1. INTRODUCTION

Throughout the paper, rings are commutative Noetherian and projective modules are finitely generated and of constant rank.

If R is a ring of dimension n, then Serre [Se] proved that projective R-modules of rank $> n$ contain a unimodular element. Plumstead [P] generalized this result and proved that projective $R[X] = R[Z_+]$-modules of rank $> n$ contain a unimodular element. Bhatwadekar and Roy [B-R 2] generalized this result and proved that projective $R[X_1, \ldots, X_r] = R[Z_+^r]$-modules of rank $> n$ contain a unimodular element.

In another direction, if A is a ring such that $R[X] \subset A \subset R[X, X^{-1}]$, then Bhatwadekar and Roy [B-R 1] proved that projective A-modules of rank $> n$ contain a unimodular element. Rao [Ra] improved this result and proved that if B is a birational overring of $R[X]$, i.e. $R[X] \subset B \subset S^{-1}R[X]$, where S is the set of non-zerodivisors of $R[X]$, then projective B-modules of rank $> n$ contain a unimodular element. Bhatwadekar, Lindel and Rao [B-L-R, Theorem 5.1, Remark 5.3] generalized this result and proved that projective $B[Z_+]$-modules of rank $> n$ contain a unimodular element when B is seminormal. Bhatwadekar [Bh, Theorem 3.5] removed the hypothesis of seminormality used in [B-L-R].

All the above results are best possible in the sense that projective modules of rank n over above rings need not have a unimodular element. So it is natural to look for obstructions for a projective module of rank n over above rings to contain a unimodular element. We will prove some results in this direction.

Let P be a projective $R[Z_+][T]$-module of rank $n = \dim R$ such that P_f and P/TP contain unimodular elements for some monic polynomial f in the variable T. Then P contains a unimodular element. The proof of this result is implicit in [B-L-R, Theorem 5.1]. We will generalize this result to projective $R[M][T]$-modules of rank n, where $M \subset Z_+^r$ is a Φ-simplicial monoid in the class $C(\Phi)$. For this we need the following result whose proof is similar to [B-L-R, Theorem 5.1].
Proposition 1.1. Let R be a ring and P be a projective $R[X]$-module. Let $J \subset R$ be an ideal such that P_s is extended from R_s for every $s \in J$. Suppose that

(a) P/JP contains a unimodular element.

(b) If I is an ideal of $(R/J)[X]$ of height $\text{rank}(P) - 1$, then there exist $\sigma \in \text{Aut}((R/J)[X])$ with $\sigma(X) = X$ and $\sigma \in \text{Aut}(R[X])$ with $\sigma(X) = X$ which is a lift of σ such that $\sigma(I)$ contains a monic polynomial in the variable X.

(c) $EL(P/(X,J)P)$ acts transitively on $\text{Um}(P/(X,J)P)$.

(d) There exists a monic polynomial $f \in R[X]$ such that P_f contains a unimodular element. Then the natural map $\text{Um}(P) \rightarrow \text{Um}(P/XP)$ is surjective. In particular, if P/XP contains a unimodular element, then P contains a unimodular element.

We prove the following result as an application of (1.1).

Theorem 1.2. Let R be a ring of dimension n and $M \subset \mathbb{Z}_+^n$ a Φ-simplicial monoid in the class $C(\Phi)$. Let P be a projective $R[M][T]$-module of rank n whose determinant is extended from R. Assume P/TP and P_f contain unimodular elements for some monic polynomial f in the variable T. Then the natural map $\text{Um}(P) \rightarrow \text{Um}(P/TP)$ is surjective. In particular, P contains a unimodular element.

Let R be a ring containing \mathbb{Q} of dimension $n \geq 2$. If P is a projective $R[X]$-module of rank n, then Das and Zinna [D-Z] have obtained an obstruction for P to have a unimodular element. Let us fix an isomorphism $\chi : L \sim \wedge^n P$, where L is the determinant of P. To the pair (P, χ), they associated an element $e(P, \chi)$ of the Euler class group $E(R[X], L)$ and proved that P has a unimodular element if and only if $e(P, \chi) = 0$ in $E(R[X], L)$ [D-Z].

It is desirable to have such an obstruction for projective $R[X,Y]$-module P of rank n. As an application of (1.2), we obtain such a result. Recall that $R(X)$ denotes the ring obtained from $R[X]$ by inverting all monic polynomials in X. Let L be the determinant of P and $\chi : L \sim \wedge^n(P)$ be an isomorphism. We define the Euler class group $E(R[X,Y], L)$ of $R[X,Y]$ as the product of Euler class groups $E(R(X)[Y], L \otimes R(X)[Y])$ of $R(X)[Y]$ and $E(R[Y], L \otimes R[Y])$ of $R[Y]$ defined by Das and Zinna [D-Z]. To the pair (P, χ), we associate an element $e(P, \chi)$ in $E(R[X,Y], L)$ and prove the following result (3.4).

Theorem 1.3. Let the notations be as above. Then $e(P, \chi) = 0$ in $E(R[X,Y], L)$ if and only if P has a unimodular element.

Let R be a local ring and P be a projective $R[T]$-module. Roitman [Ro, Lemma 10] proved that if the projective $R[T]_f$-module P_f contains a unimodular element for some monic polynomial $f \in R[T]$, then P contains a unimodular element. Roy [Ry,
Theorem 1.1] generalized this result and proved that if P and Q are projective $R[T]$-modules with rank(Q) < rank(P) such that Q_f is a direct summand of P_f for some monic polynomial $f \in R[T]$, then Q is a direct summand of P. Mandal [M, Theorem 2.1] extended Roy’s result to Laurent polynomial rings.

We prove the following result (4.4) which gives Mandal’s [M] in case $A = R[X, X^{-1}]$. Recall that a monic polynomial $f \in R[X]$ is called special monic if $f(0) = 1$.

Theorem 1.4. Let R be a local ring and $R[X] \subset A \subset R[X, X^{-1}]$. Let P and Q be two projective A-modules with rank(Q) < rank(P). If Q_f is a direct summand of P_f for some special monic polynomial $f \in R[X]$, then Q is also a direct summand of P.

2. Preliminaries

Definition 2.1. Let R be a ring and P be a projective R-module. An element $p \in P$ is called unimodular if there is a surjective R-linear map $\varphi : P \to R$ such that $\varphi(p) = 1$. Note that P has a unimodular element if and only if $P \cong Q \oplus R$ for some R-module Q. The set of all unimodular elements of P is denoted by $\text{Um}(P)$.

Definition 2.2. Let M be a finitely generated submonoid of \mathbb{Z}_+^r of rank r such that $M \subset \mathbb{Z}_+^r$ is an integral extension, i.e. for any $x \in \mathbb{Z}_+^r$, $nx \in M$ for some integer $n > 0$. Such a monoid M is called a Φ-simplicial monoid of rank r [G2].

Definition 2.3. Let $M \subset \mathbb{Z}_+^r$ be a Φ-simplicial monoid of rank r. We say that M belongs to the class $\mathcal{C}(\Phi)$ if M is seminormal (i.e. if $x \in gp(M)$ and $x^2, x^3 \in M$, then $x \in M$) and if we write $\mathbb{Z}_+^r = \{t_1^{s_1} \cdots t_r^{s_r} | s_i \geq 0\}$, then for $1 \leq m \leq r$, $M_m = M \cap \{t_1^{s_1} \cdots t_m^{s_m} | s_i \geq 0\}$ satisfies the following properties: Given a positive integer c, there exist integers $c_i > c$ for $i = 1, \ldots, m - 1$ such that for any ring R, the automorphism $\eta \in \text{Aut}_{R[t_1]}(R[t_1, \ldots, t_m])$ defined by $\eta(t_i) = t_i + t_m^c$ for $i = 1, \ldots, m - 1$, restricts to an R-automorphism of $R[M_m]$. It is easy to see that $M_m \subset C(\Phi)$ and rank $M_m = m$ for $1 \leq m \leq r$.

Example 2.4. The following monoids belong to $C(\Phi)$ [K-S, Example 3.5, 3.9, 3.10].

(i) If $M \subset \mathbb{Z}_+^2$ is a finitely generated and normal monoid (i.e. $x \in gp(M)$ and $x^n \in M$ for some $n > 1$, then $x \in M$) of rank 2, then $M \subset C(\Phi)$.

(ii) For a fixed integer $n > 0$, if $M \subset \mathbb{Z}_+^r$ is the monoid generated by all monomials in t_1, \ldots, t_r of total degree n, then M is a normal monoid of rank r and $M \subset C(\Phi)$. In particular, $\mathbb{Z}_+^r \subset C(\Phi)$ and $< t_1^2, t_2^2, t_3 t_2, t_1 t_3, t_2 t_3 > \in C(\Phi)$.

(iii) The submonoid M of \mathbb{Z}_+^3 generated by $< t_1^2, t_2^2, t_3^2, t_1 t_3, t_2 t_3 > \in C(\Phi)$.

Remark 2.5. Let R be a ring and $M \subset \mathbb{Z}_+^r = \{t_1^{m_1} \cdots t_r^{m_r} | m_i \geq 0\}$ be a monoid of rank r in the class $C(\Phi)$. Let I be an ideal of $R[M]$ of height $> \dim R$. Then by [G2, Lemma 6.5]
and [K-S, Lemma 3.1], there exists an R-automorphism σ of $R[M]$ such that $\sigma(t_r) = t_r$ and $\sigma(I)$ contains a monic polynomial in t_r with coefficients in $R[M] \cap R[t_1, \ldots, t_{r-1}]$.

We will state some results for later use.

Theorem 2.6. [K-S, Theorem 3.4] Let R be a ring and M be a Φ-simplicial monoid such that $M \in C(\Phi)$. Let P be a projective $R[M]$-module of rank $> \dim R$. Then P has a unimodular element.

Theorem 2.7. [D-K, Theorem 4.5] Let R be a ring and M be a Φ-simplicial monoid. Let P be a projective $R[M]$-module of rank $\geq \max\{\dim R + 1, 2\}$. Then $EL(P \oplus R[M])$ acts transitively on $Um(P \oplus R[M])$.

The following result is proved in [B-L-R, Criterion-1 and Remark] in case $J = Q(P, R_0)$ is the Quillen ideal of P in R_0. The same proof works in our case.

Theorem 2.8. Let $R = \bigoplus_{i \geq 0} R_i$ be a graded ring and P be a projective R-module. Let J be an ideal of R_0 such that J is contained in the Quillen ideal $Q(P, R_0)$. Let $p \in P$ be such that $p_{1+R^+} \in Um(P_{1+R^+})$ and $p_{1+J} \in Um(P_{1+J})$, where $R^+ = \bigoplus_{i \geq 1} R_i$. Then P contains a unimodular element p_1 such that $p = p_1$ modulo $R^+ P$.

The following result is a consequence of Eisenbud-Evans [E-E], as stated in [P, p. 1420].

Lemma 2.9. Let A be a ring and P be a projective A-module of rank n. Let $(\alpha, a) \in (P^* \oplus A)$. Then there exists an element $\beta \in P^*$ such that $\ht(I_0) \geq n$, where $I = (\alpha + a\beta)(P)$. In particular, if the ideal $(\alpha(P), a)$ has height $\geq n$, then $\ht I \geq n$. Further, if $(\alpha(P), a)$ is an ideal of height $\geq n$ and I is a proper ideal of A, then $\ht I = n$.

3. **Proofs of (1.1), (1.2) and (1.3)**

3.1. **Proof of Proposition 1.1.** Let $p_0 \in Um(P/JP)$ and $p_1 \in Um(P/XP)$. Let \tilde{p}_0 and \tilde{p}_1 be the images of p_0 and p_1 in $P/(X, J)P$. By hypothesis (c), there exist $\tilde{\delta} \in EL(P/(X, J)P)$ such that $\tilde{\delta}(\tilde{p}_0) = \tilde{p}_1$. By [B-R 2, Proposition 4.1], $\tilde{\delta}$ can be lifted to an automorphism δ of P/JP. Consider the fiber product diagram for rings and modules

\[
\begin{array}{ccc}
R[X]_{(X)} & \rightarrow & R[X]_{(X)} \\
\downarrow & & \downarrow \\
R[X]_{(X)} & \rightarrow & R[X]_{(X, J)}.
\end{array}
\]

\[
\begin{array}{ccc}
P_{(X)P} & \rightarrow & P_{(X)P} \\
\downarrow & & \downarrow \\
P_{(X)P} & \rightarrow & P_{(X, J)P}.
\end{array}
\]

We can patch $\delta(p_0)$ and p_1 to get a unimodular element $p \in Um(P/XJP)$ such that $p = \delta(p_0)$ modulo JP and $p = p_1$ modulo XP. Writing $\delta(p_0)$ by p_0, we assume that $p = p_0$ modulo JP and $p = p_1$ modulo XP.

Using hypothesis (d), we get an element \(q \in P \) such that the order ideal \(O_P(q) = \{ \phi(q) | \phi \in \text{Hom}_{\mathbb{R}[X]}(P, \mathbb{R}[X]) \} \) contains a power of \(f \). We may assume that \(f \in O_P(q) \).

Let “bar” denote reduction modulo the ideal (J). Write \(\overline{P} = \overline{\mathbb{R}[X]p_0} \oplus Q \) for some projective \(\overline{\mathbb{R}[X]} \)-module \(Q \) and \(\overline{q} = (\pi p_0, q') \) for some \(q' \in Q \). By Eisenbud-Evans (2.9), there exist \(\tau \in EL(\overline{P}) \) such that \(\tau(q) = (\pi p_0, q') \) and \(\text{ht}(\overline{O}_q(q'))\overline{\mathbb{R}[X]}_{\tau} \geq \text{rank}(P) - 1 \). Since \(\tau \) can be lifted to \(\tau \in \text{Aut}(P) \), replacing \(P \) by \(\tau(P) \), we may assume that \(\text{ht}(\overline{O}_q(q')) \geq \text{rank}(P) - 1 \) on the Zariski-open set \(D(\pi) \) of \(\text{Spec}(\overline{\mathbb{R}[X]}) \).

Let \(p_1, \ldots, p_r \) be minimal prime ideals of \(\overline{O}_q(q') \) in \(\overline{\mathbb{R}[X]} \) not containing \(\pi \). Then \(\text{ht}(\cap_i p_i) \geq \text{rank}(P) - 1 \). By hypothesis (b), we can find \(\sigma \in \text{Aut}(\overline{\mathbb{R}[X]}) \) with \(\sigma(X) = X \) and \(\sigma \in \text{Aut}(\mathbb{R}[X]) \) with \(\sigma(X) = X \) which is a lift of \(\sigma \) such that \(\sigma(\cap_i p_i) \) contains a monic polynomial in \(\mathbb{R}[X] = \overline{\mathbb{R}[X]} \). Note that \(\sigma(f) \) is a monic polynomial. Replacing \(\mathbb{R}[X] \) by \(\sigma(\mathbb{R}[X]) \), we may assume that \(\cap_i p_i \) contains a monic polynomial in \(\overline{\mathbb{R}[X]} \), and \(f \in O_P(q) \) is a monic polynomial.

If \(p \) is a minimal prime ideals of \(O_q(q') \) in \(\overline{\mathbb{R}[X]} \) containing \(\pi \), then \(p \) contains \(\overline{O}_q(q) \). Since \(f \in O_P(q) \), \(p \) contains the monic polynomial \(\overline{f} \). Therefore, all minimal primes of \(O_q(q') \) contains a monic polynomial, hence \(O_q(q') \) contains a monic polynomial, say \(\overline{g} \in \overline{\mathbb{R}[X]} \). Let \(g \in \mathbb{R}[X] \) be a monic polynomial which is a lift of \(\overline{g} \).

Claim: For large \(N > 0 \), \(p_2 = p + X^ng^Nq \in \text{Um}(P_1 + J_R) \).

Choose \(\phi \in P^* \) such that \(\phi(q) = f \). Then \(\phi(p_2) = \phi(p) + X^Ng^Nf \) is a monic polynomial for large \(N \). Since \(p = p_0 \) module \(JP, \overline{p} = p_0 \) and \(\overline{q} = (\overline{p}, q') \). Therefore,

\[
\overline{p}_2 = \overline{p} + X^Ng^N(\overline{mp}, q') = ((1 + T^Ng^N\overline{g})\overline{p}, X^Ng^Nq').
\]

Since \(\overline{g} \in O_q(q') \subset O_{\overline{p}}(\overline{p}_2) \), we get \(O_{\overline{p}}(\overline{g}) \subset O_\tau(\overline{p}_2) \). Since \(\overline{g} \in \text{Um}(\overline{P}) \), we get \(\overline{p}_2 \in \text{Um}(\overline{P}) \) and hence \(p_2 \in \text{Um}(P_1 + J_{R[X]}) \). Since \(O_P(p_2) \) contains a monic polynomial, by [La, Lemma 1.1, p. 79], \(p_2 \in \text{Um}(P_1 + J_R) \).

Now \(p_2 = p_1 \) modulo \(XP \), we get \(p_2 \in \text{Um}(P/XP) \). By (2.8), there exist \(p_3 \in \text{Um}(P) \) such that \(p_3 = p_2 = p_1 \) modulo \(XP \). This completes the proof.

3.2. Proof of Theorem 1.2. Without loss of generality, we may assume that \(R \) is reduced. When \(n = 1 \), the result follows from well known Quillen [Q] and Suslin [Su]. When \(n = 2 \), the result follows from Bhatwadekar [Bh, Proposition 3.3] where he proves that if \(P \) is a projective \(R[T] \)-module of rank 2 such that \(P \) contains a unimodular element for some monic polynomial \(f \in R[T] \), then \(P \) contains a unimodular element. So now we assume \(n \geq 3 \).

Write \(A = R[M] \). Let \(J(A, P) = \{ s \in A | p_4 \text{ is extended from } A \} \) be the Quillen ideal of \(P \) in \(A \). Let \(J = J(A, P) \cap R \) be the ideal of \(R \) and \(J = J_{R[M]} \). We will show that \(J \)

satisfies the properties of (1.1).

Let \(p \in \text{Spec}(R) \) with \(\text{ht}(p) = 1 \) and \(S = R - p \). Then \(S^{-1}P \) is a projective module over \(S^{-1}A[T] = R_p[M][T] \). Since \(\text{dim}(R_p) = 1 \), by (2.6), \(S^{-1}P = A[n]P \oplus S^{-1}A[T]^{-1} \).
Since determinant of \(P \) is extended from \(R, \wedge^n P_S = A[T]_S \) and hence \(S^{-1}P \) is free. Therefore there exists \(s \in R - p \) such that \(P_s \) is free. Hence \(s \in \tilde{J} \) and so \(\text{ht}(\tilde{J}) \geq 2 \).

Since \(\dim(R/\tilde{J}) \leq n - 2 \) and \(A[T]/(J) = (R/\tilde{J})[M][T] \), by (2.6), \(P/JP \) contains a unimodular element.

If \(I \) is an ideal of \((A/J)[T] = (R/\tilde{J})[M][T] \) of height \(\geq n - 1 \), then by (2.5), there exists an \(R[T]-\text{automorphism} \ \sigma \in \text{Aut}_{R[T]}(A[T]) \) such that if \(\pi \) denotes the induced automorphism of \((A/J)[T] \), then \(\pi(I) \) contains a monic polynomial in \(T \).

By (2.7), \(E \hat{L}(P/(T,J)P) \) acts transitively on \(\text{Um}(P/(J,T)P) \).

Therefore, the result now follows from (1.1).

\[\square \]

Corollary 3.1. Let \(R \) be a ring of dimension \(n \), \(A = R[X_1, \cdots , X_m] \) a polynomial ring over \(R \) and \(P \) be a projective \(A[T] \)-module of rank \(n \). Assume that \(P/TP \) and \(P_f \) both contain a unimodular element for some monic polynomial \(f(T) \in A[T] \). Then \(P \) has a unimodular element.

Proof. If \(n = 1 \), the result follows from well known Quillen [Q] and Suslin [Su] Theorem. When \(n = 2 \), the result follows from Bhatwadekar [Bh, Proposition 3.3]. Assume \(n \geq 3 \). Let \(L \) be the determinant of \(P \). If \(\tilde{R} \) is the seminormalization of \(R \), then by Swan [Sw], \(\tilde{L} \otimes \tilde{R}[X_1, \cdots , X_m] \) is extended from \(\tilde{R} \). By (1.2), \(\tilde{P} \otimes \tilde{R}[X_1, \cdots , X_m] \) has a unimodular element. Since \(\tilde{R}[X_1, \cdots , X_n] \) is the seminormalization of \(A \), by Bhatwadekar [Bh, Lemma 3.1], \(P \) has a unimodular element.

\[\square \]

3.3. Obstruction for Projective Modules to have a Unimodular Element. Let \(R \) be a ring of dimension \(n \geq 2 \) containing \(\mathbb{Q} \) and \(P \) be a projective \(R[X,Y] \)-module of rank \(n \) with determinant \(L \). Let \(\chi : L \overset{\sim}{\twoheadrightarrow} \wedge^n(P) \) be an isomorphism. We call \(\chi \) an *orientation* of \(P \). In general, we shall use ‘hat’ when we move to \(R(X)[Y] \) and ‘bar’ when we move modulo the ideal \((X) \). For instance, we have:

1. \(L \otimes R(X)[Y] = \hat{L} \) and \(L/XYL = \hat{L} \),
2. \(P \otimes R(X)[Y] = \hat{P} \) and \(P/XP = \hat{P} \).

Similarly, \(\bar{\chi} \) denotes the induced isomorphism \(\hat{L} \overset{\sim}{\twoheadrightarrow} \wedge^n \hat{P} \) and \(\bar{\chi} \) denotes the induced isomorphism \(\bar{\wedge}^n \bar{P} \).

We now define the *Euler class of \((P, \chi) \).*

Definition 3.2. First we consider the case \(n \geq 2 \) and \(n \neq 3 \). Let \(E(R(X)[Y], \hat{L}) \) be the \(n \)-th Euler class group of \(R(X)[Y] \) with respect to the line bundle \(\hat{L} \) over \(R(X)[Y] \) and \(E(R[Y], \bar{L}) \) be the \(n \)-th Euler class group of \(R[Y] \) with respect to the line bundle \(\bar{L} \) over \(R[Y] \) (see [D-Z, Section 6] for definition). We define the \(n \)-th *Euler class group of \(R[X,Y] \),* denoted by \(E(R[X,Y], L) \), as the product \(E(R(X)[Y], \hat{L}) \times E(R[Y], \bar{L}) \).
To the pair \((P, \chi)\), we associate an element \(e(P, \chi)\) of \(E(R[X, Y], L)\), called the Euler class of \((P, \chi)\), as follows:

\[e(P, \chi) = (e(\hat{P}, \tilde{\chi}), e(\overline{P}, \overline{\chi})) \]

where \(e(\hat{P}, \tilde{\chi}) \in E(R(X)[Y], \hat{L})\) is the Euler class of \((\hat{P}, \tilde{\chi})\) and \(e(\overline{P}, \overline{\chi}) \in E(R[Y], \overline{L})\) is the Euler class of \((\overline{P}, \overline{\chi})\), defined in [D-Z, Section 6].

Now we treat the case when \(n = 3\). Let \(\tilde{E}(R(X)[Y], \hat{L})\) be the \(n\)th restricted Euler class group of \(R(X)[Y]\) with respect to the line bundle \(\hat{L}\) over \(R(X)[Y]\) and \(\tilde{E}(R[Y], \overline{L})\) be the \(n\)th restricted Euler class group of \(R[Y]\) with respect to the line bundle \(\overline{L}\) over \(R[Y]\) (see [D-Z, Section 7] for definition). We define the Euler class group of \(R[X, Y]\), again denoted by \(E(R[X, Y], L)\), as the product \(\tilde{E}(R(X)[Y], \hat{L}) \times \tilde{E}(R[Y], \overline{L})\).

To the pair \((P, \chi)\), we associate an element \(e(P, \chi)\) of \(E(R[X, Y], L)\), called the Euler class of \((P, \chi)\), as follows:

\[e(P, \chi) = (e(\hat{P}, \tilde{\chi}), e(\overline{P}, \overline{\chi})) \]

where \(e(\hat{P}, \tilde{\chi}) \in \tilde{E}(R(X)[Y], \hat{L})\) is the Euler class of \((\hat{P}, \tilde{\chi})\) and \(e(\overline{P}, \overline{\chi}) \in \tilde{E}(R[Y], \overline{L})\) is the Euler class of \((\overline{P}, \overline{\chi})\), defined in [D-Z, Section 7].

Remark 3.3. Note that when \(n = 2\), the definition of the Euler class group \(E(R[T], L)\) is slightly different from the case \(n \geq 4\). See [D-Z, Remark 7.8] for details.

Theorem 3.4. Let \(R\) be a ring containing \(\mathbb{Q}\) of dimension \(n \geq 2\) and \(P\) be a projective \(R[X, Y]\)-module of rank \(n\) with determinant \(L\). Let \(\chi : L \sim \wedge^n(P)\) be an isomorphism. Then \(e(P, \chi) = 0\) in \(E(R[X, Y], L)\) if and only if \(P\) has a unimodular element.

Proof. First we assume that \(P\) has a unimodular element. Therefore, \(\hat{P}\) and \(\overline{P}\) also have unimodular elements. If \(n \geq 4\), by [D-Z, Theorem 6.12], we have \(e(\hat{P}, \tilde{\chi}) = 0\) in \(E(R(X)[Y], \hat{L})\) and \(e(\overline{P}, \overline{\chi}) = 0\) in \(E(R[Y], \overline{L})\). The case \(n = 2\) is taken care by [D-Z, Remark 7.8]. Now if \(n = 3\), it follows from [D-Z, Theorem 7.4] that \(e(\hat{P}, \tilde{\chi}) = 0\) in \(E(R(X)[Y], \hat{L})\) and \(e(\overline{P}, \overline{\chi}) = 0\) in \(\tilde{E}(R[Y], \overline{L})\). Consequently, \(e(P, \chi) = 0\).

Conversely, assume that \(e(P, \chi) = 0\). Then \(e(\hat{P}, \tilde{\chi}) = 0\) in \(E(R(X)[Y], \hat{L})\) and \(e(\overline{P}, \overline{\chi}) = 0\) in \(E(R[Y], \overline{L})\). If \(n \neq 3\), by [D-Z, Theorem 6.12] and [D-Z, Remark 7.8], \(\hat{P}\) and \(\overline{P}\) have unimodular elements. If \(n = 3\), by [D-Z, Theorem 7.4], \(\hat{P}\) and \(\overline{P}\) have unimodular elements. Since \(\hat{P}\) has a unimodular element, we can find a monic polynomial \(f \in R[X]\) such that \(P_f\) contains a unimodular element. But then by Theorem 3.1, \(P\) has a unimodular element. \(\square\)

Remark 3.5. Let \(R\) be a ring containing \(\mathbb{Q}\) of dimension \(n \geq 2\) and \(P\) be a projective \(R[X_1, \ldots, X_r]\)-module \((r \geq 3)\) of rank \(n\) with determinant \(L\). Let \(\chi : L \sim \wedge^r(P)\) be an isomorphism. By induction on \(r\), we can define the Euler class group of \(R[X_1, \ldots, X_r]\) with respect to the line bundle \(L\), denoted by \(E(R[X_1, \ldots, X_r], L)\), as the product of \(E(R(X_r)[X_1, \ldots, X_{r-1}], \hat{L})\) and \(E(R[X_1, \ldots, X_{r-1}], \overline{L})\).
To the pair \((P, \chi)\), we can associate an invariant \(e(P, \chi)\) in \(E(R[X_1, \ldots, X_r], L)\) as follows:

\[
e(P, \chi) = (e(\hat{P}, \hat{\chi}), e(\overline{P}, \overline{\chi}))
\]

where \(e(\hat{P}, \hat{\chi}) \in E(R(X_1)[X_1, \ldots, X_{r-1}], \hat{L})\) is the Euler class of \((\hat{P}, \hat{\chi})\) and \(e(\overline{P}, \overline{\chi}) \in E(R[X_1, \ldots, X_{r-1}], \overline{L})\) is the Euler class of \((\overline{P}, \overline{\chi})\). Finally we have the following result.

Theorem 3.6. Let \(R\) be a ring containing \(Q\) of dimension \(n \geq 2\) and \(P\) be a projective \(R[X_1, \ldots, X_r]\)-module of rank \(n\) with determinant \(L\). Let \(\chi : L \sim \wedge^n(P)\) be an isomorphism. Then \(e(P, \chi) = 0\) in \(E(R[X_1, \ldots, X_r], L)\) if and only if \(P\) has a unimodular element.

4. **ANALOGUE OF ROY AND MANDAL**

In this section we will prove (1.4). We begin with the following result from [Ry, Lemma 2.1].

Lemma 4.1. Let \(R\) be a ring and \(P, Q\) be two projective \(R\)-modules. Suppose that \(\phi : Q \rightarrow P\) is an \(R\)-linear map. For an ideal \(I\) of \(R\), if \(\phi\) is a split monomorphism modulo \(I\), then \(\phi_{1+I} : Q_{1+I} \rightarrow P_{1+I}\) is also a split monomorphism.

Lemma 4.2. Let \((R, M)\) be a local ring and \(A\) be a ring such that \(R[X] \hookrightarrow A \hookrightarrow R[X, X^{-1}]\). Let \(P\) and \(Q\) be two projective \(A\)-modules and \(\phi : Q \rightarrow P\) be an \(R\)-linear map. If \(\phi\) is a split monomorphism modulo \(M\) and if \(\phi_f\) is a split monomorphism for some special monic polynomial \(f \in R[X]\), then \(\phi\) is also a split monomorphism.

Proof. By Lemma 4.1 \(\phi_{1+MA}\) is a split monomorphism. So, there is an element \(h\) in \(1 + MA\) such that \(\phi_h\) is a split monomorphism. Since \(f\) is a special monic polynomial, \(R \rightarrow A/f\) is an integral extension and hence, \(h\) and \(f\) are comaximal. As \(\phi_f\) is also a split monomorphism, it follows that \(\phi\) is a split monomorphism. \(\square\)

Lemma 4.3. Let \(R\) be a local ring and \(A\) be a ring such that \(R[X] \hookrightarrow A \hookrightarrow R[X, X^{-1}]\). Let \(P\) and \(Q\) be two projective \(A\)-modules and \(\phi, \psi : Q \rightarrow P\) be \(R\)-linear maps. Further assume that \(\gamma : P \rightarrow Q\) is an \(A\)-linear map such that \(\gamma \psi = f1_Q\) for some special monic polynomial \(f \in R[X]\). For large \(m\), there exists a special monic polynomial \(g_m \in A\) such that \(X\phi + (1 + X^m)\psi\) becomes a split monomorphism after inverting \(g_m\).

Proof. As in [Ry, M], first we assume that \(Q\) is free. We have \(\gamma(X\phi + (1 + X^m)\psi) = X\gamma\phi + (1 + X^m)f1_Q\). Since \(Q\) is free, \(X\gamma\phi + (1 + X^m)f1_Q\) is a matrix. Clearly for large integer \(m\), \(det(X\gamma\phi + (1 + X^m)f1_Q)\) is a special monic polynomial which can be taken for \(g_m\).

In the general case, find projective \(A\)-module \(Q'\) such that \(Q \oplus Q'\) is free. Define maps \(\phi', \psi' : Q \oplus Q' \rightarrow P \oplus Q'\) and \(\gamma' : P \oplus Q' \rightarrow Q \oplus Q'\) as \(\phi' = \phi \oplus 0\), \(\psi' = \psi \oplus f1_{Q'}\).
and $\gamma' = \gamma \oplus 1_Q$. By the previous case, we can find a special monic polynomial g_m for some large m such that $(X \phi' + (1 + X^m)\psi')g_m$ becomes a split monomorphism. Hence $X \phi + (1 + X^m)\psi$ becomes a split monomorphism after inverting g_m. □

The following result generalizes Mandal’s [M].

Theorem 4.4. Let (R, M) be a local ring and $R[X] \subset A \subset R[X, X^{-1}]$. Let P and Q be two projective A-modules with rank(Q) < rank(P). If Q_f is a direct summand of P_f for some special monic polynomial $f \in R[X]$, then Q is also a direct summand of P.

Proof. The method of proof is similar to [Ry, Theorem 1.1], hence we give an outline of the proof.

Since Q_f is a direct summand of P_f, we can find A-linear maps $\psi : Q \to P$ and $\gamma : P \to Q$ such that $\gamma \psi = f 1_Q$ (possibly after replacing f by a power of f).

Let 'bar' denote reduction modulo M. Then we have $\bar{\gamma} \bar{\psi} = \bar{f} 1_{\bar{Q}}$. As f is special monic, $\bar{\psi}$ is a monomorphism.

We may assume that $A = R[X, f_1/X^t, \ldots, f_n/X^t]$ with $f_i \in R[X]$. If $f_i \in MR[X]$, then $R[X, f_i/X^t] = R[X, Y]/(X^t Y)$. If $f_i \in R[X] - MR[X]$, then $R[X, f_i/X^t]$ is either $R[X]$ or $R[X, X^{-1}]$ depending on whether f_i is a polynomial in $R[X]$ or F_i/X^s with $F_i(0) \neq 0$ and $s > 0$.

In general, \bar{A} is one of $\bar{R[X]}$, $\bar{R[X, X^{-1}]}$ or $\bar{R[X, Y_1, \ldots, Y_m]}/(X^t Y_1, \ldots, Y_m)$ for some $m > 0$. By [V, Theorem 3.2], any projective $\bar{R[X, Y_1, \ldots, Y_m]}/(X^t Y_1, \ldots, Y_m)$-module is free. Therefore, in all cases, projective \bar{A}-modules are free and hence extended from $\bar{R[X]}$. In particular, \bar{P} and \bar{Q} are extended from $\bar{R[X]}$, which is a PID.

Let rank(P) = r and rank(Q) = s. Therefore, using elementary divisors theorem, we can find bases $\{\bar{p}_1, \ldots, \bar{p}_r\}$ and $\{\bar{q}_1, \ldots, \bar{q}_s\}$ for \bar{P} and \bar{Q}, respectively, such that $\bar{\psi}(\bar{q}_i) = \bar{f}_i \bar{p}_i$ for some $f_i \in R[X]$ and $1 \leq i \leq s$.

For the rest of the proof, we can follow the proof of [Ry, Theorem 1.1]. □

Now we have the following consequence of (4.4).

Corollary 4.5. Let R be a local ring and $R[X] \subset A \subset R[X, X^{-1}]$. Let P, Q be two projective A-modules such that P_f is isomorphic to Q_f for some special monic polynomial $f \in R[X]$. Then,

1. Q is a direct summand of $P \oplus L$ for any projective A-module L.
2. P is isomorphic to Q if P or Q has a direct summand of rank one.
3. $P \oplus L$ is isomorphic to $Q \oplus L$ for all rank one projective A-modules L.
4. P and Q have same number of generators.

Proof. (1) trivially follows from Theorem 4.4 and (3) follows from (2).

The proof of (4) is same as [Ry, Proposition 3.1 (4)].
For (2), we can follow the proof of [M, Theorem 2.2 (ii)] by replacing doubly monic polynomial by special monic polynomial in his arguments. □

Corollary 4.6. Let R be a local ring and $R[X] \subset A \subset R[X, X^{-1}]$. Let P be a projective A-module such that P_f is free for some special monic polynomial $f \in R[X]$. Then P is free.

Proof. Follows from second part of (4.5). □

References

UNIMODULAR ELEMENTS IN PROJECTIVE MODULES AND AN ANALOGUE OF A RESULT OF MANDAL

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI 400076, INDIA.
E-mail address: keshari@math.iitb.ac.in

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI, INDIA - 400 076
E-mail address: zinna@math.iitb.ac.in