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Abstract. Let Rn(t) denote the polynomial enumerating alternating runs in the symmetric group Sn. Wilf showed
that (1+ t)m divides Rn(t) where m = ⌊(n−2)/2⌋. Bóna recently gave a group-action-based proof of this fact. In this
work, we give a group-action-based proof for type B and type D analogues of this result. Interestingly, our proof gives
a group action on the positive/negative parts B±

n and D±
n and so we get refinements of the result to the case when

summation is over B±
n and D±

n . We are unable to get a group-action-based proof of Wilf’s result when summation is
over the alternating group An and overSn−An, but using other ideas, give a different proof. We give similar results to
the polynomial which enumerates alternating sequences in An, Sn −An, B±

n and D±
n . As a corollary, we get moment

type identities for coefficients of such polynomials.

1. Introduction

For a positive integer n, let [n] = {1,2, . . . ,n}. Let Sn denote the symmetric group on [n]. For an index i with
2 ≤ i ≤ n−1, we say that π ∈Sn changes direction at i, if either πi−1 < πi > πi+1 or if πi−1 > πi < πi+1.

Definition 1. We say that π has k alternating runs, denoted by altruns(π) = k, if π has k − 1 indices where it
changes direction.

For example, the permutation π = 132465 ∈S6 has 4 alternating runs. Consider the polynomial

Rn(t) = ∑
π∈Sn

taltruns(π) =
n−1

∑
k=1

Rn,ktk.

André in [1] started the study of permutations enumerated by its number of alternating runs. Canfield and Wilf
in [6], Stanley in [14] and later Ma in [11] give explicit formulae for Rn,k. Wilf in [15], showed the following result
about the power of (1+ t) that divides Rn(t).

Theorem 2 (Wilf). For positive integers n ≥ 4, the polynomial Rn(t) is divisible by (1 + t)m, where m =
⌊(n−2)/2⌋.

Wilf’s proof depends on a relation between the Eulerian polynomial and Rn(t). Later, Bóna and Ehrenborg in [5]
gave an inductive proof of Theorem 2. Recently, Bóna in [4] gave a proof of Theorem 2 based on group actions.
Inspired by Bóna’s proof, in this paper, we give a group action based proof of type B and type D counterparts of
Theorem 2.

Let Bn be the set of permutations of [±n] = {±1,±2, . . . ,±n} satisfying π(−i) = −π(i). Bn is known as the
hyperoctahedral group or the group of signed permutations on [n]. For π ∈Bn and an index 1 ≤ i ≤ n, we denote π(i)
alternatively as πi and for 1≤ k ≤ n, we denote −k as k. For π = π1π2 . . .πn ∈Bn, define Negs(π)= {πi : i> 0,πi < 0}
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as the set of elements which occur in π with a negative sign. Let Dn ⊆ Bn denote the subset consisting of those
elements of Bn which have an even number of negative entries. Dn is referred to as the demihyperoctahedral group
on [n]. For π ∈ Bn, let π0 = 0. For an index i with 1 ≤ i ≤ n− 1, we say that π changes direction at i if either
πi−1 < πi > πi+1 or if πi−1 > πi < πi+1. We say that π ∈ Bn has k alternating runs, denoted altrunsB(π) = k if
π has k− 1 indices where it changes direction. For example, the permutation 514362 has altrunsB(π) = 5. Define
B>

n = {π ∈Bn,π1 > 0},D>
n = {π ∈Dn,π1 > 0 } andB>

n −D>
n = {π ∈Bn−Dn,π1 > 0}. Further, defineB<

n = {π ∈
Bn,π1 < 0}, D<

n = {π ∈Dn,π1 < 0 } and B<
n −D<

n = {π ∈Bn −Dn,π1 < 0}. Define the following polynomial:

R(W, t) = ∑
π∈W

taltrunsB(π)

where W ⊆Bn.
Zhao in [16, Theorem 4.3.2] proved the following refinement of a type B analogue of Theorem 2. See the paper

by Chow and Ma [7] as well. Later, Gao and Sun in [10, Corollary 2.4] considered the two polynomials R(D>
n , t)

and R(B>
n −D>

n , t) and gave the following refinement of a type D analogue. As the results are very similar, we have
combined their respective results. Though the form appears to be slightly different, Remark 4 shows that Theorem 3
implies a type B and type D counterpart of Theorem 2. Theorem 3 refines and thus implies a type B and type D
counterpart of Theorem 2.

Theorem 3 (Zhao, Gao and Sun). For positive integers n, the polynomials R(B>
n , t), R(D>

n , t) and R(B>
n −D>

n , t)
are all divisible by (1+ t)m where m = ⌊(n−1)/2⌋.

Remark 4. Using the map Sgn_flip1 defined in Section 2, it is easy to see that R(B>
n , t) = R(B<

n , t) and therefore
we have R(Bn, t) = 2R(B<

n , t). Thus the polynomial R(Bn, t) is divisible by 2(1+ t)m.
Using the same map, one can also see that R(B>

n , t) = R(B<
n , t) when n is even. When n is odd, the same map

gives us R(D<
n , t) = R(B>

n −D>
n , t) and R(D>

n , t) = R(B<
n −D<

n , t) Combining this with Theorem 3, we get that both
R(D<

n , t) and R(B<
n −D<

n , t) are divisible by (1+ t)m where m = ⌊(n−1)/2⌋. Thus, when n is even, the polynomial
R(Dn, t) is divisible by 2(1+ t)m and when n is odd, R(Dn, t) is divisible by (1+ t)m.

In Section 3, we give a group action based proof of Theorem 3. Since Sn,Bn and Dn are Coxeter groups they
have a length function (see the book by Björner and Brenti [2]) which we denote by inv, invB and invD respectively
(see definitions in Section 4). Let B+

n = {π ∈ Bn : invB(π) is even} and let B−
n = Bn −B+

n . Similarly, let D+
n =

{π ∈Dn : invD(π) is even} and let D−
n =Dn −D+

n . By B±
n (respectively, D±

n ), we succintly denote both B+
n and B−

n
(respectively, bothD+

n andD−
n ). DefineB>,±

n =B>
n ∩B±

n ,D>,±
n =D>

n ∩D±
n and (Bn−Dn)

>,± = (Bn−Dn)
>∩B±

n .
Interestingly, we are able to get a group action based proof of a refinement of Theorem 3 to B>,±

n , D>,±
n and

(Bn −Dn)
>,±. Our refinements are Theorem 18 and Theorem 24 and both are proved in Section 4. As a corollary,

we get moment type identities for the coefficients of appropriate polynomials. These are given in Theorem 20 and
Theorem 25 respectively.

Bóna’s proof when directly applied to permutations in Bn and Dn also works for the type B and the type D case.
But, this straightforward extension to Bn, Dn, B>

n and D>
n does not seem to be an action over B>,±

n . Thus, it does
not seem to give a proof of Theorem 18 or Theorem 24. In Remark 23, we elaborate on this point. We have given
a refinement of Theorem 2 with summation over the alternating group An and Sn −An in [9, Theorem 3], but our
proof there is not group action based. We are unable to get a group action that both preserves sign in Sn and gives
an exponent of roughly n/2 (see Remark 8). It would be very interesting to get a group action based proof of [9,
Theorem 3] that preserves sign.

Bóna in [4] also gave similar results about alternating sequences.

Definition 5. For a permutation π = π1π2 . . .πn ∈ Sn, an alternating subsequence of π is a subsequence
πi1 ,πi2 , . . . ,πil satisfying πi1 > πi2 < πi3 > · · ·πil . Denote by as(π) the length of the longest alternating subsequence
of π .

The following remark tells the connection between alternating subsequences and alternating runs.

Remark 6. If π1 < π2, we have as(π) = altruns(π) and if π1 > π2, we have as(π) = altruns(π)+1.
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For π = π1π2 . . .πn ∈ Sn, define its number of inversions as inv(π) = |{1 ≤ i < j ≤ n : πi > π j}|. Define the
following polynomials

Altseqn(t) = ∑
π∈Sn

tas(π), SgnAltseqn(t) = ∑
π∈Sn

(−1)inv(π)tas(π),

Altseq+n (t) = ∑
π∈An

tas(π), Altseq−n (t) = ∑
π∈Sn−An

tas(π).

In [3, Section 1.3.2], Bóna presents the following.

Altseqn(t) =
(1+ t)Rn(t)

2
. (1)

An immediate consequence of (1) and Theorem 7 is the following.

Theorem 7 (Bóna). For integers n ≥ 4, the polynomial Altseqn(t) is divisible by (1+ t)⌊n/2⌋.

Bóna in [4] also mentions that one can prove Theorem 7 directly by using the same group action he used to prove
Theorem 2. As mentioned above, we are unable to get a group action on An and on Sn −An. We elaborate on it
below.

Remark 8. We recall the group action defined by Bóna. Given π ∈ Sn and an index i, consider the sequence
Si = πi . . .πn of elements of π starting from the i-th position. Let ci : Sn 7→ Sn be the map which replaces the p-th
smallest element by the p-th largest element for all values of p in the sequence Si. Let Cn = {c1,c3,c5, . . . ,ct} where
t = n−1 if n is even and t = n−2 if n is odd. Bóna shows that Cn acts on Sn, but this action does not restrict to An.
For instance, let n = 8 and let π = 21436587 ∈ S8. It is easy to check that inv(π) = 4 and hence π ∈A8 is an even
permutation. However, it can be checked that c3(π) = 21785634 has inv(c3(π)) = 13 and is thus an odd permutation.

Therefore we are unable to prove Theorem 9 by using Bóna’s action. We can however get the following weaker
version. It is easy to see that for a permutation π , the permutation ci(π) will have the same sign if and only if
n− i+ 1 ≡ 0,1 (mod 4) (see [8, Lemma 10] for a proof). Moreover, the key requirement of [4, Lemma 2.4] is that
indices i’s in Cn should be non-consecutive. From these two conditions, we can choose Cn = {1,5,9, . . . ,4k − 3}
when n = 4k or n = 4k+1 and choose Cn = {3,7,11, . . . ,4k−1} when n = 4k+2 or n = 4k+3. One can check that
this Cn acts on An and on Sn −An. From this, we get that where m = ⌊n/4⌋.

The proof of our earlier result [9, Theorem 3] gives refined counting which we use to give a counterpart of
Theorem 7 for An and Sn −An. In Section 5 of this paper, we prove the following.

Theorem 9. For positive integers n, let m = ⌊n/2⌋. The polynomial Altseq±n (t) is divisible by (1+ t)m−1.

Clearly, Theorem 9 is a near refinement of Theorem 7 as the exponent falls short by 1. We move on to type B
and type D counterparts of Theorem 9. For π = π0π1 . . .πn ∈ Bn with π0 = 0, an alternating subsequence of π is a
subsequence πi1 > πi2 < πi3 > · · · . By asB(π), we denote the length of the longest alternating subsequence of π . For
π ∈ Dn, we have the same definition of alternating subsequence as in Bn and so, let asD(π) = asB(π). Define the
following polynomial Altseq(W, t) = ∑π∈W tasB(π) where W ⊆Bn.

In Section 5 we give the following type B and type D counterpart of Theorem 7.

Theorem 10. For positive integers n, the polynomials Altseq(Bn, t) are divisible by (1 + t)⌈
n
2⌉. For positive

integers n, the polynomial Altseq(Dn, t) is divisible by (1+ t)⌊
n
2⌋. Further, for positive integers n, the polynomials

Altseq(B±
n , t) and Altseq(D±

n , t) are divisible by (1+ t)⌊
n
2⌋.

2. The sign-flip map and its properties

Let π = π1π2 . . .πn ∈Bn. For 1 ≤ k ≤ n, we define the sign-flip map as follows:

Sgn_flipk(π1π2 . . .πn) = π1π2 . . .πk−1πk . . . ,πn.

That is, Sgn_flipk(π) flips the sign of all the elements of π from πk onwards.
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Example 11. Let π = 132645 ∈B6. Then, Sgn_flip1(π) = 132645. When k = 4, we have Sgn_flip4(π) = 132645
and when k = 5, we have Sgn_flip5(π) = 132645.

We note some basic properties of the map Sgn_flipi.

Lemma 12. For positive integers 1 ≤ i ≤ n, the map Sgn_flipi is an involution.

Lemma 13. Let 1 ≤ i < j ≤ n. Then, the maps Sgn_flipi and Sgn_flip j commute. That is, for π ∈ Bn, we have
Sgn_flipi(Sgn_flip j(π)) = Sgn_flip j(Sgn_flipi(π)).

The proof of the following lemma is along the same lines as Bóna’s proof of [4, Proposition 2.3]. We however
give a proof for the sake of completeness.

Lemma 14. Let n ≥ 3 and 2 ≤ i ≤ n− 1. Then, one of π and Sgn_flipi(π) has exactly one more alternating run
than the other.

Proof. Let π = π1 . . .πi−2πi−1πiπi+1 . . .πn. Clearly,

Sgn_flipi(π) = π1 . . .πi−2πi−1πiπi+1 . . .πn.

The number of alternating runs in the string πiπi+1 . . .πn and its image under Sgn_flipi, that is in the string πiπi+1 . . .πn
are clearly identical. Therefore, we only need to consider the changes in the four-element string πi−2πi−1πiπi+1 and
πi−2πi−1πiπi+1. We break them into 23 = 8 cases as follows:

1. If πi−2 < πi−1 < πi < πi+1, then either πi−2 < πi−1 < πi > πi+1 or πi−2 < πi−1 > πi > πi+1.
2. If πi−2 < πi−1 < πi > πi+1, then either πi−2 < πi−1 < πi < πi+1 or πi−2 < πi−1 > πi < πi+1.
3. If πi−2 < πi−1 > πi < πi+1, then either πi−2 < πi−1 > πi > πi+1 or πi−2 < πi−1 < πi > πi+1.
4. If πi−2 < πi−1 > πi > πi+1, then either πi−2 < πi−1 < πi < πi+1 or πi−2 < πi−1 > πi < πi+1.
5. If πi−2 > πi−1 < πi < πi+1, then either πi−2 > πi−1 < πi > πi+1 or πi−2 > πi−1 > πi > πi+1.
6. If πi−2 > πi−1 < πi > πi+1, then either πi−2 > πi−1 < πi < πi+1 or πi−2 > πi−1 > πi < πi+1.
7. If πi−2 > πi−1 > πi < πi+1, then either πi−2 > πi−1 > πi > πi+1 or πi−2 > πi−1 < πi > πi+1.
8. If πi−2 > πi−1 > πi > πi+1, then either πi−2 > πi−1 < πi < πi+1 or πi−2 > πi−1 > πi < πi+1.

In each of the eight cases above, the difference between the number of alternating runs of the four-element string
πi−2πi−1πiπi+1 and πi−2πi−1πiπi+1 is exactly 1. This completes the proof. □

3. Proof of Theorem 3

Let n ≥ 3 be an integer. When n is even, let Tn = {3,5, . . . ,n− 1} and when n is odd, let Tn = {2,4, . . . ,n− 1}. In
both cases, let Mn = {Sgn_flipi : i ∈ Tn}. In either case, Mn clearly consists of m = ⌊(n−1)/2⌋ pairwise commuting
involutions. Therefore, we get an action of the group Zm

2 on Bn and Dn. For integers n with n ≥ 3, since 1 < Tn, we
do not flip the sign of the first element and so Zm

2 also acts on B>
n . By our definition of Tn, the action of Zm

2 preserves
the parity of the number of negatives in π ∈Bn. As such Z2 acts on Dn as well. With these set of generators, we note
the following properties of the maps in Mn.

Lemma 15. Let i, j ∈ Tn with i, j and suppose π ∈Bn is such that altrunsB(Sgn_flipi(π)) = altrunsB(π)+1. Then,
altrunsB(Sgn_flip j(Sgn_flipi(π))) = altrunsB(Sgn_flip j(π))+1.

Proof. Without loss of generality, let i < j. From the structure of Tn, the indices i and j are not consecutive. Let
π = π1 . . .πi−2πi−1πiπi+1 . . .π j . . .πn. We have

Sgn_flipi(π) = π1 . . .πi−2πi−1πiπi+1 . . .π j−1π j . . .πn,

Sgn_flip j(π) = π1 . . .πi−2πi−1πiπi+1 . . .π j−1π j . . .πn,

Sgn_flip j(Sgn_flipi(π)) = π1 . . .πi−2πi−1πiπi+1 . . .π j−1π j . . .πn.

As altrunsB(Sgn_flipi(π)) = altrunsB(π)+1, the string πi−2πi−1πiπi+1 has one more alternating run than the string
πi−2πi−1πiπi+1. Thus, we get altrunsB(Sgn_flip j(Sgn_flipi(π)))= altrunsB(Sgn_flip j(π))+1. The proof is complete.

□
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The action of Zm
2 on B>

n and D>
n clearly creates orbits of size 2m.

Lemma 16. Let O be any orbit of Zm
2 acting on B>

n . Then, for a non-negative integer a, we have

∑
π∈O

taltrunsB(π) = ta(1+ t)m.

Proof. Let π ′ be a permutation in the orbit O with the minimum number of alternating runs, say a many. By Lemma
14, for all r ∈ Tn, we have altrunsB(Sgn_flipr(π

′)) = altrunsB(π
′) + 1. For i, j ∈ Tn with i < j, by Lemma 15,

we have altrunsB(Sgn_flipi(Sgn_flip j(π
′))) = altrunsB(Sgn_flip j(Sgn_flipi(π

′))) = altrunsB(Sgn_flip j(π
′)) + 1 =

altrunsB(π
′)+2. Continuing this way, we get altrunsB(Sgn_flipi1(Sgn_flipi2(. . .(Sgn_flipik(π

′)))) = altrunsB(π
′)+k

for i1 < i2 < · · · < ik, where i1, i2, . . . , ik ∈ Tn. We now show that all those
(m

k

)
permutations are distinct.

Let i1 < i2 < · · · < ik and j1 < j2 < · · · < jk be with (i1, i2, . . . , ik) , ( j1, j2, . . . , jk). Then there exists 1 ≤
r ≤ k such that ir , jr and r′ be the minimum index such that this happens. Then, clearly the permutations
Sgn_flipi1(Sgn_flipi2(. . .(Sgn_flipik(π

′)))) and Sgn_flip j1(Sgn_flip j2(. . .(Sgn_flip jk(π
′)))) must differ at the r′-th

entry. Thus there are at least
(m

k

)
permutations in O with a+ k alternating runs.

Now consider τ ∈ O. By the definition of an orbit, we have

τ = Sgn_flipi1(Sgn_flipi2(. . .(Sgn_flipik(π
′))))

for some choices of i1, i2, . . . , ik. By Lemmas 12 and Lemma 13, we may assume i1 < i2 < · · ·< ik. Hence, there are
exactly

(m
k

)
many elements with a+ k alternating runs. Summing over k, completes the proof. □

We are now in a position to prove Theorem 3.

Proof of Theorem 3. When n ≤ 2, the exponent of (1+ t) is 0 and so there is nothing to prove. Thus, let n ≥ 3.
We first show the result for the type B case. We write B>

n as a disjoint union of its orbits and apply Lemma 16.
Doing this, we get R(B>

n , t) = (1+ t)m
∑π taltrunsB(π), where the summation is over permutations π ∈ B>

n that have
the minimum altrunsB(π) value in its orbit. This completes the proof for the type B case.

For the type D case, we make the same moves, while making the following observation: by our choice of the set
Tn, we assert that for each i ∈ Tn, we have |Negs(π)| ≡ |Negs(Sgn_flipi(π))| (mod 2). Therefore, all permutations π

of any orbit have the same value of |Negs(π)| (mod 2). Thus, an orbit lies entirely in D>
n or entirely in B>

n −D>
n .

Decomposing D>
n and B>

n −D>
n into orbits O and summing taltrunsB(π) over each O completes the proof of the other

two results. □

4. Refining Theorem 3 by taking parity into account

AsBn andDn are Coxeter groups, there is a natural notion of length, denoted by invB and invD respectively, associated
to them. We first consider the type B case. The following combinatorial definition is from Petersen’s book [12, Page
294]:

invB(π) = |{1 ≤ i < j ≤ n : πi > π j}|+ |{1 ≤ i < j ≤ n : −πi > π j}|+ |Negs(π)|. (2)

For π ∈ Bn, we refer to invB(π) alternatively as its length. Let B+
n ⊆ Bn denote the subset of even length elements

of Bn and let B−
n =Bn −B+

n . Here, we use the notation B±
n to succintly denote both B+

n and B−
n .

Recall the sets Tn from Section 3. We first show the following.

Lemma 17. For positive integers n, and π ∈Bn, we have invB(Sgn_flipk(π))≡ invB(π) (mod 2) whenever k ∈ Tn.

Proof. Observe that for any positive integer n, our choice of Tn ensures the following: for all k ∈ Tn and π ∈Bn, the
map Sgn_flipk flips the sign of an even number of elements πi’s of π . Flipping the sign of a single πi changes the
parity invB(π) (see [13, Lemma 3]). Thus, flipping the sign of an even number of πi’s preserve the parity of invB(π).
This completes the proof. □

Theorem 18. For positive integers n, the polynomials R(B>,±
n , t) and R(B<,±

n , t) are divisible by (1+ t)m where
m = ⌊(n−1)/2⌋.
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Proof. We first consider the polynomials R(B>,+
n , t). By Lemma 17, all permutations π in an orbit have the same

value of invB(π) (mod 2). Thus, any orbit lies entirely in B>,+
n or entirely outside B>,+

n . Decomposing B>,+
n as a

disjoint union of orbits O and summing taltrunsB(π) over each O proves that R(B>,+
n , t) is divisible by (1+ t)m. In an

identical manner, one can prove that R(B>,−
n , t) and R(B<,±

n , t) □

We need the following lemma which appears in the proof of a result of Chow and Ma [7, Corollary 2]. We have
paraphrased their result, but from their proof, this change of form will be clear.

Lemma 19 (Chow and Ma). If (1+ t)m divides f (t) = ∑
n
i=0 fit i, then for positive integers k ≤ m−1, we have

1k f1 +3k f3 + · · ·= 2k f2 +4k f4 + · · · .

From Lemma 19 and Theorem 18, we immediately get the following moment-type identity. This refines a similar
identity involving RB

n,k and RD
n,k obtained by combining Lemma 19 and Remark 4. Let RB,>,±

n,k and RB,<,±
n,k denote the

number of permutations with k alternating runs in B>,±
n and B<,±

n respectively.

Theorem 20. For n ≥ 2k+3, we have

1kRB,>,±
n,1 +3kRB,>,±

n,3 +5kRB,>,±
n,5 + · · ·= 2kRB,>,±

n,2 +4kRB,>,±
n,4 +6kRB,>,±

n,6 + · · · ,

1kRB,<,±
n,1 +3kRB,<,±

n,3 +5kRB,<,±
n,5 + · · ·= 2kRB,<,±

n,2 +4kRB,<,±
n,4 +6kRB,<,±

n,6 + · · · .

We now move on to the type D case. The following definition for invD is from Petersen’s book [12, Page 302].

invD(π) = inv(π)+ |{1 ≤ i < j ≤ n : −πi > π j}|, (3)

where inv(π) = |{1 ≤ i < j ≤ n : πi > π j}|. Let D+
n = {π ∈Dn : invD(π) is even} and let D−

n =Dn −D+
n .

We start by proving the following type D counterpart of Lemma 17.

Lemma 21. For positive integers n, and π ∈Dn, we have invD(Sgn_flipk(π))≡ invD(π) (mod 2) whenever k ∈ Tn.

Proof. Though invD(π) is defined only for π ∈ Dn, invB(π) is defined even if π ∈ Dn as Dn ⊆ Bn. From (2) and 3,
we get invB(π) = invD(π)+ |Negs(π)|. Thus, invB(π) ≡ invD(π) (mod 2) for π ∈ Dn. The proof now follows from
Lemma 17. □

Remark 22. By Lemma 21, under the action of the group Zm
2 on D>

n , all π of any orbit O have the same parity
of invD(π) (mod 2) and thus, O lies entirely in D>,+

n or entirely in D>,−
n . In a similar manner, it is easy to see that

Zm
2 acts on each of the sets D>,−

n , B>,±
n and B<,±

n .

Remark 23. Lemma 21 fails for a straightforward extension of Bóna’s group action from [4] to the parity based
subsets of the type B and the type D cases. We illustrate this point for the type B case. Similar examples can be given
for the type D case as well. Given π ∈ Bn and an index i, consider the sequence Si = πiπi+1 . . .πn of elements of π .
In the sequence Si, replace the p-th smallest element by the p-th largest element for all values of p. Let ci :Bn 7→Bn
be this operation. Consider the group action generated by ci with i ∈ {3,5, . . . , t} where t = n− 1 if n is even and
t = n−2 if n is odd.

This is a group action on B>
n but all orbits do not contain elements π with the same parity of invB(π). To see this,

let π = 1234 ∈ B>
4 . Then, c3(π) = 1243. Clearly, invB(π) . invB(c3(π)) (mod 2) and so the orbit of π lies neither

within B>,+
n nor B>,−

n .

Remark 22 helps us to prove the following refinement of Theorem 3.

Theorem 24. For positive integers n, the polynomials R(W, t) are divisible by (1+ t)m where m = ⌊(n−1)/2⌋ and
W is one of the following four sets: D>,±

n ,D<,±
n ,B>,±

n −D±
n , and B<,±

n −D<,±
n .
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Proof. We first consider the case when W = D>,+
n . By Remark 22, Zm

2 acts on D>,+
n . As done in the proof of

Theorem 3, summing taltrunsD(π) over the orbits, we get that R(D>,+
n , t) is divisible by (1+t)m. In an identical manner,

one can prove that (1+ t)m divides the polynomials R(W, t) when W is one of D>,−
n ,B>,±

n −D±
n , and B<,±

n −D<,±
n .

The proof is complete. □

Lemma 19 and Theorem 3 give a moment-type identity which is implicit in the work of Gao and Sun. Combining
Theorem 24 and Lemma 19, we get the following refined moment-type identity. Let RD,>,±

n,k and RD,<,±
n,k denote the

number of permutations with k alternating runs inD>,±
n andD<,±

n respectively. Similarly, let RB−D,>,±
n,k and RB−D,<,±

n,k

denote the number of permutations with k alternating runs in B>,±
n −D>,±

n and B<,±
n −D<,±

n respectively.

Theorem 25. For n ≥ 2k+3, we have

1kRD,>,±
n,1 +3kRD,>,±

n,3 +5kRD,>,±
n,5 + · · ·= 2kRD,>,±

n,2 +4kRD,>,±
n,4 +6kRD,>,±

n,6 + · · · ,

1kRD,<,±
n,1 +3kRD,<,±

n,3 +5kRD,<,±
n,5 + · · ·= 2kRD,<,±

n,2 +4kRD,<,±
n,4 +6kRD,<,±

n,6 + · · · ,

1kRB−D,>,±
n,1 +3kRB−D,>,±

n,3 + · · ·= 2kRB−D,>,±
n,2 +4kRB−D,>,±

n,4 + · · · ,

1kRB−D,<,±
n,1 +3kRB−D,<,±

n,3 + · · ·= 2kRB−D,<,±
n,2 +4kRB−D,<,±

n,4 + · · · .

5. Longest alternating subsequence polynomials

For results involving Sn, we start by defining some sets and their corresponding alternating run enumerating
polynomials. We partition Sn into four (disjoint) subsets and compute the signed alternating runs polynomial on
each of these subsets. Our partitioning is based on the type of the first and the last pairs. Either pair could be an
ascent or a descent. When n ≥ 3, we get the following four sets:

Sn,a,a = {π ∈Sn : π1 < π2,πn−1 < πn}, Sn,a,d = {π ∈Sn : π1 < π2,πn−1 > πn},

Sn,d,a = {π ∈Sn : π1 > π2,πn−1 < πn}, Sn,d,d = {π ∈Sn : π1 > π2,πn−1 > πn}.

Define the following alternating runs enumerator polynomials.

1. SgnAltrunn,a,a(t) = ∑π∈Sn,a,a(−1)inv(π)taltruns(π),

2. SgnAltrunn,a,d(t) = ∑π∈Sn,a,d
(−1)inv(π)taltruns(π),

3. SgnAltrunn,d,a(t) = ∑π∈Sn,d,a
(−1)inv(π)taltruns(π),

4. SgnAltrunn,d,d(t) = ∑π∈Sn,d,d
(−1)inv(π)taltruns(π),

5. SgnAltrunn,a,−(t) = ∑π∈Sn,a,a∪Sn,a,d
(−1)inv(π)taltruns(π).

The following result was proved in [9, Corollary 22].

Theorem 26. For positive integers k, the following signed enumeration results hold. When n = 4k and n = 4k+1,
we have:

SgnAltrunn,a,a(t) = SgnAltrunn,d,d(t) = t(1+ t2)(1− t2)2k−2,

SgnAltrunn,a,d(t) = SgnAltrunn,d,a(t) =−2t2(1− t2)2k−2,

SgnAltrunn(t) = 2t(1− t)2k(1+ t)2k−2.

When n = 4k+2 and n = 4k+3, we have:

SgnAltrunn,a,d(t) = 0 and SgnAltrunn,d,a(t) = 0,

SgnAltrunn,a,a(t) =−SgnAltrunn,d,d(t) = t(1− t2)2k,

SgnAltrunn(t) = 0.
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Using Theorem 26, we get the following version of (1) for An and Sn −An.

Theorem 27. For positive integers n = 4k and n = 4k+1, we have

Altseq±n (t) =
(1+ t)R±

n (t)
2

. (4)

For positive integers n = 4k+2 and n = 4k+3, we have

Altseq±n (t) =
(1+ t)R±

n (t)± t(1− t)(1− t2)2k

2
. (5)

Proof. Consider the map f :Sn 7→Sn defined as

f (π1π2 . . .πn) = n+1−π1n+1−π2 . . .n+1−πn.

By Remark 6 and the fact that the map f flips the parity of inv if and only if n ≡ 0,1 (mod 4), we have

SgnAltseqn(t) =

(1+ t)SgnAltrunn,a,−(t) when n ≡ 0,1 (mod 4)

(1− t)SgnAltrunn,a,−(t) when n ≡ 2,3 (mod 4).
(6)

Therefore, when n = 4k or n = 4k+1, we have

2Altseq±n (t) = Altseqn(t)±SgnAltseqn(t)

=
1
2
(1+ t)Rn(t)± (1+ t)SgnAltrunn,a,−(t)

=
1
2
(1+ t)Rn(t)±

1
2
(1+ t)SgnAltrunn(t) = (1+ t)R±

n (t).

The second line above uses (1). Therefore, we are done in this case. When n = 4k+2 or n = 4k+3, we have

2Altseq±n (t) = Altseqn(t)±SgnAltseqn(t)

=
1
2
(1+ t)Rn(t)± (1− t)SgnAltrunn,a,−(t)

= (1+ t)R±
n (t)± t(1− t)(1− t2)2k.

The last line uses [9, Corollary 22]. The proof is complete. □

We need the following result proved in [9, Theorem 3].

Theorem 28. For positive integers n ≥ 4, let m = ⌊(n−2)/2⌋. When n ≡ 0,1 (mod 4), the polynomials R±
n (t) are

divisible by (1+ t)m−1, When n ≡ 2,3 (mod 4), the polynomials R±
n (t) are divisible by (1+ t)m.

Proof of Theorem 9. Follows immediately from Theorem 27 and Theorem 28. □

We move on to our final proof of this work.

Proof of Theorem 10. Consider the type B case first. Using the map Sgn_flip1, it is easy to see that

Altseq(Bn, t) = (1+ t) ∑
π∈B>

n

tasB(π) = (1+ t)R(B>
n , t).

The proof is complete by combining with Theorem 3. We give our proof for Altseq(B±
n , t) below.

For the type D case, recall the following sets from Section 3: let Tn = {1,3,5, . . . ,n− 1} when n is even and let
Tn = {2,4,6, . . . ,n−1} when n is odd. As seen in Section 3, we have a group action on Dn. We can repeat the same
argument to get that Altseq(Dn, t) is divisible by (1+ t)|Tn|. As |Tn|= ⌊n/2⌋, we are done. Further, by Lemma 17 and
Lemma 21, since these are actions onD±

n and onB±
n , an identical argument shows that the polynomials Altseq(B±

n , t)
and Altseq(D±

n , t) are divisible by (1+ t)⌊
n
2⌋, completing the proof. □
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Remark 29. The difference in the exponent of (1+ t) between the whole group and its positive-and-negative parts
in Theorem 9 and Theorem 10 exists and our result is the best that one can get. We give examples below. For the Sn
case, when n = 6, one can check that (1+ t)3 divides Altseq6(t), while (1+ t)2 divides Altseq±6 (t) as we have

Altseq6(t) = (t +1)3(61t3 +28t2 + t),

Altseq+6 (t) = (t +1)2t(6t2 +8t +1)(5t +1),

Altseq−6 (t) = (t +1)2t2(31t2 +43t +16).

For the type B case, when n = 3, one can check that (1+t)2 divides Altseq(B3, t), while (1+t) divides Altseq(B±
3 , t)

as we have

Altseq(B3, t) = 11t4 +23t3 +13t2 + t = (t +1)2t(11t +1),

Altseq(B+
3 , t) = 6t4 +11t3 +6t2 + t = (t +1)t(2t +1)(3t +1),

Altseq(B−
3 , t) = 5t4 +12t3 +7t2 = (t +1)t2(5t +7).

Finally, we also mention that moment identities similar to Theorem 20 and Theorem 25 can be given involving the
coefficients of Altseq±n (t), Altseq(B±

n , t) and Altseq(D±
n , t).
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