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Abstract: Let G = (V , E) be a connected graph with 2-connected blocks H1, H2, . . . , Hr. Motivated by the
exponential distance matrix, Bapat and Sivasubramanian in [4] defined its product distance matrix DG and
showed that detDG only depends on detDHi for 1 ≤ i ≤ r and not on the manner in which its blocks are
connected. In this work, when distances are symmetric, we generalize this result to the Smith Normal Form
of DG and give an explicit formula for the invariant factors of DG.

1 Introduction
For a positive integer n, denote the set {1, 2, . . . , n} as [n]. Let G be a connected graph with vertex set V(G) =
[n]. A block of G is a maximally connected subgraph without a cut-vertex. In this work, for a graph G, we will
look at symmetric functions η : V(G) × V(G) → R where R is a commutative principal ideal domain (PID
henceforth). A product distance on G is a function η : V(G) × V(G) → R, that satisfies the following three
conditions:
1. η(i, i) = 1 for all i ∈ [n].
2. η(i, j) = η(j, i) for all i, j ∈ V and
3. if i, j ∈ V(G) are vertices such that every path from i to j passes through the cut-vertex k, then η(i, j) =

η(i, k)η(k, j).
Thus,we essentially have the freedom to assigndistanceswithin eachblock subject to symmetry anddiagonal
entries being 1. Once these distances are fixed, distances across blocks will follow from the third rule above.
We sometimes denote η(i, j) equivalently as ηi,j, especiallywhenwe formamatrix of the distances. Let G have
blocks H1, H2, . . . , Hr. Let η(·, ·) be a product distance on G and let DG = (ηi,j)1≤i,j≤n be the corresponding
distance matrix.

The definition of product distances is motivated by a concrete example: the exponential distance matrix
EDG of a connected graph. Given a connected graph G on the vertex set [n], let the distance between two
vertices i, j ∈ V(G) be denoted di,j. That is, di,j is the length of the minimum length path from i to j in G.
Define the n × nmatrix EDG = (qdi,j )1≤i,j≤n as the exponential distance matrix where q is an indeterminate and
q0 = 1. It can be readily checked that η(i, j) = qdi,j is a product distance.

A large family of product distances can be obtained from geodetic distances as follows. Let G = (V , E, w)
be a graph with weights w : E → R

+ on its edges. A function d : V × V → R is defined to be graph geodetic
if for i, j, k ∈ V, the condition d(i, j) + d(j, k) = d(i, k) holds iff every path in G from i to k passes through
j. It is easy to see that the usual weighted graph distance is graph-geodetic. Klein and Randić in [9] showed
that the resistance distance is also graph-geodetic. Chebotarev in [5] has constructed several graph geodetic
distances parametrised by a real variable α. He showed that at boundary values of α, his distance coincides
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with the usual shortest path distance and the resistance distance. In [6], Chebotarev constructed more graph
geodetic distances from positive functions f : V × V → R which satisfy the “transition inequality”.

Let d : V × V → R be a graph-geodetic distance and consider a new function e : V × V → R defined
by e(x, y) = qd(x,y), where q is an indeterminate. Then, e(x, y) becomes a product distance by virtue of the
graph-geodetic property. Our results are applicable to this large class of distances.

If η(·, ·) is a product distance on G and if G has blocks H1, H2, . . . , Hr, then, each Hi is a graph in its own
right and thus has an induced product distance matrix DHi obtained by restricting η to vertices in Hi. Indeed,
these are the distances within vertices of a block which induce the product-distance on G. If the graph G is
clear from the context, we abridge DG to D.

If D is a matrix whose entries form a product distance on G, Bapat and Sivasubramanian [4] showed
that detD only depends on detDHi for individual blocks Hi of G and not on the manner in which the Hi’s
are connected. Their result is true in a more general asymmetric distance case. We state below, a symmetric
version of their result.

Theorem 1. ([4, Theorem 4]) Let G be a connected graph with blocks Hi, 1 ≤ i ≤ r and product distance matrix
DG. For each such i, let the distance matrix of each Hi be DHi . Then,

detDG =
r∏︁
i=1

detDHi .

In particular, detDG is independent of the manner in which the blocks Hi of G are connected. In this paper,
weworkwithmatricesM over a PID R. In this case, every finite subset S ⊆ R naturally has a greatest common
divisor (gcd henceforth). The determinant of an n × nmatrixM with entries from a PID clearly equals the gcd
of all n × n minors of M (as there is only one such minor).

Thus, Theorem 1 can be alternatively stated as “the gcd of n×nminors of DG is independent of themanner
in which its blocks are connected.” Each k × k minor of M is an element of the PID R and hence, we can
talk of the gcd of k × k minors, with gcd being taken over all the

(︀n
k
)︀2 choices. If R is a PID, for a multiset

T = {x1, x2, . . . , xt} ⊆ R, the gcd of the elements of T will be denoted as gcd(x1, . . . , xt) or as gcdx∈T x. In
the above expression and throughout this paper, when we write gcdx∈T x, we remove those x ∈ T that are
zero and consider the gcd() only over the non-zero elements of T.

In this work, we extend the above gcd interpretation of Theorem 1 to all k × k minors of DG. Our main
result is Theorem 3 where we give an explicit formula for the gcd of k × kminors of DG as a function of the gcd
of smaller minors of the product distance matrix DHi of blocks Hi of G. Since the gcd of k × kminors occurs in
the Smith Normal Form (SNF henceforth) of DG, our results have implications for the SNF of DG (see Corollary
9).

Shiu [11] has shown some results about the SNF of exponential distancematrices arising fromhyperplane
arrangements. We are not aware of any other results similar to ours in the literature.

2 The main result
Let DG be the product distance matrix of a graph G and let H1, H2, . . . , Hr be the blocks of G. Let G have n
vertices and similarly, let Hi have ni vertices for all i. Clearly n =

∑︀r
i=1 ni − (r − 1).

Recall that DHi is the distance matrix of Hi. For 1 ≤ i ≤ r and for 1 ≤ k ≤ ni, let the gcd of k × k minors of
DHi be denoted as gi,k−1 where the first index is the block number and the second index denotes size minus
one. The reason for the second parameter being size minus one will be clear after we see Corollary 7. Thus,
for 1 ≤ i ≤ r, we have gi,0, gi,1, . . . , gi,ni−1. For 1 ≤ i ≤ r, and for values j ≥ ni define gi,j = 0. It is easy to note
for all i, that gi,0 = 1 as each diagonal entry of DHi is a 1 × 1 matrix which equals 1.

Recall r is the number of blocks of G and for positive integers s satisfying 1 ≤ s ≤ (
∑︀r

i=1 ni) − r, define Ts
to be the set of ordered integral solutions to the equation s = s1 + s2 + · · · + sr where 0 ≤ si < ni. Here, ordered
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means that the order of the elements (s1, s2, . . . , sr) is important. We will index elements of Ts by ordered
tuples (s1, s2, . . . , sr). Since the graph G is fixed, its number of blocks r is also fixed and hence, the number
of summands, r is tacitly obvious. We thus denote the above solution set as Ts instead of the more precise
Ts,r.

Definition 2. With the notation gi,k above, define for 1 ≤ s ≤ (
∑︀r

i=1 ni) − r,

gs = gcd
(s1 ,s2 ,...,sr)∈Ts

(
r∏︁
i=1
gi,si ). (1)

With this notation, our main result is the following.

Theorem 3. Let DG be the product distance matrix of a connected graph G with blocks Hi for 1 ≤ i ≤ r where
Hi has ni vertices. For 1 ≤ i ≤ r, let the gcd of k × k minors of DHi be gi,k−1 where 1 ≤ k ≤ ni. Then, the gcd of
1 × 1minors of DG is 1 and for 2 ≤ s ≤ (

∑︀r
i=1 ni) − (r −1) the gcd of s × s minors of DG is gs−1, where gs is defined

by (1).

In order to find the gcd of k × k minors of a matrix A, we look at equivalent matrices B defined as follows.
Two n × n matrices A, B are said to be equivalent, denoted B ∼ A if there exist n × n matrices U, V with both
detU and detV being units in the ring R and with B = UAV. If R = Z, then, we require detU = detV = ±1. We
will use elementary row and column operations on matrices. These are the non-multiplicative elementary
operations (that is we do not multiply a row or column by a scalar). It is well known that such elementary
operations can be accomplished by premultiplying or postmultiplying by matrices whose determinants are
±1. It follows from the Binet-Cauchy theorem that if B ∼ A, then, the gcd of k × k minors of A equals the gcd
of k × k minors of B for all 1 ≤ k ≤ n. (See [10, Theorem II.8].)

2.1 Proof of Theorem 3

We will calculate the gcd of s × s minors of DG by getting an equivalent matrix Mr which is a direct sum of
several diagonal blocks Ki. Wewill know the gcd of k×kminors of each direct summand Ki for all 1 ≤ k ≤ |Ki|.
From this, we will get the gcd of s × s minors of DG.

We need two results, one on getting the gcd of s × s minors of a direct-sum matrix when we know the
gcds of minors of its direct-sum constituents. Secondly, we need to get the gcd of k × k minors of each direct
summmand Ki - thiswill be done inductively. The first point is addressed by the following.Wenowchange our
notation slightly and denote gcds of k × kminors by ak , bk and so on. See Remark 10 later for an explanation
for this change.

Lemma 4. Let M be an n × n square matrix over a PID R and let M = A ⊕ B be a direct sum of two square

matrices A, B, where A is an s × s matrix and B is an (n − s) × (n − s)matrix. That is, M =
(︃
A 0
0 B

)︃
. Let the

gcd of k × k minors of A be denoted ak for 1 ≤ k ≤ s and likewise, let bk denote the gcd of k × k minors of B for
1 ≤ k ≤ n − s. Define a0 = b0 = 1. Let the gcd of k × k minors of M be denoted mk for 1 ≤ k ≤ n. For an integer
1 ≤ k ≤ n, let Tk be the set of ordered integral solutions (x, y) to the equation k = x + y, where 0 ≤ x ≤ s and
0 ≤ y ≤ n − s. Then, mk = gcd(x,y)∈Tkaxby.

Proof. Let Y be a k × k submatrix of M. Then, Y is obtained by choosing P, Q ⊂ [s], where P is a set of
chosen rows and Q is a set of chosen columns, and choosing L, N ⊂ [n] − [s], where L is a set of chosen rows
and N is a set of chosen columns. Clearly, |P| + |L| = k and |Q| + |N| = k. That is, the submatrices A[P, Q]
and B[L, N] are chosen and so Y = A[P, Q] ⊕ B[L, N] can be written as a direct sum. If |L| + |Q| < k, then
|P|+ |N| > k and so there will exist a zero submatrix (induced on the rows indexed by P and columns indexed
by N) of order |P| × |N| where |P| + |N| > k. For any k × k matrix Y = (yi,j)1≤i,j≤k, if there exists P, N ⊆ [k]
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with |P| + |N| > k and with Y[P, N] = 0, then we claim that det Y = 0. We will show a stronger statement
that all terms in the Laplace expansion of det Y will be zero. Without loss of generality, assume that the zero
submatrix of Y is formed on the rows P = {1, 2, . . . , |P|} and the columns N = {1, 2, . . . , |N|}. We claim that
all permutations π ∈ Sk satisfy yi,πi = 0 for some i ∈ [k]. To see this, suppose this does not happen. Then,
we have {π1, π2, . . . , π|P|} ∩ {1, 2, . . . , |N|} = ∅, which contradicts our assumption that |P| + |N| > k. (This
proof is very similar to the proof of the Frobenius-König theorem [3, Theorem 2.1.4].)

Thus, if we want det Y ≠ 0, we must have |L| + |Q| ≥ k. A similar argument shows that we must have
|P| + |N| ≥ k if we want det Y ≠ 0. Hence, if det Y ≠ 0, we must have |L| + |Q| = k = |P| + |N|. We already
know |L| + |P| = k = |Q| + |N|. Thus, we infer that |P| = |Q| and |L| = |N|. That is, only square submatrices
of the direct summands can be chosen if we want det Y ≠ 0. Thus the determinant of any non-singular k × k
submatrix ofM equals the product of determinants of non-singular submatricesM1 of A andM2 of B. Hence
the gcd mk of k × k minors of M equals gcd(x,y)∈Tk axby. The proof is complete.

More generally, ifM is the direct sum of r diagonal blocks D1, D2, . . . , Dr, then it is clear that we only need to
modify thedefinition of Tk to contain r ordered summands addingupto k.We state this generalisationwithout
proof as a corollary. We just remark that a proof by induction on the number of summands is straightforward.

For 1 ≤ i ≤ r, let Di be an ni × ni matrix. and for 1 ≤ k ≤ ni, let the gcd of k × k minors of Di be denoted
as gi,k. For 1 ≤ i ≤ r, define gi,0 = 1. Define Ts to be the set of ordered integral solutions to the equation
s = s1 + s2 + · · · + sr where 0 ≤ si ≤ ni. This definition is similar, but slightly different from Definition 2. See
Remark 10 later for an explanation.

Definition 5. With the notation gi,k above, define for 1 ≤ s ≤
∑︀r

i=1 ni,

gs = gcd
(s1 ,s2 ,...,sr)∈Ts

(
r∏︁
i=1
gi,si ). (2)

Corollary 6. Let M = ⊕r
i=1Di be an n × n matrix where Di has dimension ni × ni. Then, for 1 ≤ s ≤ n, the gcd of

s × s minors of M is gs.

We now move on to a useful corollary of Lemma 4, where we find the gcd of k × k minors when one direct
summand is 1. This corollary will be useful in the proof of Theorem 3.

Corollary 7. Let A be an n × n matrix and for 1 ≤ k ≤ n, let the gcd of k × k minors of A be denoted ak. Let M be
a matrix obtained by performing elementary row and column operations on A such that M is the direct sum of

a 1 × 1matrix 1 and an (n − 1) × (n − 1)matrix B. That is, M =
(︃

1 0
0 B

)︃
. For 1 ≤ k ≤ n − 1, let bk be the gcd

of k × k minors of B. Then, bk = ak+1 for 1 ≤ k ≤ n − 1.

Proof. AsM is obtained by performing row/column operations on A,M ∼ A. Thus, the gcd of (k + 1) × (k + 1)
minors of A equals the gcd of (k+1)× (k+1) minors ofM. For 1 ≤ k ≤ n, denote the gcd of k × kminors ofM as
mk. Then, for 0 ≤ k ≤ n − 1, we have ak+1 = mk+1. By Lemma 4, since M is a direct-sum of a 1 × 1 matrix and
an (n − 1) × (n − 1) matrix, mk+1 = gcd(bk , bk+1) = bk, where the last equality follows as each (k + 1) × (k + 1)
minor of B is a linear combination of k × k minors of B. The proof is complete.

The above lemma says that the gcd of 1x1 minors of B equals the gcd of 2x2 minors of A; the gcd of 2x2 minors
of B equals the gcd of 3x3 minors of A and so on. We are now in a position to prove Theorem 3. As the proof
is algorithmic, we illustrate our proof later in Example 11 for clarity.

Remark 8. Corollary 7 will be repeatedly used in this work and thus at several places, we will denote the gcds
of k × k minors of matrices with index k − 1. (That is, as ak−1 and so on).

Proof. (Of Theorem3)Among theblocksHj ofG, definea leaf-block as onewith exactly one cut-vertex. Clearly,
leaf-blocks exist and let H1 be a leaf-block of G connected via cut-vertex cv1. Let L0 = G and let L1 = L0 −
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(H1 − {cv1}). Let the vertices of L1 be {u1, u2, . . . , up} where up = cv1. Let the rows and columns of DG be
written in the order u1, u2, . . . , up, followed by the vertices of of H1 − {cv1} in some order w2, w3, . . . , wn1 .

For an n × n matrix M, denote its i-th row for 1 ≤ i ≤ n as Rowi and its j-th column for 1 ≤ j ≤ n as
Colj. For vertices u, v ∈ H1, recall the distance between them is η(u, v). Obtain a matrix M1 equivalent to
DG as follows: perform the elementary row operations Rowwi = Rowwi − η(cv1, wi)Rowcv1 for 2 ≤ i ≤ n1 and
then perform the elementary column operations Colwi = Colwi − η(cv1, wi)Colcv1 for 2 ≤ i ≤ n1. The resulting
matrix M1 = ((M1)u,v) will have (M1)u,w = 0 for u ∈ L1, w ∈ H1 − {cv1} (likewise for (M1)w,u). Thus, M1 can

bewritten as the following direct sum.M1 =
(︃
DL1 0
0 K1

)︃
, where K1 is an (n1−1)×(n1−1) sizedmatrixwith

rows and columns indexed by w2, . . . , wn1 with the (wr , ws)-th entry being η(wr , ws) − η(wr , cv1)η(cv1, ws).
Recall that g1,k−1 is the gcd of k × kminors of DH1 for 1 ≤ k ≤ n1 −1 and let bk be the gcd of k × kminors of

K1 for 1 ≤ k ≤ n1 −1. By performing the same row/column operations as before, we get that DH1 is equivalent

to the matrix
(︃

1 0
0 K1

)︃
and hence by Corollary 7, it follows that

for 1 ≤ k < n1, we have bk = g1,k+1. (3)

Upto equivalence, we have decomposed DG into a direct sum of K1 and DL1 and we know the gcd of k × k
minors of K1 for all k. If we also know the gcd of t × t minors of DL1 , then we can get the gcd of all minors of
the direct sum of DL1 and K1 using Lemma 4.

Towards doing this, we iterate this process, just that we now work with the graph L1. Pick a leaf block
H2 of L1 (H2 need not necessarily be a leaf-block of G). Let H2 be connected via cut-vertex cv2 to L1. Define
L2 = L1 − (H2 − {cv2}). We may assume (by multiplying by a permutation matrix if necessary) that the rows
and columns of DL1 are listed with vertices of L2 − {cv2} in some order, followed by cv2 and then the vertices
of H2 − {cv2} in some order. Denote the vertices of H2 − {cv2} as z2, z3, . . . , zn2 . Obtain a matrix equivalent
to DH2 as follows: perform the elementary row operations Rowzi = Rowzi − η(cv2, zi)Rowcv2 for 2 ≤ i ≤ n2 and
then perform the elementary column operations Colzi = Colzi − η(cv2, zi)Colcv2 for 2 ≤ i ≤ n2. We note that
though it appears that we perform row and column operations on DL1 , we can actually perform operations
on DG to get an equivalent matrix M2 to M1 (and hence equivalent to DG) where DL1 is broken into a direct

sum of K2, a square matrix with dimension n2 − 1 and DL2 . ie we get M2 =

⎛⎜⎝ DL2 0 0
0 K2 0
0 0 K1

⎞⎟⎠. Thus, we
get an equivalent matrix with onemore direct summand. Iterate this procedure till we have a graph with only
one block Hr. From our process, it is clear that we get one direct summand for each 2-connected block of
G. We stop iterating when we have one block Hr of G. In this case, the leaf-block is Hr itself and denote its
vertices as 1, 2, . . . , nr. Treat 1 as a cut-vertex connecting Hr to the empty graph and perform the same row
and column operations for all vertices of Hr − {1}. This will result in a decomposition of DHr as a direct sum
of Kr of dimension (nr − 1) × (nr − 1) and a 1 × 1 matrix consisting of the entry 1. Thus, we get a matrix Mr,

equivalent to DG, of the form Mr =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 · · · · · · 0
0 Kr · · · · · · 0
...

...
. . .

...
...

0 0 · · · K2 0
0 0 · · · 0 K1

⎞⎟⎟⎟⎟⎟⎟⎠.
In this direct-sum decomposition, each square block Ki has size ni − 1 for 1 ≤ i ≤ r and we have a 1 × 1

block K0 with entry 1.We apply Corollary 6 to get the gcd of k×kminors of the direct sum⊕r
i=1Ki and combine

with Corollary 7 to complete the proof of the theorem.

A simple corollary of Theorem 3 is the following.

Corollary 9. The SNF of DG is independent of the manner in which its blocks Hi are connected.
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Proof. By Theorem 3, the gcd hk of k × k minors for 1 ≤ k ≤ n of DG is independent of the manner in which
the blocks Hi are connected. Set h0 = 1. The invariant factors sk for 1 ≤ k ≤ n of DG are sk =

hk
hk−1

. Clearly the
hk’s only depend on the blocks of G and as taking gcds is also independent of the ordering of the blocks, the
hk’s are independent of the manner in which the blocks Hi are connected. Thus, so are the sk’s, completing
the proof.

Remark 10. The reason for denoting the gcd of k × k minors of DHi as gi,k−1 stems from the proof of Theorem 3
and Corollary 7.

Example 11. We illustrate the inductive argument occurring in the proof of Theorem 3 on an example graph,
shown in Figure 1) where we use the exponential distancematrix. Let DG be the exponential distancematrix EDG
of L0 = G.

Figure 1: An example of a graph.

Let H1 be the subgraph on the vertices {5, 6, 7} with cut vertex cv1 = 5 and let L1 = G − (H1 − {cv1}).

Clearly, EDG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 q q2 q q2 q3 q3

q 1 q q q2 q3 q3

q2 q 1 q q2 q3 q3

q q q 1 q q2 q2

q2 q2 q2 q 1 q q
q3 q3 q3 q2 q 1 q
q3 q3 q3 q2 q q 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let the i-th row of EDG for 1 ≤ i ≤ n be denoted Rowi and the i-th column of EDG be denoted Coli respectively.
After performing the row operations Rowi = Rowi − q · Row5 for i = 6, 7 and then performing the column

operations Coli = Coli − q · Col5 for i = 6, 7, we get an equivalent matrix M1 =
(︃

EDL1 0
0 K1

)︃
, where we

have K1 =
(︃

1 − q2 q − q2

q − q2 1 − q2

)︃
. Note that K1 is a 2 × 2 matrix as H1 has 3 vertices. Next, if we perform the

row operation Row5 = Row5 − q · Row4 and the column operation Col5 = Col5 − q · Col4 on H2 (the subgraph

induced on {4, 5}) with cv2 = 4, we get an equivalent matrix M2 =

⎛⎜⎝ EDL2 0 0
0 K2 0
0 0 K1

⎞⎟⎠, where K2 = (︀1 − q2)︀
(i.e. K2 is a 1 × 1matrix). We are now left with H3, the induced subgraph on {1, 2, 3, 4}. Choosing cv3 = 1 and
performing the row operations Row2 = Row2 − q · Row1; Row3 = Row3 − q2 · Row1 and Row4 = Row4 − q · Row1
and then the column operations Col2 = Col2 − q · Col1; Col3 = Col3 − q2 · Col1 and Col4 = Col4 − q · Col1, we get
the following equivalent matrix

M3 =

⎛⎜⎜⎜⎝
1 0 0 0
0 K3 0 0
0 0 K2 0
0 0 0 K1

⎞⎟⎟⎟⎠, where K3 =
⎛⎜⎝ 1 − q2 q − q3 q − q2

q − q3 1 − q4 q − q3

q − q2 q − q3 1 − q2

⎞⎟⎠.
Thus, we get EDG ∼ M3. We know the gcd of k × k minors in each Ki by Corollary 7 and using Corollary 6,

we can get the gcd of s × s minors of EDG.
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3 Special Cases
In this section, we consider some instances of product distance matrices and their inverses and draw corol-
laries on their SNFs. We first consider exponential distance matrices EDG of connected graphs G defined in
Section 1. Clearly, they are examples of a product distance and so Theorem 3 is applicable to them.

3.1 Exponential distance matrix of Trees

Firstly consider the casewhen G is a tree T. In this case, each block of G is the complete graph on two vertices.
Hence, in EDH , for each block H of G, the gcd of 1 × 1 minors is 1 and the gcd of 2 × 2 minors is (q2 − 1). In
this case, as ni = 2, we will get an equivalent diagonalmatrix.

Thus if T is a tree on n vertices, by Theorem 3, we infer that the gcd of k × k minors of EDG is gk−1 =
(q2 − 1)k−1 Hence, we get the invariant factors sk of EDT to be s1 = 1, sk = (q2 − 1) for 1 < k ≤ n. This is
a reproof of the following fact: the invariant factors of EDT only depend on n, the number of vertices of T
and is independent of the structure of the tree T. That is, the SNF of EDT is the equivalent diagonal matrix
M = 1⊕ (q2 − 1)⊕ · · ·⊕ (q2 − 1)⏟  ⏞  

(n−1) times
.

By using Jacobi’s Theorem we can get the gcds of k × k minors of inverses of the exponential distance
matrices of trees. We cover this in the next few lines. Bapat, Lal and Pati [2, Proposition 3.3] showed that the
inverse of the exponential distance matrix EDT of a tree T is upto scalar, the q-analogue of T’s laplacian Lq

which is defined as Lq = I − qA + (D − I)q2. Here, q is a variable, A is the adjacency matrix of T and D a
diagonal matrix with the (i, i)-th entry being the degree of vertex i.

Theorem 12 (Bapat, Lal and Pati). Let T be a tree with exponential distance matrix EDT and let Lq be the
q-analogue of T’s laplacian matrix. Then ED−1T = 1

1 − q2Lq.

By Jacobi’s Theorem [7, Section 4.2], we know that for invertible matrices M, its minors are related to com-
plementary minors of M−1. From this, we see that the gcd bk of k × k minors of Lq is 1 for 1 ≤ k < n and that
bn = q2 − 1.

3.2 Exponential distance matrices when all blocks are Kt’s

We consider exponential distance matrices of graphs G, in the case when all blocks of G are the complete
graph Kt on t vertices. For concreteness, we assume t = 3, though our results are applicable for larger t as
well (see the paragraph before Corollary 13, below).

Figure 2: Two examples of graphs with only K3 as blocks.

Let G be a graph with blocks being K3’s. Two examples are given in Figure 2. It can be checked that the
gcd of k × k minors of ED(K3) is as given in the following table.
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k gcd of k × k minors
1 1
2 q − 1
3 (2q + 1)(q − 1)2

In general when we consider EDKt , it can be shown that the gcd of k × k blocks is (q − 1)
k−1 for 1 ≤ k < t

and that the gcd of t × t blocks is (1 + (t − 1)q)(q − 1)t−1. We can derive the following corollary of Theorem 3.

Corollary 13. Let G be a graph with r blocks, each of which is a K3 and let EDG be its exponential distance
matrix. Let the gcd of s × s minors of EDG be denoted gs−1. Then, for 1 ≤ s ≤ r + 1, we have gs = (q − 1)s−1 and
for r + 2 ≤ s ≤ 2r + 1, we have gs = (2q + 1)s−r−1(q − 1)s−1.

Proof. Since each block is a K3, we have in the notation of Theorem 3 that gi,0 = 1, gi,1 = q − 1 and gi,2 =
(2q + 1)(q − 1)2 for each 1 ≤ i ≤ r. It is easy to see that the number of vertices in G is n = 2r + 1. By Theorem 3,
when 2 ≤ s ≤ n, the gcd of s×sminors of EDG is gs−1. To calculate gs−1, when 2 ≤ s ≤ r, note that gcd(

∏︀r
i=1 gi,si )

over choices (s1, s2, . . . , sr) ∈ Ts−1 is attained when each si = 0 or 1 (ie the choice si = 2 for some iwill result
in a larger product and hence not be chosen). Thus in this case, the gcd of s × s minors of EDG is (q − 1)s−1.
When r + 1 ≤ s ≤ n, we will have all si ≥ 1 and some s − r − 1 indices j with sj = 2. In this case, the gcd will be
(2q + 1)s−r−1(q − 1)s−1, completing the proof.

The above corollary states that if G has r blocks, then the topmost r largest-sized minors have one form as
their gcd and the remaining smaller sized minors all have another form for their gcd. This is true when all
blocks of G are Kp’s as well (i.e. Corollary 13 can be generalised to this case). A similar proof can be given,
though we omit it. We note that all blocks are required to be Kt for the above corollary. It G has two blocks,
a K3 and a K4, then it can be checked that only the topmost gcd is different (as opposed to the two topmost
gcds as asserted by Corollary 13.)

For graphs that are not necessarily trees by Theorem 1, EDG is invertible provided each of its blocks are. In
this case, Bapat and Sivasubramanian [4, Theorem 6] give an explicit inverse of EDG. It would be interesting
to get a list of 2-connected graphs for which the SNF of its exponential distance matrix is known.

Similarly, the SNFof exponential distancematrices of block graphs (defined as graphs all ofwhose blocks
are cliques) canbedetermined. The formulae for these arenot as attractive as in the casewhenG has all blocks
being Kt with the same t and so we leave things here.

3.3 Exponential version of scaled resistance matrix

As mentioned in Section 1, exponential versions of resistance distances are also product distances. Let G
have two blocks B and F where B = C4 is the four-cycle and F = C5 is the five-cycle (see Figure 3). Bapat in
[1, Equation 4] has shown that the resistance distance between vertices i, j in the n-cycle is given by ri,j =
(j − i)(n − j + i)/n.

Figure 3: Graphs with distances given by scaled resistance distance.
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Among vertices i, j ∈ V(B), let ri,j be its resistance distance. Let κB denote the number of spanning trees
of B. For vertices i, j ∈ V(B), define its distance by di,j = qκB ri,j , where ri,j is the resistance distance between
i and j in B, and q is an indeterminate. Similarly, let κF denote the number of spanning trees of F and define
the distance between two vertices u, v of F by du,v = qκF ru,v where ru,v is the resistance distance in F. For
concreteness, we give the distance matrices of B and F.

DB =

⎛⎜⎜⎜⎝
1 q3 q4 q3

q3 1 q3 q4

q4 q3 1 q3

q3 q4 q3 1

⎞⎟⎟⎟⎠ DF =

⎛⎜⎜⎜⎜⎜⎝
1 q4 q6 q6 q4

q4 1 q4 q6 q6

q6 q4 1 q4 q6

q6 q6 q4 1 q4

q4 q6 q6 q4 1

⎞⎟⎟⎟⎟⎟⎠
Let B and F have a common cut vertex c. For vertices i ∈ V(B), u ∈ V(F), define di,u = di,c×dc,u. Let DG be

thematrix of di,j for i, j ∈ G. Let bk , fk and gk be the gcd of k × kminors of DB, DF and DG respectively. A table
of bk , fk and gk for 1 ≤ k ≤ 8 is as follows. Here, p = q3−q2−q−1, r = q3+q2−q+1, u = q8−q6−2q4−2q2−1
and w = 2q6 + 2q4 + 1. It is easy to check that Theorem 3 agrees with computed gcd gk.

k bk fk gk
1 1 1 1

2 q2 − 1 q2 − 1 q2 − 1

3 (q2 − 1)2(1 + q2) (q2 − 1)2 (q2 − 1)2

4 (q2 − 1)3(1 + q2)2pr (q2 − 1)3u (q2 − 1)3

5 0 (q2 − 1)4wu2 (q2 − 1)4

6 0 0 (q2 − 1)5

7 0 0 (q2 − 1)6(1 + q2)u

8 0 0 (q2 − 1)7(1 + q2)2prwu2
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