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Let T be a tree with vertex set V (T ) = {1, 2, . . . , n}. The 
Steiner distance of a subset S ⊆ V (T ) of vertices of T is 
defined to be the number of edges in a smallest connected 
subtree of T that contains all the vertices of S. The k-Steiner 
distance matrix Dk(T ) of T is the 

(
n
k

)
×

(
n
k

)
matrix whose 

rows and columns are indexed by subsets of vertices of size 
k. The entry in the row indexed by P and column indexed 
by Q is equal to Steiner distance of P ∪ Q. We consider the 
case when k = 2 and show that rank(D2(T )) = 2n − p − 1
where p is the number of pendant vertices (or leaves) in T . 
We construct a basis B for the row space of D2(T ) and obtain 
a formula for the inverse of the nonsingular square submatrix 
D = D2(T )[B, B]. We also compute the determinant of D and 
show that its absolute value is independent of the structure 
of T and apply it to obtain the inertia of D2(T ). Lastly, we 
determine the spectrum of 2-Steiner distance matrix of the 
star tree.
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1. Introduction

Let T = (V, E) be a tree on n vertices. Associated to T are several matrices whose 
entries are functions of distance between the vertices. The most well studied of these is 
the n × n distance matrix DT of T whose rows and columns are indexed by vertices of 
T . The (i, j)-th entry of DT is di,j , the distance between vertex i and vertex j in T . 
About fifty years ago, Graham and Pollak in [18] showed that the determinant of DT is 
independent of the structure of the tree T and only depends on n, the number of vertices 
in T . This result has inspired several generalizations (see for example [3–8,16,23]). In 
this paper, we study the 2-Steiner distance matrix D2(T ) of a tree T .

Let [n] = {1, 2, . . . , n} be the vertex set of a tree T and let P, Q ⊆ [n]. The Steiner 
distance dST(P, Q) between the subsets P and Q is the number of edges in the smallest 
connected subtree of T that contains all the vertices of P ∪Q. For a connected graph G, 
when P = {x} and Q = {y} are singleton sets, then we clearly have

dST(P,Q) = dG(x, y) (1)

where dG(x, y) is the usual distance between the vertices x and y in G.
We refer the reader to Mao’s paper [21] for a survey of results about Steiner distance 

in graphs. In related work, Gutman in [19] connected the Weiner index of a tree with a 
related function of Steiner distances involving three points of the tree T . Dankelmann, 
Oellermann and Swart in [14] gave bounds for the average Steiner distance in connected 
graphs. DeVos, McDonald and Pivotto in [15] gave results about packing Steiner trees 
which span a fixed subset T of the vertex set of a graph G. Thus the Steiner distance has 
been studied in graph theoretic contexts, but not much from an algebraic perspective.

Azimi, Bapat and Goel in [1] determined the rank, determinant and the inverse of the 
2-Steiner distance matrix of caterpillar trees. We take another step in studying algebraic 
properties of the Steiner distance but consider the case when the graph is an arbitrary 
tree T and when both P, Q are subsets of V (T ) of size two. We term this 

(
n
2
)
×

(
n
2
)

matrix as the 2-Steiner distance matrix of T and denote it as D2(T ). Thus, the rows and 
columns of D2(T ) are indexed by pairs of vertices P = {x, y} and Q = {w, z} and the 
entry of D2(T ) in the row indexed by P and column indexed by Q equals dST(P, Q). The 
subscript 2 indicates that rows and columns of D2(T ) are indexed by subsets of V (T ) of 
size 2.

If we were to use a similar notation, we would denote by D1(T ), the n × n Steiner 
distance matrix that has both rows and columns indexed by subsets of V (T ) of size 1. 
From (1), it is clear that D1(T ) = DT . We thus think of D2(T ) as the next higher object 
in the hierarchy of matrices Di(T ) as i increases from 1. This gives us some motivation 
to study D2(T ).

Another reason to study D2(T ) comes from the four point condition for distances in 
trees. Buneman in [10] showed that distances in trees satisfy the four point condition
(denoted as 4PC henceforth). The 4PC states that for any four vertices w, x, y and z in 
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T , among the three terms dw,x + dy,z, dw,y + dx,z and dw,z + dx,y, the maximum value 
equals the second maximum value. Inspired by this, Bapat and Sivasubramanian in [9]
studied the 

(
n
2
)
×
(
n
2
)

matrix MT whose rows and columns are indexed by pairs of distinct 
vertices. The entry in the row indexed by {w, x} and column {y, z} of MT equals the 
minimum value among the three terms dw,x + dy,z, dw,y + dx,z and dw,z + dx,y. They 
determined the rank and among other results, also gave the Smith Normal Form of MT . 
We term the matrix MT as the min 4PC matrix.

Inspired by the definition of the matrix MT , one can define another 
(
n
2
)
×
(
n
2
)

matrix 
NT , again with rows and columns indexed pairs of vertices of T . The entry in the row 
indexed by {w, x} and column {y, z} of NT equals the maximum value among the three 
terms dw,x + dy,z, dw,y + dx,z and dw,z + dx,y. We term the matrix NT as the max 4PC 
matrix.

In Section 2, we show that the 2-Steiner distance matrix D2(T ) is the arithmetic mean 
of the two matrices MT and NT . That is, it is the average of the min 4PC and the max 
4PC matrices. Thus, we also use the term average 4PC matrix for the matrix D2(T ). 
It is interesting to note that among the min 4PC, the max 4PC and the average 4PC 
matrix, we only know results about the min 4PC matrix. This gives another motivation 
to study the average 4PC matrix or D2(T ).

As we will see, several similarities and differences exist among our results on the 2-
Steiner distance matrix D2(T ) and results about the distance matrix DT of T . Our first 
result is the following.

Theorem 1. Let T be a tree on n vertices having p pendant vertices (or leaves). Then,

rank(D2(T )) = 2n− p− 1.

We give a proof of Theorem 1 in Section 3. While determining the rank of D2(T ), 
we explicitly give a basis B for the row space of D2(T ). Graham and Lovasz in [17]
gave an explicit formula for the inverse of DT . They showed that the inverse of DT

is the sum of a scaled Laplacian LT of T and a rank one matrix. This result has the 
following implication: for a tree T , a g-inverse of LT is −(1/2) × DT (see [2, Lemma 
9.11]). Let D2(T )[B, B] denote the matrix induced by D2(T ) when restricted to the 
rows and columns in B. In Section 4 we determine the inverse of D2(T )[B, B] and find 
a similar expression as a sum of a Laplacian type matrix M (with zero row and column 
sums) and a rank-one matrix. Our result is the following.

Theorem 2. Let T be a tree with n vertices. Let T have an ordered basis B for its 2-Steiner 
distance matrix D2(T ). Let D = D2[B, B] and M be the matrix defined in Subsection 
4.1. Let v be the vector defined in (5). Then,

D−1 = −M + 1 vvt
n− 1
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Fig. 1. Dotted lines are paths that may contain several intermediate vertices.

A similar g-inverse interpretation involving the matrices D and M is given in Re-
mark 14. Using Theorem 2 in Section 5, we evaluate the determinant of the matrix 
D2(T )[B, B]. More precisely, we show the following.

Theorem 3. Let T be a tree on n vertices having p pendant vertices. Let B be our basis 
and let D = D2[B, B]. Then, det(D) = (−1)p(n − 1).

Theorem 3 shows that the absolute value of the determinant of D2[B, B] depends 
only on the number of vertices n in T and is independent of the structure of T . The sign 
of the determinant, however, depends on the number of leaves in T . In Theorem 18 we 
show that D2(T ) has exactly one positive eigenvalue, 2n − p − 2 negative eigenvalues 
and nullity 

(
n
2
)
− (2n − p − 1). The nullity of D2(T ) is clearly the multiplicity of 0 as an 

eigenvalue and Theorem 18 clearly implies that the matrix D2(T )[B, B] has 1 positive 
eigenvalue and 2n − p − 2 negative eigenvalues. This result is similar to the result that 
the distance matrix DT of a tree T on n vertices has exactly one positive eigenvalue 
and n − 1 negative eigenvalues (see for example [2, Lemma 9.15]). Finally, when the tree 
is the star tree on n vertices Starn, in Theorem 19 we determine all the eigenvalues of 
D2(Starn).

2. Some preliminaries

We start by showing that the 2-Steiner distance matrix is the arithmetic mean of the 
min 4PC and the max 4PC matrices.

Lemma 4. Let T be a tree with min 4PC matrix MT , max 4PC matrix NT and 2-Steiner 
distance matrix D2(T ). Then, D2(T ) = 1

2
(
MT + NT

)
.

Proof. Given 4 distinct vertices w, x, y and z in T , they uniquely determine two vertices 
α and β as follows. Let Pw,y be the unique path in T between the vertices w and y. The 
vertex α is defined to be the unique vertex on Pw,y that is closest to vertex x. Likewise, 
define the vertex β to be the unique vertex on Pw,y that is closest to vertex z.

A generic instance of this situation is illustrated in Fig. 1, where the dotted lines are 
paths which might contain intermediate vertices. It must be noted that instances where 
x, z and hence α, β are interchanged are possible. It is further possible that α = x, that 
β = z or that α = β. Thus, through six vertices are drawn in the picture, depending on 
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the tree and the four vertices w, x, y and z, there might be fewer vertices. However, our 
proof will not depend on these cases.

From Fig. 1, it is clear that the entry in the max 4PC matrix corresponding to the row 
indexed by {w, x} and column indexed by {y, z} is s = dw,y +dx,z and the corresponding 
entry in the min 4PC matrix is t = dw,x + dy,z. Clearly, s = t + 2dα,β where dα,β is the 
distance between vertices α and β in T . The value of t will change if x, z and α, β are 
interchanged. Nonetheless it is easy to slightly alter the argument and prove our result. 
We do not write all possible cases in the interest of brevity.

On the other hand, the entry of D2(T ) indexed by row {w, x} and column {y, z} is 
the least number of edges in a connected subtree containing the four vertices w, x, y and 

z. This is clearly t + dα,β which equals 12

(
s + t

)
. This argument is clearly independent 

of the aforementioned possibilities like α = x and so on. Since this is true for each entry, 
we get D2(T ) = 1

2
(
MT + NT

)
, completing the proof. �

3. Rank of D2(T )

For a tree T on n vertices, consider the 
(
n
2
)
×
(
n
2
)

matrix D2(T ) with rows and columns 
indexed by subsets of V (T ) of size 2. We will use induction on n, the number of vertices in 
T . Every tree has at least two leaves, and deletion of a leaf from a tree gives a smaller tree. 
A leaf vertex is also called a pendant vertex and we use the two terms interchangeably.

Proof of Theorem 1. We will induct on n, the number of vertices with the base case 
being when n = 3. In this case, there is only one tree T with n = 3 having p = 2 leaves. 
It is easy to check that rank(D2(T )) = 3 in this case.

Let T be a tree on n +1 vertices. We denote degree of a vertex v in T as degT (v). We 
break the proof into two cases when T has a leaf � whose unique neighbouring vertex v
has degT (v) ≥ 3 and when all leaves � of T are connected to vertices v with degT (v) = 2. 
We write size 2 subsets of [n] as i, j with i < j and denote the row (and column) of 
D2(T ) indexed by i, j as ri,j (and ci,j respectively).

Case 1 (when there exists a leaf vertex � whose neighbour v has degT (v) ≥ 3): By 
reordering vertices, let � = 1 be such a leaf vertex with unique neighbour 2 and let 
degT (2) ≥ 3 with vertices 1, α, β being other neighbours of 2. Let T ′ = T − {1} and let 
D2(T ) be the 2-Steiner distance matrix with rows and columns indexed by subsets of 
size 2 in lexicographic order. Note that the submatrix of D2(T ) induced on size 2 subsets 
of {2, 3, . . . , n + 1} is the same as D2(T ′).

We claim that r1,2, the row of D2(T ) indexed by 1, 2 is the only row linearly indepen-
dent of the rows of D2(T ′). For x ≥ 3, we will make r1,x = 0t by performing elementary 
row operations (where vt denotes the transpose of vector v). Let 1, x be a row of D2(T )
with x �= 2. Let d = dT (1, x) be the classical distance between vertex 1 and vertex x in 
T . Let the unique path from 1 to x pass via the vertex α (see Fig. 2).

Note that in T , we have dT (β, x) = d. That is, the distance between β and x is also 
d. The argument below does not need degT (2) = 3 but only needs degT (2) ≥ 3. We only 
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Fig. 2. Case 1 of proof.

need the existence of a neighbour β of 2 which is NOT on the path from 1 to x. We have 
assumed that β < x merely to write the row corresponding to the set {β, x} as rβ,x. If 
β > x, the argument will work with rβ,x replaced by rx,β. We claim that

r1,x + r2,β = r1,2 + rβ,x. (2)

We show (2) for each column. For a row indexed by {x, y} and column indexed by 
{u, v}, let the entry of D2(T ) at this row and column be denoted as ax,y|u,v. For the 
column indexed by {u, v}, the LHS of (2) is number of edges in the disjoint union of 
the two minimum spanning subtrees of T containing the vertices 1, x, u, v and 2, β, u, v. 
Since this (multi)set of edges also connects the vertices 1, 2, u, v and β, x, u, v, we have 
a1,2|u,v +aβ,x|u,v ≤ a1,x|u,v +a2,β|u,v. Reversing the argument, we get a1,x|u,v +a2,β|u,v ≤
a1,2|u,v + aβ,x|u,v. Since we chose arbitrary columns {u, v}, the proof of (2) is complete.

For 3 ≤ x ≤ n +1, perform the elementary row operation r1,x = r1,x+r2,β−r1,2−rβ,x. 
By (2), after this operation we will have r1,x = 0t. Note that in the relations above, r1,x
(for x ≥ 3) only depends on rows r1,2 and rx,y where x, y ∈ V (T ′). Let Px,y be the unique 
path in T from vertex x to y and let A �B denote the multiset union of the sets A and B
(where elements can have multiple copies). Underlying the above row operation, we have 
the following multiset union relation between paths: P1,2 �Pβ,x = P1,x �P2,β . Since the 
matrix D2(T ) is symmetric, the whole discussion works with rows replaced by columns. 
Thus, column counterparts of (2) are true. Using these, for 3 ≤ x ≤ n + 1, we can make 
columns c1,x zero.

After doing these row operations, the matrix D2(T ) will be row and column equivalent 
to a matrix which has the following form. We describe this equivalent matrix in block 
form with rows and columns partitioned to have size 1, n −1 and 

(
n
2
)

respectively. Further, 
with respect to this partitioning, the rows and columns are indexed by the subsets {1, 2}, 
{1, x} for 3 ≤ x ≤ n + 1 and {a, b} : a, b ∈ V (T ′). We use 0 to denote a zero vector 
or a zero matrix of appropriate dimensions. After performing these elementary row and 
column operations r1,2 gets transformed to [1, 0t, bt] and likewise c1,2 gets transformed 
to [1, 0, b]. Here, the 1 is a scalar, the 0 is an (n − 1)-dimensional vector and b is an 

(
n
2
)

dimensional vector. Note that the entry corresponding to row {1, 2} and column {1, 2}
was 1 and remains unchanged by these operations. For matrices of identical dimensions, 
let A ∼ B denote that the matrices A and B are row and column equivalent. With this 
notation, we get that D2(T ) ∼ M where
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M =

⎛
⎜⎝ 1 0t bt

0 0 0
b 0 D2(T ′)

⎞
⎟⎠ . (3)

We can delete the zero rows and columns of this equivalent matrix M for rank ar-
guments. For brevity, denote D2(T ′) as A and recall b is the 

(
n
2
)
-dimensional vector 

appearing in (3). Let (A|b) denote the matrix obtained by augmenting A with the col-
umn vector b.

Claim. With the above notation, we have rank(A|b) = rank(A).

Proof of Claim. Consider the matrix (A|b). This is an 
(
n
2
)
×
[(

n
2
)
+1

]
sized matrix with 

rows indexed by unordered pairs {x, y} with x, y ∈ V (T ′) where T ′ = T − {1}. By 
induction applied to T ′, we can get a basis B′ comprising of 2n − p′ − 1 pairs, where p′

is the number of leaves of T ′.
Consider a row of A indexed by {x, y} /∈ B′. We can perform elementary row oper-

ations (involving four terms) as in either of the cases. By this, the portion of rx,y in 
(A|b) corresponding to the columns in A will become zero. We claim that by performing 
this operation, even the portion of rx,y corresponding to column b will have zero entries 
(that is rx,y will become the zero row). To see this, note that row rx,y is made the zero 
row in A by performing an elementary row operation of the type

rx,y = rx,y − ru,y + ru,v − rx,v. (4)

Let vertex 2 ∈ T ′ have neighbour s ∈ T ′. In particular, for the column indexed by 
{2, s}, we have ax,y|2,s +au,v|2,s = au,y|2,s +ax,v|2,s. Also recall that we have the smallest 
(wrt number of edges) subtrees T1 ⊂ T ′ containing x, y, 2, s, T2 containing u, v, 2, s, T3
containing u, y, 2, s and T4 containing x, v, 2, s. The relation (4) means that as multisets 
|T1 � T2| = |T3 � T4|. Adding the edge e = {1, 2} to each Ti for 1 ≤ i ≤ 4, we get the 
same relation in T and hence the entry in rx,y indexed by the column in b also becomes 
zero. Hence, after performing these operations, all zero rows in A will also be zero rows 
in (A|b). Thus, rank(A) = rank(A|b), completing the proof of the claim. �

From (3), we have D2(T ) ∼ M . As A is symmetric, rephrasing the claim, bt is an 
element of the rowspace of A (where A = D2(T ′)). Denote the elements of b as bx,y where 
x, y ∈ T ′. After deleting the zero rows and columns of M , perform the row operations 
rx,y = rx,y − bx,yr1,2. After these operations, we will have the first column of M as e1
where e1 = [1, 0, 0, . . . , 0]. Let r′x,y denote the row of A indexed by the pair of vertices 
x, y ∈ T ′. One can check that r′x,y is the row rx,y of M with its first entry omitted. After 
performing these operations, the matrix A will have corresponding rows r′x,y−bx,yb. Let 
A′ denote this modified matrix A. Since b is in the row space of A, rank(A′) = rank(A). 
Further, we have a 1 entry in r1,2 outside A′. Thus, rank(D2(T )) = rank(D2(T ′)) + 1, 
completing the proof.



72 A. Azimi, S. Sivasubramanian / Linear Algebra and its Applications 655 (2022) 65–86
Fig. 3. Illustrating Case 2.

Case 2: (when all leaf vertices have degree 2 neighbours) We can relabel the vertices 
of T such that vertex 1 is a leaf adjacent to vertex 2. As degT (2) = 2, we further assume 
after relabelling that the neighbours of vertex 2 are vertices 1, 3. This is illustrated in 
Fig. 3.

Recall that Px,y is the unique path in T from vertex x to y. Then, irrespective of the 
location of the vertex x, it is easy to see that P1,x � P2,3 = P2,x � P1,3 where A � B

is the disjoint union of the sets A and B. When x ≥ 4, this relation in linear algebraic 
terms means that performing the elementary row operation r1,x = r1,x−r2,x−r1,3 +r2,3
results in r1,x = 0t.

Doing the same operations to columns will give us two non-zero columns (the modified 
versions of columns c1,2 and c1,3). If we arrange the rows and columns of D2(T ) in 
lexicographic order, the first two rows and columns will be indexed by {1, 2} and {1, 3}
respectively. Partitioning the rows into the first two rows, the next (n − 2) rows indexed 
by {1, x} for 3 ≤ x ≤ n +1 and rows in T ′ = T −{1}, we get the following row equivalent 

matrix M =

⎛
⎜⎜⎜⎝

1 2 0t ut

2 2 0t ut

0 0 0 0t

u u 0 D2(T ′)

⎞
⎟⎟⎟⎠.

Now performing r1,2 = r1,2 − r1,3 and c1,2 = c1,2 − c1,3 gives another equivalent 

matrix N =

⎛
⎜⎜⎜⎝

−1 0 0t 0t

0 2 0t ut

0 0 0 0t

0 u 0 D2(T ′)

⎞
⎟⎟⎟⎠. The first row is clearly linearly independent of 

the remaining rows and arguing as in case 1, we get that rank

⎛
⎜⎝ 2 0t ut

0 0 0t

u 0 D2(T ′)

⎞
⎟⎠ =

rank(D2(T ′)) + 1. Thus, rank(D2(T )) = rank(D2(T ′)) + 2. As T ′ has p leaves, by in-
duction, rank(D2(T ′)) = 2n − p − 1. As T also has p leaves, we get rank(D2(T )) =
(2n − p − 1) + 2 = 2(n + 1) − p − 1, completing the proof in this case. �
Remark 5. The proof of Theorem 1 shows that a basis for the (row space or column 
space) of D2(T ) can be constructed inductively. If T is a tree on n = 3 vertices, D2(T )
has full row rank and so all rows are needed to form a basis of RowSpace(D2(T )). Let 
B(T ) denote a basis of RowSpace(D2(T )).
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If n ≥ 4, check if there is a leaf � in T attached to a vertex with degree strictly more 
than 2. Let T ′ = T − {�}. Relabel the vertices of T such that the leaf � gets the label 
1 and its neighbour gets the label 2. Extend row vectors in B(T ′) to 

(
n
2
)

dimensional 
space by adding columns corresponding to pairs {1, x} for 2 ≤ x ≤ n and computing the 
Steiner distance of appropriate entries. Then, we have B(T ) = B(T ′) ∪ {r1,2}.

If no such leaf vertex exists in T , then all leaf vertices are adjacent to vertices with 
degree 2. Relabel the vertices such that 1 is a leaf vertex adjacent to vertex 2 and let the 
neighbours of vertex 2 be vertices 1, 3. Again let T ′ = T−{1}. As done above, extend row 
vectors in B(T ′) to 

(
n
2
)

dimensional space. Then, we have B(T ) = B(T ′) ∪ {r1,2, r1,3}.

Remark 6. From the inductive construction of our basis given in Remark 5, it follows 
that all two subsets of vertices corresponding to edges of T will be in B(T ). Thus, if 
{x, y} ∈ E(T ), then {x, y} ∈ B(T ). For each non-pendant vertex w, we need to choose 
a pair {u, v} with {u, w}, {v, w} ∈ E(T ). Since the number of blocks (maximally 2-
connected subgraph) in the line graph LG(T ) equals n −p, choosing such a pair f = {u, v}
is equivalent to choosing e1 = {u, w}, e2 = {v, w} where e1, e2 ∈ E(T ) and f = e1 � e2. 
This can be considered as choosing an edge f ′ = {e1, e2} where f ′ ∈ E(LG(T )). Thus 
all elements in our basis B(T ) have pairs of vertices which are at distance at most two 
in T . We will use the notation f and f ′ that are given in Definition 7.

Definition 7. We will use this notation throughout this work. If f ∈ B and f /∈ E(T ), 
then there clearly exists er, es ∈ E(T ) such that f = er � es. Here, we think of er and 
es as sets of vertices and � is the symmetric difference of these two sets. We denote the 
corresponding edge in E(LG(T )) as f ′ = {er, es}.

Remark 8. A poset, called the generalized tree shift poset denoted GTSn on the set of 
trees on n vertices was defined by Csikvari (see [12] and [13]) where several properties 
were shown to be monotonic as one goes up on GTSn. It is known that GTSn is a graded 
poset with number of leaves (or pendant vertices) as its height parameter. Theorem 1
shows that the rank of D2(T ) decreases as one goes up GTSn and hence adds another 
property that is monotonic on elements of the poset GTSn.

4. Inverse of D2(T )[B, B]

Let B = B(T ) be a basis for the row space of D2(T ). Thus B is a set of 2-subsets 
of V (T ). In this section, we obtain a formula for the inverse of the square matrix 
D = D2(T )[B, B]. We need a few preliminaries before moving on to our proof. Let 
T be a tree on n vertices with p pendant vertices and let LG(T ) be its line graph. 
Let B1, . . . , Bn−p be the blocks of LG(T ) with |Bi| = bi for 1 ≤ i ≤ n − p. Indeed 
each Bi is a clique with bi vertices. As mentioned in Remark 6, we can choose a basis 
B = {e1, . . . , en−1, f1, . . . , fn−p} with ei ∈ V (LG(T )) and fi is the symmetric difference 
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Fig. 4. A tree T and its line graph LG(T ).

of endpoints of edge f ′
i ∈ Bi in LG(T ). Define the 2n − p − 1 dimensional column vector 

v (that depends on the basis B) as follows

vfi = bi − 1, where f ′
i ∈ Bi, and vei = 1 −

∑
bj :ei∈f ′

j

(bj − 1). (5)

Recall that 1 is the column vector of appropriate size all of whose entries are 1s. We give 
some properties of the vector v.

Lemma 9. Let T be a tree on n vertices having p pendant vertices. Let B be a basis of 
D2(T ) with B = {e1, . . . , en−1, f1, . . . , fn−p} and let v be the column vector described 
above. Then, 1tv = 1.

Proof.
1tv =

n−1∑
i=1

vei +
n−p∑
i=1

vfi =
n−1∑
i=1

(
1 −

∑
bj :ei∈f ′

j

(bj − 1)
)

+
n−p∑
i=1

(bi − 1)

=
n−1∑
i=1

1 −
n−1∑
i=1

∑
bj :ei∈f ′

j

(bj − 1) +
n−p∑
i=1

bi −
n−p∑
i=1

1

=
n−1∑
i=1

1 − 2
n−p∑
i=1

bi + 2
n−p∑
i=1

1 +
n−p∑
i=1

bi −
n−p∑
i=1

1 =
n−1∑
i=1

1 −
n−p∑
i=1

bi +
n−p∑
i=1

1

= (n− 1) −
(
2(n− 1) − p

)
+ (n− p) = 1, completing the proof. �

Example 10. Consider the tree T and its line graph LG(T ) illustrated in Fig. 4. The vector 
v depends on the ordered basis B = {e1, e2, e3, e4, e5, e6, e7, f1, f2, f3} where f1 = {2, 8}, 
f2 = {3, 4} and f3 = {5, 7}. It can be checked that vt = [1, −1, −2, −2, 1, −2, 0, 1, 2, 3]. 
With this, it is easy to see that 1tv =

∑
vi = 1.

We move on to our next property of the vector v.
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Lemma 11. Let T be a tree on n vertices having p pendant vertices. Let B be an ordered 
basis of D2(T ) with B = {e1, . . . , en−1, f1, . . . , fn−p}. Then,

D2(T )[B,B]v = (n− 1)1.

Proof. We prove the result by induction on n. We check the result when n = 3. In this 

case, there is a unique tree T with D =
(1 2 2

2 1 2
2 2 2

)
. The matrix has full rank and we 

clearly have v =
(0

0
1

)
. It is easy to verify that Dv = 2 · 1. Let T be a tree on n > 3

vertices and let the hypothesis be true for any tree with less than n vertices. We will 
remove a leaf � of T to get T ′ = T − {�}. We break our proof into two cases, based on 
whether there exists a leaf a in T whose unique neighbour N(a) has degree at least three 
or not.

Case 1: When there exists a leaf vertex a such that degT (N(a)) ≥ 3: Let a be a 
pendant vertex of T with neighbour N(a) = b and let degT (b) ≥ 3. Label the edges of 
T such that e1 = {a, b}, e2 ∩ e3 = b and f1 = e2 � e3 the symmetric difference of e2
and e3. The choice of the edges e2 and e3 is arbitrary. Let T ′ = T − {a} and let B′ =
{e2, e3, . . . , en−1, f1, . . . , fn−p} be a basis of D2(T ′). For brevity, denote D2(T )[B, B] as 
D and denote D2(T ′)[B′, B′] as D′. Therefore,

D =
(

1 xt

x D′

)
.

By induction, there exists a vector v′ (that depends on the basis B′) such that D′v′ =

(n − 2)1. Define y =
(

0
v′

)
and define z by v = y + z. We have the following alternate 

definition of z as follows

zSi
=

⎧⎪⎨
⎪⎩

1 if Si ∈ {e1, f1}
−1 if Si ∈ {e2, e3}

0 otherwise
.

As v = y + z, we have Dv = D(y + z), On the other hand, for every Si ∈ B we have

dST(Si, e1) − dST(Si, e2) − dST(Si, e3) + dST(Si, f1) =
{

1 if Si �= e1
0 if Si = e1

.

Hence Dy =
(

xtv′

(n− 2)1

)
and Dz =

(
0
1

)
. Thus Dv =

(
xtv′

(n− 1)1

)
. We show that 

xtv′ = n −1. Let e2 = {b, c} and Tc be the connected component of T − e2 that contains 
c.
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xtv′ =
∑

Si∈B′

dST(e1, Si)v′Si
=

∑
Si⊆V (Tc)
Si=e2,f1

(
dST(e2, Si) + 1

)
v′Si

+
∑

Si�V (Tc)
Si �=e2,f1

dST(e2, Si)v′Si

=
∑

Si∈B′

dST(e2, Si)v′Si
+

∑
Si⊆V (Tc)
Si=e2,f1

v′Si
.

Since D(T ′)v′ = (n − 2)1, we have
∑

Si∈B′

dST(e2, Si)v′Si
= n− 2. (6)

Now, suppose that e2 ∈ B1 ∩ B2 and f ′
2 ∈ B2, where B1 and B2 are blocks of 

LG(T ′). Consider the tree T ′′ = Tc ∪ {b} and the vector v′′ depending on the basis 
B′′ = B′′(T ′′) ⊆ B′. Clearly, v′′Si

= v′Si
for every Si �= e2, and thus

∑
Si⊆V (Tc)
Si=e2,f1

v′Si
= v′e2 + v′f1

+
∑

Si∈B′′\{e2}
v′Si

= v′e2 + v′f1
+

∑
Si∈B′′\{e2}

v′′Si
.

By Lemma 9, 
∑

Si∈B′′

v′′Si
= 1. Further, v′f1

= b1 − 1 then

∑
Si⊆V (Tc)
Si=e2,f1

v′Si
= v′e2 + (b1 − 1) + (1 − v′′e2) = v′e2 − v′′e2 + b1.

However,

v′e2 =
{

1 − (b1 − 1) if e2 /∈ f ′
2

1 − (b1 − 1) − (b2 − 1) if e2 ∈ f ′
2
,

and

v′′e2 =
{

1 if e2 /∈ f ′
2

1 − (b2 − 1) if e2 ∈ f ′
2
.

Thus in both these cases we have
∑

Si⊆V (Tc)
Si=e2,f1

v′Si
= 1. (7)

From (6) and (7) it follows that xtv′ = n − 1. Hence Dv = (n − 1)1.
Case 2: When all leaf vertices a are such that degT (N(a)) = 2: Suppose a is a 

pendant vertex of T with N(a) = b and degT (b) = 2. Let e1 = {a, b}, e1 ∩ e2 = b
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and f1 = e1 � e2 be the symmetric difference of e1 and e2. Let T ′ = T − {a} and 
B′ = {e2, e3, . . . , en−1, f2, . . . , fn−p}. By interchanging rows and columns so that we 
have the first and second rows (and columns) indexed by e1 and f1, we get

D =

⎛
⎜⎝ 1 2 xt

2 2 xt

x x D(T ′)

⎞
⎟⎠ ,

where xt = (x1, x2, . . . , x2n−p−3). Let v′ be the vector depending on the basis B′ such 

that D(T ′)v′ = (n − 2)1. Define y =
( 0

0
v′

)
and z by v = y + z. It can be seen that z

can be alternatively defined as follows

zSi
=

⎧⎪⎨
⎪⎩

1 if Si = f1
−1 if Si = e2

0 otherwise.
.

Clearly Dv = D(y + z), On the other hand, for every Si ∈ B we have

dST(Si, f1) − dST(Si, e2) =
{

1 if Si /∈ {e1, f1}
0 if Si ∈ {e1, f1}

.

Hence, Dy =
( xtv′

xtv′

(n− 2)1

)
and Dz =

(0
0
1

)
. Thus, Dv =

( xtv′

xtv′

(n− 1)1

)
. Clearly

xtv′ =
∑

Si∈B′

dST(e1, Si)v′Si
=

∑
Si∈B′

(
dST(e2, Si) + 1

)
v′Si

=
∑

Si∈B′

dST(e2, Si)v′Si
+

∑
Si∈B′

v′Si
.

Using the fact that D(T ′)v′ = (n − 2)1 and Lemma 9 we get 
∑

Si∈B′ dST(e2, Si)v′Si
=

n − 2 and 
∑

Si∈B′ v′Si
= 1. Thus xtv′ = n − 1 and hence Dv = (n − 1)1, completing the 

proof. �
4.1. A Laplacian type matrix M

For a tree T with ordered basis B = B(T ), we define a symmetric matrix M , with 
rows and columns indexed by elements of B as follows. Recall that ei, f ′

i ∈ Bi and 
similarly ej , f ′

j ∈ Bj . The entries M(ei, ej), M(ei, fj) and M(fi, fj) are zero if i �= j. On 
the other hand, if ei, ej , f ′

k ∈ Bk then define
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M(ei, ej) =

⎧⎪⎨
⎪⎩

0 if ei, ej /∈ f ′
k

bk − 2 if ei, ej ∈ f ′
k

−1 if ei ∈ f ′
k, ej /∈ f ′

k

and M(ei, fk) =
{

1 if ei /∈ f ′
k

1 − bk if ei ∈ f ′
k

.

(8)
Define its diagonal entries so that M has zero row and column sums. Therefore

M(ei, ei) = −
∑

Si∈B\{ei}
M(ei, Si)

and

M(fk, fk) = −
∑

Si∈B\{fk}
M(fk, Si) = −

∑
ek∈Bk

M(fk, ek)

= −[(bk − 2) + 2(1 − bk)] = bk,

where fk ∈ Bk. As we will need the following later, we record it below. From the definition 
of M , it is clear that

M1 = 0. (9)

Example 12. Let T be the tree in Fig. 4. We illustrate the definition of the entries in rows 
re1 and rf2 . Let B1, B2 and B3 be the blocks of LG(T ) induced by {e3, e7}, {e1, e2, e3} and 
{e2, e4, e5, e6} respectively. Since e1, e2, e3, f ′

2 ∈ B2 and f2 = e2�e3 we have M(e1, e2) =
M(e1, e3) = −1 and M(e1, f2) = 1. Moreover, M(e1, S) = 0 for every S ∈ B \B2. Thus 
re1 = [1, −1, −1, 0, 0, 0, 0, 0, 1, 0]. Since f2 = e2 � e3 we have M(f2, e2) = M(f2, e3) =
1 − b2 = −2 and M(f2, e1) = 1. Thus rf2 = [1, −2, −2, 0, 0, 0, 0, 0, 3, 0]. One can check 
that the matrix M of the tree T (with a separator drawn in the rows and columns 
between the ei’s and the fj ’s) is

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 0 0 0 0 0 1 0
−1 3 1 −1 0 −1 0 0 −2 1
−1 1 3 0 0 0 0 −1 −2 0

0 −1 0 3 −1 2 0 0 0 −3
0 0 0 −1 1 −1 0 0 0 1
0 −1 0 2 −1 3 0 0 0 −3
0 0 0 0 0 0 1 −1 0 0
0 0 −1 0 0 0 −1 2 0 0
1 −2 −2 0 0 0 0 0 3 0
0 1 0 −3 1 −3 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Lemma 13. Let T be a tree on n vertices having p pendant vertices. Let B be an ordered 
basis of T with respect to which we have D = D2[B, B] and let M be the matrix defined 
in Subsection 4.1. Let v be the vector defined in (5). Then,
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DM + I = 1vt. (10)

Proof. Let ei ∈ {e1, . . . , en−1}. We consider two cases.

Case 1. Let ei be solely in block Bk. Let fk = er � es and {er, es} = f ′
k ∈ Bk. If ei = er, 

then for any Si ∈ B, we have

(DM)Si,ei = (bk − 1)dST(Si, ei) + (1 − bk)dST(Si, fk)

+ (bk − 2)dST(Si, es) −
∑

ek∈Bk\f ′
k

dST(Si, ek)

=
{

1 − (bk − 1) if Si �= ei
−(bk − 1) if Si = ei

.

(11)

If ei /∈ f ′
k, then for any Si ∈ B we have

(DM)Si,ei = dST(Si, ei) + dST(Si, fk) − dST(Si, er) − dST(Si, es)

=
{

1 if Si �= ei
0 if Si = ei

.
(12)

Case 2. Let ei ∈ Bk ∩ Bl. Let fk = er � es, {er, es} = f ′
k ∈ Bk and fl = et � eu, 

{et, eu} = f ′
l ∈ Bl. If ei /∈ f ′

k ∪ f ′
l , then for any Si ∈ B we have

(DM)Si,ei = 2dST(Si, ei) + dST(Si, fk) + dST(Si, fl) −
∑

ex∈f ′
k∪f ′

l

dST(Si, ex).

If Si = ei, then dST(Si, ej) = 2 for ej ∈ {er, es, et, eu} and dST(Si, fj) = 3 for 
fj ∈ {fk, fl}. Therefore

(DM)ei,ei = 2 + 3 + 3 − 4 × 2 = 0.

Now, suppose that Si �= ei. Let Tk and Tl be connected components of T −ei contain 
fk and fl respectively. Without lost of generality let Si ⊆ V (Tk). If Si = fk, then

(DM)fk,ei = 2 × 3 + 2 + 5 − 12 = 1.

If Si �= fk, we have three following cases where Si is a subset of vertices in branch 
contain er or es or any other branches of Tk respectively.

dST(Si, ei) = dST(Si, er) + 1 = dST(Si, es) = dST(Si, fk)

= dST(Si, et) − 1 = dST(Si, eu) − 1 = dST(Si, fl) − 2,

or



80 A. Azimi, S. Sivasubramanian / Linear Algebra and its Applications 655 (2022) 65–86
dST(Si, ei) = dST(Si, er) = dST(Si, es) + 1 = dST(Si, fk)

= dST(Si, et) − 1 = dST(Si, eu) − 1 = dST(Si, fl) − 2.

or

dST(Si, ei) = dST(Si, er) = dST(Si, es) = dST(Si, fk) − 1

= dST(Si, et) − 1 = dST(Si, eu) − 1 = dST(Si, fl) − 2,

Therefore

(DM)Si,ei =
{

1 if Si �= ei
0 if Si = ei

. (13)

If ei = er = et ∈ f ′
k ∩ f ′

l .

(DM)Si,ei = (bk + bl − 2)dST(Si, ei) + (bk − 2)dST(Si, es)

+ (bl − 2)dST(Si, eu) + (1 − bk)dST(Si, fk) + (1 − bl)dST(Si, fl)

−
∑

ek∈Bk\f ′
k

dST(Si, ek) −
∑

ek∈Bl\f ′
l

dST(Si, ek)

=
{

1 − (bk − 1) − (bl − 1) if Si �= ei
−(bk − 1) − (bl − 1) if Si = ei

.

(14)

If ei ∈ f ′
k or ei ∈ f ′

l . Without loss of generality, let ei ∈ f ′
k, ei = er and ei /∈ f ′

l . 
Then, for any Si ∈ B we have

(DM)Si,ei = bkdST(Si, ei) + (bk − 2)dST(Si, es) + (1 − bk)dST(Si, fk)

− dST(Si, et) − dST(Si, eu) + dST(Si, fl) −
∑

ek∈Bk\f ′
k

dST(Si, ek)

=
{

1 − (bk − 1) if Si �= ei
−(bk − 1) if Si = ei

.

(15)

Now, suppose that fi ∈ {f1, . . . , fn−p}, fi = er � es and f ′
i ∈ Bi. For any Si ∈ B,

(DM)Si,fi = bidST(Si, fi) + (1 − bi)dST(Si, er) + (1 − bi)dST(Si, es)

+
∑

ek∈Bi\f ′
i

dST(Si, ek)

=
{

bi − 1 if Si �= fi
bi − 2 if Si = fi

.

(16)
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It follows from (11), (12), (13), (14), (15) and (16) that (DM + I)Si,Sj
= vSj

for all 
Si, Sj ∈ B. Hence DM + I = 1vt, completing the proof. �
Remark 14. Lemma 13 implies that (−D) is a g-inverse of the matrix M defined in 
Subsection 4.1.

Proof. Multiply (10) on the left by M and use (9) to get MDM = −M to complete the 
proof. �

We are now in a position to prove our formula for the inverse of D = D2(T )[B, B].

Proof of Theorem 2. We have

D

(
−M + 1

n− 1vvt

)
= −DM + 1

n− 1Dvvt = I − 1vt + 1
n− 1(n− 1)1vt = I.

This completes the proof. �
5. Determinant of D2(T )[B, B] and inertia of D2(T )

In this section, we compute the determinant of D = D2(T )[B, B]. Using this result, we 
also compute the inertia of D2(T ). Lastly, we determine all eigenvalues of the 2-Steiner 
distance matrix of the star tree.

Let A be an n × n matrix partitioned as A =
(
A11 A12
A21 A22

)
, where A11 and A22 are 

square matrices. If A11 is nonsingular then the Schur complement of A11 is defined to be 
the matrix A22−A21A

−1
11 A12. Similarly, if A22 is nonsingular then the Schur complement 

of A22 is defined to be A11 −A12A
−1
22 A21.

Lemma 15. Let A be an n × n matrix partitioned as A =
(
A11 A12
A21 A22

)
. If A11 is square 

and nonsingular then det(A) = det(A11) det(A22 − A21A
−1
11 A12). Similarly, if A22 is 

square and nonsingular then det(A) = det(A22) det(A11 −A12A
−1
22 A21).

With these preliminaries, we are now ready to prove Theorem 3.

Proof of Theorem 3. We use induction on n. When n = 2 it is easy to see that det(D) =
1. Assume that the result is true for any tree with n − 1 vertices. Let T be a tree on n
vertices and B be an ordered basis for the row space of D2(T ).

By relabelling, let 1 be a pendant vertex in T with neighbour vertex 2. Suppose 
degT (2) ≥ 3. Fig. 2 gives a picture of this scenario. We assume that {1, 2} = e1, that 
e2 = {2, α}, e3 = {2, β} and f1 = e2 � e3. Let T ′ = T − {1} and B′ = B \ {e1}.
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If D(e1|e1) denotes the submatrix of T obtained by deleting its first row and column, 

then clearly D(e1|e1) = D(T ′) and D =
(

1 y′

y D(T ′)

)
. Let Tα be the connected com-

ponent of T − e2 that contains α. Let C be the set of all 2-subsets of V (Tα ∪ e2). So for 
Si ∈ B′ we have

dST(Si, e1) =
{

dST(Si, e2) + 1 Si ∈ C ∩B′ or Si = f1
dST(Si, e2) otherwise.

Performing the row and column operations re1 = re1 − re2 and ce1 = ce1 − ce2 changes 
matrix D to

A =
(
−2 xt

x D(T ′)

)
, where xSi

=
{

1 Si ∈ C ∩B′ or Si = f1,

0 otherwise.

By Lemma 15 and Theorem 2 we get

det(D) = det(A) = det(D(T ′)) det
(
− 2 − xtD(T ′)−1x

)
= det(D(T ′)) det

(
− 2 + xtM ′x − 1

n− 2xtv′v′ tx
)
.

Since M ′1 = 0 it is easy to see that M ′
Si

x = 0 for all Si ⊆ V (C) and that M ′
f1

x = 1. 
Thus xtM ′x = 1. Further, from (7) we have xtv′ = 1. By the induction assumption, 
det(D(T ′)) = (−1)p−1(n − 2). Hence

det(D) = (−1)p−1(n− 2)
(

− 2 + 1 − 1
n− 2

)
= (−1)p(n− 1).

We can thus assume that every pendant vertex u in T has degT (N(u)) = 2. By 
relabelling, let 1 be a pendant vertex with neighbour 2. As degT (2) = 2, let 1, 3 be the 
neighbours of 2. Let e1 = {1, 2}, e2 = {2, 3} and f1 = {1, 3}. Let T ′ = T − {1}. Let 
D(e1, f1|e1, f1) denote the submatrix of D obtained by deleting the rows and columns 
indexed by e1 and f1. Thus D(e1, f1|e1, f1) = D(T ′). Clearly, dST(e1, Si) = dST(f1, Si)
for every Si ∈ B \ {e1} and dST(e1, Si) = dST(e2, Si) + 1 for every Si ∈ B \ {f1, e1}. 
Perform the following row and column operations rf1 = rf1 − re1 , re1 = re1 − re2 and 
cf1 = cf1 − ce1 , ce1 = ce1 − ce2 . After these are done, the matrix D clearly changes to

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 1 · · · 1
1 −1 0 · · · 0
1 0
...

... D(T ′)
1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Denote Xt =
(

1 · · · 1
0 · · · 0

)
. By Lemma 15 and Theorem 2, we have

det(D) = det(B) = det(D(T ′)) det
((

−2 1
1 −1

)
−XtD(T ′)−1X

)

= det(D(T ′)) det
((

−2 1
1 −1

)
+ XtM ′X − 1

n− 2X
tv′(v′)tX

)
.

By equation (9), Lemma 9 and the induction hypothesis we have

det(D) = det(D(T ′)) det
((

−2 1
1 −1

)
+
(

0 0
0 0

)
+

(
− 1

n−2 0
0 0

))

= (−1)p(n− 2) det
(( 3−2n

n−2 1
1 −1

))
= (−1)p(n− 1).

The proof is complete. �
We move on to our results about Inertia. Let A be an n × n real symmetric matrix. 

Let n+, n− and n0 be the number of positive, negative and zero eigenvalues of A respec-
tively. Recall that the inertia of A, denoted Inertia(A) is the triple (n+, n−, n0). As all 
eigenvalues of A are real, we have n+ + n− + n0 = n (see [11,24,20]). We will need the 
following famous result of Sylvester (see [22, Theorem 10.43].)

Lemma 16 (Sylvester’s law of inertia). Let A be a real symmetric n × n matrix and let 
S be a real n × n nonsingular matrix. Then, as a triple, Inertia(A) = Inertia(StAS).

For matrices M, N we treat Inertia(M), Inertia(N) as vectors and do component-wise 
addition when we write Inertia(M) + Inertia(N).

Lemma 17. Let A be an n × n matrix partitioned as A =
(
A11 A12
A21 A22

)
. If A11 is square 

and nonsingular, then

Inertia(A) = Inertia(A11) + Inertia(A22 −A21A
−1
11 A12).

Similarly, if A22 is square and nonsingular, then

Inertia(A) = Inertia(A22) + Inertia(A11 −A12A
−1
22 A21).

Theorem 18. Let T be a tree of order n with p pendant vertices. Then

(
n+(D2(T )), n−(D2(T )), n0(D2(T ))

)
=

(
1, 2n− p− 2,

(
n

2

)
− 2n + p + 1

)
.
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Proof. First we compute Inertia(D2[B, B]). Our proof is identical to the proof of Theo-
rem 3. In spirit, we use the Schur complement inertia version instead of the determinant 
version. Similar to the two cases that appear in the proof of Theorem 3 we either have

Inertia(D2[B,B]) = Inertia(D(T ′)) + Inertia
(

− 2 + 1 − 1
n− 2

)
,

or

Inertia(D2[B,B]) = Inertia(D(T ′)) + Inertia
(( 3−2n

n−2 1
1 −1

))
.

In both cases, it can be seen that Inertia(D2[B, B]) = (1, 2n −p −2, 0). As D2(T ) is a real 

symmetric matrix, there exists an orthogonal matrix S such that SD2(T )St =
(
D 0
0 0

)
. 

By Lemma 16, we get

Inertia(D2(T )) = Inertia
((

D 0
0 0

))
=

(
1, 2n− p− 2,

(
n

2

)
− 2n + p + 1

)
.

The proof is complete. �
Theorem 19. Let Starn be the star tree on n vertices. Then, the eigenvalues of D2(Starn)
are: 0 with multiplicity 

(
n
2
)
− n, 2 − n with multiplicity n − 2 and the following two 

eigenvalues.

(n− 1)2 + (n− 2)2 ±
√

(n− 1)4 + (n− 2)4 + 2(n− 1)3(n− 2)
2 , (17)

each with multiplicity 1.

Proof. Let er, es be two distinct edges of Starn. Let v be the vector indexed by 2-subsets 
of V (Starn) defined as follows.

vS =

⎧⎪⎨
⎪⎩

1 if S = er or S = er � ej /∈{r,s},

−1 if S = es or S = es � ej /∈{r,s},

0 otherwise.

It is easy to see that if S /∈ {er, es, er � ej /∈{r,s}, es � ej /∈{r,s}} then both dST(S, er) =
dST(S, es) and dST(S, er�ej /∈{r,s}) = dST(S, es�ej /∈{r,s}). Therefore, (D2(Starn))Sv = 0
where (D2(Starn))S denotes the S-th row of the matrix D2(Starn). Now, suppose that 
S ∈ {er, es, er � ej �={r,s}, es � ej /∈{r,s}}, then



A. Azimi, S. Sivasubramanian / Linear Algebra and its Applications 655 (2022) 65–86 85
(D2(Starn))Sv = dST(S, er) − dST(S, es)

+
∑

ei /∈{er,es}
dST(Si, er � ei) −

∑
ei /∈{er,es}

dST(Si, es � ei)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2 + 2(n− 3) − 3(n− 3) = 2 − n if S = er
2 − 1 + 3(n− 3) − 2(n− 3) = n− 2 if S = es
2 − 3 + (3(n− 4) + 2) − (3 + 4(n− 4)) = 2 − n if S = er � ei
3 − 2 + (3 + 4(n− 4)) − (2 + 3(n− 4)) = n− 2 if S = es � ei

.

Hence D2(Starn)v = (2 − n)v. We can choose n − 2 distinct edges apart from er and 
define eigenvectors depending on the above. It can be seen that these vectors are linearly 
independent so the multiplicity of 2 − n is at least n − 2. Let λ and μ be two non zero 
eigenvalues of D2(Starn). Then

(n− 1) + 2
(
n− 1

2

)
= Trace(D2(Starn)) = (n− 2)(2 − n) + λ + μ,

and consequently

λ + μ = (n− 1)2 + (n− 2)2. (18)

Sum of the 2 × 2 minors of D2(Starn) equals

−3
(
n− 1

2

)
− 2× 2

(
n− 1

2

)
− 7

(
n− 1

1

)(
n− 2

2

)
− 5

(
n− 1

2

)(
n− 3

1

)
− 12

(
n−1

2
)(

n−3
2
)

2 ,

which is equal to −
(
n−1

2
)
(3n2 − 9n + 7). Also, sum of the 2 × 2 minors of D2(Starn) is 

equal to

∑
i<j

λiλj = λ(2 − n)(n− 2) + μ(2 − n)(n− 2) +
(
n− 2

2

)
(n− 2)2 + λμ

= −(n− 2)2(λ + μ) +
(
n− 2

2

)
(n− 2)2 + λμ

= −
(
n− 1

2

)
(3n2 − 10n + 8) + λμ,

and thus

λμ = −1
2(n− 1)2(n− 2). (19)

The two (18) and (19) give (17). Since rank(D2(Starn)) = n, the proof is complete. �
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