EFFICIENT GENERATION OF IDEALS IN A DISCRETE HODGE ALGEBRA

MANOJ K. KESHARI AND MD. ALI ZINNA

ABSTRACT. Let \(R \) be a commutative Noetherian ring and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(d > \dim(R) \). Then we show that

(i) the top Euler class group \(E_d(D) \) of \(D \) is trivial.

(ii) if \(d > \dim(R) + 1 \), then \((d-1)\)-st Euler class group \(E_{d-1}(D) \) of \(D \) is trivial.

1. INTRODUCTION

Let \(R \) be a commutative Noetherian ring. An \(R \)-algebra \(D \) is called a discrete Hodge algebra over \(R \) if \(D = R[X_1, \ldots, X_n]/I \), where \(I \) is an ideal of \(R[X_1, \ldots, X_n] \) generated by monomials. Typical examples are \(R[X_1, \ldots, X_n] \), \(R[X,Y]/(XY) \) etc. In [V], Vorst studied the behaviour of projective modules over discrete Hodge algebras. He proved [V, Theorem 3.2] that every finitely generated projective \(D \)-module is extended from \(R \) if for all \(k \), every finitely generated projective \(R[X_1, \ldots, X_k] \)-module is extended from \(R \).

Later Mandal [M 2] and Wiemers [Wi] studied projective modules over discrete Hodge algebra \(D \). In [Wi], Wiemers proved the following significant result. Let \(P \) be a projective \(D \)-module of rank \(\geq \dim(R) + 1 \). Then (i) \(P \simeq Q \oplus D \) for some \(D \)-module \(Q \) and (ii) \(P \) is cancellative, i.e. \(P \oplus D \simeq P' \oplus D \) implies \(P \simeq P' \).

When \(D = R[X,Y]/(XY) \), above results of Wiemers are due to Bhatwadekar and Roy [B-R]. Very recent, inspired by results of Bhatwadekar and Roy, Das and Zinna [D-Z 3] studied the behaviour of ideals in \(R[X,Y]/(XY) \) and proved the following result on efficient generation of ideals. Assume \(\dim(R) \geq 1 \), \(D = R[X,Y]/(XY) \) and \(I \subset D \) is an ideal of height \(n = \dim(D) \). Assume \(I/I^2 \) is generated by \(n \) elements. Then any given set of \(n \) generators of \(I/I^2 \) can be lifted to a set of \(n \) generators of \(I \). In particular, the top Euler class group \(E_n(D) \) of \(D \) is trivial.

As \(R[X,Y]/(XY) \) is the simplest example of a discrete Hodge algebra over \(R \), motivated by above discussions, one can ask the following question.

Question 1.1. Let \(R \) be a commutative Noetherian ring of dimension \(\geq 1 \) and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(n > \dim(R) \). Let \(I \subset D \) be an ideal of height \(n \). Suppose that \(I = (f_1, \ldots, f_n) + I^2 \). Do there exist \(g_1, \ldots, g_n \in I \) such that

Date: January 20, 2016.

2000 Mathematics Subject Classification. 13C10, 19A15, 13B22.
\(I = (g_1, \cdots, g_n) \) with \(f_i - g_i \in I^2 \)? In other words, Is the top Euler class group \(E^n(D) \) of \(D \) trivial? (For definition of Euler class groups, see \([B-RS 2]\) and \([B-RS 3]\).)

We answer Question 1.1 affirmatively and prove the following more general result ((3.1) below).

Proposition 1.2. Let \(R \) be a commutative Noetherian ring of dimension \(\geq 1 \) and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(n > \text{dim}(R) \). Let \(P \) be a projective \(D \)-module of rank \(n \) which is extended from \(R \) and \(I \) be an ideal in \(D \) of height \(\geq 2 \). Suppose that there is a surjection \(\alpha : P/IP \to I/I^2 \). Then \(\alpha \) can be lifted to a surjection \(\beta : P \to I \). In particular, the \(n \)-th Euler class group \(E^n(D) \) of \(D \) is trivial.

The above result can be extended to any rank \(n \) projective \(D \)-module when \(R \) contains \(\mathbb{Q} \). Here is the precise statement.

Theorem 1.3. Let \(R \) be a commutative Noetherian ring containing \(\mathbb{Q} \) of dimension \(\geq 2 \) and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(n > \text{dim}(R) \). Let \(I \) be an ideal in \(D \) of height \(\geq 3 \) and \(P \) be any rank \(n \) projective \(D \)-module. Suppose that there is a surjection \(\alpha : P/IP \to I/I^2 \). Then \(\alpha \) can be lifted to a surjection \(\beta : P \to I \).

After studying the top rank case, one is tempted to go one step further and inquire the following question.

Question 1.4. Let \(R \) be a commutative Noetherian ring of dimension \(\geq 3 \) and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(d > \text{dim}(R) \). Let \(I \) be an ideal in \(D \) of height \(d - 1 \) and \(P \) be a projective \(D \)-module of rank \(d - 1 \). Suppose that \(\alpha : P/IP \to I/I^2 \) is a surjection. Can \(\alpha \) be lifted to a surjection \(\beta : P \to I \)?

We answer Question 1.4 affirmatively when \(R \) contains \(\mathbb{Q} \) (see (4.3) below) as follows.

Theorem 1.5. Let \(R \) be a commutative Noetherian ring containing \(\mathbb{Q} \) of dimension \(\geq 3 \) and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(d > \text{dim}(R) \). Let \(I \) be an ideal in \(D \) of height \(\geq n \geq \max\{\text{dim}(R) + 1, d - 1\} \). Suppose that \(\alpha : P/IP \to I/I^2 \) is a surjection. Then there exists a surjection \(\beta : P \to I \) which lifts \(\alpha \). As a consequence, if \(d \geq \text{dim}(R) + 2 \), then \((d - 1)\)-st Euler class group \(E^{d-1}(D) \) of \(D \) is trivial.

Finally we derive an interesting consequence of above result as follows (see (4.6)).

Theorem 1.6. Let \(R \) be a commutative Noetherian ring containing \(\mathbb{Q} \) of dimension \(\geq 3 \) and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(d > \text{dim}(R) \). Let \(I \) be a locally complete intersection ideal in \(D \) of height \(n \geq \max\{\text{dim}(R) + 1, d - 1\} \). Then \(I \) is set theoretically generated by \(n \) elements.

In Section 5, we give some partial answer to the following question.
Lemma 2.5. [B-RS 2, 2.13] Let K and I be two ideals of R. Suppose that $I = (f_1, \cdots, f_n) + I^2$, where $n \geq \dim(D/I) + 2$. Do there exist $g_1, \cdots, g_n \in I$ such that $I = (g_1, \cdots, g_n)$ with $f_i - g_i \in I^2$?

The above question has been settled in the affirmative by Mandal in [M 1] when D is a polynomial algebra over R. Recently Fasel [Fa] has settled a conjecture of Murthy and proved the following result. Let k be an infinite field of characteristic $\neq 2$ and $I \subset k[T_1, \cdots, T_m]$ be an ideal. Then we have $\mu(I) = \mu(I/I^2)$.

Therefore, we may ask the following natural question.

Question 1.8. Let k be an infinite field of characteristic $\neq 2$ and D be a discrete Hodge algebra over k. Let $I \subset D$ be an ideal. Is $\mu(I) = \mu(I/I^2)$?

2. **Preliminaries**

Assumptions. Throughout this paper, rings are assumed to be commutative Noetherian and projective modules are finitely generated and of constant rank. For a ring A, $\dim(A)$ will denote the Krull dimension of A.

We start with the following definition.

Definition 2.1. An R-algebra D is said to be a **discrete Hodge algebra over R** if D is isomorphic to $R[X_1, \cdots, X_n]/J$, where J is an ideal of $R[X_1, \cdots, X_n]$ generated by monomials. A discrete Hodge algebra over R is called **trivial** if it is a polynomial algebra over R. Otherwise, it is called a **non-trivial** discrete Hodge algebra.

Definition 2.2. We call an ideal I of a ring R to be efficiently generated if $\mu(I) = \mu(I/I^2)$, where $\mu(I)$ (resp. $\mu(I/I^2)$) stands for the minimal number of generators of I (resp. I/I^2) as an R-module (resp. R/I-module).

Definition 2.3. Let I be an ideal of a ring R. We say that I is **set theoretically generated by k elements** f_1, \cdots, f_k in R if $[f_1, \cdots, f_k] = \sqrt{I}$.

The next two results are standard. For proofs the reader may consult [B-RS 2].

Lemma 2.4. [B-RS 2, 2.11] Let R be a ring and J be an ideal of R. Let $K \subset J$ and $L \subset J^2$ be two ideals of R such that $K + L = J$. Then $J = K + (e)$ for some $e \in L$ with $e(1-e) \in K$ and $K = J \cap J'$, where $J' + L = R$.

Lemma 2.5. [B-RS 2, 2.13] Let A be a ring and P be a projective A-module of rank n. Let $(\alpha, a) \in (P^* \oplus A)$. Then there exists an element $\beta \in P^*$ such that $\text{ht}(I_\alpha) \geq n$, where $I = (\alpha + a\beta)(P)$. In particular, if the ideal $(\alpha(P), a)$ has height $\geq n$, then $\text{ht} I \geq n$. Further, if $(\alpha(P), a)$ is an ideal of height $\geq n$ and I is a proper ideal of A, then $\text{ht} I = n$.

The following lemma is proved in [D-K, Lemma 3.1].
Lemma 2.6. Let R be a ring and $J \subset R$ be an ideal. Let P be a projective R-module of rank $n \geq \dim(R/J) + 1$ and let $\alpha : P/JP \to J/J^2 f$ be a surjection for some $f \in R$. Given any ideal $K \subset R$ with $\dim(R/K) \leq n - 1$, the map α can be lifted to a surjection $\beta : P \to J'$ such that:

1. $J' + (J^2 \cap K)f = J$,
2. $J' = J \cap J'$ and $\text{ht}(J') \geq n$,
3. $(J^2 \cap K)f + J' = R$.

The following theorem is due to Mandal [M 3, Theorem 2.1].

Theorem 2.7. Let R be a ring and $I \subset R[T]$ be an ideal containing a monic polynomial. Let P be a projective R-module of rank $n \geq \dim(R[T]/I) + 2$. Suppose that there exists a surjection $\phi : P[T] \twoheadrightarrow I/(I^2 T)$. Then, there exists a surjection $\psi : P[T] \twoheadrightarrow I$ which lifts ϕ.

We improve [D-Z 3, Lemma 2.9] in the following form to suit our needs. The proof is similar to the one given in [D, Lemma 4.9].

Lemma 2.8. Let R be a ring and I, J be two ideals in R such that $J \subset I^2$. Let P be a projective R-module and $K \subset R$ be an ideal. Suppose that we are given surjections $\alpha : P \to I/J$ and $\beta : P \to \overline{I}$ such that $\alpha \equiv \beta \mod J$, where bar denotes reduction modulo the ideal K. Then α can be lifted to surjection $\phi : P \to I/(JK)$.

The following result is implicit in the proof of [V, Theorem 3.2].

Theorem 2.9. Let R be a ring and $r > 0$ be an integer. Assume that all projective modules of rank r over polynomial extensions of R are extended from R. Then all projective modules of rank r over discrete Hodge R-algebras are extended from R.

The following result is due to Das and Zinna [D-Z 1, Theorem 3.12].

Theorem 2.10. Let R be a ring of dimension $n \geq 2$. Let $R \hookrightarrow S$ be a subintegral extension and L be a projective R-module of rank one. Then, the natural map $E^n(R, L) \to E^n(S, L \otimes_R S)$ is an isomorphism.

The following result follows from [Sw, Lemma 3.2].

Lemma 2.11. Let $R \hookrightarrow S$ be a subintegral extension and $\mathcal{J} \subset R[X_1, \cdots, X_m]$ be an ideal generated by monomials. Then $R[X_1, \cdots, X_m]/\mathcal{J} \to S[X_1, \cdots, X_m]/\mathcal{J}$ is also subintegral.

The following result is from [D-Z 2, Proposition 2.13] for $d \geq 2$. By patching argument, it can be proved for $d = 1$.
Proposition 2.12. Let A be a ring of dimension $d \geq 1$. Let I be an ideal of $A[T]$ of height ≥ 2 and P be a projective $A[T]$-module of rank $n \geq d + 1$. Suppose that there exists a surjection $\phi : P/IP \twoheadrightarrow I/I^2$. Then ϕ can be lifted to a surjection $\Psi : P \twoheadrightarrow I$.

The following result is due to Wiemers [Wi, Corollary 4.3].

Theorem 2.13. Let R be a ring of dimension d and D be a discrete Hodge algebra over R. Let P be a projective D-module of rank $> d$. Then

1. $P = D \oplus Q$ for some projective D-module Q.
2. P is cancellative, i.e. if $P \oplus D \xrightarrow{\sim} P' \oplus D$, then $P \xrightarrow{\sim} P'$.

It is not hard to see that, adapting the same proof of [D-RS, Theorem 4.2], we can extend [D-RS, Theorem 4.2] in the following form.

Theorem 2.14. Let R be a ring containing \mathbb{Q} with $\dim(R) = n \geq 3$ and $I \subseteq R[T]$ be an ideal of height ≥ 3. Let L be a projective R-module of rank 1 and P be a projective $R[T]$-module of rank n whose determinant is $L[T]$. Assume that we are given a surjection $\psi : P \twoheadrightarrow I/(I^2T)$. Assume further that $\psi \otimes R(T)$ can be lifted to a surjection $\psi' : P \otimes R(T) \twoheadrightarrow I R(T)$. Then, there exists a surjection $\Psi : P \twoheadrightarrow I$ such that Ψ is a lift of ψ.

3. Main Theorems: Codimension Zero Case

We begin with the following result which is motivated by [D-Z 3, Theorem 4.2].

Proposition 3.1. Let R be a ring of dimension $d \geq 1$ and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let P be a projective D-module of rank n which is extended from R and I be an ideal in D of height ≥ 2. Suppose that there is a surjection $\alpha : P/IP \twoheadrightarrow I/I^2$. Then α can be lifted to a surjection $\beta : P \twoheadrightarrow I$.

Proof. If D is a trivial discrete Hodge algebra over R, then we are done by (2.12). So we assume that R is a non-trivial discrete Hodge algebra over R. Let ‘prime’ denote reduction modulo the nil radical N of D. Assume $\alpha \otimes D'$ can be lifted to a surjection $\alpha_1 : P \otimes D' \twoheadrightarrow I \otimes D'$. Then α_1 can be lifted to a surjection $\alpha_2 : P_{1+N} \twoheadrightarrow I_{1+N}$. Since $1 + N$ consists of units of D, α_2 is a lift of α. Therefore, we may assume that D is reduced.

Let $D = R[X_1,\cdots,X_m]/J$, where J is an ideal of $R[X_1,\cdots,X_m]$ generated by square-free monomials. We prove the result using induction on the number of variables m. If $m = 1$, then D is just $R[X_1]$ and the result follows from (2.12).

Let us assume that $m \geq 2$. We can assume that $J = K + X_m L$, where K and L are monomial ideals of $R[X_1,\cdots,X_{m-1}]$. Then $D = R[X_1,\cdots,X_m]/(K,X_m L)$.

Case 1. $n \geq 3$. Given $\alpha : P/IP \twoheadrightarrow I/I^2$, applying (2.6), α can be lifted to a surjection $\gamma_1 : P \twoheadrightarrow I'$ such that (1) $I' = I \cap J$, (2) $I + J = D$, (3) $\text{ht}(J) \geq n$.

follows that assume that \(J \in D \) and we are done. So assume \(\operatorname{ht}(J) = n \). Let \(\gamma : P \to J/J^2 \) be the surjection induced from \(\gamma_1 \).

Let \(x_m \) and \(L \) be the images of \(X_m \) and \(\mathcal{L} \) in \(D \), respectively. We shall use ‘tilde’ when we move modulo \((x_m) \) and ‘bar’ when we move modulo \(L \). We first go modulo \(x_m \) and consider the surjection \(\tilde{\gamma} : \tilde{P} \to \tilde{J}/\tilde{J}^2 \). Note that \(\tilde{J} \) is an ideal of \(\tilde{D} = R[X_1, \ldots, X_{m-1}]/K \) of height equal to dimension of \(\tilde{D} \). For this, we observe that

\[
\dim(\tilde{D}[X_m]) + \operatorname{ht}(\tilde{X}_m\mathcal{L}) = \dim(D),
\]

where \(\tilde{X}_m\mathcal{L} \) is the image of \(X_m\mathcal{L} \) in \(\tilde{D}[X_m] \).

By induction hypothesis on \(m \), there exists a surjection \(\phi : \tilde{P} \to \tilde{J} \) which is a lift of \(\tilde{\gamma} \). Therefore, it follows from (2.8) that \(\gamma \) can be lifted to a surjection \(\psi : P \to J/(J^2x_m) \).

We now move to the ring \(\mathcal{D} = \frac{R[X_1, \ldots, X_{m-1}]}{(K, \mathcal{L})}[X_m] \) (i.e., go modulo \(L \)) and consider the surjection

\[
\tilde{\psi} : \tilde{P} \to \tilde{J}/(\tilde{J}^2X_m)
\]

Now observe that \(J \) is of the form \(J'/X_m\mathcal{L} \) for some ideal \(J' \) in \(\frac{R[X_1, \ldots, X_{m-1}]}{K}[X_m] \) containing \(X_m\mathcal{L} \). Observe that \(\operatorname{ht}(J') = \dim(\frac{R[X_1, \ldots, X_{m-1}]}{K}[X_m]) \). Therefore we may assume that \(J' \) contains a monic polynomial in \(X_m \). Since \(\mathcal{J} = J/L \cap J = J'/L \cap J' \), it follows that \(\mathcal{J} \) contains a monic in \(X_m \). Also \(n \geq \dim(\mathcal{D}/\mathcal{J}) + 2(= 2) \). By (2.7), there exists a surjection \(\theta : \tilde{P} \to \tilde{J} \) which lifts \(\tilde{\psi} \).

Therefore, it follows from (2.8) that there exists a surjection \(\delta : P \to J/(J^2x_mL) \) which is a lift of \(\psi \). As \(x_mL = 0 \) in \(D \), we obtain \(\delta : P \to J \) is a surjection which lifts \(\gamma \). Now we have

1. \(\gamma_1 : P \to I \cap J \) such that \(\gamma_1 \otimes D/I = \alpha \otimes D/I \),
2. \(\delta : P \to J \) with \(\delta \otimes D/J = \gamma_1 \otimes D/J = \gamma \).

Now by (2.13), \(P = D \oplus P' \). Also it follows that \(n \geq \dim(D/I) + 2 \) and \(n + \operatorname{ht}(J) \geq \dim(D) + 3 \). We can now use the subtraction principle [D-K, Proposition 3.2] to find a surjection \(\beta : P \to I \) which lifts \(\alpha \). This completes the proof in case \(n \geq 3 \).

Case 2. \(n = 2 \). In this case \(\dim(R) = 1 \) and hence by (2.13), \(P \simeq L \oplus D \) for some rank one projective \(D \)-module \(L \).

We have \(I = \alpha(P) + I^2 \). Applying (2.4), we can find \(f \in I \) such that \(I = (\alpha(P), f) \) with \(f(1 - f) \in \alpha(P) \) and therefore we have a surjection \(\alpha_{1-f} : P_{1-f} \to I_{1-f} \). Let \(\pi : P_f = L_f \oplus D_f \to D_f = I_f \) be the projection onto the second factor. Now consider the following surjections:

\[
\alpha_f(1-f) : P_f(1-f) \to I_f(1-f) = D_f(1-f)
\]

\[
\pi_{1-f} : P_f(1-f) \to I_f(1-f) = D_f(1-f)
\]
Now it is not hard to show that there exists \(\tau \in SL(P_{(1-f)}) \) such that \(\alpha_{(1-f)}\tau = \pi_{1-f} \). Therefore standard patching argument implies that there is a projective \(D \)-module \(Q \) of rank 2 such that \(Q \) maps onto \(I \). By (2.13), \(Q = \wedge^2(Q) \oplus D \). Also note that \(Q \) has determinant \(L \) and hence \(Q \simeq L \oplus D \).

By (2.13), \(L \oplus D \) is cancellative. We can now apply [B, Lemma 3.2] to find a surjection \(\beta : P \rightarrow I \) which lifts \(\alpha \).

Corollary 3.2. Let \(R \) be a ring of dimension \(\geq 1 \) and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(n > \dim(R) \). Let \(I \) be an ideal in \(D \) of height \(\geq 2 \). Suppose that \(I = (f_1, \cdots, f_n) + I^2 \). Then there exist \(g_1, \cdots, g_n \) such that \(I = (g_1, \cdots, g_n) \) with \(f_i - g_i \in I^2 \) for \(i = 1, \cdots, n \).

Corollary 3.3. Let \(R \) be a ring of dimension \(\geq 1 \) and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(n > \dim(R) \). Let \(L \) be any rank one projective \(D \)-module. Then the \(n \)-th Euler class group \(E^n(D, L) \) is trivial.

Proof. Let \(D = R[X_1, \cdots, X_m]/J \). Without loss of generality we can assume that \(D \) is reduced (see [B-RS 2, Corollary 4.6]). In particular, \(R \) is reduced. Let \(S \) be the seminormalization of \(R \) in its total quotient ring. Since \(S \) is seminormal, by [Sw, Theorem 6.1], every rank one projective \(S[X_1, \cdots, X_k] \)-module is extended from \(S \) for all \(k \). Therefore, it follows from (2.9) that \(L \otimes_R S \) is extended from \(S \).

Let us denote \(S[X_1, \cdots, X_m]/J \) by \(D_1 \). Since \(R \hookrightarrow S \) is a subintegral extension, by (2.11), \(D \hookrightarrow D_1 \) is also subintegral. As \(L \otimes_R S \) is extended from \(S \), by (3.1), it follows that \(E^n(D_1, L \otimes_R S) \) is trivial. Finally, using (2.10), we have \(E^n(D, L) \) is trivial. \(\square \)

The following result is due to Katz [Ka].

Theorem 3.4. Let \(R \) be a ring and \(I \subset R \) be an ideal. Let \(d \) be the maximum of the heights of maximal ideals containing \(I \), and suppose that \(d < \infty \). Then some power of \(I \) admits a reduction \(J \) satisfying \(\mu(J/J^2) \leq d \).

A result of Mandal from [M 2], can now be deduced.

Corollary 3.5. Let \(R \) be a ring of dimension \(\geq 1 \) and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(n > \dim(R) \). Let \(I \subset D \) be an ideal of height \(\geq 2 \). Then \(I \) is set theoretically generated by \(n \) elements.

Proof. Using Katz (3.4), there exists \(k > 0 \) such that \(I^k \) has a reduction \(J \) with \(\mu(J/J^2) \leq n \). If \(\mu(J/J^2) \leq n - 1 \), then clearly \(J \) is generated by at most \(n \) elements. Therefore we assume that \(\mu(J/J^2) = n \). Since \(J \) is a reduction of \(I^k \), it is easy to see that \(\sqrt{J} = \sqrt{I} = J \) and \(\text{ht}(I) = \text{ht}(J) \). Applying (3.2), we see that \(J \) is generated by \(n \) elements. Therefore, \(I \) is set-theoretically generated by \(n \) elements. \(\square \)
We have the following variant of (3.1) for rings containing \mathbb{Q}.

Proposition 3.6. Let R be a ring containing \mathbb{Q} of dimension ≥ 2 and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let I be an ideal in D of height ≥ 3 and P be any rank n projective D-module whose determinant is extended from R. Suppose that there is a surjection $\alpha : P/IP \twoheadrightarrow I/I^2$. Then α can be lifted to a surjection $\beta : P \twoheadrightarrow I$.

Proof. We follow the proof of (3.1). The only thing which we need to show is that $\bar{\psi} : \bar{P} \twoheadrightarrow \bar{J}/(\bar{J}^2X_m)$ can be lifted to a surjection $\theta : \bar{P} \twoheadrightarrow \bar{J}$. Rest of the proof is same. To show this, we use (2.14) in place of (2.7). By (2.14), it is enough to show that $\bar{\psi} \otimes R(X_m)$ can be lifted to a surjection from $\bar{P} \otimes R(X_m) \twoheadrightarrow \bar{J} \otimes R(X_m)$. This is clearly true, since \bar{J} contains a monic polynomial in X_m and $\bar{P} = \bar{D} \oplus P'$ by (2.13). □

The following lemma is very crucial to generalize above result.

Lemma 3.7. Let R be a reduced ring and D be a discrete Hodge algebra over R. Let L be a rank one projective D-module. Then there exists a ring S such that

1. $R \hookrightarrow S \hookrightarrow Q(R)$,
2. S is a finite R-module,
3. $R \hookrightarrow S$ is subintegral and
4. $L \otimes_R S$ is extended from S.

Proof. Let $R \hookrightarrow B \hookrightarrow Q(R)$ be the seminormalization of R. By Swan’s result [Sw, Theorem 6.1], rank one projective modules over polynomial extensions of B are extended from B. Hence by (2.9), rank one projective modules over discrete Hodge algebras over B are extended from B. In particular $L \otimes_R B$ is extended from B. By [Sw, Theorem 2.8], B is direct limit of B_λ, where $R \hookrightarrow B_\lambda$ is finite and subintegral extension. Since L is finitely generated, we can find a subring $S = B_\lambda$ for some λ satisfying conditions (1–4). □

We now prove the general case of (3.6).

Theorem 3.8. Let R be a ring containing \mathbb{Q} of dimension ≥ 2 and D be a discrete Hodge algebra over R of dimension $n > \dim(R)$. Let I be an ideal in D of height ≥ 3 and P be any rank n projective D-module. Suppose that there is a surjection $\alpha : P/IP \twoheadrightarrow I/I^2$. Then α can be lifted to a surjection $\beta : P \twoheadrightarrow I$.

Proof. Without loss of generality, we may assume that D is reduced. In particular, R is reduced. Let $D = R[X_1, \cdots, X_m]/I$, where \mathcal{J} is an ideal of $R[X_1, \cdots, X_m]$ generated by square free monomials. By (3.7), there exists an extension $R \hookrightarrow S$ such that

1. $R \hookrightarrow S \hookrightarrow Q(R)$,
2. S is a finite R-module,
(3) $R \rightarrow S$ is subintegral and
(4) $\wedge^n(P) \otimes_R S$ is extended from S.

Let $E = S[X_1, \ldots, X_m]/J$. Since $\wedge^n(P) \otimes_R S$ is extended from S, by (3.6), the induced surjection $\alpha^*: P \otimes E \rightarrow IE/I^2E$ can be lifted to a surjection $\phi: P \otimes E \rightarrow IE$. By (2.13), $P = D \oplus Q$. In case $P = \wedge^n(P) \oplus D^{n-1}$, the rest of the proof is given in [D-Z 1, Theorem 3.12]. The proof of [D-Z 1, Theorem 3.12] works for $P = D \oplus Q$ also. Hence we are done.

4. Main Theorems: Codimension One Case:

The aim of this section is to give an affirmative answer to Question 1.4 mentioned in the introduction. We start with the following lemma which generalizes (2.12).

Lemma 4.1. Let R be a ring containing \mathbb{Q} of dimension ≥ 2 and I be an ideal of $R[X,Y]$ of height ≥ 3. Let P be a projective $R[X,Y]$-module of rank $\geq \dim(R) + 1$ whose determinant is extended from $R[X]$. Suppose that there exists a surjection $\phi: P \rightarrow I/I^2$. Then ϕ can be lifted to a surjection $\bar{\phi}: P \rightarrow I$.

Proof. If rank of P is $\geq \dim(R) + 1$, then we are done by (2.12). So assume rank of $P = \dim(R) + 1$. Since R contains \mathbb{Q}, using [B-RS 1, Lemma 3.3] and replacing Y by $Y - \lambda$ for some $\lambda \in \mathbb{Q}$, we can assume that either $I(0) = R[X]$ or $\text{ht}(I(0)) = \text{ht}(I)$. If $I(0) = R[X]$, then by (2.8), we can lift ϕ to a surjection $\alpha: P \rightarrow I/I^2(Y)$.

Now assume that $\text{ht}(I(0)) = \text{ht}(I) \geq 3$. Let “bar” denote the reduction modulo Y and consider $\bar{\phi}: \bar{P} \rightarrow \bar{I}/\bar{I}^2$. By (2.12), there exists a surjection $\beta: \bar{P} \rightarrow \bar{I}$ which lifts $\bar{\phi}$. Therefore, again by (2.8), we can lift $\bar{\phi}$ to a surjection $\alpha: P \rightarrow (I/I^2Y)$. Therefore, in any case, we can lift ϕ to a surjection $\alpha: P \rightarrow I/I^2Y$.

Consider the surjection $\alpha \otimes R(Y): P \otimes R(Y) \rightarrow I \otimes R(Y)/I^2 \otimes R(Y)$. Since $\dim(R(Y)) = \dim(R)$, by (2.12), $\alpha \otimes R(Y)$ can be lifted to a surjection $\delta: P \otimes R(Y) \rightarrow I \otimes R(Y)$. Using (1.14), we get a surjection $\bar{\phi}: P \rightarrow I$ which lifts α and hence lifts ϕ.

Proposition 4.2. Let R be a ring containing \mathbb{Q} of dimension ≥ 3 and D be a discrete Hodge algebra over R of dimension $d > \dim(R)$. Let I be an ideal in D of height ≥ 4 and P be a projective D-module of rank $n \geq \max\{\dim(R) + 1, d - 1\}$ whose determinant is extended from R. Suppose that $\alpha: P \rightarrow I/I^2$ is a surjection. Then there exists a surjection $\beta: P \rightarrow I$ that lifts α.

Proof. As in the proof of (3.1), we can assume that R is reduced and $D = R[X_1, \ldots, X_m]/\mathcal{I}$, where \mathcal{I} is an ideal of $R[X_1, \ldots, X_m]$ generated by square free monomials. where $X_{i_1}^{l_1} \cdots X_{i_k}^{l_k} \in \mathcal{I}$ and $l_i \geq 1$ We prove the result using induction on m. If $m = 1$, then $D = R[X_1]$ and the result follows from (2.12).
Let us assume that \(m \geq 2 \). If \(D \) is a polynomial ring over \(R \), then we are done by (4.1). Now suppose that \(D \) is a non-trivial discrete Hodge algebra. Then we can assume that \(\mathcal{I} = (\mathcal{K}, X_m \mathcal{L}) \), where \(\mathcal{K} \) and \(\mathcal{L} \) are monomial ideals in \(R[X_1, \ldots, X_{m-1}] \). Then \(D = R[X_1, \ldots, X_m]/(\mathcal{K}, X_m \mathcal{L}) \).

Let \(x_m \) and \(L \) be the images of \(X_m \) and \(\mathcal{L} \) in \(D \) respectively. We shall use “tilde” when we move modulo \((x_m) \) and “bar” when we move modulo \(L \). We first go modulo \((x_m) \), i.e. to the discrete Hodge algebra \(\tilde{D} = R[X_1, \ldots, X_{m-1}]/\mathcal{K} \) and consider the surjection \(\tilde{\alpha} : \tilde{P} \twoheadrightarrow I/\tilde{I}^2 \). Note that \(\tilde{I} \) is an ideal of \(\tilde{D} \) of height \(\geq \dim(\tilde{D}) - 1 \). By induction hypothesis on \(m \), there exists a surjection \(\theta : \tilde{P} \twoheadrightarrow \tilde{I} \) which is a lift of \(\tilde{\alpha} \). Therefore, using (2.8), we can lift \(\alpha \) to a surjection \(\psi : P \twoheadrightarrow I/(I^2 x_m) \).

We now move modulo \(L \), i.e. \(\bar{D} = R[X_1, \ldots, X_{m-1}]/X_m \) := \(D_0[X_m] \) and consider the surjection \(\bar{\psi} : \bar{P} \twoheadrightarrow \bar{I}/(\bar{I}^2 X_m) \).

Observe that \(h(\bar{I}) \geq \dim(R) \geq 3 \). If \(\dim(D_0) < n \), then by (2.12), \(\bar{\psi} \) can be lifted to a surjection \(\theta : \bar{P} \twoheadrightarrow \bar{I} \). So assume \(\dim(D_0) = n \). Since \(\dim(R(X_m)) = \dim(R) \) and \(\bar{D} \otimes R(X_m) = R[X_1, \ldots, X_{m-1}]_{(k, L)} \), by (3.6), the surjection \(\bar{\psi} \otimes R(X_m) : \bar{P} \otimes R(X_m) \twoheadrightarrow \bar{I} \otimes R(X_m) \) can be lifted to a surjection \(\eta : \bar{P} \otimes R(X_m) \twoheadrightarrow \bar{I} \otimes R(X_m) \). By (2.14), there exists a surjection \(\theta : \bar{P} \twoheadrightarrow \bar{I} \) which lifts \(\bar{\psi} \).

Finally it follows from (2.8) that there exists a surjection \(\beta : P \twoheadrightarrow I/(I^2 x_m L) \) which lifts \(\psi \). As \(x_m L = 0 \) in \(D \), we obtain a surjection \(\beta : P \twoheadrightarrow I \) which lifts \(\alpha \).

Now we will answer Question 1.4.

Theorem 4.3. Let \(R \) be a ring of dimension \(\geq 3 \) containing \(\mathbb{Q} \) and \(D \) be a discrete Hodge algebra over \(R \) of dimension \(d > \dim(R) \). Let \(I \) be an ideal in \(D \) of height \(\geq 4 \) and \(P \) be a projective \(D \)-module of rank \(n \geq \max\{\dim(R) + 1, d - 1\} \). Suppose that \(\alpha : P \twoheadrightarrow I/\bar{I}^2 \) is a surjection. Then there exists a surjection \(\beta : P \twoheadrightarrow I \) which lifts \(\alpha \).

Proof. Without loss of generality we may assume that \(D \) is reduced. Using (2.6), we can lift \(\alpha \) to a surjection \(\alpha' : P \twoheadrightarrow I \cap I_1 \) such that \(I + I_1 = D \) and \(\dim(I_1) \geq n \).

If \(h(I_1) > n \), then \(I_1 = D \) and hence \(\alpha' \) is the required surjective lift of \(\alpha \). Assume \(h(I_1) = n \). The map \(\alpha' \) induces a surjection \(\alpha_1 : P \twoheadrightarrow I_1/I_1^2 \). If we can show that \(\alpha_1 \) can be lifted to a surjection \(\Delta : P \twoheadrightarrow I_1 \), then by subtraction principle [D-K, Proposition 3.2], we can find a surjection \(\Delta_1 : P \twoheadrightarrow I \) which lifts \(\alpha \). Therefore it is enough to show that \(\alpha_1 \) has a surjective lift \(\Delta \). Now replacing \(I_1 \) by \(I \) and \(\alpha_1 \) by \(\alpha \), we assume that \(h(I) = n \).

By (3.7), there exists an extension \(R \hookrightarrow S \) such that

1. \(R \hookrightarrow S \hookrightarrow Q(R) \),
2. \(S \) is a finite \(R \)-module,
(3) \(R \twoheadrightarrow S \) is subintegral and
(4) \(\wedge^n(P) \otimes_R S \) is extended from \(S \).

Let \(C \) be the conductor ideal of \(R \) in \(S \). Then \(\text{ht}(C) \geq 1 \). Since \(\text{ht}(I) = n \geq \max\{\dim(R) + 1, d - 1\} \) and \(\text{ht}(C) \geq 1 \), it follows that \(\text{ht}(I^2 \cap C) \geq 1 \). Therefore, we can choose an element \(b \in I^2 \cap C \) such that \(\text{ht}(b) = 1 \). Let \("\text{bar}" \) denote reduction modulo the ideal \((b) \). Consider the surjection \(\pi : \overline{P} \twoheadrightarrow \overline{I}/\overline{I}^2 \) and note that \(\dim(\overline{R}) < \dim(R) \).

Now applying (3.8), we can find a surjection \(\gamma' : \overline{P} \twoheadrightarrow \overline{I} \) which lifts \(\pi \). Choose a lift \(\gamma : P \twoheadrightarrow I \) of \(\gamma' \). Since \(b \in I^2 \), \(\gamma \) is a lift of \(\alpha \) and hence \((\gamma(P), b) = I \). Since \(\text{hh}(I) = n \) and \(b \in I^2 \), applying (2.5) and replacing \(\gamma \) by \(\gamma + b \delta \) for some \(\delta \in P^* \), we can assume that \(\text{ht}(\gamma(P)) = n \).

Applying (2.4), there exists an ideal \(I' \) of height \(\geq n \) such that \(I' + bD = D \) and \(\gamma(P) = I \cap I' \). If \(\text{ht}(I') > n \), then \(I' = D \) and hence \(\gamma \) is the required surjective lift of \(\alpha \). Assume that \(\text{ht}(I') = n \) and consider the surjection \(\theta : P \twoheadrightarrow I'/I'^2 \) induced from \(\gamma : P \twoheadrightarrow I \cap I' \).

Consider the surjection \(\theta \otimes_R S : P \otimes S \twoheadrightarrow I'/I'^2 \otimes S \). Since \(\wedge^n(P \otimes_R S) \) is extended from \(S \), by (4.2), \(\theta \otimes S \) can be lifted to a surjection \(\Theta : P \otimes S \twoheadrightarrow I' \otimes S \). Now we need to show that we get a surjection \(\eta : P \twoheadrightarrow I' \) which lifts \(\theta \). In the case of \(P = \wedge^n(P) \oplus D^{n-1} \), this is proved in [D-Z 2, Lemma 5.1]. Note that \(P = D \oplus P' \), by (2.13). The proof of [D-Z 2, Lemma 5.1] works in this case also, so we do not repeat it here. Therefore we have a surjection \(\eta : P \twoheadrightarrow I' \) which lifts \(\theta \). Applying subtraction principle [D-K, Proposition 3.2], we can find a surjection \(\beta : P \twoheadrightarrow I \) which lifts \(\alpha \). \(\square \)

The following result is immediate from (4.3).

Corollary 4.4. Let \(R \) be a ring of dimension \(d \geq 3 \) containing \(\mathbb{Q} \) and \(D = \frac{R[X_1, X_2, X_3]}{2} \) be a discrete Hodge algebra over \(R \). Let \(I \) be an ideal in \(D \) of height \(\geq 4 \) and \(P \) be a projective \(D \)-module of rank \(n \geq \dim(R) + 1 \). Suppose that \(\alpha : P \twoheadrightarrow I/I^2 \) be a surjection. Then there exists a surjection \(\beta : P \twoheadrightarrow I \) which lifts \(\alpha \).

The following theorem is due to Ferrand and Szpiro [Sz].

Theorem 4.5. Let \(R \) be a ring and \(I \subset R \) be a locally complete intersection ideal of height \(r \geq 2 \) and \(\dim(R/I) \leq 1 \). Then there is a locally complete intersection ideal \(J \subset R \) of height \(r \) such that

1. \(\sqrt{I} = \sqrt{J} \) and
2. \(J/J^2 \) is free \(R/J \)-module of rank \(r \).

As an application of (4.3), we improve a result of Mandal [M 2, Corollary 2.2], albeit with a stronger hypothesis on ideals.
Theorem 4.6. Let R be a ring of dimension ≥ 3 containing \mathbb{Q} and D be a discrete Hodge algebra over R with $\dim(D) = d > \dim(R)$. Let I be a locally complete intersection ideal in D of height $n = \max\{\dim(R) + 1, d - 1\}$. Then there exist $f_1, \cdots, f_n \in I$ such that $\sqrt{I} = \sqrt{(f_1, \cdots, f_n)}$. In other words, I is set theoretically generated by n elements.

Proof. By (4.5), there is a locally complete intersection ideal J such that $\sqrt{I} = \sqrt{J}$ and J/J^2 is a free R/J-module of rank n. Applying (4.3), we see that J is generated by n elements. Therefore, I is set theoretically generated by n elements. \qed

5. Some Auxiliary Results

After answering Question 1.1 and Question 1.4, it is natural to ask the following more general question.

Question 5.1. Let R be a commutative Noetherian ring of dimension ≥ 1 and D be a discrete Hodge algebra over R of dimension $> \dim(R)$. Let $I \subset D$ be an ideal of height $> \dim(R)$. Suppose that $I = (f_1, \cdots, f_n) + I^2$, where $n \geq \dim(D/I) + 2$. Do there exist $g_1, \cdots, g_n \in I$ such that $I = (g_1, \cdots , g_n)$ with $f_i - g_i \in I^2$?

The above question has been answered affirmatively by Mandal when D is a polynomial algebra over R ([M 1]). Using [D-RS, Theorem 4.2] and following the proofs of (3.1) and (4.2), we can obtain the following result which gives a partial answer to the above question.

Theorem 5.2. Let R be a ring of dimension $d \geq 2$ containing \mathbb{Q} and $D = \frac{R[X_1, \cdots , X_m]}{(J_1, \ldots, J_0)}$, where J_1, J_2 are two ideals of $R[X_1, \cdots , X_{m-1}]$ generated by monomials. Let I be an ideal in D of height $> d$. Suppose that $I = (f_1, \cdots , f_n) + I^2$ with $n \geq \dim(D/I) + 2$. Then $I = (g_1, \cdots , g_n)$ with $f_i - g_i \in I^2$ in each of the following cases:

1. $n \geq \max\{\dim(D/J_1), \dim(D/J_2)\}$ and $\text{ht}\left(\frac{I + J_2}{J_2}\right) \geq 2$.
2. $n = \max\{\dim(D/J_1) - 1, \dim(D/J_2) - 1\}$ and $\text{ht}\left(\frac{I + J_2}{J_2}\right) \geq 3$.

As an application of (5.2), we give some explicit examples.

Example 5.3. Let R be a ring of dimension $d \geq 4$ containing \mathbb{Q} and $D = \frac{R[X_1, \cdots , X_4]}{(X_2J)}$ where $J = (X_1X_2, X_2X_3, X_1X_3)$. Let $I \subset D$ be an ideal of height $n \geq d + 1$. Suppose that $I = (f_1, \cdots , f_n) + I^2$. Then there exist $g_1, \cdots , g_n \in I$ such that $I = (g_1, \cdots , g_n)$ with $f_i - g_i \in I^2$. In other words, the n-th Euler class group $E^n(D)$ is trivial.

Proof. Using (3.1) and (4.2), we can assume that $n = d + 1$. We have $\dim(D/J) = d + 2$, i.e., $n = d + 1 = \dim(D/J) - 1$ and $\text{ht}\left(\frac{I + J}{J}\right) \geq 3$. Also note that $n = d + 1 \geq 5 \geq \dim(D/I) + 2$. Now the result follows from (5.2(2)). \qed

The following result follows from (5.2).
Example 5.4. Let R be a ring of dimension $d \geq 3$ containing \mathbb{Q} and $D = R[X_1, \ldots, X_m]/(X_m, J)$ where $J = (X_iX_j | 1 \leq i \neq j \leq m - 1)$. Let $I \subseteq D$ be an ideal such that $\text{ht}(I/J) \geq 3$. Suppose that $I = (f_1, \ldots, f_n) + I^2$ with $n \geq \max\{d + 1, \dim(D/I) + 2\}$. Then there exist $g_1, \ldots, g_n \in I$ such that $I = (g_1, \ldots, g_n)$ with $f_i - g_i \in I^2$. □

Now using (4.4) and following the proof of (5.2), we can derive the following.

Example 5.5. Let R be a ring of dimension $d \geq 4$ containing \mathbb{Q} and $D = R[X_1, \ldots, X_4]/(J_1, X_4X_2)$ where J_1, J_2 are two ideals in $R[X_1, X_2, X_3]$ generated by monomials and $\text{ht}(J_1 + J_2) \geq 2$. Let $I \subseteq D$ be an ideal of height $n \geq d + 1$. Suppose that $I = (f_1, \ldots, f_n) + I^2$. Then there exist $g_1, \ldots, g_n \in I$ such that $I = (g_1, \ldots, g_n)$ with $f_i - g_i \in I^2$. In other words, the n-th Euler class group $E^n(D)$ is trivial.

Proof. Since $\dim(D) \leq d + 3$, the case $n \geq d + 2$ is covered by (3.1) and (4.2). Let us assume that $n = d + 1$. Then $n = d + 1 = \dim(D/J_2) - 1$ and $2n \geq \dim(D) + 2$. Now the result follows from (5.2). □

The following result follows from (5.2).

Example 5.6. Let R be a ring of dimension $d \geq 4$ containing \mathbb{Q} and $D = R[X_1, \ldots, X_5]/(X_5, J)$ where $J = (X_1X_2X_3, X_1X_2X_4, X_2X_3X_4)$. Let $I \subseteq D$ be an ideal such that $\text{ht}(I) = n \geq d + 1$. Suppose that $I = (f_1, \ldots, f_n) + I^2$ with $n \geq d + 2$. Then there exist $g_1, \ldots, g_n \in I$ such that $I = (g_1, \ldots, g_n)$ with $f_i - g_i \in I^2$. In other words, the n-th Euler class group $E^n(D)$ is trivial. □

References

