EXERCISES IN

MA 510 : COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY SPRING 2006

1. Examples of algebraic varieties

(1) Find all algebraic varieties in \mathbb{A}_{k}^{1}.
(2) Show that for a finite field F, all subsets of \mathbb{A}_{F}^{n} are algebraic varieties.
(3) Show that the set $\left\{\left(t, t^{2}, t^{3}\right) \mid t \in k\right\}$ is an algebraic variety in \mathbb{A}_{k}^{3}.
(4) Show that the following sets are not algebraic varieties: (a) $\left\{(x, y) \in \mathbb{A}_{\mathbb{R}}^{2} \mid y=\sin x\right\}$. (b) $\left\{(\cos t, \sin t, t) \in \mathbb{A}_{\mathbb{R}}^{3} \mid t \in \mathbb{R}\right\}$. (c) $\left\{\left(x, e^{x}\right) \in \mathbb{A}_{\mathbb{R}}^{2} \mid x \in \mathbb{R}\right\}$.
(5) Let $p=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $q=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be distinct points of \mathbb{A}_{k}^{n}. Show that the line $L_{p q}=\{t p+(1-t) q \mid t \in k\}$ is an algebraic variety of \mathbb{A}_{k}^{n} defined by the set of the linear polynomials

$$
\left\{\left(a_{i}-b_{i}\right)\left(x_{j}-b_{j}\right)-\left(a_{j}-b_{j}\right)\left(x_{i}-b_{i}\right) \mid 1 \leq i, j \leq n\right\} .
$$

(6) Show that if $V \subseteq \mathbb{A}_{k}^{n}$ is an algebraic variety then $L_{p q} \subseteq V$ or $L_{p q} \cap V$ is finite.
(7) Let $M_{n}(k)$ denote the set of all $n \times n$ matrices with entries from a field k. Show that the sets of symmetric, skew-symmetric, orthogonal, trace 0 and diagonal matrices are algebraic varieties.
(8) Show that the set of all matrices in $M_{n}(k)$ of rank atmost r, where $r \leq n$ is an algebraic variety.
(9) If a field k is not algebraically closed, then any algebraic variety in \mathbb{A}_{k}^{n} can be written as $V(g)$ where g is a polynomial. Hint: Show that there a polynomial $\phi\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in k\left[x_{1}, x_{2}, \ldots, x_{m}\right]$, such that $V(\phi)=\{0\}$. Let $V=V\left(f_{1}, f_{2}, \ldots, f_{m}\right)$. Consider the solutions to $\phi\left(f_{1}, f_{2}, \ldots, f_{m}\right)=0$.
(10) Let $V \subseteq \mathbb{A}_{\mathbb{C}}^{n}$ be an algebraic variety such that $\mathbb{Z}^{n} \subseteq V$. Show that $V=\mathbb{A}_{\mathbb{C}}^{n}$.

2. Noetherian rings

Let R be a nonzero commutative ring and k be a field.
(11) Show that the ring of continuous real valued functions on $[0,1]$ is not Noetherian.
(12) Let X be an infinite set. Show that $R=\left\{f: X \rightarrow \mathbb{F}_{2} \mid f\right.$ is a function $\}$ is not Noetherian.
(13) Show that if R is Noetherian then so is the formal power series ring $R[[x]]$.
(14) This exercise outlines a proof of Cohen's theorem: If all prime ideals of R are finitely generated then R is Noetherian.
(a) Prove that if the collection \mathcal{C} of ideals of R that are not finitely generated is nonempty, then it contains a maximal element I and that R / I is Noetherian.
(b) Show that the ideal I in (a) is a prime ideal. Hint: Let $x, y \in R$ be such that $x y \in I$ and neither x nor y is in I. Note that (I, x) and $(I: x)$ are finitely generated. Let J be a finitely generated ideal such that $(J, x)=(I, x)$. Now show that $I=J+x(I: x)$. This contradicts the fact that I is not finitely generated.
(15) Let R be a Noetherian ring and $f: R \rightarrow R$ be a surjective ring homomorphism. Show that f is an isomorphism. Hint: Consider the ascending chain $\operatorname{Ker}\left(f^{n}\right)$.

3. Decomposition of algebraic varieties

(16) Decompose the complex varieties $V\left(y-x^{2}\right)$ and $V\left(y^{4}-x^{2}, y^{4}-x^{2} y^{2}+x y^{2}-x^{3}\right)$ as subsets $\mathbb{A}_{\mathbb{C}}^{2}$.
(17) Show that $f(x, y)=y^{2}+x^{2}(x-1)^{2} \in \mathbb{R}[x, y]$ is an irreducible polynomial but $V(f)$ is reducible.
(18) Let $V \subset W \subset \mathbb{A}_{k}^{n}$ be algebraic varieties. Show that each irreducible component of V is contained in an irreducible component of W.
(19) Show that \mathbb{A}_{k}^{n} is irreducible if and only if k is infinite.
(20) Find the irreducible components of $V\left(y^{2}-x y-x^{2} y-y\right)$ in $\mathbb{A}_{\mathbb{R}}^{2}$ and in $\mathbb{A}_{\mathbb{C}}^{2}$. Do the same for $V\left(y^{2}-x\left(x^{2}-1\right)\right)$.

4. Integral extensions, Noether normalization and Nullstellensatz

(21) Show that a UFD is integrally closed in its quotient field.
(22) Find the integral closures of $k[x, y] /\left(y^{2}-x^{3}\right)$ and $k[x, y] /\left(x-y^{2}\right)$ in their quotient fields.
(23) Let R be a UFD and let $P=(t)$ be a principal proper prime ideal of R. Show that there is no nonzero prime ideal Q of R such that Q is properly contained in P.
(24) Let $V=V(f)$ be an irreducible hypersurface in \mathbb{A}^{n}. Show that there is no irreducible algebraic variety W such that W is properly between V and \mathbb{A}^{n}.
(25) Let $P=\left(x^{2}-y^{3}, y^{2}-z^{3}\right)$ be an ideal in $R=k[x, y, z]$ where k is a field. Define the ring homomorphism $f: R \rightarrow k[t]$ by $f(x)=t^{9}, f(y)=t^{6}, f(z)=t^{4}$. Show that the kernel of f is P and hence P is a prime ideal. Show that $I(V(P))=P$. Is R integrally closed in its quotient field ? Find $f \in R / P$ which is transcendental over k such that R / P is a finite $k[f]$-algebra.
(26) Let $R=k[x, y] /\left(y^{2}-x^{3}+x\right)$. Find an algebraically independent $f \in R$ such that R is integral over $k[f]$.
(27) Let S / R be an integral ring extension where S is a finite R-algebra generated by n elements. Let m be a maximal ideal of R. Show that there are atmost n maximal ideals in S containing $m S$.
(28) Let k be an algebraically closed field and $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Let I be an ideal of R. Suppose that $V(I)=\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$. Consider the map $\phi: R \rightarrow k^{r}$ defined by $\phi(f)=\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{r}\right)\right)$. Show that f is a surjective linear transformation and find its kernel.
(29) Let the notation be as in the above exercise. Show that $V(I)$ is finite if and only if R / I is a finite dimensional k-vector space.
(30) Let k be an algebraically closed field and $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Let I be a proper ideal of R. Show that $\sqrt{I}=\cap\left\{m_{a} \mid a \in V(I)\right\}$. Here $m_{a}=\left(x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{n}-a_{n}\right)$ for $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Using this show that for any non-maximal prime ideal P of $R, V(P)$ is infinite.

5. Polynomial and rational functions and maps of affine varieties

(31) Let $C=V\left(y^{2}-x^{3}\right)$. Show that the map $\phi: \mathbb{A}_{\mathbb{C}}^{1} \rightarrow C, \quad \phi(t)=\left(t^{2}, t^{3}\right)$, is a homeomorphism in Zariski topology but it is not an isomorphism of affine varieties.
(32) Show that the hyperbola $V(x y-1) \subset \mathbb{A}_{\mathbb{C}}^{2}$ is not isomorphic to the complex affine line.
(33) Give an example to show that the image of a polynomial map $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ need not be an affine variety.
(34) Let $X=V(x, y)$ and $Y=V(z, w)$ be subvarieties of $\mathbb{A}_{\mathbb{C}}^{4}$. Show that the ideal of $X \cup Y$ cannot be generated by two polynomials.
(35) Let $k=\overline{\mathbb{F}_{p}}$. Consider the Frobenius map:

$$
F: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{n}, \quad F\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(a_{1}^{p}, a_{2}^{p}, \ldots, a_{n}^{p}\right) .
$$

Show that F is a bijective morphism. Is it an isomorphism of varieties?
(36) Let $\phi: V \rightarrow W$ be a polynomial map of affine varieties. Let $\phi^{*}: k[W] \rightarrow k[V]$ be the corresponding k-algebra homomorphism of their coordinate rings. Let $\phi(p)=q$ where $p \in V$. Show that ϕ^{*} extends uniquely to a ring homomorphism $\delta: \mathcal{O}_{W, q} \rightarrow \mathcal{O}_{V, p}$ and δ maps the unique maximal ideal of $\mathcal{O}_{W, q}$ into that of $\mathcal{O}_{V, p}$.
(37) Let V be an irreducible affine variety and $f \in k(V)$. The pole set of f is defined to be the set of points of V where f is not defined. Show that the pole set of f is an algebraic subvariety of V.
(38) let $V=V\left(Y^{2}-X^{2}(X+1)\right) \subset \mathbb{A}_{k}^{2}$. Let x and y be residues of X and Y respectively in $k[V]$. Let $z=y / x$. Find the set of poles of z and z^{2}.
(39) Let V be an affine variety and $p \in V$. Show that there is a one-to-one correspondence between prime ideals in $\mathcal{O}_{V, p}$ and and subvarieties of V which pass through p. Hint: Show that if P is a prime ideal of $\mathcal{O}_{V, p}$, then $P \cap k[V]$ is a prime ideal of $k[V]$ and P is generated by $P \cap k[V]$.
(40) Let $C=V\left(Y^{2}-X^{2}-X^{3}\right)$. Show that $\phi: \mathbb{A}_{k}^{1} \rightarrow C$ given by $\phi(t)=\left(t^{2}-1, t^{3}-t\right)$ is not an isomorphism. Is $\phi: \mathbb{A}_{k}^{1} \backslash\{1\} \rightarrow C$ an isomorphism ?

6. Projective varieties

(41) Let $T: \mathbb{A}^{n+1} \rightarrow \mathbb{A}^{n+1}$ be an invertible linear transformation. Then T maps lines through origin to lines through origin. Hence T determins a map of \mathbb{P}^{n} called a projective change of coordinates. Let $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ where T_{1}, \ldots, T_{n} are linear forms. Let $V=V\left(F_{1}, F_{2}, \ldots, F_{r}\right)$ where $F_{1}, F_{2}, \ldots, F_{r}$ are forms in $S=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. Show $T^{-1}(V)=V\left(G_{1}, G_{2}, \ldots, G_{r}\right)$ where $G_{i}=F_{i}\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ for $i=1,2, \ldots, r$. Let $S(V)$ denote the homogeneous coordinate ring of a projective variety V. Show
(i) $S(V)$ is isomrphic to $S\left(T^{-1} V\right)$,
(ii) $k(V)$ is isomorphic to $k\left(T^{-1}(V)\right)$ and
(iii) $\mathcal{O}_{V, p}$ is isomorphic to $\mathcal{O}_{T^{-1}(V), T^{-1}(p)}$.
(42) Consider the real affine quadrics: $C=V\left(x^{2}+y^{2}-1\right), \quad H=V\left(x^{2}-y^{2}-1\right)$ and $P=V\left(x^{2}-y\right)$.
(i) Determine the intersections of their projective closures C^{*}, H^{*} and P^{*} with the line at infinity.
(ii) Show that C^{*} and H^{*} are projectively equivalent to P^{*}.
(43) Let $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ be given by $\phi\left(\left(x_{0}: x_{1}\right)\right)=\left(x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}\right)$. Show that $C=\phi\left(\mathbb{P}^{1}\right)$ and \mathbb{P}^{1} are isomorphic as projective varieties but their homogeneous coordinate rings are not.
(44) The variety defined by a linear form is called a hyperplane. Show that the intersection of m hyperplanes in \mathbb{P}^{n} is nonempty for $m \leq n$.
(45) Show that two distinct lines in \mathbb{P}^{2} intersect in one point.
(46) Let $z \in k(V)$ where V is a projective variety. A point $p \in V$ is called a pole of z if z is not regular at p. Show that the set of poles of z is a projective subvariety of V.
(47) Let $R=k\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$ and $S=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. For $f \in R$, let f^{*} denote its homogenization with respect to x_{n}. For $F \in S$, Let $F_{*}=F\left(x_{0}, x_{1}, \ldots, x_{n-1}, 1\right)$. For
a homogeneous ideal I of S, let I_{*} denote the ideal generated by $\left\{F_{*} \mid F \in I\right\}$ and $V_{*}=V\left(I_{*}\right)$. For an ideal J of R, let J^{*} denote the ideal generated by $\left\{f^{*} \mid f \in R\right\}$ and $V^{*}=V\left(I^{*}\right)$.
(i) Let $H_{\infty}=\mathbb{P}^{n} \backslash U_{n+1}$. Let V be a proper affine subvariety of \mathbb{A}^{n}. Show that no irreducible component of V^{*} lies in or contains H_{∞}.
(ii) Let V be a projective variety in \mathbb{P}^{n} so that no irreducible component of V lies in or contains H_{∞}. Show that V_{*} is a proper subvariety of \mathbb{A}^{n} and $\left(V_{*}\right)^{*}=V$.
(48) Show that if $V \subset W \subset \mathbb{P}^{n}$ are projective varieties and V is a hypersurface, then $W=V$ or $W=\mathbb{P}^{n}$.
(49) Suppose that $V \subset \mathbb{P}^{n}$ is a projective variety and $H_{\infty} \subset V$. Show that either $V=\mathbb{P}^{n}$ or $V=H_{\infty}$. If $V=\mathbb{P}^{n}$ then $V_{*}=\mathbb{A}^{n}$ and if $V=H_{\infty}$, then $V_{*}=\emptyset$.
(50) Let $V=V\left(y-x^{2}, z-x^{3}\right) \subset \mathbb{A}^{3}$. Prove:
(i) $I(V)=\left(y-x^{2}, z-x^{3}\right)$.
(ii) $x y-z w \in I(V)^{*} \backslash\left(w y-x^{2}, w^{2} z-x^{3}\right)$.

7. Noetherian Modules

Let R be a commutative ring.
(51) Let M be a Noetherian R-module. Let $u: M \rightarrow M$ be a module homomorphism. Show that if u is surjective then, u is an isomorphism. Hint: Consider the submodules $\operatorname{ker}\left(u^{n}\right)$.
(52) Let M be an R-module and N_{1}, N_{2} be submodules of M. Show that if M / N_{1} and M / N_{2} are Noetherian, then so is $M /\left(N_{1} \cap N_{2}\right)$.
(53) The annihilator of an R-module M is defined by ann $M=\{r \in R \mid r m=0$ for all $m \in$ $M\}$. Show that if M is a Noetherian R-module, then $R /$ ann M is a Noetherian ring. Hint: Let $M=R m_{1}+R m_{2}+\cdots+R m_{n}$ and $M_{i}=M$ for all $i=1,2, \ldots, n$. Consider the map $f: R \rightarrow M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$ defined by $f(r)=\left(r m_{1}, r m_{2}, \ldots, r m_{n}\right)$.
(54) Show that a vector space V over a field k is a Noetherian k-module if and only if it is finite dimensional.
(55) Let p be a fixed prime number. Let G be the subgroup of \mathbb{Q} / \mathbb{Z} whose order is p^{n} for some n. Show that G has exactly one subgroup G_{n} of order p^{n} for each n. Show that G is not a Noetherian \mathbb{Z}-module.

8. Morphisms of projective varieties

(56) Define $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{m}$ by $[u: v] \mapsto\left[u^{m}: u^{m-1} v: u^{m-2} v^{2}: \cdots: v^{m}\right]$. Prove:
(i) f is a morphism of projective varieties.
(ii) The image C of f is the set of points $\left[x_{0}: x_{1}: \cdots: x_{m}\right] \in \mathbb{P}^{m}$ such that
$\left[x_{0}: x_{1}\right]=\left[x_{1}: x_{2}\right]=\cdots\left[x_{m-1}: x_{m}\right]$.
(iii) The variety C is defined by the polynomials which are 2×2 minors of the matrix with indeterminate entries:

$$
\left[\begin{array}{lllll}
x_{0} & x_{1} & x_{2} & \cdots & x_{m-1} \\
x_{1} & x_{2} & x_{3} & \cdots & x_{m}
\end{array}\right]
$$

(iv) The variety C and \mathbb{P}^{1} are isomorphic.
(57) Take $m=3$ in the above exercise. The curve C is called the twisted cubic It is defined by three quadrics:

$$
Q_{1}=V\left(x z-y^{2}\right), \quad Q_{2}=V(x t-y z), \quad Q_{3}=V\left(y t-z^{2}\right)
$$

Show that the intersection of any of the two quadrics above is the union of C and a line. Therefore C is not the intersection of any of the three quadrics.
(58) Let $F=V\left(x t^{2}-2 y z t+z^{3}\right)$. Show that $C=Q_{1} \cap F$.
(59) Find the group of automorphims of \mathbb{P}^{1}.
(60) Two subvarieties V and W of \mathbb{P}^{n} are called projectively equivalent if there is a projective change of coordinates of \mathbb{P}^{n} which defines an isomorphism of V and W.
(i) Show that homogeneous coordiante rings of projectively equivalent subvarieties of \mathbb{P}^{n} are isomorphic. (ii) Give an example of two projective plane curves that are isomorphic but not projectively equivalent.

9. Resultants and Bezout's theorem

(61) If in Pascal's theorem, if we let some vertices coincide (the side being a tangent), we get many new theorems.
(a) State and sketch what happens if $P_{1}=P_{2}, P_{3}=P_{4} P_{5}=P_{6}$.
(b) Let $P_{1}=P_{2}$ and the other four points distinct. Deduce a rule for constructing a tangent to a given conic at a given point, using only a ruler.
(62) Let C be an irreducible cubic. Let L be a line which intersects C at three distinct points P_{1}, P_{2} and P_{3}. Let L_{i} be the tangent to C at P_{i}, and $L_{i} \cap C=\left\{P_{i}, Q_{i}\right\}$ for $i=1,2,3$. Show that Q_{1}, Q_{2}, Q_{3} are collinear. Hint: L^{2} is a conic.
(63) Let F be a field and $f(x), g(x) \in F[x]$. Let K be a splitting field of $f g$ so that in $K[x], f(x)=a\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right), \quad g(x)=b\left(x-b_{1}\right)\left(x-b_{2}\right) \ldots\left(x-b_{m}\right)$. Show that $R(f, g)=a^{m} b^{n} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(a_{i}-b_{j}\right)$.
(64) Show that (a) $R(g, f)=(-1)^{m n} R(f, g)$.
(b) $R(f, g)=a^{\text {degg }} \prod_{i=1}^{n} g\left(a_{i}\right)$.
(c) If $g=f q+r$, then $R(f, g)=a^{\text {degg-degr }} R(f, r)$.
(65) The discriminant $D(f)$ of f is defined by $D(f)=(-1)^{\binom{n}{2}} R\left(f, f^{\prime}\right)$.
(a) Let $f(x)=x^{2}+a x+b$. Show that $D(f)=a^{2}-4 b$.
(b) Let $f(x)=x^{3}+p x+q$. Show that $D(f)=-4 p^{3}-27 q^{2}$.
(c) Show that $D(f g)=D(f) D(g)(R(f, g))^{2}$.

10. Tangent space at a point of an affine variety

(66) Let $V \subset \mathbb{A}^{n}$ be an affine variety and $p \in V$. For each $r \in \mathbb{N}$, put

$$
S_{r}(V)=\left\{q \in V \mid \operatorname{dim} T_{q}(V) \geq r\right\} .
$$

Show that $S_{r}(V)$ is a closed set in V.
(67) Let V be an irreducible affine variety. Show that there is an open dense subset $W \subset V$ such that all points of W are smooth points of V.
(68) Consider the morphism $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{4}$ defined by $\varphi(t)=\left(t^{4}, t^{5}, t^{6}, t^{7}\right)$. Show that $C=\varphi\left(\mathbb{A}^{1}\right)$ is an algebraic curve. Find the tangent space of C at origin. Show that C is not isomorphic to a curve in affine 3 -space.
(69) Show that $V\left(x_{0}^{d}+x_{1}^{d}+x_{2}^{d}+\cdots+x_{n}^{d}\right) \subset \mathbb{A}_{k}^{n}$ is nonsingular if char k does not divide d.
(70) Prove that the intersection of a hypersurface V, which is not a hyperplane, with $T_{p} V$ is singular at $p \in V$.

11. Modules of finite length

(71) Let M be a module over a ring R and $N \subseteq M$ a submodule. Suppose that M / N has finite length. Let $x \in R$ such that $\mu_{x}: M \rightarrow M$ is injective and $M / x M$ has finite length. Show that $\ell(M / x M)=\ell(N / x N)$.
(72) Let k be a field and $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the polynomial ring. Let $\mathfrak{m}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Find $\ell\left(R / \mathfrak{m}^{n}\right)$.
(73) Let I and J be comaximal ideals of a ring R. Show that if $\ell(R /(I \cap J))<\infty$, then $\ell(R /(I \cap J)=\ell(R / I)+\ell(R / J)$.
(74) Let $S=k[x, y]$ and $R=S /\left(x^{2}, y^{2}, x y\right)$. Show that R is an S-module of finite length. Find $\ell(R)$. Show that R is an Artinian ring.
(75) Show that an injective endomorphism of an Artinian module M is an automorphism of M.

12. Dimension of algebraic varieties

(76) Show that if k is algebraically closed then \mathbb{A}_{k}^{n} and \mathbb{P}^{n} are n-dimensional.
(77) Show that an irreducible hypersurface in \mathbb{A}^{n} is $(n-1)$-dimensional.
(78) Let V be a d-dimensional irreducible affine variety in \mathbb{A}^{n}. Let H be a hypersurface in \mathbb{A}^{n} such that $V \cap H \neq \emptyset$ and V is not contained in H. Show that all irreducible components of $V \cap H$ have dimension $d-1$.
(79) Show that an irreducible affine variety is zero-dimensional if and only if it is a point.
(80) Show that a irreducible subvariety of the affine plane is one-dimensional if and only if it a plane curve.

QUIZ I : MA 510: Algebraic Geometry

Duration: 11.35-12.30
Max. Marks: 10
Date: Feb 6, 2006
(1) Let $f, g \in k[x, y]$ be coprime polynomials. Show that $V(f) \cap V(g)$ is a finite set. [2]
(2) Find a Noether normalization of $R=k[X, Y] /(X Y-1)$. [2]
(3) Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and I be an ideal of R. Show that if R / I is a finite dimensional k-vectorspace then $V(I)$ is a finite set.
(4) Let $R=k[x, y, z]$ and $J=(x y, y z, x z)$. Find the generators of $I(V(J))$. Show that J cannot be generated by two polynomials in R. Find $V(I)$ where $I=(x y, x z-y z)$. Show that $\sqrt{I}=J$.

QUIZ II : MA 510: Algebraic Geometry
Duration: 5-6 p.m.
Max. Marks: 10
Date: March 18, 2006
(1) Let $F \in S=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be an irreducible homogeneous polynomial. Let $V(F) \subset W \subset \mathbb{P}^{n}$ where W is a projective variety. Show that $W=V(F)$ or $W=\mathbb{P}^{n}$. [2]
(2) Consider the map $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ defined by

$$
\begin{equation*}
\varphi([s: t])=\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] . \tag{3}
\end{equation*}
$$

Show: Image $(\varphi)=V\left(x z-y^{2}, x w-y z, y w-z^{2}\right)$.
(3) Let I be an ideal of the polynomial ring $R=k\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$. For a polynomial $f \in R$ of degree d let $f^{*}=x_{n}^{d} f\left(x_{0} / x_{n}, x_{1} / x_{n}, \ldots, x_{n-1} / x_{n}\right)$ denote its homogenization. Let I^{*} denote the ideal in S generated by f^{*} for all $f \in I$. Let $\varphi: \mathbb{A}^{n} \rightarrow \mathbb{P}^{n}$ be the map

$$
\varphi\left(\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right)=\left[a_{0}: a_{1}: \cdots: a_{n-1}: 1\right] .
$$

Prove the following statements:
(a) The closure V^{*} of $\varphi(V)$ in \mathbb{P}^{n} in Zariski topology is $V\left(I(V)^{*}\right)$.
(b) If V is irreducible, then so is V^{*}.

QUIZ III: MA 510: Algebraic Geometry
Duration: 5.30-6.30 p.m.
Max. Marks: 10
Date: 3 April 2006
Weightage: 10%
(1) Let M be an R-module and N and P be submodules of M. Show that M / N and M / P are Noetherian R-modules if and only if $M /(N \cap P)$ and $M /(N+P)$ are Noetherian R-modules.
(2) Define $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ by $[u: v] \mapsto\left[u^{3}: u^{2} v: u v^{2}: v^{3}\right]$. Let $C=f\left(\mathbb{P}^{1}\right)$. Show that C is defined by three quadrics:

$$
Q_{1}=V\left(x z-y^{2}\right), \quad Q_{2}=V(x t-y z), \quad Q_{3}=V\left(y t-z^{2}\right) .
$$

Show that $Q_{1} \cap Q_{2}$ is the union of C and a line.
(3) Let $F=V\left(x t^{2}-2 y z t+z^{3}\right)$. Show that $C=Q_{1} \cap F$.

Mid-Semester Examination: MA 510: Algebraic Geometry

Duration: 9.30-11.30
Max. Marks: 30
Date: Feb 26, 2006
(1) Let $f(X, Y, Z)=X Y+Y Z+Z X$ and $R=k[X, Y, Z] /(f)$. Find a Noether normalization of R using a linear change of co-ordinates.
(2) Let $f: V \rightarrow W$ be a polynomial map of affine varieties. Show that f is continuous in Zariski topology.
(3) Let V be an irreducible affine variety and $p \in V$. Consider the ring

$$
\mathcal{O}_{V, p}=\{f \in k(V) \mid f \text { is defined at } p\} .
$$

Show that $\mathcal{O}_{V, p}$ is a local Noetherian domain.
(4) Let $V=V(X Y-Z W)$ and $k[V]=k[x, y, z, w]=k[X, Y, Z, W] / I(V)$. Find the domain of $f=x / z$.
(5) Prove that a polynomial map $F: V \rightarrow W$ of affine varieties V and W is an isomorphism of V onto $F(V)$ if and only if $F^{*}: k[W] \rightarrow k[V]$ is surjective.
(6) Define $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}$ by $\varphi(t)=\left(t^{3}, t^{4}, t^{5}\right)$. Show that the image of φ is the space curve $C=V\left(Y^{2}-X Z, Z^{2}-X^{2} Y, X^{3}-Y Z\right)$.

Indian Institute of Technology Bombay
 Department of Mathematics

End-Semester Examination: MA 510: Algebraic Geometry
Duration: 2.30-5.30
Max. Marks: 40
Date: April 24, 2006
Weightage: 40 \%
Let k be an algebraically closed field. Let \mathbb{A}^{n} and \mathbb{P}^{n} denote the n-dimensional affine and projective spaces over k respectively.
(1) Let F and G be homogeneous polynomials of degree m and n respectively in the polynomial ring $R=k[x, y, z]$. Let $V(F)$ and $V(G)$ be the plane projective curves defined by F and G in \mathbb{P}^{2}. Show that $V(F) \cap V(G) \neq \emptyset$.
(2) Find the singular points of the affine variety $V=V\left(x_{1}^{d}+x_{2}^{d}+\cdots+x_{n}^{d}\right) \subset \mathbb{A}^{n}$. [4]
(3) Let $V \subset \mathbb{A}^{n}$ be an affine variety and $p \in V$. Show that there is a one-to-one correspondence between prime ideals in the local ring $\mathcal{O}_{V, p}$ and subvarieties of V containing p. [4]
(4) Using Pascal's theorem, describe a procedure for constructing a tangent line to a conic by using ruler and compass.
(5) Let $V \subset \mathbb{A}^{n}$ be an affine variety. Let $\mathcal{O}_{V, p}$ be the local ring of V at p. Let \mathfrak{m}_{p} denote its unique maximal ideal. Show that the dimension of the tangent space $T_{p}(V)$ is $n-\operatorname{rank} J(p)$ where J denotes the Jacobian matrix of V at p.
(6) Show that the intersection W of a hypersurface $V \subset \mathbb{A}^{n}$ and its tangent space $T_{p}(V)$ at $p \in V$ is singular at p.
(7) Show that an irreducible projective variety $V \subset \mathbb{P}^{n}$ has dimension $n-1$ if and only if $V=V(f)$ for an irreducible homogeneous polynomial f.
(8) Let $C \subset \mathbb{A}^{2}$ be a curve defined by the equation $f(x, y)=0$. Let $p=(a, b) \in \mathbb{A}^{2}$. Make a linear change of coordinates so that $p=(0,0)$. Write $f=f_{0}+f_{1}+\cdots+f_{d}$ where f_{i} is homogeneous of degree i in x, y. Define the multiplicity $\mu_{p}(C)$ of C at p to be the least r such that $f_{r} \neq 0$. Show that $\mu_{p}(C)=1$ if and only if p is a smooth point of C.

