
EXERCISES IN

MA 510 : COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY

SPRING 2006

1. Examples of algebraic varieties

(1) Find all algebraic varieties in A1
k.

(2) Show that for a finite field F, all subsets of An
F are algebraic varieties.

(3) Show that the set {(t, t2, t3) | t ∈ k} is an algebraic variety in A3
k.

(4) Show that the following sets are not algebraic varieties: (a) {(x, y) ∈ A2
R | y = sin x}.

(b) {(cos t, sin t, t) ∈ A3
R | t ∈ R}. (c) {(x, ex) ∈ A2

R | x ∈ R}.
(5) Let p = (a1, a2, . . . , an) and q = (b1, b2, . . . , bn) be distinct points of An

k . Show that

the line Lpq = {tp + (1− t)q | t ∈ k} is an algebraic variety of An
k defined by the set

of the linear polynomials

{(ai − bi)(xj − bj)− (aj − bj)(xi − bi) | 1 ≤ i, j ≤ n}.

(6) Show that if V ⊆ An
k is an algebraic variety then Lpq ⊆ V or Lpq ∩ V is finite.

(7) Let Mn(k) denote the set of all n× n matrices with entries from a field k. Show that

the sets of symmetric, skew-symmetric, orthogonal, trace 0 and diagonal matrices are

algebraic varieties.

(8) Show that the set of all matrices in Mn(k) of rank atmost r, where r ≤ n is an

algebraic variety.

(9) If a field k is not algebraically closed, then any algebraic variety in An
k can be

written as V (g) where g is a polynomial. Hint: Show that there a polynomial

φ(x1, x2, . . . , xm) ∈ k[x1, x2, . . . , xm], such that V (φ) = {0}. Let V = V (f1, f2, . . . , fm).

Consider the solutions to φ(f1, f2, . . . , fm) = 0.

(10) Let V ⊆ An
C be an algebraic variety such that Zn ⊆ V. Show that V = An

C.

2. Noetherian rings

Let R be a nonzero commutative ring and k be a field.

(11) Show that the ring of continuous real valued functions on [0, 1] is not Noetherian.
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(12) Let X be an infinite set. Show that R = {f : X → F2 | f is a function} is not

Noetherian.

(13) Show that if R is Noetherian then so is the formal power series ring R[[x]].

(14) This exercise outlines a proof of Cohen’s theorem: If all prime ideals of R are finitely

generated then R is Noetherian.

(a) Prove that if the collection C of ideals of R that are not finitely generated is

nonempty, then it contains a maximal element I and that R/I is Noetherian.

(b) Show that the ideal I in (a) is a prime ideal. Hint: Let x, y ∈ R be such

that xy ∈ I and neither x nor y is in I. Note that (I, x) and (I : x) are finitely

generated. Let J be a finitely generated ideal such that (J, x) = (I, x). Now show

that I = J + x(I : x). This contradicts the fact that I is not finitely generated.

(15) Let R be a Noetherian ring and f : R → R be a surjective ring homomorphism.

Show that f is an isomorphism. Hint: Consider the ascending chain Ker(fn).

3. Decomposition of algebraic varieties

(16) Decompose the complex varieties V (y − x2) and V (y4 − x2, y4 − x2y2 + xy2 − x3) as

subsets A2
C.

(17) Show that f(x, y) = y2 + x2(x− 1)2 ∈ R[x, y] is an irreducible polynomial but V (f)

is reducible.

(18) Let V ⊂ W ⊂ An
k be algebraic varieties. Show that each irreducible component of V

is contained in an irreducible component of W.

(19) Show that An
k is irreducible if and only if k is infinite.

(20) Find the irreducible components of V (y2 − xy − x2y − y) in A2
R and in A2

C. Do the

same for V (y2 − x(x2 − 1)).

4. Integral extensions, Noether normalization and Nullstellensatz

(21) Show that a UFD is integrally closed in its quotient field.

(22) Find the integral closures of k[x, y]/(y2 − x3) and k[x, y]/(x − y2) in their quotient

fields.

(23) Let R be a UFD and let P = (t) be a principal proper prime ideal of R. Show that

there is no nonzero prime ideal Q of R such that Q is properly contained in P.

(24) Let V = V (f) be an irreducible hypersurface in An. Show that there is no irreducible

algebraic variety W such that W is properly between V and An.
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(25) Let P = (x2 − y3, y2 − z3) be an ideal in R = k[x, y, z] where k is a field. Define

the ring homomorphism f : R → k[t] by f(x) = t9, f(y) = t6, f(z) = t4. Show that

the kernel of f is P and hence P is a prime ideal. Show that I(V (P )) = P. Is R

integrally closed in its quotient field ? Find f ∈ R/P which is transcendental over k

such that R/P is a finite k[f ]-algebra.

(26) Let R = k[x, y]/(y2 − x3 + x). Find an algebraically independent f ∈ R such that R

is integral over k[f ].

(27) Let S/R be an integral ring extension where S is a finite R-algebra generated by n

elements. Let m be a maximal ideal of R. Show that there are atmost n maximal

ideals in S containing mS.

(28) Let k be an algebraically closed field and R = k[x1, x2, . . . , xn]. Let I be an ideal of

R. Suppose that V (I) = {P1, P2, . . . , Pr}. Consider the map φ : R → kr defined by

φ(f) = (f(P1), f(P2), . . . , f(Pr)). Show that f is a surjective linear transformation

and find its kernel.

(29) Let the notation be as in the above exercise. Show that V (I) is finite if and only if

R/I is a finite dimensional k-vector space.

(30) Let k be an algebraically closed field and R = k[x1, x2, . . . , xn]. Let I be a proper ideal

of R. Show that
√

I = ∩{ma | a ∈ V (I)}. Here ma = (x1 − a1, x2 − a2, . . . , xn − an)

for a = (a1, a2, . . . , an). Using this show that for any non-maximal prime ideal P of

R, V (P ) is infinite.

5. Polynomial and rational functions and maps of affine varieties

(31) Let C = V (y2 − x3). Show that the map φ : A1
C → C, φ(t) = (t2, t3), is a homeo-

morphism in Zariski topology but it is not an isomorphism of affine varieties.

(32) Show that the hyperbola V (xy − 1) ⊂ A2
C is not isomorphic to the complex affine

line.

(33) Give an example to show that the image of a polynomial map f : Cn → Cm need not

be an affine variety.

(34) Let X = V (x, y) and Y = V (z, w) be subvarieties of A4
C. Show that the ideal of

X ∪ Y cannot be generated by two polynomials.

(35) Let k = Fp. Consider the Frobenius map:

F : An
k → An

k , F (a1, a2, . . . , an) = (ap
1, a

p
2, . . . , a

p
n).

Show that F is a bijective morphism. Is it an isomorphism of varieties ?

(36) Let φ : V → W be a polynomial map of affine varieties. Let φ∗ : k[W ] → k[V ] be

the corresponding k-algebra homomorphism of their coordinate rings. Let φ(p) = q

where p ∈ V. Show that φ∗ extends uniquely to a ring homomorphism δ : OW,q → OV,p

and δ maps the unique maximal ideal of OW,q into that of OV,p.
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(37) Let V be an irreducible affine variety and f ∈ k(V ). The pole set of f is defined to

be the set of points of V where f is not defined. Show that the pole set of f is an

algebraic subvariety of V.

(38) let V = V (Y 2 −X2(X + 1)) ⊂ A2
k. Let x and y be residues of X and Y respectively

in k[V ]. Let z = y/x. Find the set of poles of z and z2.

(39) Let V be an affine variety and p ∈ V. Show that there is a one-to-one correspondence

between prime ideals in OV,p and and subvarieties of V which pass through p. Hint:

Show that if P is a prime ideal of OV,p, then P ∩ k[V ] is a prime ideal of k[V ] and P

is generated by P ∩ k[V ].

(40) Let C = V (Y 2 −X2 −X3). Show that φ : A1
k → C given by φ(t) = (t2 − 1, t3 − t) is

not an isomorphism. Is φ : A1
k \ {1} → C an isomorphism ?

6. Projective varieties

(41) Let T : An+1 → An+1 be an invertible linear transformation. Then T maps lines

through origin to lines through origin. Hence T determins a map of Pn called a projec-

tive change of coordinates. Let T = (T1, T2, . . . , Tn) where T1, . . . , Tn are linear forms.

Let V = V (F1, F2, . . . , Fr) where F1, F2, . . . , Fr are forms in S = k[x0, x1, . . . , xn].

Show T−1(V ) = V (G1, G2, . . . , Gr) where Gi = Fi(T1, T2, . . . , Tn) for i = 1, 2, . . . , r.

Let S(V ) denote the homogeneous coordinate ring of a projective variety V. Show

(i) S(V ) is isomrphic to S(T−1V ),

(ii) k(V ) is isomorphic to k(T−1(V )) and

(iii) OV,p is isomorphic to OT−1(V ),T−1(p).

(42) Consider the real affine quadrics: C = V (x2 + y2 − 1), H = V (x2 − y2 − 1) and

P = V (x2 − y).

(i) Determine the intersections of their projective closures C∗, H∗ and P ∗ with the

line at infinity.

(ii) Show that C∗ and H∗ are projectively equivalent to P ∗.

(43) Let φ : P1 → P2 be given by φ((x0 : x1)) = (x2
0 : x0x1 : x2

1). Show that C = φ(P1) and

P1 are isomorphic as projective varieties but their homogeneous coordinate rings are

not.

(44) The variety defined by a linear form is called a hyperplane. Show that the intersection

of m hyperplanes in Pn is nonempty for m ≤ n.

(45) Show that two distinct lines in P2 intersect in one point.

(46) Let z ∈ k(V ) where V is a projective variety. A point p ∈ V is called a pole of z if z

is not regular at p. Show that the set of poles of z is a projective subvariety of V.

(47) Let R = k[x0, x1, . . . , xn−1] and S = k[x0, x1, . . . , xn]. For f ∈ R, let f ∗ denote its

homogenization with respect to xn. For F ∈ S, Let F∗ = F (x0, x1, . . . , xn−1, 1). For
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a homogeneous ideal I of S, let I∗ denote the ideal generated by {F∗ | F ∈ I} and

V∗ = V (I∗). For an ideal J of R, let J∗ denote the ideal generated by {f ∗ | f ∈ R}
and V ∗ = V (I∗).

(i) Let H∞ = Pn \ Un+1. Let V be a proper affine subvariety of An. Show that no

irreducible component of V ∗ lies in or contains H∞.

(ii) Let V be a projective variety in Pn so that no irreducible component of V lies in

or contains H∞. Show that V∗ is a proper subvariety of An and (V∗)
∗ = V.

(48) Show that if V ⊂ W ⊂ Pn are projective varieties and V is a hypersurface, then

W = V or W = Pn.

(49) Suppose that V ⊂ Pn is a projective variety and H∞ ⊂ V. Show that either V = Pn

or V = H∞. If V = Pn then V∗ = An and if V = H∞, then V∗ = ∅.
(50) Let V = V (y − x2, z − x3) ⊂ A3. Prove:

(i) I(V ) = (y − x2, z − x3).

(ii) xy − zw ∈ I(V )∗ \ (wy − x2, w2z − x3).

7. Noetherian Modules

Let R be a commutative ring.

(51) Let M be a Noetherian R-module. Let u : M → M be a module homomorphism.

Show that if u is surjective then, u is an isomorphism. Hint: Consider the submodules

ker(un).

(52) Let M be an R-module and N1, N2 be submodules of M. Show that if M/N1 and

M/N2 are Noetherian, then so is M/(N1 ∩N2).

(53) The annihilator of an R-module M is defined by ann M = {r ∈ R | rm = 0 for all m ∈
M}. Show that if M is a Noetherian R-module, then R/ ann M is a Noetherian ring.

Hint: Let M = Rm1 +Rm2 + · · ·+Rmn and Mi = M for all i = 1, 2, . . . , n. Consider

the map f : R → M1 ⊕M2 ⊕ · · · ⊕Mn defined by f(r) = (rm1, rm2, . . . , rmn).

(54) Show that a vector space V over a field k is a Noetherian k-module if and only if it

is finite dimensional.

(55) Let p be a fixed prime number. Let G be the subgroup of Q/Z whose order is pn for

some n. Show that G has exactly one subgroup Gn of order pn for each n. Show that

G is not a Noetherian Z-module.

8. Morphisms of projective varieties

(56) Define f : P1 → Pm by [u : v] 7→ [um : um−1v : um−2v2 : · · · : vm]. Prove:

(i) f is a morphism of projective varieties.

(ii) The image C of f is the set of points [x0 : x1 : · · · : xm] ∈ Pm such that



6

[x0 : x1] = [x1 : x2] = · · · [xm−1 : xm].

(iii) The variety C is defined by the polynomials which are 2×2 minors of the matrix

with indeterminate entries:[
x0 x1 x2 · · · xm−1

x1 x2 x3 · · · xm

]
.

(iv) The variety C and P1 are isomorphic.

(57) Take m = 3 in the above exercise. The curve C is called the twisted cubic It is

defined by three quadrics:

Q1 = V (xz − y2), Q2 = V (xt− yz), Q3 = V (yt− z2).

Show that the intersection of any of the two quadrics above is the union of C and a

line. Therefore C is not the intersection of any of the three quadrics.

(58) Let F = V (xt2 − 2yzt + z3). Show that C = Q1 ∩ F.

(59) Find the group of automorphims of P1.

(60) Two subvarieties V and W of Pn are called projectively equivalent if there is a pro-

jective change of coordinates of Pn which defines an isomorphism of V and W .

(i) Show that homogeneous coordiante rings of projectively equivalent subvarieties

of Pn are isomorphic. (ii) Give an example of two projective plane curves that are

isomorphic but not projectively equivalent.

9. Resultants and Bezout’s theorem

(61) If in Pascal’s theorem, if we let some vertices coincide (the side being a tangent), we

get many new theorems.

(a) State and sketch what happens if P1 = P2, P3 = P4 P5 = P6.

(b) Let P1 = P2 and the other four points distinct. Deduce a rule for constructing a

tangent to a given conic at a given point, using only a ruler.

(62) Let C be an irreducible cubic. Let L be a line which intersects C at three distinct

points P1, P2 and P3. Let Li be the tangent to C at Pi, and Li ∩ C = {Pi, Qi} for

i = 1, 2, 3. Show that Q1, Q2, Q3 are collinear. Hint: L2 is a conic.

(63) Let F be a field and f(x), g(x) ∈ F [x]. Let K be a splitting field of fg so that in

K[x], f(x) = a(x − a1)(x − a2) . . . (x − an), g(x) = b(x − b1)(x − b2) . . . (x − bm).

Show that R(f, g) = ambn
∏n

i=1

∏m
j=1(ai − bj).

(64) Show that (a) R(g, f) = (−1)mnR(f, g).

(b) R(f, g) = adegg
∏n

i=1 g(ai).

(c) If g = fq + r, then R(f, g) = adegg−degrR(f, r).
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(65) The discriminant D(f) of f is defined by D(f) = (−1)(
n
2)R(f, f ′).

(a) Let f(x) = x2 + ax + b. Show that D(f) = a2 − 4b.

(b) Let f(x) = x3 + px + q. Show that D(f) = −4p3 − 27q2.

(c) Show that D(fg) = D(f)D(g)(R(f, g))2.

10. Tangent space at a point of an affine variety

(66) Let V ⊂ An be an affine variety and p ∈ V. For each r ∈ N, put

Sr(V ) = {q ∈ V | dim Tq(V ) ≥ r}.

Show that Sr(V ) is a closed set in V.

(67) Let V be an irreducible affine variety. Show that there is an open dense subset

W ⊂ V such that all points of W are smooth points of V.

(68) Consider the morphism ϕ : A1 → A4 defined by ϕ(t) = (t4, t5, t6, t7). Show that

C = ϕ(A1) is an algebraic curve. Find the tangent space of C at origin. Show that

C is not isomorphic to a curve in affine 3-space.

(69) Show that V (xd
0 +xd

1 +xd
2 + · · ·+xd

n) ⊂ An
k is nonsingular if char k does not divide d.

(70) Prove that the intersection of a hypersurface V, which is not a hyperplane, with TpV

is singular at p ∈ V.

11. Modules of finite length

(71) Let M be a module over a ring R and N ⊆ M a submodule. Suppose that M/N has

finite length. Let x ∈ R such that µx : M → M is injective and M/xM has finite

length. Show that `(M/xM) = `(N/xN).

(72) Let k be a field and R = k[x1, x2, . . . , xn] be the polynomial ring. Let m = (x1, x2, . . . , xn).

Find `(R/mn).

(73) Let I and J be comaximal ideals of a ring R. Show that if `(R/(I ∩ J)) < ∞, then

`(R/(I ∩ J) = `(R/I) + `(R/J).

(74) Let S = k[x, y] and R = S/(x2, y2, xy). Show that R is an S-module of finite length.

Find `(R). Show that R is an Artinian ring.

(75) Show that an injective endomorphism of an Artinian module M is an automorphism

of M.
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12. Dimension of algebraic varieties

(76) Show that if k is algebraically closed then An
k and Pn are n-dimensional.

(77) Show that an irreducible hypersurface in An is (n− 1)−dimensional.

(78) Let V be a d-dimensional irreducible affine variety in An. Let H be a hypersurface

in An such that V ∩ H 6= ∅ and V is not contained in H. Show that all irreducible

components of V ∩H have dimension d− 1.

(79) Show that an irreducible affine variety is zero-dimensional if and only if it is a point.

(80) Show that a irreducible subvariety of the affine plane is one-dimensional if and only

if it a plane curve.
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QUIZ I : MA 510: Algebraic Geometry

Duration: 11.35-12.30 Max. Marks: 10

Date: Feb 6, 2006 Weightage: 10 %

(1) Let f, g ∈ k[x, y] be coprime polynomials. Show that V (f) ∩ V (g) is a finite set. [2]

(2) Find a Noether normalization of R = k[X,Y ]/(XY − 1). [2]

(3) Let R = k[x1, x2, . . . , xn] and I be an ideal of R. Show that if R/I is a finite dimen-

sional k-vectorspace then V (I) is a finite set. [2]

(4) Let R = k[x, y, z] and J = (xy, yz, xz). Find the generators of I(V (J)). Show that J

cannot be generated by two polynomials in R. Find V (I) where I = (xy, xz − yz).

Show that
√

I = J. [4]

QUIZ II : MA 510: Algebraic Geometry

Duration: 5-6 p.m. Max. Marks: 10

Date: March 18, 2006 Weightage: 10 %

(1) Let F ∈ S = k[x0, x1, . . . , xn] be an irreducible homogeneous polynomial. Let

V (F ) ⊂ W ⊂ Pn where W is a projective variety. Show that W = V (F ) or W = Pn.

[2]

(2) Consider the map ϕ : P1 → P3 defined by

ϕ ([s : t]) = [s3 : s2t : st2 : t3].

Show: Image(ϕ) = V (xz − y2, xw − yz, yw − z2). [3]

(3) Let I be an ideal of the polynomial ring R = k[x0, x1, . . . , xn−1]. For a polynomial

f ∈ R of degree d let f ∗ = xd
nf(x0/xn, x1/xn, . . . , xn−1/xn) denote its homogenization.

Let I∗ denote the ideal in S generated by f ∗ for all f ∈ I. Let ϕ : An → Pn be the

map

ϕ((a0, a1, . . . , an−1)) = [a0 : a1 : · · · : an−1 : 1].

Prove the following statements:

(a) The closure V ∗ of ϕ(V ) in Pn in Zariski topology is V (I(V )∗). [3]

(b) If V is irreducible, then so is V ∗. [2]
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QUIZ III : MA 510: Algebraic Geometry

Duration: 5.30-6.30 p.m. Max. Marks: 10

Date: 3 April 2006 Weightage: 10 %

(1) Let M be an R-module and N and P be submodules of M. Show that M/N and M/P

are Noetherian R-modules if and only if M/(N ∩P ) and M/(N + P ) are Noetherian

R-modules. [3]

(2) Define f : P1 → P3 by [u : v] 7→ [u3 : u2v : uv2 : v3]. Let C = f(P1). Show that C is

defined by three quadrics:

Q1 = V (xz − y2), Q2 = V (xt− yz), Q3 = V (yt− z2).

Show that Q1 ∩Q2 is the union of C and a line. [4]

(3) Let F = V (xt2 − 2yzt + z3). Show that C = Q1 ∩ F. [3]

Mid-Semester Examination : MA 510: Algebraic Geometry

Duration: 9.30-11.30 Max. Marks: 30

Date: Feb 26, 2006 Weightage: 30 %

(1) Let f(X, Y, Z) = XY + Y Z + ZX and R = k[X, Y, Z]/(f). Find a Noether normal-

ization of R using a linear change of co-ordinates.

(2) Let f : V → W be a polynomial map of affine varieties. Show that f is continuous

in Zariski topology.

(3) Let V be an irreducible affine variety and p ∈ V. Consider the ring

OV,p = {f ∈ k(V ) | f is defined at p}.

Show that OV,p is a local Noetherian domain.

(4) Let V = V (XY − ZW ) and k[V ] = k[x, y, z, w] = k[X, Y, Z, W ]/I(V ). Find the

domain of f = x/z.

(5) Prove that a polynomial map F : V → W of affine varieties V and W is an isomor-

phism of V onto F (V ) if and only if F ∗ : k[W ] → k[V ] is surjective.

(6) Define ϕ : A1 → A3 by ϕ(t) = (t3, t4, t5). Show that the image of ϕ is the space curve

C = V (Y 2 −XZ, Z2 −X2Y, X3 − Y Z).
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End-Semester Examination : MA 510 : Algebraic Geometry

Duration: 2.30-5.30 Max. Marks: 40

Date: April 24, 2006 Weightage: 40 %

Let k be an algebraically closed field. Let An and Pn denote the n-dimensional affine and

projective spaces over k respectively.

(1) Let F and G be homogeneous polynomials of degree m and n respectively in the

polynomial ring R = k[x, y, z]. Let V (F ) and V (G) be the plane projective curves

defined by F and G in P2. Show that V (F ) ∩ V (G) 6= ∅. [4]

(2) Find the singular points of the affine variety V = V (xd
1 + xd

2 + · · ·+ xd
n) ⊂ An. [4]

(3) Let V ⊂ An be an affine variety and p ∈ V. Show that there is a one-to-one correspon-

dence between prime ideals in the local ring OV,p and subvarieties of V containing p.

[4]

(4) Using Pascal’s theorem, describe a procedure for constructing a tangent line to a

conic by using ruler and compass. [4]

(5) Let V ⊂ An be an affine variety. Let OV,p be the local ring of V at p. Let mp denote

its unique maximal ideal. Show that the dimension of the tangent space Tp(V ) is

n− rank J(p) where J denotes the Jacobian matrix of V at p. [6]

(6) Show that the intersection W of a hypersurface V ⊂ An and its tangent space Tp(V )

at p ∈ V is singular at p. [6]

(7) Show that an irreducible projective variety V ⊂ Pn has dimension n− 1 if and only

if V = V (f) for an irreducible homogeneous polynomial f. [6]

(8) Let C ⊂ A2 be a curve defined by the equation f(x, y) = 0. Let p = (a, b) ∈ A2.

Make a linear change of coordinates so that p = (0, 0). Write f = f0 + f1 + · · · + fd

where fi is homogeneous of degree i in x, y. Define the multiplicity µp(C) of C at p

to be the least r such that fr 6= 0. Show that µp(C) = 1 if and only if p is a smooth

point of C. [6]

—————PaperEnds—————


