A note on rigidity and triangulability of a derivation

Manoj K. Keshari and Swapnil A. Lokhande

Department of Mathematics, IIT Bombay, Mumbai - 400076, India; (keshari,swapnil)@math.iitb.ac.in

Abstract: Let A be a \mathbb{Q}-domain, $K = \text{frac}(A)$, $B = A^{[n]}$ and $D \in \text{LND}_A(B)$. Assume rank $D = \text{rank } D_1$. If D_1 is the extension of D to $K^{[n]}$. Then we show that

(i) If D is rigid, then D is rigid.

(ii) Assume $n = 3$, $r = 2$ and $B = A[X, Y, Z]$ with $DX = 0$. Then D is triangulable over A if and only if D is triangulable over $A[X]$. In case A is a field, this result is due to Daigle.

Key words: Locally nilpotent derivation, rigidity, triangulability.

1 Introduction

Throughout this paper, k is a field and all rings are \mathbb{Q}-domains. We will begin by setting up some notations from [4]. Let $B = A^{[n]}$ be an A-algebra, i.e. B is A-isomorphic to the polynomial ring in n variables over A. A coordinate system of B over A is an ordered n-tuple $(X_1, X_2, ..., X_n)$ of elements of B such that $A[X_1, X_2, ..., X_n] = B$.

An A-derivation $D : B \rightarrow B$ is locally nilpotent if for each $x \in B$, there exists an integer $s > 0$ such that $D^s(x) = 0$; D is triangulable over A if there exists a coordinate system $(X_1, ..., X_n)$ of B over A such that $D(X_i) \in A[X_1, ..., X_{i-1}]$ for $1 \leq i \leq n$; rank of D is the least integer $r \geq 0$ for which there exists a coordinate system $(X_1, ..., X_n)$ of B over A satisfying $A[X_1, ..., X_{n-r}] \subset \ker D$; $\text{LND}_A(B)$ is the set of all locally nilpotent A-derivations of B.

Let $\Gamma(B)$ be the set of coordinate systems of B over A. Given $D \in \text{LND}_A(B)$ of rank r, let $\Gamma_D(B)$ be the set of $(X_1, ..., X_n) \in \Gamma(B)$ satisfying $A[X_1, ..., X_{n-r}] \subset \ker D$; D is rigid if $A[X_1, ..., X_{n-r}] = A[X_1, ..., X_{n-r}]$ holds whenever $(X_1, ..., X_n)$ and $(X_1, ..., X_n')$ belong to $\Gamma_D(B)$.

For an example, if $D \in \text{LND}_A(B)$ has rank 1, then D is rigid. In this case $\ker(D) = A[X_1, ..., X_{n-1}]$ for some coordinate system $(X_1, ..., X_n)$ and $D = f\partial_{X_n}$ for some $f \in \ker(D)$. If rank $D = n$, then D is obviously rigid, as no variable is in $\ker(D)$. If rank $D \neq 1$, then $\ker(D)$ is not generated by $n - 1$ elements of a coordinate system and is generally difficult to see whether D is rigid. For an example of a non-rigid triangular derivation on $k^{[3]}$, see section 3. We remark that there is also a notion of a ring to be rigid. We say that a ring A is rigid if $\text{LND}(A) = \{0\}$, i.e. there is no non-zero locally nilpotent derivation on A. Clearly polynomial rings $k^{[n]}$ are non-rigid rings for $n \geq 1$.

We will state the following result of Daigle ([4], Theorem 2.5) which is used later.

Theorem 1.1 All locally nilpotent derivations of $k^{[3]}$ are rigid.
Our first result extends this as follows:

Theorem 1.2 Let \(A \) be a ring, \(B = A^{[n]} \), \(K = \text{frac}(A) \) and \(D \in \text{LND}_A(B) \). Assume that rank \(D = \text{rank} \ D_K \), where \(D_K \) is the extension of \(D \) to \(K^{[n]} \). If \(D_K \) is rigid, then \(D \) is rigid.

In ([4], Corollary 3.4), Daigle obtained the following triangulability criteria: Let \(D \) be an irreducible, locally nilpotent derivation of \(R = k^{[3]} \) of rank at most 2. Let \((X,Y,Z) \in \Gamma(R) \) be such that \(DX = 0 \). Then \(D \) is triangulable over \(k \) if and only if \(D \) is triangulable over \(k[X] \). Our second result extends this result as follows:

Theorem 1.3 Let \(A \) be a ring, \(B = A^{[3]} \), \(K = \text{frac}(A) \) and \(D \in \text{LND}_A(B) \). Assume that rank \(D = \text{rank} \ D_K = 2 \). Then \(D \) is triangulable over \(A \) if and only if \(D \) is triangulable over \(A[X] \).

2 Preliminaries

Recall that a ring is called a \(HCF \)-ring if intersection of two principal ideal is again a principal ideal. We state some results for later use.

Lemma 2.1 (Daigle [4], 1.2) Let \(D \) be a \(k \)-derivation of \(R = k^{[n]} \) of rank 1 and let \((X_1,X_2,...,X_n) \in \Gamma(R) \) be such that \(k[X_1,X_2,...,X_{n-1}] \subset \ker D \). Then

\(i \) ker \(D = k[X_1,X_2,...,X_{n-1}] \);

\(ii \) \(D \) is locally nilpotent if and only if \(D(X_n) \in \ker D \).

Proposition 2.2 (Abhyankar, Eakin and Heinzer [1], Proposition 4.8) Let \(R \) be a \(HCF \)-ring, \(A \) a ring of transcendence degree one over \(R \) and \(R \subset A \subset R^{[n]} \) for some \(n \geq 1 \). If \(A \) is a factorially closed subring of \(R^{[n]} \), then \(A = R^{[1]} \).

Lemma 2.3 (Abhyankar, Eakin and Heinzer [1], 1.7) Suppose \(A^{[n]} = R = B^{[n]} \). If \(b \in B \) is such that \(bR \cap A \neq 0 \), then \(b \in A \).

Theorem 2.4 ([6], Theorem 4.11) Let \(R \) be a \(HCF \)-ring and \(0 \neq D \in \text{LND}_R(R[X,Y]) \). Then there exists \(P \in R[X,Y] \) such that ker \(D = R[P] \).

Theorem 2.5 (Bhatwadekar and Dutta [3]) Let \(A \) be a ring and \(B = A^{[2]} \). Then \(b \in B \) is a variable of \(B \) over \(A \) if and only if for every prime ideal \(p \) of \(A \), \(\overline{b} \in \overline{B} := B_p/pB_p \) is a variable of \(\overline{B} \) over \(A_p/pA_p \).

3 Rigidity

Theorem 3.1 Let \(A \) be a ring, \(B = A^{[n]} \), \(K = \text{frac}(A) \) and \(D \in \text{LND}_A(B) \). Assume that rank \(D = \text{rank} \ D_K \), where \(D_K \) is the extension of \(D \) to \(K^{[n]} \). If \(D_K \) is rigid, then \(D \) is rigid.
Proof Assume rank $D = \text{rank } D_K = r$ and D_K is rigid. We need to show that D is rigid, i.e. if (x_1, \ldots, x_n) and (y_1, \ldots, y_n) are two coordinate systems of B satisfying $A[x_1, \ldots, x_{n-r}] \subset \ker D$ and $A[y_1, \ldots, y_{n-r}] \subset \ker (D)$, then we have to show that $A[x_1, \ldots, x_{n-r}] = A[y_1, \ldots, y_{n-r}]$. By symmetry, it is enough to show that $A[x_1, \ldots, x_{n-r}] \subset A[y_1, \ldots, y_{n-r}]$.

Since D_K is rigid and rank $D_K = r$, we get $K[x_1, \ldots, x_{n-r}] = K[y_1, \ldots, y_{n-r}]$. If $f \in A[x_1, \ldots, x_{n-r}]$, then $f \in K[y_1, \ldots, y_{n-r}]$. We can choose $a \in A$ such that $af \in A[y_1, \ldots, y_{n-r}]$ and hence $fB \cap A[y_1, \ldots, y_{n-r}] \neq 0$. Applying (2.3) to $A[x_1, \ldots, x_{n-r}] = B = A[y_1, \ldots, y_{n-r}]$, we get $f \in A[y_1, y_2, \ldots, y_{n-r}]$. Therefore $A[x_1, \ldots, x_{n-r}] \subset A[y_1, \ldots, y_{n-r}]$. This completes the proof.

The following result is immediate from (3.1) and (1.1).

Corollary 3.2 Let A be a ring, $B = A[3]$, $D \in \text{LND}_A(B)$. If rank $D = \text{rank } D_K$, then D is rigid.

Remark 3.3 (1) If $D \in \text{LND}_A(B)$, then rank D and rank D_K need not be same. For an example, consider $A = \mathbb{Q}[X]$ and $B = A[T, Y, Z]$. Define $D \in \text{LND}_A(B)$ as $DT = 0$, $D(Y) = X$ and $D(Z) = Y$. Then rank $D = 2$ and rank $D_K = 1$. Further, $(T' = T - Y^2 + 2XZ, Y, Z) \in \Gamma_D(B)$ and $A[T] \neq A[T']$. Therefore, D is not rigid, whereas D_K is rigid, by (1.1).

Above example gives a $D \in \text{LND}(k[4])$ which is not rigid. Hence Daigle’s result (1.1) is best possible. Note that D is a triangular derivation and by [2], $\ker(D)$ is a finitely generated k-algebra.

(2) The condition in (3.1) is sufficient but not necessary, i.e. $D \in \text{LND}_A(B)$ may be rigid even if rank $D \neq \text{rank } D_K$. For an example consider $A = \mathbb{Q}[X]$ and $B = A[Y, Z]$. Define $D \in \text{LND}_A(B)$ as $D(Y) = X$ and $D(Z) = Y$. Then rank $D = 2$ and hence D is rigid. Further, rank $D_K = 1$ and D_K is also rigid, by (1.1).

(3) It will be interesting to know if $D \in \text{LND}(k[n])$ being rigid implies that $\ker(D)$ is a finitely generated k-algebra. The following example could provide an answer.

Let $D = X^3\partial_5 + S\partial_T + T\partial_U + X^2\partial_V \in \text{LND}(B)$, where $B = k[3] = k[X, S, T, U, V]$. Daigle and Freudenberg [5] have shown that $\ker(D)$ is not a finitely generated k-algebra. We do not know if D is rigid. We will show that rank $D = 3$. Clearly $X, S - XV \in \ker(D)$ is part of a coordinate system. Hence rank $D \leq 3$. If rank $D = 1$, then there exists a coordinate system (X_1, \ldots, X_4, Y) of B over k such that $X_1, \ldots, X_4 \in \ker(D)$. Hence $D = f\partial_Y$ for some $f \in k[X_1, \ldots, X_4]$ and $\ker(D) = k[X_1, \ldots, X_4]$ is a finitely generated k-algebra, a contradiction. If rank $D = 2$, then there exists a coordinate system (X_1, X_2, X_3, Y, Z) of B over k such that $X_1, X_2, X_3 \in \ker(D)$. If we write $A = k[X_1, X_2, X_3]$, then $D \in \text{LND}_A(A[Y, Z])$. Since A is UFD, by ([6], Theorem 4.11), $\ker(D) = A[1]$, hence $\ker(D)$ is a finitely generated k-algebra, a contradiction. Therefore, rank of D is 3.

4 Triangulability

We begin with the following result which is of independent interest.
Lemma 4.1 Let \(A \) be a UFD, \(K = \text{frac}(A), \) \(B = A^{[n]} \) and \(D \in \text{LND}_A(B). \) Let \(D_K \) be the extension of \(D \) on \(K^{[n]} \). If \(D \) is irreducible, then \(D_K \) is irreducible.

Proof We prove that if \(D_K \) is reducible, then so is \(D \). Let \(D_K(K^{[n]}) \subset fK^{[n]} \) for some \(f \in B \). If \(B = A[x_1, \ldots, x_n] \), then we can write \(\text{dx}_i = \frac{g_i}{c_i} \) for some \(g_i \in B \) and \(c_i \in A \) with \(\text{gcd}_B(g_i, c_i) = 1 \). Since \(\text{dx}_i \in B \), we get \(c_i \) divides \(f \) in \(B \). If \(c \) is lcm of \(c_i \)'s, then \(c \) divides \(f \). If we take \(f' = f/c \in B \), then \(\text{dx}_i \in f'B \) and hence \(D \) is reducible. \(\square \)

Proposition 4.2 Let \(A \) be a ring, \(B = A^{[3]} \), and \(D \in \text{LND}_A(B) \) be of rank one. Let \((X, Y, Z) \in \Gamma(B) \) be such that \(DX = 0 \). Assume that either \(A \) is a UFD or \(D \) is irreducible. Then \(D \) is triangulable over \(A[X] \).

Proof As rank \(D = 1 \), there exists \((X', Y', Z') \in \Gamma(B) \) such that \(DX' = DY' = 0 \). By (2.1), ker \(D = A[X', Y'] \) and \(DZ' \in \text{ker} \; D \).

(ii) Assume \(D \) is irreducible. Then \(DZ' \) must be a unit. To show that \(X \) is a variable of \(A[X', Y'] \) over \(A \). By (2.5), it is enough to prove that for every prime ideal \(p \) of \(A \), if \(\kappa(p) = A_p/pA_p \) then \(X \) is a variable of \(\kappa(p)[X', Y'] \) over \(\kappa(p) \). Extend \(D \) on \(A_p[X, Y, Z] \) and let \(D' \) be \(D \) modulo \(pA_p \). Then \(\text{ker} \; D' = \kappa(p)[X', Y'] \). By (2.2), \(\text{ker} \; D' = \kappa(p)[X]^{[1]} \). Therefore \(X \) is a variable of \(A[X', Y'] \), i.e. \(A[X', Y'] = A[X, P] \) for some \(P \in B \). Hence \(B = A[X, P, Z'] \). Thus \(D \) is triangulable over \(A[X] \). \(\square \)

Proposition 4.3 Let \(A \) be a ring, \(K = \text{frac}(A), \) \(B = A^{[3]} \) and \(D \in \text{LND}_A(B) \). Let \((X, Y, Z) \in \Gamma(B) \) be such that \(DX = 0 \). Assume rank \(D = \text{rank} \; D_K = 2 \). Then \(D \) is triangulable over \(A \) if and only if \(D \) is triangulable over \(A[X] \).

Proof We need to show only \(\Rightarrow \). Suppose that \(D \) is triangulable over \(A \). Then there exists \((X', Y', Z') \in \Gamma(B) \) such that \(DX' \in A, DY' \in A[X'] \) and \(DZ' \in A[X', Y'] \). If \(a = DX' \neq 0 \), then \(D_K(X'/a) = 1 \); which implies that rank \(D_K = 1 \), a contradiction. Hence \(DX' = 0 \).

Since \(D_K \) is rigid, by (3.1), \(D \) is rigid of rank 2. Therefore \(A[X] = A[X'] \) and \(D \) is triangulable over \(A[X] \). \(\square \)

Acknowledgements. We sincerely thank the referee for his/her remarks which improved the exposition.

References

