and S. Zarzuela [CZ] for the
sequence of initial forms in F (I) of elements in a regular sequence in R to be a regular sequence in
F (I).

In Section 3 we shall generalize the fundamental lemma of Huneke in [H] for finding a formula for
g1(I). However, we need a modified version of this lemma so that it works for the function λ(R/mIn).

In the second section we will discuss the technical topic of superficial and regular elements in fiber
cones.

As no extra effort is required, we will prove our results for filtrations of ideals. In a subsequent
paper on fiber cones we will see that it is useful to develop the criteria for filtrations as sometime we
need to deal with filtrations to prove results about the I-adic filtration.

Acknowledgements: We thank Balwant Singh and Santiago Zarzuela for discussions.

2. Superficial and regular elements in fiber cones of filtrations

In this section we will gather some results on superficial and regular elements in fiber cones.
Throughout this paper (R,m) will denote a Noetherian local ring of positive (Krull) dimension d,
with maximal ideal m and infinite residue field R/m. A sequence of ideals F = {In}n≥0 is called a
filtration if I0 = R, I1 6= R, In+1 ⊆ In, and InIm ⊆ In+m for all n,m ≥ 0. The Rees algebra R(F)
and and the associated graded ring G(F) are defined to be the graded rings:
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R(F) = R⊕ I1t⊕ I2t
2 ⊕ · · · , G(F) = R/I1 ⊕ I1/I2 ⊕ I2/I3 ⊕ · · ·

The filtration F is called Noetherian if R(F) is a Noetherian ring. Throughout the paper we will
assume that F is Noetherian and In 6= 0 for all n ≥ 0. The ideal generated by elements of positive
degree in G(F) will be denoted by G(F)+. The filtration F is called I1-good if R(F) is a finite module
over the Rees algebra R(I1). An I1-good filtration is called a Hilbert filtration if I1 is m-primary.

The fiber cone of F with respect to an ideal K containing I1 is the graded ring

FK(F) = R/K ⊕ I1/KI1 ⊕ I2/KI2 ⊕ · · · .

For x ∈ I1, let x∗ and xo denote the initial form in degree one component of G(F) and FK(F)
respectively. We will always assume that In+1 ⊆ KIn for all ngeq0. This is required in Lemma 2.3
which is required in all the arguments that apply induction on the dimension of R in the subsequent
sections.

Definition 2.1. An element x ∈ I1 is said to be superficial in FK(F) if there exists c > 0 such that
(0 : xo) ∩ FK(F)n = 0 for all n > c.

It can easily be seen that xo is superficial in FK(F) if and only if there exists c > 0 such that
(KIn+1 : x) ∩ In = KIn for all n > c. We first show the existence of superficial elements in FK(F)
and proceed to prove some of their properties. The existence of superficial elements in a graded ring
is well-known. Since in our case we need existence of elements which are superficial in FK(F) as well
as G(F) simultaneously, we give a proof of the following result for the sake of completeness.

Proposition 2.2. Let (R,m) be a Noetherian local ring of dimension d > 0. Let F be an I1-good
filtration and K be an m-primary ideal containing I1. Then there exists x ∈ I1\KI1 such that xo is
superficial in FK(F) and x∗ is superficial in G(F).

Proof : Let the set of associated primes of G(F) and FK(F) be

Ass(G(F)) = {P1, . . . , Pr, Pr+1, . . . , Ps} and Ass(FK(F)) = {Q1, . . . , Ql, Ql+1, . . . , Qm}

such that for all n � 0, In/In+1 ⊆ Pi for r + 1 ≤ i ≤ s and In/KIn ⊆ Qj for l + 1 ≤ j ≤ m.
The associated graded ring G(F) and the fiber cone FK(F) are both homomorphic images of the ex-
tended Rees algebraR(F)(t−1) since G(F) = R(F)(t−1)/(t−1) and FK(F) = R(F)(t−1)/(t−1,K). Let
P = {P ′1, . . . , P ′s, Q′1, . . . , Q′m} be the collection of prime ideals in the extended Rees algebra R(F)(t−1)
which are the pre-images of the ideals P1, . . . , Ps in Ass(G(F)) and Q1, . . . , Qm in Ass(FK(F)) re-
spectively. Since R/m is infinite, R1 6= mI1t ∪ri=1 P

′
i ∪li=1 Q

′
i. Choose xt ∈ R1\mI1t ∪ri=1 P

′
i ∪li=1 Q

′
i.

We show that 0 6= xo ∈ FK(F)1 is superficial in FK(F) and x∗ ∈ G(F)1 is superficial in G(F). We
need to show that (0 : xo) ∩ FK(F)n = 0 for n � 0. Let yo ∈ (0 : xo). Let (0) = N1 ∩ · · · ∩ Nm

be a primary decomposition of (0) in FK(F) such that Ni is Qi-primary for i = 1, . . . ,m. Then
yoxo ∈ Ni for all 1 ≤ i ≤ l and xo /∈ Qi for i = 1, . . . , l. Therefore yo ∈ Ni for i = 1, . . . , l. Thus
(0 : xo) ⊆ N1 ∩ · · · ∩Nl. For l + 1 ≤ j ≤ m, FK(F)n ⊆ Qj for n � 0. Therefore there exists a c > 0
such that ⊕n≥cFK(F)n ⊆ Nl+1 ∩ · · · ∩Nm. Therefore for all n ≥ c

(0 : xo) ∩ FK(F)n ⊆ N1 ∩ · · · ∩Nl ∩Nl+1 ∩ · · · ∩Nm = (0).
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Therefore xo is superficial in FK(F). A similar argument shows that x∗ is superficial in G(F). �

In the next lemma, we characterize the property of an element being superficial in fiber cone in terms
of its properties in the local ring.

Lemma 2.3. (i) If there exists a c > 0 such that (KIn : x) ∩ Ic = KIn−1 for all n > c, then xo is
superficial in FK(F).

(ii) If xo is superficial in FK(F) and x∗ is superficial in G(F), then there exists c > 0 such that
(KIn : x) ∩ Ic = KIn−1 for all n > c. Moreover if x is regular in R, then KIn : x = KIn−1 for all
n� 0.

Proof : (i) Suppose (KIn : x)∩ Ic = KIn−1 for all n > c. Then (KIn : x)∩ In−1 ⊆ (KIn : x)∩ Ic =
KIn−1 for all n > c. Therefore xo is superficial in FK(F).

(ii) Suppose x ∈ I1 is such that xo is superficial in FK(F) and x∗ is superficial in G(F). Then there
exist c1, c2 such that for all n > c1, (0 : x∗) ∩ G(F)n = 0 and (0 : xo) ∩ FK(F)n = 0 for all n > c2.
Choose c = max{c1, c2}+ 1.

Claim : (KIn : x) ∩ Ic = KIn−1 for all n > c.

Let y ∈ (KIn : x) ∩ Ic. Without loss of generality one can assume that y ∈ Ic\Ic+1. We consider two
cases here.
Case I : y /∈ KIc. If xy ∈ KIc+1, then yo ∈ (0 : xo)∩FK(F)c = 0 which is a contradiction. Therefore,
xy /∈ KIc+1. Since xy ∈ KIn, n < c+ 1 so that n ≤ c. Therefore y ∈ Ic ⊆ In ⊆ KIn−1.
Case II : y ∈ KIc. Since yx ∈ KIn ⊆ In, y ∈ (In : x) ∩ Ic = In−1. Since y /∈ Ic+1, n − 1 < c + 1,
n ≤ c+ 1. Therefore y ∈ KIc ⊆ KIn−1.

Suppose that x is regular in R. Then by the Artin-Rees lemma, there exists a c such that KIn∩ (x) =
In−c(KIc ∩ (x)) ⊆ xIn−c ⊆ xIc for all n ≥ 2c. Therefore KIn : x ⊆ Ic for n� 0. Hence for all n� 0,
KIn : x = (KIn : x) ∩ Ic = KIn−1. �

For an element x ∈ I such that x∗ is superficial in G(I), it is known that x ∈ I\I2. In the following
result we show that a similar property is true for superficial elements in FK(F).

Lemma 2.4. If xo ∈ I1/KI1 is superficial in FK(F) and x∗ is superficial in G(F), then x ∈ I1 \ KI1.

Proof : Since xo ∈ FK(F) and x∗ ∈ G(F) are superficial, by Lemma 2.3, there exists c > 0 such that
(KIn : x) ∩ Ic = KIn−1 for all n > c. Put n = c+ 1. Then (KIc+1 : x) = KIc. Suppose x ∈ KI1. Let
y ∈ Ic. Then xy ∈ KIc+1 so that y ∈ (KIc+1 : x) = KIc. Therefore Ic = KIc. By Nakayama Lemma
Ic = 0 which is a contradiction to the fact that F is a Hilbert filtration. Therefore x ∈ I1 \ KI1. �

For the fiber cone FK(F), let H(FK(F), n) = λ(FK(F)n) = λ(In/KIn) denote its Hilbert function
and let P (FK(F), n) denote the corresponding Hilbert polynomial.

Proposition 2.5. Let xo ∈ FK(F) be superficial. Then dimFK(F)/xoFK(F) = dimFK(F)− 1.

Proof : Consider the exact sequence

0 −→ (KIn : x) ∩ In−1/KIn−1 −→ In−1/KIn−1
x−→ In/KIn −→ In/(KIn + xIn−1) −→ 0.



HILBERT COEFFICIENTS AND DEPTH OF FIBER CONES 5

Then H(FK(F), n) − H(FK(F), n − 1) = H(FK(F)/xoFK(F), n) − λ((KIn : x) ∩ In−1/KIn−1)
for all n ≥ 1. Since xo is superficial in FK(F), (KIn : x) ∩ In−1 = KIn−1 for n � 0, so that
P (FK(F)/(xo), n) = P (FK(F), n)−P (FK(F), n− 1). Hence dimFK(F)/xoFK(F) = dimFK(F)− 1.
�

In the following lemma we provide a characterization for regular elements in FK(F). It can be seen
that this property is quite similar to the behaviour of regular elements in G(I).

Lemma 2.6. For x ∈ I1\KI1, xo ∈ FK(F) is regular if and only if (KIn : x) ∩ In−1 = KIn−1 for all
n ≥ 1. If x∗ is regular in G(F) and xo is regular in FK(F) then KIn : x = KIn−1 for all n ≥ 1.

Proof : Suppose (KIn : x)∩ In−1 = KIn−1 for all n ≥ 1. In other words, (0 : xo)∩FK(F)n−1 = (0)
for all n ≥ 1. Since (0 : xo) is a homogeneous ideal, (0 : xo) = ⊕n≥0(0 : xo)∩FK(F)n = (0). Conversely,
assume that xo is a regular element in FK(F). Then αn : FK(F)n−1 −→ FK(F)n is an injective map for
all n ≥ 1, where αn is the multiplication by xo for all n ≥ 1. Since kerαn = (KIn : x)∩In−1/KIn−1 = 0,
(KIn : x) ∩ In−1 = KIn−1 for all n ≥ 1.

If KIn : x = KIn−1 for all n ≥ 1, then clearly xo is regular in FK(F). Suppose that x∗ is regular in
G(F) and xo is regular in FK(F). Let y ∈ KIn : x. If there exists a t such that 0 6= yo ∈ It/KIt,
then 0 6= yoxo ∈ It+1/KIt+1 so that yx /∈ KIt+1. Since yx ∈ KIn, n < t + 1. Therefore
y ∈ It ⊆ In ⊆ KIn−1. Suppose we can not find t such that 0 6= yo ∈ It/KIt. Then, if y ∈ In,
y ∈ KIn. Since y ∈ KIn : x, y ∈ In : x. By hypothesis, x∗ is regular in G. Hence In : x = In−1 for
n ≥ 1. Therefore y ∈ In−1 and hence y ∈ KIn−1. �

The following lemma is an analogue of Lemma 2.2 of [HM]. This will play a crucial role in induction
arguments. This is the so-called Sally-machine for fiber cones.

Lemma 2.7. Let x ∈ I1 be such that x∗ is superficial in G(F) and xo ∈ FK(F) is superficial in
FK(F). Let F̄ = {In + xR/xR}n≥0 and K̄ = K/xR. If depthFK̄(F̄) > 0, then xo is regular in
FK(F).

Proof : Let yo ∈ It/KIt be such that its natural image ȳo is a regular element in FK̄(F̄). Then
(KIn+tj : yj) ∩ In ⊆ (KIn, x) for all n, j ≥ 1. Since xo is superficial in FK(F) and x∗ is superficial in
G(F), there exists c > 0 such that (KIn+j : xj)∩ Ic = KIn for all n > c and j ≥ 1, by Lemma 2.3 (ii).
Let n and j be arbitrary and p > c/t. Then yp(KIn+j : xj) ⊆ (KIn+pt+j : xj) ∩ Ic ⊆ KIn+pt. Thus

(KIn+j : xj) ∩ In ⊆ (KIn+pt : yp) ∩ In ⊆ (KIn, x).

Therefore (KIn+j : xj) ∩ In ⊆ KIn + x(KIn+j : xj+1). Iterating this formula n+ 1 times we get,

(KIn+j : xj) ∩ In ⊆ KIn + xKIn−1 + · · ·+ xn+1(KIn+j : xn+j+1)

= KIn.

Therefore (KIn+j : xj) ∩ In = KIn for all n ≥ 1 and hence xo is regular in FK(F). �
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3. Hilbert coefficients for the function λ(R/KIn)

Throghout this section F = {In}n≥0 will be a Hilbert filtration of R. Let K be an ideal of R such
that In+1 ⊆ KIn for all n ≥ 0. Let H(F, n) = λ(FK(F)n) = λ(In/KIn) be the Hilbert function of
the fiber cone F = FK(F). Then, H(F, n) = λ(R/KIn)− λ(R/In). Since both H(F, n) and λ(R/In)
are polynomials for n � 0, λ(R/KIn) is also a polynomial for n � 0. Since the coefficients of this
polynomial are related with the Hilbert coefficients of the fiber cone and the Hilbert-Samuel coefficients
of F , it is expected that their properties will be related with the properties of the fiber cone. Huneke’s
fundamental lemma [H] provides formulas for the Hilbert coefficients of the Hilbert polynomial of an
m-primary ideal in a two-dimensional Cohen-Macaulay local ring. We will prove an analogue of this
lemma for the fiber cones. It will yield formulas for the Hilbert polynomial of the fiber cone once we
have access to a minimal reduction of I1.

Let HK(F , n) = λ(R/KIn) (resp. H(F , n) = λ(R/In)) and let PK(F , n) (resp. P (F , n)) be the
corresponding polynomial. Since PK(F , n) = P (F , n) + P (F, n), it is a polynomial of degree d with
leading coefficient e0(I). We write the above polynomials in the following way:

P (F, n) = f0

(
n+ d− 2
d− 1

)
− f1

(
n+ d− 3
d− 2

)
+ · · ·+ (−1)d−1fd−1,

P (F , n) = e0

(
n+ d− 1

d

)
− e1

(
n+ d− 2
d− 1

)
+ · · ·+ (−1)ded,

PK(F , n) = g0

(
n+ d− 1

d

)
− g1

(
n+ d− 2
d− 1

)
+ · · ·+ (−1)dgd.

Then g0 = e0 and gi = ei − fi−1 for all 1 ≤ i ≤ d. For a numerical function h : Z −→ Z, let
∆h(n) := h(n)− h(n− 1).

Lemma 3.1. Let (R,m) be a 2-dimensional Cohen-Macaulay local ring. Let F be a Hilbert filtration,
K be an ideal with I1 ⊆ K and J = (x, y) be a minimal reduction of I1. Then for all n ≥ 2,

∆2 [PK(F , n)−HK(F , n)] = λ

(
KIn

KJIn−1

)
− λ

(
KIn−1 : J
KIn−2

)
.

Proof : Consider the exact sequence

0 −−−−→ R
KIn−1:J

β−−−−→
(

R
KIn−1

)2 α−−−−→ J
KJIn−1

−−−−→ 0,

where α is the map α(r̄, s̄) = xr + ys and β(r̄) = (ȳr̄,−x̄r̄). It follows that for all n ≥ 2

2λ(R/KIn−1) = λ(R/(KIn−1 : J)) + λ(J/KJIn−1)

= λ(R/(KIn−1 : J)) + λ(R/KJIn−1)− λ(R/J).

Therefore e0(F) + 2λ(R/KIn−1) = λ(R/KJIn−1) + λ(R/(KIn−1 : J)). Hence

e0(F) − λ(R/KIn) + 2λ(R/KIn−1)− λ(R/KIn−2)

= λ(R/KJIn−1)− λ(R/KIn) + λ(R/(KIn−1 : J))− λ(R/KIn−2)

= λ(KIn/KJIn−1)− λ(KIn−1 : J/KIn−2)
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Since ∆2PK(F , n) = e0(F),

∆2 [PK(F , n)−HK(F , n)] = λ

(
KIn

KJIn−1

)
− λ

(
KIn−1 : J
KIn−2

)
.

�

Corollary 3.2 ([H], Fundamental Lemma 2.4). Let (R,m) be a 2-dimensional Cohen-Macaulay local
ring and I be an m-primary ideal. Let J = (x, y) be a minimal reduction of I. Let H(I, n) = λ(R/In)
be the Hilbert function of I and let P (I, n) be the corresponding Hilbert polynomial. Then for all n ≥ 2,

∆2[P (I, n)−H(I, n)] = λ

(
In

JIn−1

)
− λ

(
In−1 : J
In−2

)
.

Proof : Set K = R, F = {In} in Lemma 3.1. Then HK(F , n) = H(I, n) for all n ≥ 0 so that
PK(F , n) = P (I, n) and hence the assertion follows. �

As a consequence of the generalization of the Fundamental Lemma, we obtain expressions for the
Hilbert coefficients g1 and g2.

Corollary 3.3. Set

vn =


e0(F) if n = 0
e0(F)− λ(R/KI1) + λ(R/K) if n = 1
λ(KIn/KJIn−1)− λ(KIn−1 : J/KIn−2) if n ≥ 2.

Then g1 =
∑

n≥1 vn and g2 =
∑

n≥1(n− 1)vn + λ(R/K).

Proof : From Lemma 3.1 we have,∑
n≥0

∆2[PK(F , n)−HK(F , n)]tn =
∑
n≥0

vnt
n.

Write PK(F , n) = e0(F)
(
n+2

2

)
−g′1(n+1)+g′2. Then comparing with the earlier notation, we get g1 =

g′1−e0(F) and g2 = e0(F)−g′1 +g′2. Since PK(F , n) is a polynomial of degree 2, ∆2PK(F , n) = e0(F)
for all n ≥ 0 so that

∑
n≥0 ∆2PK(F , n)tn = e0(F)/(1 − t). Let

∑
n≥0HK(F , n)tn = f(t)/(1 − t)3.

Then by Proposition 4.1.9 of [BH], e0(F) = f(1), g′1 = f ′(1) and g′2 = f ′′(1)/2!. Also we have,∑
n≥0

∆2HK(F , n)tn =
∑
n≥0

HK(F , n)tn − 2
∑
n≥0

HK(F , n− 1)tn +
∑
n≥0

HK(F , n− 2)tn

=
f(t)

(1− t)3
− 2HK(F ,−1)− 2t

f(t)
(1− t)3

+HK(F ,−2) + tHK(F ,−1) + t2
f(t)

(1− t)3

=
f(t)

(1− t)
− 2λ(R/K) + λ(R/K) + tλ(R/K)

=
f(t)− (1− t)2λ(R/K)

(1− t)
.

Therefore ∑
n≥0

∆2[PK(F , n)−HK(F , n)]tn =
e0(F)− f(t) + (1− t)2λ(R/K)

(1− t)
=
∑
n≥0

vnt
n.
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Therefore

e0(F)− f(t) + (1− t)2λ(R/K) = (1− t)
∑
n≥0

vnt
n.

Hence

f(t) = e0(F) + (1− t)2λ(R/K)− (1− t)
∑
n≥0

vnt
n.(1)

Thus, f(1) = e0(F). Differentiating (1) with respect to t, we get

f ′(t) = −2(1− t)λ(R/K)− (1− t)
∑
n≥0

nvnt
n−1 +

∑
n≥0

vnt
n.

Therefore g′1 = f ′(1) =
∑

n≥0 vn. Differentiating (1) twice with respect to t, we get

f ′′(t) = 2λ(R/K)− (1− t)
∑
n≥0

n(n− 1)vntn−2 + 2
∑
n≥0

nvnt
n−1

so that

g′2 = f ′′(1)/2 =
∑
n≥0

nvn + λ(R/K).

Therefore

g1 = g′1 − e0(F) =
∑
n≥0

vn − e0(F) =
∑
n≥1

vn

and

g2 = g′2 − g1 =
∑
n≥0

nvn + λ(R/K)−
∑
n≥1

vn =
∑
n≥1

(n− 1)vn + λ(R/K).

�

Remark: The above formulas for g1 and g2 generalize the formulas for e1 and e2 obtained by Huneke
as consequences of his fundamental lemma. To obtain Huneke’s formulas for e1 and e2, one simply
puts K = R in the above formulas for g1 and g2.

Example 3.4. Let k be any field and let R = k[[x, y]]. Let I = (x3, x2y, y3). Then J = (x3, y3) is a
minimal reduction of I. Then rJ(I) = 3, mIn = mJIn−1 for all n ≥ 2 and mIn : J = mIn−1 for all
n ≥ 1. Therefore vn = 0 for all n ≥ 2. One can also see that e0 = 9 and λ(R/mI) = 10. Hence we have
v0 = 9, v1 = e0−λ(R/mI)+λ(R/m) = 9−10+1 = 0 Thus g′1 = v0 +v1 = 9 and g′2 = v1 +λ(R/m) = 1
which gives g1 = g′1 − e0 = 0 and g2 = g′2 − g′1 + e0 = 1.

The following lemma shows that the behaviour of the superficial elements in FK(F) is quite similar
to that of superficial elements in G(F).

Lemma 3.5. Let x be a regular element in I1 such that xo is superficial in FK(F) and x∗ is superficial
in G(F). Let ḡi denote the coefficients of the polynomial corresponding to the function λ(R̄/K̄Īn),
where “− ” denotes modulo(x). Then ḡi = gi for all i = 0, . . . , d− 1.
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Proof : Consider the exact sequence

0 −→ KIn : x
KIn

−→ R/KIn
x−→ R/KIn −→ R/(KIn + xR) −→ 0.

Then λ(R̄/K̄Īn) = λ(R/(KIn + xR)) = λ(KIn : x/KIn). Since xo is superficial in FK(F) and x∗

is superficial in G(F), KIn : x = KIn−1 for n � 0, by Lemma 2.3. Hence, λ(R/(KIn + xR)) =
λ(R/KIn)− λ(R/KIn−1). for n� 0. Therefore

PK̄(F̄ , n) = PK(F , n)− PK(F , n− 1)

=
d∑
i=0

(−1)igi

(
n+ d− i− 1

d− i

)
−

d∑
i=0

(−1)igi

(
n+ d− i− 2

d− i

)

=
d−1∑
i=0

(−1)igi

(
n+ d− i− 2
d− 1− i

)
.

�

4. Cohen-Macaulay fiber cones

In this section we obtain a lower bound for the Hilbert coefficient g1. We will characterize the
Cohen-Macaulayness of FK(F) in terms of g1. In this characterization, We need to assume that G(F)
has almost maximal depth. We will show by an example that we need this assumption for such a
characterization.

Proposition 4.1. Let (R,m) be a Cohen-Macaulay local ring of dimension d with infinite residue
field and let J ⊆ I1 be a minimal reduction of I1 and let K be an ideal such that In+1 ⊆ KIn. Then
g1 ≥

∑
n≥1 λ(KIn + J/J)− λ(R/K).

Proof : We apply induction on d. Let d = 1 and let (x) = J . For i ≥ 0, from the exact sequence

0 −→ (KIi+1 : x) ∩ Ii
KIi

−→ Ii/KIi
x−→ Ii+1/KIi+1 −→ Ii+1/(KIi+1 + xIi) −→ 0.

it follows that

λ

(
Ii+1

KIi+1

)
− λ

(
Ii
KIi

)
= λ

(
Ii+1

(KIi+1 + xIi)

)
− λ

(
(KIi+1 : x) ∩ Ii

KIi

)
· · · · · · (Ei).

Summing up E0, E1, · · · , En−1, we get

λ(In/KIn)− λ(R/K) =
n∑
i=1

λ(Ii/(KIi + xIi−1))−
n∑
i=1

λ((KIi : x) ∩ Ii−1/KIi−1).

Thus for all n� 0,

f0 = λ(R/K) +
∑
i≥1

λ(Ii/(KIi + xIi−1))−
∑
i≥1

λ((KIi : x) ∩ Ii−1/KIi−1).
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Since γ(F) ≥ d− 1, by Theorem 4.7 of [HM], e1(F) =
∑

i≥1 λ(Ii/xIi−1). Thus

g1 = e1(F)− f0

=
∑
i≥1

λ(Ii/xIi−1)− λ(R/K)−
∑
i≥1

λ(Ii/(KIi + xIi−1)) +
∑
i≥1

λ((KIi : x) ∩ Ii−1/KIi−1)

=
∑
i≥1

λ((KIi + xIi−1)/xIi−1) +
∑
i≥1

λ((KIi : x) ∩ Ii−1/KIi−1)− λ(R/K).

This implies that g1 ≥
∑

i≥1 λ((KIi+xIi−1)/xIi−1)−λ(R/K) ≥
∑

i≥1 λ(KIi+J/J)−λ(R/K). Hence
the result is true for d = 1. Let us assume that d > 1 and the assertion is true for d− 1. Choose the
generators x1, . . . , xd of J such that xo1 (resp. x∗1 ∈ G(F)) is superficial in FK(F) (resp. G(F)). Let
“− ” denote images modulo(x1). Then by Lemma 3.5, ḡ1 = g1. By induction

ḡ1 ≥
∑
n≥1

λ(K̄Īn + J̄/J̄)− λ(R̄/K̄)

= λ((KIn + xR) + (J + xR)/(J + xR))− λ(R/K)

=
∑
n≥1

λ(KIn + J/J)− λ(R/K).

�

Now we prove a characterization for Cohen-Macaulayness of the fiber cone in terms of g1.

Theorem 4.2. Let (R,m) be a Cohen-Macaulay local ring of dimension d > 0 with R/m infinite.
Let F = {In} be a Hilbert filtration of R and let K be an ideal of R containing I1. Let J be a
minimal reduction of I1. Assume that γ(F) ≥ d − 1. Then FK(F) is Cohen-Macaulay if and only if
g1 =

∑
n≥1 λ(KIn + JIn−1/JIn−1)− λ(R/K).

Proof. Suppose that FK(F) is Cohen-Macaulay. As J + KI1/KI1 is generated by a homogeneous
system of parameters of degree 1, f0 = λ(FK(F)/JFK(F)) =

∑
i≥0 λ(Ii/(KIi+JIi−1)). Since γ(F) ≥

d− 1, by Theorem 4.7 of [HM], e1 =
∑

i≥1 λ(Ii/JIi−1). Therefore

g1 = e1 − f0 =
∑
n≥1

λ(In/JIn−1)−
∑
n≥0

λ(In/(KIn + JIn−1))

=
∑
n≥1

λ(In/JIn−1)−
∑
n≥1

λ(In/(KIn + JIn−1))− λ(R/K)

=
∑
n≥1

λ(KIn + JIn−1/JIn−1)− λ(R/K).

Conversely, suppose g1 =
∑

n≥1 λ(KIn + JIn−1/JIn−1) − λ(R/K). Then by reversing the above
steps, one can see that f0 =

∑
n≥0 λ(In/(KIn + JIn−1)) = λ(FK(F)/JFK(F)). Therefore FK(F) is

Cohen-Macaulay. �

The following example shows that the assumption in Theorem 4.2 that depthG(F) ≥ d− 1 cannot be
dropped.
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Example 4.3. Let R = k[[x, y]],m = (x, y) and I = (x4, x3y, xy3, y4). Then J = (x4, y4) is a minimal
reduction of I and I3 = JI2. Note that In = m4n for all n ≥ 2. We compute the Hilbert coefficients
of I. Since In = m4n for all n ≥ 2, λ(R/In) = λ(R/m4n) =

(
4n+1

2

)
= e0(I)

(
n+1

2

)
− e1(I) n + e2(I).

Solving the equation by putting various values for n, we get e0(I) = 16, e1(I) = 6, e2(I) = 0. From
direct computations one can see λ(I/J) = 5 and λ(I2/JI) = 2. Hence e1(I) <

∑
n≥1 λ(In/JIn−1).

Therefore depthG(I) = 0. Since In = m4n for all n ≥ 2, µ(In) = λ(m4n/m4n+1) =
(

4n+1
1

)
for all

n ≥ 1. Therefore f0 = 4 so that g1 = e1 − f0 = 2. Also, one can see that λ(mI + J/J) 6= 0 and
mIn ⊆ JIn−1 for all n ≥ 2. Then λ(mI + J/J) = λ(mI/mI ∩ J) = λ(mI/mJ) = 3. Therefore∑

n≥1 λ(mIn + JIn−1/JIn−1)− 1 = 2 = g1. The Hilbert Series of the fiber cone is given by

H(F (I), t) =
1 + 2t+ 2t2 − t3

(1− t)2
.

Since the numerator contains a negative coefficient, F (I) is not Cohen-Macaulay.

5. Fiber cones with almost maximal depth

In this section we present a characterization for the fiber cone FK(F) to have almost maximal
depth in terms of g1. This is an analogue of the Huckaba-Marley characterization for the associated
graded ring to have almost maximal depth referred above. We will need to invoke a result due to T.
Cortadellas and S. Zarzuela from [CZ] which gives a criterion for a sequence of degree one elements
in FK(F) to be a regular sequence. We take this opportunity to present a simple proof of their result
since it is a very basic result for detecting regular sequences in fiber cones.

Theorem 5.1. Let (R,m) be a Noetherian local ring, F a filtration of ideals, K an ideal containing
I1 and x1, . . . , xk ∈ I1. Assume that

(i) x1, . . . , xk is a regular sequence in R.
(ii) x∗1 . . . , x

∗
k ∈ G(F) is a regular sequence.

(iii) xo1, . . . , x
o
k ∈ FK(F) is a superficial sequence.

Then depth(xo1,...,x
o
k) FK(F) = k if and only if (x1, . . . , xk) ∩KIn = (x1, . . . , xk)KIn−1 for all n ≥ 1.

Proof : We induct on k. Let k = 1. Let (x) ∩KIn = xKIn−1 for all n ≥ 1. Then KIn : x = KIn−1

for all n ≥ 1 and hence xo is regular in FK(F). Suppose xo is regular in FK(F). Let n ≥ 1 and
y ∈ (x)∩KIn. Let y = rx for some r ∈ R. Then r ∈ KIn : x ⊆ In : x. Since x∗ is a nonzerodivisor in
G(F), In : x = In−1 for all n ≥ 1. Therefore r ∈ In−1. Hence r ∈ (KIn : x) ∩ In−1 = KIn−1 so that
y ∈ xKIn−1. Now assume that k > 1 and the result is true for all l ≤ k − 1. Put J = (x1, . . . , xk),
Jo = (xo1, . . . , x

o
k) ⊆ FK(F) and J∗ = (x∗1, . . . , x

∗
k) ⊆ G(F). Let “ − ” denote images modulo (x1).

Then FK(F)/xo1FK(F) ∼= FK̄(F̄). Assume J ∩KIn = JKIn−1 for all n ≥ 1. Then

J̄∩K̄Īn = (J+x1R)∩(KIn+x1R) = J∩(KIn+x1R) = (J∩KIn)+x1R = JKIn−1 +x1R = J̄K̄Īn−1.

By induction depthJ̄o FK̄(F̄) = k − 1. Thus xo1 is regular in FK(F) and hence, depthJo(FK(F)) = k,
by Lemma 2.7. Conversely assume that depthJo(FK(F)) = k. Since xo1 is superficial in FK(F) and



12 A. V. JAYANTHAN AND J. K. VERMA

depthFK(F) > 0, xo1 is regular in FK(F). Then depthJ̄o(F (Ī)) = k − 1. Hence, by induction,
J̄ ∩ K̄Īn = J̄K̄Īn−1. Therefore, J ∩KIn + x1R = JKIn−1 + x1R. Hence

J ∩KIn = JKIn−1 + (x1R ∩ (J ∩KIn))

= JKIn−1 + (x1R ∩KIn)

= JKIn−1 + (x1KIn−1) = JKIn−1.

Therefore J ∩KIn = JKIn−1. �

We need the following lemma in the proof of the characterization for the fiber cone to have depth at
least d− 1.

Lemma 5.2. Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let F = {In} be a Hilbert
filtration of R such that γ(F) ≥ d−1. Let K be an ideal of R containing I1. Let J = (x1, . . . , xd) be a
minimal reduction of I1 such that x∗1, . . . , x

∗
d−1 is a regular sequence in G(F). If KIn∩(x1, . . . , xd−1) ⊆

JKIn−1 for all n ≥ 1, then xo1, . . . , x
o
d−1 is a regular sequence in FK(F).

Proof : Since x∗1, . . . , x
∗
d−1 is a regular sequence in G(F), by Theorem 5.1, it is enough to show that

KIn ∩ (x1, . . . , xd−1) = (x1, . . . , xd−1)KIn−1 for all n ≥ 1. Induct on n. Let z ∈ KI1 ∩ (x1, . . . , xd−1).
Write z =

∑d−1
i=1 rixi for ri ∈ R. Since KI1 ∩ (x1, . . . , xd−1) ⊆ (x1, . . . , xd)K, z =

∑d−1
i=1 sixi + pxd

for some p, si ∈ K. Then pxd ∈ (x1, . . . , xd−1) and hence p ∈ (x1, . . . , xd−1). Since xd ∈ K, z ∈
(x1, . . . , xd−1)K. Now assume that n ≥ 2 and for all l < n,

KIl ∩ (x1, . . . , xd−1) = (x1, . . . , xd−1)KIl−1.

Let z ∈ KIn∩(x1, . . . , xd−1) ⊆ JKIn−1. Write z =
∑d−1

i=1 rixi =
∑d−1

i=1 sixi+pxd, where ri ∈ R, p, si ∈
KIn−1. Then pxd ∈ (x1, . . . , xd−1) and hence p ∈ (x1, . . . , xd−1). Therefore

KIn ∩ (x1, . . . , xd−1) = (x1, . . . , xd−1)KIn−1 + xd(KIn−1 ∩ (x1, . . . , xd−1)).

By induction KIn−1 ∩ (x1, . . . , xd−1) ⊆ (x1, . . . , xd−1)KIn−2. Hence p ∈ (x1, . . . , xd−1)KIn−2 so that
pxd ∈ (x1, . . . , xd−1)KIn−1. Therefore z ∈ (x1, . . . , xd−1)KIn−1. �

We prove a necessary and sufficient condition for the fiber cone to have depth at least d− 1 in terms
of g1 in the following theorem.

Theorem 5.3. Let (R,m) be a Cohen-Macaulay local ring of dimension d > 0. Let F be a Hilbert
filtration, K an ideal such that In+1 ⊆ KIn for all n ≥ 0 and J a minimal reduction of I1. Assume
that γ(F) ≥ d− 1. Then g1 =

∑
n≥1 λ(KIn/JKIn−1)− λ(R/K) if and only if depthFK(F) ≥ d− 1.

Proof : We induct on d. Let d = 1. Let (x) be a reduction of I1. From the proof of Proposition 4.1
we get,

g1 =
∑
n≥1

λ((KIn + xIn−1)/xIn−1) +
∑
n≥1

λ((KIn : x) ∩ In−1/KIn−1)− λ(R/K).
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Claim : For all n ≥ 1, (KIn : x) ∩ In−1/KIn−1
∼= xIn−1 ∩KIn/xKIn−1.

Consider the multiplication map µx : (KIn : x) ∩ In−1/KIn−1 −→ xIn−1 ∩ KIn/xKIn−1. Let y =
xs ∈ xIn−1 ∩ KIn for some s ∈ In−1. Then s ∈ (KIn : x) ∩ In−1. Therefore, µx is surjective. Let
y ∈ (KIn : x) ∩ In−1 and xy ∈ xKIn−1. Since x is regular in R, y ∈ KIn−1. Hence µx is injective so
that µx is an isomorphism. Therefore we have,

g1 =
∑
i≥1

[λ(KIi/(KIi ∩ xIi−1)) + λ((xIi−1 ∩KIi)/xKIi−1)]− λ(R/K)

=
∑
i≥1

λ(KIi/xKIi−1)− λ(R/K).

Assume now that d > 1. Choose x1, . . . , xd such that J = (x1, . . . , xd), x∗1, . . . , x
∗
d is a superficial

sequence in G(F) and (xo1, . . . , x
o
d) is a superficial sequence in FK(F). Since γ(F) ≥ d−1, x∗1, . . . , x

∗
d−1

is a regular sequence in G(F) (existence of such a generating set can be derived from Proposition
A.2.4 of [Ma]). Suppose g1 =

∑
n≥1 λ(KIn/JKIn−1) − λ(R/K). Let “ − ” denote images modulo

(x1, . . . , xd−1). Then by Lemma 3.5, g1 = ḡ1 and

ḡ1 =
∑
n≥1

λ(K̄Īn/J̄K̄Īn−1)− λ(R̄/K̄) (Since dim R̄ = 1)

=
∑
n≥1

λ((KIn + (x1, . . . , xd−1))/(JKIn−1 + (x1, . . . , xd−1)))− λ(R/K)

=
∑
n≥1

λ(KIn/(JKIn−1 +KIn ∩ (x1, . . . , xd−1)))− λ(R/K).

By assumption g1 =
∑

n≥1 λ(KIn/JKIn−1) − λ(R/K). Therefore, (x1, . . . , xd−1) ∩KIn ⊆ JKIn−1.
Hence by Lemma 5.2, xo1, . . . , x

o
d−1 is a regular sequence in FK(F).

Conversely, let depthFK(F) ≥ d−1. Choose x1 ∈ I1 such that x∗1 is regular in G(F) and xo1 is regular
in FK(F). Hence FK(F)/xo1FK(F) ∼= FK̄(F̄) and g1 = ḡ1, where “ − ” denote images modulo (x1).
Then depthFK(F)/xo1FK(F) ≥ d− 2. By induction

ḡ1 =
∑
n≥1

λ(KIn + x1R/JKIn−1 + x1R)− λ(R/K)

=
∑
n≥1

λ(KIn/(JKIn−1 + (x1R ∩KIn)))− λ(R/K).

Since xo1 is regular in FK(F) and x∗1 is regular in G(F), x1R ∩KIn = x1KIn−1. Therefore

ḡ1 =
∑
n≥1

λ(KIn/(JKIn−1 + x1KIn−1))− λ(R/K) =
∑
n≥1

λ(KIn/JKIn−1)− λ(R/K).

Since g1 = ḡ1, the assertion follows. �

6. Cohen-Macaulay fiber cones of ideals with minimal multiplicity

Let (R,m) be a Cohen-Macaulay local ring of dimension d > 0. Let I be an m-primary ideal of R and
J be a minimal reduction of I. Let K be an ideal containing I. Let FK(I) be the fiber cone of I with
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respect to K and let G(I) be the associated graded ring of I. Let µ(I) denote the minimum number
of generators of I. It is known that e0(I) + d− λ(R/I) ≥ µ(I), [G]. Shiro Goto defined an ideal I to
have minimal multiplicity if e0(I) +d−λ(R/I) = µ(I). It can be seen that I has minimal multiplicity
if and only if for any minimal reduction J of I, Im = Jm. We generalize this notion. An ideal I is
said to have minimal multiplicity with respect to K if KI = KJ for any minimal reduction J of I.
Let HK(I, n) = λ(R/KIn) and PK(I, n) =

∑d
i=0(−1)igi

(
n+d−i−1

d−i
)

be the corresponding polynomial.

Proposition 6.1. Let (R,m) be a Cohen-Macaulay local ring of dimension d.
(i) If I has minimal multiplicity with respect to K, then g1 = −λ(R/K).
(ii) If KI ∩ J = KJ and g1 = −λ(R/K) then I has minimal multiplicity.
(iii) The ideal I has minimal multiplicty if and only if g1 = −1.

Proof. (i) Suppose I has minimal multiplicity with respect to K. Let J be a minimal reduction of I.
Then KIn = KJn for all n ≥ 1. Therefore for all n ≥ 1,

λ(R/KIn) = λ(R/KJn) = λ(R/Jn) + λ(Jn/KJn)

= e0(I)
(
n+ d− 1

d

)
+ λ(R/K)

(
n+ d− 1
d− 1

)
.

Hence g1 = −λ(R/K).
(ii) Suppose g1 = −λ(R/K) andKI∩J = KJ. By Proposition 4.1, g1 ≥

∑
n≥1 λ(KIn+J/J)−λ(R/K).

Hence KI ⊆ J. Thus KI = KI ∩ J = KJ. Hence I has minimal multiplicity with respect to K.
(iii) Follows from (i) and (ii) since mI ∩ J = mJ.

�

In the next result we generalize Proposition 2.5 of [G].

Proposition 6.2. Let (R,m) be a d-dimensional Cohen-Macaulay local ring and let I be an m-primary
ideal with minimal multiplicity with respect to K ⊇ I. Suppose KI ∩ J = KJ Then FK(I) is Cohen-
Macaulay if and only if γ(I) ≥ d− 1.

Proof. Suppose that I has minimal multiplicity with respect to K and FK(I) is Cohen-Macaulay. Since
e1(I) = f0 +g1. By Theorem 4.7 of [HM], it is enough to show that e1(I) =

∑
n≥1 λ(In/JIn−1). Since

FK(I) is Cohen-Macaulay, by [DRV], f0 =
∑

n≥0 λ(In/JIn−1 +KIn) = λ(R/K)+
∑

n≥1 λ(In/JIn−1),
the last equality holds since KIn ⊆ JIn−1 for all n ≥ 1. Since I has minimal multiplicity with
respect to K, g1 = −λ(R/K). Therefore e1(I) = λ(R/K) +

∑
n≥1 λ(In/JIn−1) − λ(R/K) =∑

n≥1 λ(In/JIn−1). Hence γ(I) ≥ d− 1.
Conversely, assume that γ(I) ≥ d − 1. Then e1(I) =

∑
n≥1 λ(In/JIn−1). Since I has minimal

multiplicity with respect to K, KIn ⊆ JIn−1 for all n ≥ 1 so that
∑

n≥1 λ(KIn + JIn−1/JIn−1) = 0.
Therefore

∑
n≥1 λ(KIn + JIn−1/JIn−1) − λ(R/K) = −λ(R/K) = g1. Therefore, by Theorem 4.2,

FK(I) is Cohen-Macaulay. �

Proposition 6.3. Let (R,m) be a d-dimensional Cohen-Macaulay local ring and I be an m-primary
ideal of R such that γ(I) ≥ d − 1. Let J be a minimal reduction of I such that KI ∩ J = KJ and
KI2 = KJI. Then FK(I) is Cohen-Macaulay.
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Proof. Apply induction on d. Let d = 1. Then KIn = Kxn−1I for all n ≥ 2. For n ≥ 2,

λ(R/KIn) = λ(R/Kxn−1I) = λ(R/xn−1R) + λ(xn−1R/Kxn−1I)

= (n− 1)e0(I) + λ(R/KI) = e0(I) n− [λ(R/(x))− λ(R/KI)] .

Therefore

g1 = λ(R/(x))− λ(R/KI) = λ(R/xK)− λ(xR/xK)− λ(R/KI) = λ(KI/KJ)− λ(R/K).

Since KIn = KJIn−1 ⊆ JIn−1, λ(KIn + JIn−1/JIn−1) = 0 for n ≥ 2. Therefore by Theorem 4.2,
FK(I) is Cohen-Macaulay.

Now Let d > 1 and let J = (x1, . . . , xd) is chosen such that x∗1 . . . , x
∗
d−1 ∈ G(I) is a regular sequence.

Let “−” denote modulo (x1, . . . , xd−1). Then Ī2K̄ = J̄ ĪK̄ and K̄Ī∩ J̄ = K̄J̄ . Therefore, by induction
FK̄(Ī) is Cohen-Macaulay. Therefore depthFK̄(Ī) = 1. Hence, by Lemma 2.7, depthFK(I) = d.

�

Theorem 6.4. Let (R,m) be a Cohen-Macaulay local ring of dimension d and let I be an m-primary
ideal of R with minimal multiplicity. Then the following statements are equivalent:

1. G(I) is Cohen-Macaulay.
2. F (I) is Cohen-Macaulay and r(I) ≤ 1.
3. r(I) ≤ 1.

Proof. (1) ⇒ (2) : Since I has minimal multiplicity, Im = Jm for any minimal reduction J of I.
Assume that G(I) is Cohen-Macaulay. Then by Proposition 6.2, F (I) is Cohen-Macaulay. Therefore

f0 =
∑
n≥0

λ(In/JIn−1 + mIn) = 1 +
∑
n≥1

λ(In/JIn−1) (since mIn ⊆ JIn−1 for all n ≥ 1)

= 1 + λ(I/J) +
∑
n≥2

λ(In/JIn−1)

= 1 + e0(I)− λ(R/I) +
∑
n≥2

λ(In/JIn−1)

= 1 + µ(I)− d+
∑
n≥2

λ(In/JIn−1)

Since I2 ⊆ Im = Jm ⊆ J , I2 = I2 ∩ J = IJ , as G(I) is Cohen-Macaulay.
(2) ⇒ (3) : Clear.
(3) ⇒ (1) : This is known but we recall the argument. Assume that r(I) ≤ 1. Then In+1 = JIn for
all n ≥ 1 so that JIn = In+1 ∩ J for all n ≥ 1. Therefore by [VV], x∗1, . . . , x

∗
d is a regular sequence in

G(I). Hence G(I) is Cohen-Macaulay. �

Example 6.5. Let R = k[[t4, t5, t6, t7]] and let I = (t4, t5, t6). Then J = (t4) is a minimal reduction
of I. It can easily be checked that Im = Jm. Hence F (I) is Cohen-Macaulay. Since I has minimal
multiplicity, g1 = −1. Since mIn ⊆ J for all n ≥ 1, g1 = −1 =

∑
n≥1 λ(mIn+JIn−1/JIn−1)−λ(R/m).
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