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ABSTRACT
Let T be a tree on n vertices and let LT

q be the q-analogue of its
Laplacian. For a partition λ � n, let the normalized immanant of LT

q

indexedbyλbedenotedas Immλ(LT
q). A stringof inequalities among

Immλ(LT
q) is known when λ varies over hook partitions of n as the

size of the first part of λ decreases. In this work, we show a similar
sequence of inequalitieswhenλ varies over two rowpartitions ofn as
the size of the first part of λ decreases. Ourmain lemma is an identity
involving binomial coefficients and irreducible character values of
Sn indexedby two rowpartitions.Ourproof canbe interpretedusing
the combinatorics of Riordan paths and our main lemma admits a
nice probabilisitic interpretation involving peaks at odd heights in
generalized Dyck paths or equivalently involving special descents in
Standard Young Tableaux with two rows. As a corollary, we also get
inequalities between Immλ1(LT1

q ) and Immλ2(LT2
q ) when T1 and T2

are comparable trees in the GTSn poset andwhen λ1 and λ2 are both
two rowed partitions of n, with λ1 having a larger first part than λ2.
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1. Introduction

Immanants of positive semidefinite matrices and their generalizations have been a topic of
interest since Schur [15]. LetA = (ai,j)1≤i,j≤n be an n × nmatrix. For a partition λ � n, let
χλ denote the character of the irreducible representation of the symmetric group Sn over
C indexed by λ. We think of χλ : Sn �→ C as a function from Sn to C and for π ∈ Sn
let χλ(π) denote the value of χλ on the permutation π . Let id ∈ Sn denote the identity
permutation in Sn. For a partition λ � n, define the normalized immanant of A as

Immλ(A) = 1
χλ(id)

∑
π∈Sn

χλ(π)

n∏
i=1

ai,π(i). (1)
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The bar in our notation for Immλ(A) above indicates that a factor χλ(id) is used in the
denominator to define the normalized immanant. Let T be a tree on n vertices and let LT

q
be the q-analogue of its Laplacian (see Section 2 for definitions). For λ � n, let the nor-
malized immanant of LT

q indexed by λ be denoted as Immλ(LT
q ). As done usually, when

parts of a partition are repeated, we write such a partition with the multiplicity as an expo-
nent of that part. Thus λ = 1n denotes the partition λ = 1, 1, . . . , 1 with the part 1 having
multiplicity n. Partitions of the form λ = k, 1n−k are called hook partitions and when n
is clear, are denoted as hookk. Denote the normalized immanant of LT

q indexed by hookk
as HookImmk(LT

q ). For any tree T with n vertices, the following sequence of inequalities
involvingHookImmk(LT

q )’s was shownbyNagar and Sivasubramanian (see [12, Lemma27
and Theorem 2]).

Theorem 1.1 (Nagar, Sivasubramanian): Let T be a tree on n vertices with q-Laplacian
LT
q . Then, for 2 ≤ k ≤ n and for all q ∈ R, the normalized immanants of LT

q satisfy the
following:

HookImmk−1(LT
q ) ≤ HookImmk(LT

q ). (2)

The following version (which is stronger than (2) when |q| > 1) also holds

HookImmk−1(LT
q ) + q2 − 1

k − 1
≤ k − 2

k − 1
HookImmk(LT

q ).

In this paper, we give a counterpart of inequality (2) to immanants indexed by partitions
with at most two rows. For k ≥ 0, let λ = TwoRowk be the partition λ = n − k, k of nwith
at most two rows. Since λ is a partition, we must have k ≤ �n/2	 and also have k ≥ 0. Let
TwoRowImmk(LT

q ) denote the normalized immanant of LT
q indexed by TwoRowk. The

main result of this paper is the following.

Theorem 1.2: Let T be a tree on n ≥ 5 vertices and let LT
q be its q-Laplacian. Then for

1 ≤ k ≤ �n/2	 and for all q ∈ R, the normalized two rowed immanants of LT
q satisfy the

following:

TwoRowImmk−1(LT
q ) ≥ TwoRowImmk(LT

q ).

Underlying the proof of Theorem 1.1 from [12], is a string of inequalities involving
binomial coefficients and irreducible character values of Sn indexed by hook partitions.
Counterparts of several relations that are true for irreducible characters indexed by hook
partitions have been found for irreducible characters indexed by two row partitions. See for
example the paper by Zeilberger and Regev [17] and Bessenrodt’s refinement [5]. Inspired
by such parallels, we get similar inequalities involving binomial coefficients and irreducible
character values indexed by two row partitions in this work (see Lemma 3.16).

Somewhat surprisingly, quantities that appear in the proof of Theorem1.2 are intimately
connected to the combinatorics of Generalized Riordan paths. We outline the background
and the general strategy of our proof in Section 2 and then move on to the proof of
Theorem 1.2 in Section 3.1. Our inequalities admit a probabilistic interpretation to present
which, a little more background is given in Section 4. In Section 5, we give our interpre-
tation involving peaks at odd heights in generalized Dyck paths or equivalently, involving
special descents in Standard Young Tableaux with at most two rows.
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A poset denoted GTSn on the set of trees with n vertices was defined by Csikvari (see
[8,9]). He showed that several tree parameters are monotonic as one goes up this GTSn
poset. Results involving this poset are usually shown for a fixed tree parameter as the tree
varies on GTSn. Using the above results, we show that one can vary both the normalized
two row immanant as the size of the first part decreases (this is the tree parameter) and the
tree T. In Corollary 3.18, we give comparability results about TwoRowImmk−1(LT1

q ) and
TwoRowImmk(LT2

q ) when T1 and T2 are comparable trees in GTSn.

2. Preliminaries

For a graphG on n vertices, we need the following two n × nmatrices. LetA andD denote
G’s adjacency matrix and the diagonal matrix with degrees on the diagonal respectively.
Define the q-Laplacian of G to be LG

q = I + (D − I)q2 − qA. On setting q = 1, we have
LG
1 = D − A which is the usual Laplacian L(G) of G. Thus, LG

q is a more general matrix
than the Laplacian and is termed the q-Laplacian of G. The matrix LG

q has connections to
the Ihara Selberg zeta function of G (see Bass [4], Foata and Zeilberger [10]). When the
graph G is a tree, LT

q is upto a scalar, the inverse of the exponential distance matrix EDT

of T (see Bapat, Lal and Pati [2]). Several results about LT
q have then subsequently been

proved, see [1,3] and the references therein. Thus, LT
q is a well studied object.

Normalized immanants of the q-Laplacian LT
q of a tree T can be computed using the

dual and alternative notion of vertex orientations.We refer the reader to [12, Lemmas 5, 17
andTheorem11] for an introduction to this and terms undefined here.Wehave not defined
them again in this paper as we do not have anything new to say on them. For λ � n and
j ≤ �n/2	, denote by χλ(j), the irreducible character χλ evaluated at a permutation with
cycle type 2j1n−2j.

For a treeT, when i ≥ 1, letOi denote the set of vertex orientationswith i bidirected arcs.
We need the following from [12, Corollary 13]. There exists a statistic Lexaway : Oi �→ N

whose ordinary generating function aTi (q) = ∑
O∈Oi

qLexaway(O) will be used to compute
normalized immanants ofLT

q . In this work, we will need the tree T and so we have embed-
ded it in our notation of aTi (q). This was not needed in [12] and there the same quantity
was denoted ai(q) as the tree T was implicit. With this slight change in notation, we recall
[12, Lemma 17] as a starting point of this work.

Lemma 2.1 (Nagar and Sivasubramanian): Let T be a tree on n vertices with q-Laplacian
LT
q . For λ � n, let Immλ(LT

q ) denote the normalized immanants of LT
q indexed by λ. Then,

we have

Immλ(LT
q ) = 1

χλ(id)

�n/2	∑
i=0

aTi (q)

⎛
⎝ i∑

j=0

(
i
j

)
χλ(j)

⎞
⎠ , (3)

= 1
χλ(id)

�n/2	∑
i=0

aTi (q)2iαn,λ,i, (4)
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where we define

2iαn,λ,i =
i∑

j=0

(
i
j

)
χλ(j). (5)

2.1. Two rowed immanants

Fixing the number n of vertices of T, we specialize Lemma 2.1 to the case when λ =
TwoRowk and denote the irreducible character indexed by TwoRowk as TwoRowχn,k.
We denote the normalized immanant of LT

q corresponding to the partition TwoRowk as
TwoRowImmk(LT

q ). When λ = TwoRowk, we also denote the term αn,λ,i as αn,k,i to avoid
any confusion. With this notation, substituting λ = TwoRowk in Lemma 2.1, gives us:

TwoRowImmk(LT
q ) = 1

TwoRowχn,k(id)

�n/2	∑
i=0

aTi (q)2iαn,k,i. (6)

Equation (4) and hence Equation (6) shows that one can split the computation of the nor-
malized immanant of LT

q into two parts: the first being aTi (q) which only depends on the
tree T and does not depend on the partition λ (or TwoRowk). The second part is 2iαn,λ,i
(or 2iαn,k,i) which by Lemma 2.1, depends on the character values of λ (or TwoRowk) and
does not depend on the tree T.

Chan and Lam in [7] showed that αn,λ,i ≥ 0 for all n, i and λ � n. As mentioned above,
when i ≥ 1, the aTi (q)’s are ordinary generating functions of the statistic Lexaway and
hence have non negative integral coefficients. Further, by [12, Lemma 16] when i ≥ 1,
aTi (q) is actually a polynomial in q2 with non negative coefficients while a0(q) = 1 −
q2 for all trees (see [12, Corollary 13]). We wish to compare TwoRowImmk(LT

q ) with
TwoRowImmk+1(LT

q ) for the same tree T. Thus, we will analyse αn,k,i in more detail.

3. Proof of Theorem 1.2

Our first lemma gives a recurrence between the αn,k,i’s. We adopt the convention that
αn,k,i = 0 if either i > �n/2	 or if k > �n/2	. We also define αn,k,i = 0 when i<0 or k<0
so that the recursion holds.

Lemma 3.1: For positive integers n ≥ 3,when 0 ≤ i ≤ �(n − 1)/2	 and 0 ≤ k ≤ �n/2	,we
have αn,k,i = αn−1,k,i + αn−1,k−1,i.

Proof: When n = 3, the relation is easy to check. Thus, let n ≥ 4. By definition,
we have 2iαn,k,i = ∑i

j=0 TwoRowχn,k(j)
(i
j
)
. By the Murnaghan-Nakayama lemma (see

Sagan’s book [14, Theorem 4.10.2]), for 0 ≤ j ≤ �(n − 1)/2	 we have TwoRowχn,k(j) =
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TwoRowχn−1,k(j) + TwoRowχn−1,k−1(j). Thus, we get

αn,k,i = 1
2i

i∑
j=0

TwoRowχn,k(j)
(
i
j

)

= 1
2i

i∑
j=0

[
TwoRowχn−1,k(j) + TwoRowχn−1,k−1(j)

] (
i
j

)

= αn−1,k,i + αn−1,k−1,i.

The proof is complete. �

Example 3.2: We illustrate Lemma 3.1 when n = 6, 7, 8 below, where we show the tables
containing αn,k,i’s.

λ = 6 λ = 5, 1 λ = 4, 2 λ = 3, 3

i = 0 1 5 9 5
i = 1 1 4 6 3
i = 2 1 3 4 2
i = 3 1 2 3 1

λ = 7 λ = 6, 1 λ = 5, 2 λ = 4, 3

i = 0 1 6 14 14
i = 1 1 5 10 9
i = 2 1 4 7 6
i = 3 1 3 5 4

λ = 8 λ = 7, 1 λ = 6, 2 λ = 5, 3 λ = 4, 4

i = 0 1 7 20 28 14
i = 1 1 6 15 19 9
i = 2 1 5 11 13 6
i = 3 1 4 8 9 4
i = 4 1 3 6 6 3

We have coloured the cells to illustrate Lemma 3.1. The coloured cell in the table when
n = 8 is the sum of the two identically coloured cells in the table when n = 7 and similarly
each cell can be computed recursively. When n = 8, k = 4 and 0 ≤ i ≤ �(n − 1)/2	, we
note that α8,4,i = α7,3,i, though this is illustrated only when i = 3. Here, instead of αn,k,i
being a sum of two entries, we only have one entry as by our convention, we have αn,k,i = 0
if k > �n/2	.

Since 0 ≤ i ≤ �n/2	, we get one extra row (that is, one extra i) and one extra column
(that is, one extra k), for each even n as n increases. When n = 2� is even, we call this row
corresponding to i = � as the last row and the column corresponding to k = � as the last
column. As can be seen from Example 3.2, when n = 2�, the last row cannot be obtained
as a sum of rows when n = 2� − 1. When n = 2�, as can also be seen from Lemma 3.1
and Example 3.2, there is no problem in recursively obtaining the last column from the
last column corresponding to n−1.
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Remark 3.3: In (5), when λ = TwoRowk, the dimension of the irreducible representa-
tion indexed by TwoRowk equals αn,k,0. That is, αn,k,0 = TwoRowχn,k(id). Further, by the
Hook-length formula (see Sagan [14]) the dimension of the irreducible representation
indexed by TwoRowk is αn,k,0 = (n

k
) − ( n

k−1
)

> 0.

To prove Theorem 1.2, we write both TwoRowImmk(LT
q ) and TwoRowImmk+1(LT

q )

using (6). As the terms 2iaTi (q) are common within the summation, using Remark 3.3, as
a first attempt, we want to show that

αn,k,i

αn,k,0
≥ αn,k+1,i

αn,k+1,0
. (7)

If this holds, then we can show an inequality for each term of the summation in (6).
We check with our data for n = 6 and tabulate the ratio α6,k,i

α6,k,0
. Remark 3.3 tells us that

TwoRowχn,k(id) is given by the first row (shown in red colour, seen better on a colour
monitor). Dividing, we get the following table of ratios.

λ = 6 λ = 5, 1 λ = 4, 2 λ = 3, 3

i = 0 1/1 5/5 9/9 5/5
i = 1 1 4/5 6/9 3/5
i = 2 1 3/5 4/9 2/5
i = 3 1 2/5 3/9 1/5

As the data seems to agree with (7), we will prove this. We show inequality (7) when
n = 2� and i = � in the next subsection.

3.1. When n = 2� and i = �

Our first lemma shows that the α2�,k,�’s are differences of successive trinomial coefficients.
Let p�,k denote the coefficient of xk in (1 + x + x2)� and to save one subscript, let last�,k =
α2�,k,�. Thus, last�,k = 0 when k > � and when k < 0. We need the following result (see [7,
Lemma 2.1]) of Chan and Lam before we state our first lemma.

Lemma 3.4 (Chan and Lam): Fix positive integers n, k, i with k, i ≤ �n/2	. Then, the
following relation among the αn,k,i holds.

(1) For a positive integer �, if n 
= 2� or if n = 2� and k 
= �, then αn,k,i = αn−2,k,i−1 +
αn−2,k−1,i−1 + αn−2,k−2,i−1.

(2) For a positive integer �, when n = 2� and k = �, then α2�,�,i = α2�−2,�−2,i−1

Consequently, for fixed positive integers �, k with � ≥ 2, we have

(1) last�,� = last�−1,�−2
(2) last�,k = last�−1,k + last�−1,k−1 + last�−1,k−2 when 0 ≤ k < �.

Lemma 3.5: Fix positive integers �, k with � ≥ 2 and with 0 ≤ k ≤ �. Then, we have

(1) p�,k = p�−1,k + p�−1,k−1 + p�−1,k−2.



204 M. K. NAGAR ET AL.

Table 1. The values of last�,k .

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

� = 7 1 6 21 49 84 105 91 36
� = 8 1 7 28 76 154 238 280 232 91
� = 9 1 8 36 111 258 468 672 750 603 232

(2) α2�,k,� = last�,k = p�,k − p�,k−1 is a positive integer.

Proof: (1) By the definition of p�,k, we have

p�,k = Coeff. of xk in (1 + x + x2)�

= Coeff. of xk in (1 + x + x2)�−1(1 + x + x2) = p�−1,k + p�−1,k−1 + p�−1,k−2.

(2) We induct on �. When � = 2, 3, it is easy to see that last�,k = p�,k − p�,k−1 is a positive
integer (also see Table 1). We first consider the case when k < �. Let the result be true
for all positive integers less than �. From part (1) and Lemma 3.4 we have

last�,k = last�−1,k + last�−1,k−1 + last�−1,k−2

= p�−1,k − p�−1,k−1 + p�−1,k−1 − p�−1,k−2 + p�−1,k−2 − p�−1,k−3

= p�−1,k + p�−1,k−1 + p�−1,k−2 − p�−1,k−1 − p�−1,k−2 − p�−1,k−3

= p�,k − p�,k−1.

We move on to the case when k = �. As the polynomial (1 + x + x2)k is clearly
palindromic, we have pk,k−1 = pk,k+1. By Lemma 3.4 we get

last�,� = last�−1,�−2 = p�−1,�−2 − p�−1,�−3

= p�−1,� + p�−1,�−1 + p�−1,�−2 − p�−1,�−1 − p�−1,�−2 − p�−1,�−3

= p�,� − p�,�−1

The proof is complete. �

We need a couple of inequalities which we see in the next few lemmas. We need the
following lemma whose proof is easy and hence omitted.

Lemma 3.6: For non-negative real numbers a, b, c, d with c 
= 0 
= d,

min
(
a
c
,
b
d

)
≤ a + b

c + d
≤ max

(
a
c
,
b
d

)
.

Our next lemma is an extension of Lemma 3.6.

Lemma 3.7: For 1 ≤ i ≤ 4, let ai, bi be positive integers with a1
b1 ≤ a2

b2 ≤ a3
b3 ≤ a4

b4 . Then,

a1 + a2 + a3
b1 + b2 + b3

≤ a2 + a3 + a4
b2 + b3 + b4

.
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Proof: We know a1
b1 ≤ a2

b2 ≤ a3
b3 ≤ a4

b4 . Lemma 3.6 implies that a1
b1 ≤ a2

b2 ≤ a2+a3
b2+b3 ≤ a3

b3 ≤
a4
b4 . Applying Lemma 3.6 again, we get

a1
b1

≤ a1 + a2 + a3
b1 + b2 + b3

≤ a2 + a3
b2 + b3

≤ a2 + a3 + a4
b2 + b3 + b4

≤ a4
b4

, completing the proof. �

We compare the ratio last�,k+1/last�−1,k as k decreases. For this, as background, we need
a small detour to Riordan numbers.

Remark 3.8: A combinatorial interpretation of last�,k as the number of Riordan paths (see
Section 5.1 for more details) was shown by Callan [6]. Callan showed that what we denote
as last�,� is the Riordan number, denoted as R� in the literature. It is well known that R�

satisfies the following recurrence relation: (� + 2)R�+1 = 2�R� + 3�R�−1.

We will show that when � ≥ 7, the numbers R� are log-convex. That is, we have R2
� ≤

R�−1R�+1. We do this in a similar manner as done by Liu and Wang [11]. Consider the
following quadratic equation

(� + 2)λ2 − 2�λ − 3� = 0.

The above equation has a unique positive root λ� = �+√
4�2+6�

�+2 . When � ≥ 3, using Maple
as done by Liu and Wang in [11, Corollary 3.3] it is simple to verify that

(� + 2)λ�−1λ�+1 − 2�λ�−1 − 3� ≥ 0. (8)

It can be checked that R6 = 15, R7 = 36, R8 = 91, R9 = 232 are log-convex. That is, we
have R2� ≤ R�−1R�+1 when � = 7, 8. By [11, Lemma 3.1] and (8), we have the following
result.

Lemma 3.9: When � ≥ 7, the sequence R� of Riordan numbers is log-convex. That is, when
� ≥ 7 we have last2�,� ≤ last�−1,�−1last�+1,�+1.

Lemma 3.10: Fix positive integers �, k with 1 ≤ k ≤ � − 1 and � ≥ 7. Then,

last�,k+1

last�−1,k
≤ last�,k

last�−1,k−1
.

Proof: Weuse induction on �. The result is easily verifiedwhen � = 7 (see Table 1 in Exam-
ple 3.12 below). Let the result be true whenN ≤ � and when 1 ≤ k ≤ � − 1.We then show
that it holds for � + 1. Thus, we need to show that last�+1,k+1

last�,k
≤ last�+1,k

last�,k−1
, where k ≤ �. By

Lemma 3.5 and Lemma 3.4 this is equivalent to showing that

last�,k+1 + last�,k + last�,k−1

last�−1,k + last�−1,k−1 + last�−1,k−2
≤ last�,k + last�,k−1 + last�,k−2

last�−1,k−1 + last�−1,k−2 + last�−1,k−3
,

where k ≤ � − 1 and last�,�
last�−1,�−1

≤ last�,�−1
last�−1,�−2

. By the induction hypothesis, when k ≤ � − 1,
we know that

last�,k+1

last�−1,k
≤ last�,k

last�−1,k−1
≤ last�,k−1

last�−1,k−2
≤ last�,k−2

last�−1,k−3
and last�,�−1 = last�+1,�+1.

The proof is complete by applying Lemmas 3.7 and 3.9. �
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By Lemma 3.5, last�,k is a positive integer. Rearranging terms a bit, as an immediate
consequence of Lemma 3.10, we obtain the following corollary.

Corollary 3.11: Fix positive integers �, k with 1 ≤ k ≤ � − 1 andwith � ≥ 7. Then, we have

last�,k+1

last�,k
≤ last�−1,k

last�−1,k−1
.

In general, we have

last�,k+1

last�,k
≤ last�−r,k+1−r

last�−r,k−r
, when 1 ≤ r ≤ k.

Example 3.12: We illustrate Lemma 3.10 and Corollary 3.11 when 7 ≤ � ≤ 9 and k ∈
{0, 1, . . . , 9} in Table 1 which contains last�,k’s.

With this preparation, we can prove the following result.

Lemma 3.13: Fix positive integers �, k with 1 ≤ k ≤ � − 1 and with � ≥ 7. Then, we have

last�,k+1( 2�
k+1

) − (2�
k
) ≤ last�,k(2�

k
) − ( 2�

k−1
) . (9)

Proof: Note that
(2�
k
)
equals the coefficient of xk in the expansion of

(1 + x)2� = (1 + x + x2 + x)� =
�∑

r=0

(
�

r

)
xr(1 + x + x2)�−r.

Thus,
(2�
k
) = ∑�

r=0
(
�
r
)
p�−r,k−r, and hence

(
2�

k + 1

)
−

(
2�
k

)
=

�∑
r=0

(
�

r

)
p�−r,k+1−r −

�∑
r=0

(
�

r

)
p�−r,k−r

=
�∑

r=0

(
�

r

)
last�−r,k+1−r = last�,k+1 +

�∑
r=1

(
�

r

)
last�−r,k+1−r.

Hence, ( 2�
k+1

) − (2�
k
)

last�,k+1
= 1 +

�∑
r=1

(
�

r

)
last�−r,k+1−r

last�,k+1
. (10)

Similarly, (2�
k
) − ( 2�

k−1
)

last�,k
= 1 +

�∑
r=1

(
�

r

)
last�−r,k−r

last�,k
. (11)

Thus, to obtain our required result, we need to show that

last�−r,k+1−r

last�,k+1
≥ last�−r,k−r

last�,k
⇔ last�,k+1

last�,k
≤ last�−r,k+1−r

last�−r,k−r
.

By Corollary 3.11, last�,k+1
last�,k

≤ lastn−r,k+1−r
lastn−r,k−r

for 1 ≤ r ≤ k, completing the proof. �
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More generally, for positive integers r, s, let a�,k,s and a�,k,r+s denote the coefficient of xk
in (1 + sx + x2)� and in (1 + (r + s)x + x2)� respectively. The proof of Lemma 3.13 actu-
ally shows the following more general result. Since the proof is identical, we only mention
its statement.

Remark 3.14: With the above notation for a�,k,s, the following inequality is true for all
positive integers � and all k.

a�,k+1,s − a�,k,s

a�,k+1,r+s − a�,k,r+s
≥ a�,k,s − a�,k−1,s

a�,k,r+s − a�,k−1,r+s
. (12)

Indeed, Lemma 3.13 is a special case of this result with r = s = 1.

Note that Lemma 3.13 proves inequality (7) when n = 2� and k = �. With this prepa-
ration, we can now show that (7) holds.

Lemma 3.15: For positive integers n ≥ 5 and integers k ≤ �n/2	, i ≤ �n/2	, we have
αn,k,i

αn,k,0
≥ αn,k+1,i

αn,k+1,0
(13)

Proof: We use induction on n. We will separately show (13) when 5 ≤ n ≤ 13 and when
n ≥ 14. When 4 ≤ n ≤ 14, we have tabulated the data αn,k,i/αn,k,0 in the Appendix. When
n = 14 (this corresponds to � = 7), the statement can be easily checked (see theAppendix).
The casewhen n = 2� and i = � follows fromLemma 3.13. For n+ 1with k ≤ �(n + 1)/2	
and i < �(n + 1)/2	, we will show that

αn+1,k,i

αn+1,k,0
≥ αn+1,k+1,i

αn+1,k+1,0
.

By Lemma 3.1, we need to show

αn,k,i + αn,k−1,i

αn,k,0 + αn,k−1,0
≥ αn,k+1,i + αn,k,i

αn,k+1,0 + αn,k,0
.

As αn,k,i ≥ 0, using Lemma 3.6 we have

αn,k,i + αn,k−1,i

αn,k,0 + αn,k−1,0
≥ min

(
αn,k,i

αn,k,0
,
αn,k−1,i

αn,k−1,0

)
= αn,k,i

αn,k,0
. (14)

By induction, as αn,k,i
αn,k,0

≥ αn,k+1,i
αn,k+1,0

, we also get

αn,k,i

αn,k,0
= max

(
αn,k+1,i

αn,k+1,0
,
αn,k,i

αn,k,0

)
≥ αn,k+1,i + αn,k,i

αn,k+1,0 + αn,k,0
. (15)

Equations (14) and (15) imply that

αn+1,k,i

αn+1,k,0
= αn,k−1,i + αn,k,i

αn,k−1,0 + αn,k,0
≥ αn,k,i

αn,k,0
≥ αn,k,i + αn,k+1,i

αn,k,0 + αn,k+1,0
= αn+1,k+1,i

αn+1,k+1,0
. (16)

The proof is complete. �
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As Lemma 3.13 extends Lemma 3.15 to the case when n = 2� and i = �, we record this
formally below.

Lemma 3.16: With αn,k,i as defined in (5), for positive integers n ≥ 5 and integers k, i ≤
�n/2	, we have

αn,k,i

αn,k,0
≥ αn,k+1,i

αn,k+1,0
. (17)

Proof: We again have two separate cases: when 5 ≤ n ≤ 13 and when n ≥ 14. When 5 ≤
n ≤ 13, the result follows from Lemma 3.15. When n ≥ 14, we induct on n with the base
case being n = 14. When n = 14, the inequality is easy to verify and thus we can assume
n ≥ 15. If n is odd, then by Lemma 3.15, we are done. If n = 2� is even, then Lemma 3.15
shows the inequality for i from 0 to � − 1. Lemma 3.13 shows the inequality when i = �,
completing the proof. �

Remark 3.17: We mention our reason as to why Lemma 3.16 requires n ≥ 5. On n = 4
vertices, there are two trees: the path tree P4 and the star tree S4. It is very easy to check
that Theorem 1.2 is true for S4. However, when T = P4, we have TwoRowImm1(LT

q ) =
1 + 3q2 + 4

3q
4 and TwoRowImm2(LT

q ) = 1 + 2q2 + 2q4. Hence, when |q| is sufficiently
large, the inequality given in Theorem 1.2 is not true for P4 when k = 2. This however is
the only aberration.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2.: By (6) and Remark 3.3 we have,

TwoRowImmk(LT
q ) =

�n/2	∑
i=0

aTi (q)2i
αn,k,i

αn,k,0
and

TwoRowImmk+1(LT
q ) =

�n/2	∑
i=0

aTi (q)2i
αn,k+1,i

αn,k+1,0
. Thus,

TwoRowImmk(LT
q ) − TwoRowImmk+1(LT

q ) =
�n/2	∑
i=0

aTi (q)2i
(

αn,k,i

αn,k,0
− αn,k+1,i

αn,k+1,0

)

=
�n/2	∑
i=1

aTi (q)2i
(

αn,k,i

αn,k,0
− αn,k+1,i

αn,k+1,0

)
.

As mentioned earlier, when i ≥ 1 the polynomial aTi (q) is a polynomial in q2 with non
negative coefficients and so the term 2iaTi (q) is non negative for all q ∈ R and i ≥ 1.
Combining with Lemma 3.16, we get that each term in the summation is non negative,
completing the proof. �

Recall the poset GTSn mentioned in Section 1. This poset was defined as several opti-
mization problems on trees attained their maximum andminumum on star trees and path
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trees respectively or the other way around. More than ten tree properties are known to
be monotonic as one goes up the poset GTSn (see Csikvari [8,9]). One of the monotonic
properties is the absolute value of the coefficients of the characteristic polynomial of the
Laplacian matrix of T. Generalizing this, Nagar and Sivasubramanian in [13, Theorem 1]
showed that going up along GTSn poset kept the absolute value of the coefficients of the
q-Laplacian matrix for all q ∈ R and all immanantal polynomials indexed by λ � n. In
their proof, they showed that going up on GTSn weakly decreases aTi (q) for each i and
for all q ∈ R and hence weakly decreases Immλ(LT

q ) for each λ � n. By combining [13,
Lemma 23] with Theorem 1.2 we get the following.

Corollary 3.18: Consider the GTSn poset on trees with n ≥ 5 vertices. Let T1,T2 be trees
with T2 covering T1 in GTSn. Then, for all q ∈ R and for k = 1, 2 . . . , �n/2	, we have

(1) TwoRowImmk−1(LT1
q ) ≥ TwoRowImmk(LT1

q ) ≥ TwoRowImmk(LT2
q ).

(2) TwoRowImmk−1(LT1
q ) ≥ TwoRowImmk−1(LT2

q ) ≥ TwoRowImmk(LT2
q ).

Proof: We sketch a proof of (1) above. The proof of (2) is very similar and hence is omitted.
Theorem 1.2 gives us TwoRowImmk−1(LT1

q ) ≥ TwoRowImmk(LT1
q ). When the shape is

the same and T2 covers T1 in GTSn, then by [13, Lemma 23], going up along GTSn poset
weakly decreases aTi (q) for each i and for all q ∈ R. Arguing as in the proof of Theorem 1.2
gives us TwoRowImmk(LT1

q ) ≥ TwoRowImmk(LT2
q ), completing the proof. �

4. Polynomials and successive differences

Recall the tables containing αn,k,i’s for n = 7, 8 given in Example 3.2. When n = 2�, in
Lemma 3.5, we saw a relation between the successive difference of coefficients of the poly-
nomial (1 + x + x2)� and α2�,k,�’s (that is, the entries of the last row). We next give similar
identities for other αn,k,i’s (that is, for entries of other rows of the table).We need to define a
sequence of polynomials. For 0 ≤ i ≤ �n/2	, define the following sequence of polynomials:

pn,i(x) = (1 + x)n−2i(1 + x + x2)i =
n∑

k=0

pn,i,kxk.

For example, when n = 8, we tabulate the polynomials below:

p8,0(x) (1 + x)8

p8,1(x) (1 + x)6 × (1 + x + x2)
p8,2(x) (1 + x)4 × (1 + x + x2)2

p8,3(x) (1 + x)2 × (1 + x + x2)3

p8,4(x) (1 + x + x2)4

It is easy to see that p8,1(x) = 1 + 7x + 22x2 + 41x3 + 50x4 + 41x5 + 22x6 + 7x7 +
x8. Taking successive differences of coefficients, we get 1 = 1−0, 6 = 7−1, 15 = 22−7,
19 = 41−22, 9 = 50−41 and thus, we get the row corresponding to i = 1 in the table for
n = 8. Similarly, from p8,2(x), we get the row of the table for n = 8, corresponding to i = 2.
When n = 7, we tabulate the polynomials below:



210 M. K. NAGAR ET AL.

p7,0(x) (1 + x)7

p7,1(x) (1 + x)5 × (1 + x + x2)
p7,2(x) (1 + x)3 × (1 + x + x2)2

p7,3(x) (1 + x) × (1 + x + x2)3

One can check that p7,3(x) = 1 + 4x + 9x2 + 13x3 + 13x4 + 9x5 + 4x6 + x7. From
this polynomial, taking successive difference as done above, we get 1,3,5,4 which is the
row corresponding to i = 3 in the table when n = 7. One can check that other rows are
obtained in a similar manner.

4.1. Successive differences

In the following lemma, we give a similar successive difference interpretation for other
αn,k,i’s.

Lemma 4.1: With the notation above, for n ≥ 1 we have

(1) pn,i,k = pn−2,i−1,k + pn−2,i−1,k−1 + pn−2,i−1,k−2 when 1 ≤ i ≤ �n/2	.
(2) αn,k,i = pn,i,k − pn,i,k−1 when 0 ≤ i ≤ �n/2	.

Proof: (1) By definition, we have

pn,i,k = Coeff. of xk in (1 + x)n−2i(1 + x + x2)i

= Coeff. of xk in (1 + x)n−2−2(i−1)(1 + x + x2)i−1(1 + x + x2)

= Coeff. of xk in pn−2,i−1(x)(1 + x + x2)

= pn−2,i−1,k + pn−2,i−1,k−1 + pn−2,i−1,k−2.

(2) To prove the second part, we use induction on n as done in the proof of Lemma 3.5. It
is easy to verify the statement for small values of n, k and i. We first consider the case
when i = 0. For positive integers n, k, we get

αn,k,0 =
(
n
k

)
−

(
n

k − 1

)
= pn,0,k − pn,0,k−1.

When i>0 assume that the lemma is true for all values less than n. By induction and
Lemma 3.4, when n is odd or n is even with k 
= �n/2	 we get

αn,k,i = αn−2,k,i−1 + αn−2,k−1,i−1 + αn−2,k−2,i−1

= pn−2,i−1,k − pn−2,i−1,k−1 + pn−2,i−1,k−1 − pn−2,i−1,k−2

+ pn−2,i−1,k−2 − pn−2,i−1,k−3

= pn,i,k − pn,i,k−1.

where the last equality follows from first part.
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It is easy to check that the polynomial pn,i(x) is palindromic. When n = 2� and k = �

for some � > 0 by induction and Lemma 3.4

α2�,�,i = α2�−2,�−2,i−1

= p2�−2,i−1,�−2 − p2�−2,i−1,�−3

= p2�−2,i−1,� − p2�−2,i−1,�−1 + p2�−2,i−1,�−1 − p2�−2,i−1,�−2

+ p2�−2,i−1,�−2 − p2�−2,i−1,�−3

= p2�,i,� − p2�,i,�−1.

In the above, the second last equality follows by using p2�−2,i−1,�−2 = p2�−2,i−1,�. The proof
is complete. �

5. A probabilistic interpretation

In this section, we give a path based interpretation and recast Lemma 3.16 in a probabilistic
setting. Recall from Remark 3.3, that αn,k,0 = TwoRowχn,k(id), where TwoRowχn,k(id) is
the dimension of the irreducible representation of Sn indexed by the two row partition
TwoRowk = n − k, k, which by the Hook-length formula equals the number of Standard
Young Tableaux (SYT henceforth) of shape n−k, k.

Consider non negative lattice paths on the plane from (0, 0) to (n, n − 2k), consisting of
n−k Up steps which go from (x, y) to (x + 1, y + 1) denoted U and k Down steps which
go from (x, y) to (x + 1, y − 1), denoted D, that stay on or above the x-axis. By definition,
all paths we consider stay on or to the right of the y-axis and a lattice path is termed non
negative if it stays on or above the x-axis. For k ≤ �n/2	, let NLP(n, n − 2k) be the set
of such non negative lattice paths from (0, 0) to (n, n − 2k). Since NLP(2n, 0) is the set of
Dyck paths of length 2n (or semi length n), we refer to NLP(n, n − 2k) asGeneralized Dyck
paths with the word generalized implying that the number of Up steps is larger than the
number of Down steps.

Remark 5.1: The following well known bijection maps Standard Young tableaux of shape
n−k, k to NLP(n, n − 2k) as follows. Given an SYT T of shape n−k, k, consider the path
PT whose ith step is U if i is in the first row of T and whose ith step is D if i is in the second
row of T.

Combining Remark 3.3 with the bijection in Remark 5.1, the denominator terms in
Lemma 3.16, are the cardinalities of NLP(n, n − 2k) and NLP(n, n − 2k − 2) respectively.
Our first aim is to give a similar interpretation for αn,k,i as the cardinality of some set of
paths. Our interpretation will depend on the parity of n. Let

(1 + x + x2)n =
2n∑
k=0

pn,kxk and (1 + x + 1/x)n =
n∑

k=−n

qn,kxk. (18)

As 1 + x + x2 = x(1 + x + 1/x), when −n ≤ k ≤ n, we get pn,n+k = qn,k. Thus, the pn,k’s
are translates of the qn,k’s. It is also easy to see that (1 + x + x2)n is a palindromic
polynomial of degree 2n. That is, for 0 ≤ k ≤ 2n, we have pn,k = pn,2n−k.
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From (18), a moments reflection gives the following interpretation for qn,k: qn,k equals
the number of lattice paths from (0, 0) to (n, k) where we are allowed the following three
types of steps: U from (x, y) to (x + 1, y + 1),H from (x, y) to (x + 1, y) and D from (x, y)
to (x + 1, y − 1). Note that these lattice paths need not be non negative. We call such paths
as UHD paths. By translating, we can get a path based interpretation for the pn,k’s. We now
bifurcate our discussion into two parts depending on the parity of n.

5.1. When n = 2� is even

Whenn = 2�, for 0 ≤ k ≤ �, by Lemma3.5, we haveα2�,k,� = p�,k − p�,k−1 (where p�,−1 =
0). Callan in [6] showed that the difference between the central trinomial coefficient and
its predecessor is the Riordan number Rn which counts the number of non negative UHD
paths from (0, 0) to (n, 0) with no H steps at height 0. Here non negative UHD paths are
UHD paths which do not go below the x-axis. By Callans result, we get that α2�,�,� = R� =
p�,� − p�,�−1. We will need Generalized Riordan paths which are defined as non negative
UHD paths with no H step at height 0, but are from (0, 0) to (n, k) where k need not be
zero. Callan’s result is actually more general and gives an interpretation for the numbers
α2�,k,� (which we had denoted as last�,k) as the cardinality of a set of Generalized Riordan
paths. We give a proof for completeness.

Recall for 0 ≤ k ≤ �, that q�,k, the coefficient of xk in (x−1 + 1 + x)� is the number
of UHD paths from (0, 0) to (�, k). By translation, for 0 ≤ k ≤ �, p�,�+k is the number of
UHD paths from (0, 0) to (�, k). Let UHD(�, � − k) be the set of UHD paths from (0, 0) to
(�, � − k). Since p�,k = p�,2�−k = |UHD(�, � − k)|, we will give a combinatorial proof that
α2�,k,� = p�,k − p�,k−1 = |UHD(�, � − k)| − |UHD(�, � − k + 1)|.

Lemma 5.2 (Callan): Let � be a positive integer and let k ≤ � be a non negative integer.
The number of Generalized Riordan paths from (0, 0) to (�, k) equals p�,�−k − p�,�−k−1.
That is, α2�,k,� = |UHD(�, � − k)| − |UHD(�, � − k + 1)|. Thus, α2�,k,� equals the number
of Generalized Riordan paths from (0, 0) to (�, � − k).

Proof: For 0 ≤ k ≤ � let GRP(�, � − k) denote the set of Generalized Riordan paths from
(0, 0) to (�, � − k) without a horizontal step at height zero. We will prove the Lemma by
giving a bijection f from the set UHD(�, � − k) \ GRP(�, � − k) to the set UHD(�, � − k +
1).

Suppose P ∈ UHD(�, � − k) has either a H step at ground level or dips strictly below
the x axis at some point or both. Denote by R the subpath of P starting from the x-axis
after either the last horizontal step at height 0, or after the last time P went below the x-
axis, (if both events happen, choose whichever event happens later). Thus, R is the longest
Generalized Riordan sub-path that starts somewhere on the x-axis and ends P. Consider
the step X in P that precedes R. It is easy to check that X cannot be D. Thus, we have two
cases based on X.

Case 1 (when X = H): We have P = SXR for some sub-path S of P ending somewhere
on the x-axis. Define f (P) as follows: f (SXR) = SUR+1, where R+1 is sub-path obtained
by shifting R from the ground level to level 1 and S is obtained by flipping S with respect
to the x axis.
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Figure 1. Examples of the bijection f and its inverse f−1.

Case 2 (when X = U): We have P = SXR for some sub-path S of P ending at height −1.
Define f (SUR) = SHR+1, where R+1 and S are as defined in Case 1.

We note that any path with first step U gets mapped under f to a path with first step D
and vice-versa. The map f sends paths whose first step isH to paths with first stepH itself.

Inverse map f−1: To defined the inverse of f, let P ∈ UHD(�, � − k + 1) be a path from
(0, 0) to (�, � − k + 1). Let R be the largest subpath of P that ends P and does not have aH
step at level 1 or goes below level 1. As before, let X be the step in P that precedes R. Note
that X cannot be D. Thus we have the following two cases.

Case 1 (when X = H): We have P = SHR for some subpath S. Define f−1(SHR) =
SUR−1, where R−1 is sub-path obtained by shifting R from the level 1 to ground level and
S is as defined as in the definition of f.

Case 2 (when X = U): Whe have P = SUR for some subpath S. Define f−1(SUR) =
SHR−1.

It is easy to check that f 
 f−1 = id, the identity map. The proof is complete. �

Remark 5.3: The bijection f defined in the proof of Lemma 5.2 is illustrated in Figure 1
where f (UDDUUUUH) = DUUHUUUH and f−1(UDDHDUUU) = DUUHUDDH.

Example 5.4: We illustrate Lemma 5.2 when � = 4. We clearly have p4,−1 = 0, p4,0 = 1,
p4,1 = 4, p4,2 = 10, p4,3 = 16 and p4,4 = 19. From Example 3.2, we have the following
table of α8,4,k. Clearly, α8,4,k = p4,k − p4,k−1 and we have the following sets of Generalized
Riordan paths.

λ = 8 λ = 7, 1 λ = 6, 2 λ = 5, 3 λ = 4, 4
i = 4 1 3 6 6 3

End point (4,4) (4,3) (4,2) (4,1) (4,0)
Path sets GRP(4, 4) GRP(4, 3) GRP(4, 2) GRP(4, 1) GRP(4, 0)
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Figure 2. The set GRP(4, 2) of Generalized Riordan paths from (0, 0) to (4, 2).

where GRP(4, 4) = {UUUU}, GRP(4, 3) = {UUUH,UUHU,UHUU}, GRP(4, 2) =
{UUHH,UHHU,UHUH,UUUD,UUDU,UDUU}, GRP(4, 1) = {UDUH,UUDH,UHDU,
UHUD,UUHD,UHHH} and GRP(4, 0) = {UDUD,UUDD,UHHD}. The set of paths in
GRP(4, 2) are drawn in Figure 2.

In our next lemma, we interpret Generalized Riordan paths as generalized Dyck paths
with restrictions on the positions of its peaks. We denote paths with only Up and Down
steps as UD paths. The following interpretation of Riordan paths is known (see OEIS) and
we give a simple proof as we need a version for Generalized Riordan paths as well. Given
a UD path P, a peak is a lattice point (p, q) on P such that an up-step ends at (p, q) and a
down-step starts at (p, q).

Lemma 5.5: Let n = 2�. For 0 ≤ k ≤ �, there is a bijection f from GRP(�, � − k) to the set
NLP(2�, 2� − 2k) of generalized Dyck paths from (0, 0) to (2�, 2� − 2k) that have 2� − k
Up steps, k Down steps and have no peaks at any odd height. Thus, α2�,k,� is the number of
generalized Dyck paths from (0, 0) to (2�, 2� − 2k) with 2� − k Up steps, k Down steps, that
have no peaks at any odd height.

Proof: Let P ∈ GRP(�, � − k)with P = a1, a2, . . . , a� be a Generalized Riordan path from
(0, 0) to (�, � − k)where ai = U/H/D, depending on the type of the ith step of P. Perform
the following operations: change U to U, U, change D to D, D and change H to D, U. This
will convert P to f (P) = Q = b1, b2, . . . , b2� whereQ is an UD path.We note the following
properties of the bijection f.

(Property 1) Q is a non negative path: As P ∈ GRP(�, � − k) and thus has no horizontal
steps at height 0. Thus, changing aH step in P to D, U in f (P) will not make the path f (P)

go below height 0. Further, since P is non negative, any D step in P is preceded by a U step
prior to it. This ensures that while changing D in P to D, D in f (P) we would have earlier
changed aU in P to aU,U in f (P) and hence this change will also not make f (P) go below
height 0.

(Property 2) Q has no peaks at any odd height: To see this, note that a peak will occur in
f (P) iff there is a consecutive U, D pair. Suppose (bi, bi+1) = (U,D), then it is easy to see
that i is even. As i is even, this means that the height at which the peak occurs in f (P) is also
even. Thus any peak of f (P) only occurs at an even height. The proof is now complete. �

Figure 3 shows the generalized Dyck paths output by the bijection f described in
Lemma 5.5 on paths P ∈ GRP(4, 2). Note that Lemma 5.5 gives an interpretation for
α2�,k,�, that is for entries in the last row when n = 2�. Using this as a building block,
we give another expression for α2�,k,i in terms of α2m,k,m. This will enable us to give an
interpretation for α2�,k,i.
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Figure 3. The generalized Dyck paths obtained under the bijection f applied to paths in GRP(4, 2).

Lemma 5.6: Let n = 2� and let 0 ≤ k, i ≤ �. Then,

α2�,k,i =
�−i∑
t=0

(
� − i
t

)
α2�−2t,k−t,�−t .

Proof: ByLemma4.1,α2�,k,i is the difference of successive coefficients from the polynomial
p2�,i(x). Set b = 1 + x + x2. Then, for k ≥ 0, we clearly have p2k,k(x) = bk. It is further
clear that

p2�,i(x) = (x + b)�−ip2i,i(x) = (x + b)�−ibi

=
�−i∑
t=0

(
� − i
t

)
xtb�−t =

�−i∑
t=0

(
� − i
t

)
xtp2�−2t,�−t(x)

As taking the difference of successive coefficients is a linear operator, we get the desired
equation, completing the proof. �

Example 5.7: We illustrate Lemma 5.6 by getting the last column of the table when n = 8.
The following data can be easily verified.

� 0 1 2 3 4

α2�,�,� 1 0 1 1 3

From the table for n = 8 in Example 3.2, one can easily verify the construction of the
entries in the last column using the elements α2�,�,� as follows.

α8,4,3 = 4 = α8,4,4 + α6,3,3,

α8,4,2 = 6 = α8,4,4 + 2α6,3,3 + α4,2,2,
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α8,4,1 = 9 = α8,4,4 + 3α6,3,3 + 3α4,2,2 + α2,1,1,

α8,4,0 = 14 = α8,4,4 + 4α6,3,3 + 6α4,2,2 + 4α2,1,1 + α0,0,0.

Using Lemma 5.6, we give an interpretation for the numbers α2�,k,i when i < �. It
will again be the the cardinality of a set of generalized Dyck paths with odd peaks
occurring at restricted positions. All our generalized Dyck paths will be from (0, 0) to
(2�, 2� − 2k). Divide the 2� steps on the x-axis into � intervals of length 2 each. Thus, we
have intervals s1 = (0, 2), s2 = (2, 4), . . . , s� = (2� − 2, 2�). For 0 ≤ i ≤ �, define the sets
Di = {1, 2, . . . , i}. Thus D0 = ∅, D1 = {1},D2 = {1, 2} and so on. We will permit peaks to
have an odd height at a point (x, y) where x ∈ Di.

Lemma 5.8: With the notation described above, α2�,k,i is the cardinality of the set of gener-
alized Dyck paths from (0, 0) to (2�, 2� − 2k) with 2� − k Up steps, k Down steps and odd
peaks contained in the set D�−i.

Proof: Our proof is inspired by the proof of Lemma 5.6. We construct generalized Dyck
paths with peaks at odd height in the set D�−i as follows. If there are peaks at odd heights,
then as done in the proof of Lemma 5.5, it is clear that any such peak will occur at position
(x, y) where both x, y are odd positive integers. Thus, such an odd peak causing ‘U,D’ pair
of steps has to be in positions indexed by sd for some d ∈ {1, 2, . . . , �}.

We claim that the number of generalized Dyck paths with t odd height peaks in the set
D�−i is

(
�−i
t

)
α2�−2t,k−t,�−t . If such a path P is written as a string ofU,D’s, any peak will have

a consecutive ‘U,D’ substring. Note that if P has t peaks at odd heights, then removing the
t ‘U, D’ pairs will give a generalized Dyck path Q of length 2� − 2t with no change in the
final height of the path (thus having 2� − k − t Up and k−t Down steps) and with t fewer
U steps and t fewer D steps. Further, Q has no odd peaks. This argument goes both ways.

Given a generalized Dyck path Q with a total of 2� − 2t steps from (0, 0) to (2� −
2t, 2� − 2k) that has 2� − k − t Up steps and k−t Down steps with no odd peaks, one
can choose a subset T of size t from D�−i in

(
�−i
t

)
ways and insert a ‘U, D’ pair at position

sd for d ∈ T. This completes the proof. �

Example 5.9: We illustrate the bijection described in Lemma 5.8 to getα8,4,0.We thus need
Dyck paths from (0, 0) to (8, 0). Since we do not change the height, our building blocks are
Dyck paths without peaks at odd heights from (0, 0) to (2m, 0) for non negative integersm.
These are given in Figure 4 with different colours for added clarity. The set of paths formed
is given in Figure 5 where the same colours are used and odd peak causing ‘U,D’ pairs are
drawn using dotted lines.

Remark 5.10: Note that when i = �, Lemma 5.8 gives Lemma 5.5. Further, α2�,k,i is a term
that occurs in the normalized immanant computation of the partition TwoRowk. Thus,
when αn,k,i is viewed as the cardinality of a restricted set of generalized Dyck paths as given
in Lemma 5.8, the second parameter k in the subscript of α2�,k,i is the number of Down
steps while the first parameter is the total number of steps in the generalized Dyck path.

Recall that α2�,�,0 = C�, the �th Catalan number and as α2�−2t,�−t,�−t = R�−t , where R�

is the �th Riordan number. When n = 2�, k = � and i = 0, Lemma 5.6 gives us the known
fact that C� = ∑�

t=0
(
�
t
)
R�−t .
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Figure 4. Up down paths with no peaks at an odd height.

Figure 5. α8,4,0 counts all 14 Catalan paths of semi length 4 that have peaks at odd heights in D4.

5.2. When n = 2� + 1 is odd

When n = 2� + 1, we use Lemma 3.1 which states that α2�+1,k,i = α2�,k,i + α2�,k−1,i. By
Remark 5.10, α2�,k,i and α2�,k−1,i are the cardinalities of generalized Dyck paths where the
first parameter 2� is the total number of steps while the second parameter k is the number
of Down steps. Further, these have odd height peaks in the set D�−i.

The same interpretationworkswhen n = 2� + 1. Consider generalizedDyck pathswith
2� + 1 steps containing kDown steps, which have one more Up step as compared to paths
counted by the set with cardinality α2�,k,i. It is simple to see that there is a bijection between
a generalized Dyck path P counted by α2�,k,i and the path P′ = P,U where we append an
Up step at the end of P. That is, if the last step of a path counted by α2�+1,k,i is an Up step,
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then by deleting it, we get a generalized Dyck path counted by α2�,k,i. However, if the last
step is a Down step, then after deletion of this, we get a generalized Dyck path counted
by the α2�,k−1,i. We only need to check that appending a Down step at the end does not
create a valley at an odd height. But this follows from the fact that a path with 2� steps
and k−1 Down steps ends at a point (2�, 2� − 2k + 2) and so ends at a point with even
y co-ordinate. Adding a Down step to such a path may create a peak but only at an even
height. Thus, the set of odd height peaks after addition of a Down step at the end does not
change. Thus we get the following counterpart of Lemma 5.8.

Lemma 5.11: With the notation described above, α2�+1,k,i is the cardinality of the set of gen-
eralized Dyck paths from (0, 0) to (2� + 1, 2� − 2k + 1) with 2� − k + 1 Up steps, k Down
steps and odd peaks contained in the set D�−i.

5.3. Probabilistic interpretation of Lemma 3.16

FromLemmas 5.8 and 5.11, we get the following probabilistic interpretation of Lemma3.16
whose straightforward proof we omit.

Lemma 5.12: Fix a positive integer n and i ≤ �n/2	. Then, the probability of generalized
Dyck path with n total steps and with odd height peaks contained in the set D�n/2	−i decreases
as the number k of Down steps increases.

Recall that Remark 5.1 gives a bijection between generalizedDyck pathswithn steps and
with k down steps and Standard Young Tableaux of shape n−k, k (denoted SYT(n − k, k)),
we can recast Lemma 5.12 in terms of SYTs.We translate the notion of peaks at odd heights
to tableaux. For T ∈ SYT(n − k, k) define position i to be a peak if i appears in the first
row and i+ 1 appears in the second row. This is precisely saying that i ∈ DES(T) where
DES(T) is the descent set of T, which is a well studied statistic (see the book by Stanley [16,
Chapter 7]). For a descent i, to get the height of its peak under this mapping, consider T|i,
the restriction of T to the entries {1, 2, . . . , i}. Note that T|i is also an SYT. Let T|i = ai, bi
where ai and bi are the number of elements in the first and second row of T|i respectively.
Define RowDiff(T|i) = ai − bi to be the difference between the number of elements in
the first row and the number of elements in the second row of T|i. Define an descent i ∈
T to have even (or odd) height if RowDiff(T|i) is even (or odd respectively). With these
definitions, recalling the set D�−i, we can give the SYT version of Lemma 5.12.

Lemma 5.13: Fix a positive integer n and let i ≤ �n/2	. Then, the probability that an SYT
of shape n−k, k has all its descents with odd height in D�n/2	−i decreases as the number k
increases (and hence the shape of T changes).

By running the arguments backward, it is clear that an alternate proof of Lemma5.13will
give us an alternate proof of Theorem 1.2. Thus, it would be interesting to get an alternate
proof of Lemma 5.13.
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Appendix

When 4 ≤ n ≤ 14, we tabulate the data αn,k,i/αn,k,0 below.

Table A1. The values of α4,k,i/α4,k,0.

λ = 4 λ = 3, 1 λ = 2, 2

i = 0 1 1 1
i = 1 1 0.667 0.500
i = 2 1 0.333 0.500

Table A2. The values of α5,k,i/α5,k,0.

λ = 5 λ = 4, 1 λ = 3, 2

i = 0 1 1 1
i = 1 1 0.750 0.600
i = 2 1 0.500 0.400

Table A3. The values of α6,k,i/α6,k,0.

λ = 6 λ = 5, 1 λ = 4, 2 λ = 3, 3

i = 0 1 1 1 1
i = 1 1 0.800 0.667 0.600
i = 2 1 0.600 0.444 0.400
i = 3 1 0.400 0.333 0.200

Table A4. The values of α7,k,i/α7,k,0.

λ = 7 λ = 6, 1 λ = 5, 2 λ = 4, 3

i = 0 1 1 1 1
i = 1 1 0.833 0.714 0.643
i = 2 1 0.667 0.500 0.429
i = 3 1 0.500 0.357 0.286

Table A5. The values of α8,k,i/α8,k,0.

λ = 8 λ = 7, 1 λ = 6, 2 λ = 5, 3 λ = 4, 4

i = 0 1 1 1 1 1
i = 1 1 0.857 0.750 0.679 0.643
i = 2 1 0.714 0.550 0.464 0.429
i = 3 1 0.571 0.400 0.321 0.286
i = 4 1 0.428 0.300 0.214 0.214

Table A6. The values of α9,k,i/α9,k,0.

λ = 9 λ = 8, 1 λ = 7, 2 λ = 6, 3 λ = 5, 4

i = 0 1 1 1 1 1
i = 1 1 0.875 0.778 0.708 0.667
i = 2 1 0.750 0.593 0.500 0.452
i = 3 1 0.625 0.444 0.354 0.309
i = 4 1 0.500 0.333 0.250 0.214



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 221

Table A7. The values of α10,k,i/α10,k,0.

λ = 10 λ = 9, 1 λ = 8, 2 λ = 7, 3 λ = 6, 4 λ = 5, 5

i = 0 1 1 1 1 1 1
i = 1 1 0.889 0.800 0.733 0.689 0.667
i = 2 1 0.778 0.629 0.533 0.478 0.452
i = 3 1 0.667 0.486 0.387 0.333 0.309
i = 4 1 0.556 0.371 0.280 0.233 0.214
i = 5 1 0.444 0.286 0.200 0.167 0.143

Table A8. The values of α11,k,i/α11,k,0.

λ = 11 λ = 10, 1 λ = 9, 2 λ = 8, 3 λ = 7, 4 λ = 6, 5

i = 0 1 1 1 1 1 1
i = 1 1 0.900 0.818 0.754 0.709 0.682
i = 2 1 0.800 0.659 0.564 0.503 0.470
i = 3 1 0.700 0.523 0.418 0.358 0.326
i = 4 1 0.600 0.409 0.309 0.254 0.227
i = 5 1 0.500 0.318 0.227 0.182 0.159

Table A9. The values of α12,k,i/α12,k,0.

λ = 12 λ = 11, 1 λ = 10, 2 λ = 9, 3 λ = 8, 4 λ = 7, 5 λ = 6, 6

i = 0 1 1 1 1 1 1 1
i = 1 1 0.909 0.833 0.773 0.727 0.697 0.682
i = 2 1 0.818 0.685 0.591 0.527 0.488 0.670
i = 3 1 0.727 0.556 0.488 0.382 0.343 0.326
i = 4 1 0.636 0.444 0.338 0.276 0.242 0.227
i = 5 1 0.545 0.352 0.253 0.200 0.172 0.159
i = 6 1 0.454 0.278 0.188 0.145 0.121 0.113

Table A10. The values of α13,k,i/α13,k,0.

λ = 13 λ = 12, 1 λ = 11, 2 λ = 10, 3 λ = 9, 4 λ = 8, 5 λ = 7, 6

i = 0 1 1 1 1 1 1 1
i = 1 1 0.917 0.846 0.788 0.744 0.711 0.692
i = 2 1 0.833 0.708 0.615 0.550 0.507 0.482
i = 3 1 0.750 0.585 0.476 0.406 0.362 0.338
i = 4 1 0.667 0.477 0.365 0.298 0.259 0.238
i = 5 1 0.583 0.385 0.279 0.219 0.185 0.168
i = 6 1 0.500 0.308 0.211 0.161 0.133 0.119

Table A11. The values of α14,k,i/α14,k,0.

λ = 14 λ = 13, 1 λ = 12, 2 λ = 11, 3 λ = 10, 4 λ = 9, 5 λ = 8, 6 λ = 7, 7

i = 0 1 1 1 1 1 1 1 1
i = 1 1 0.923 0.857 0.802 0.758 0.725 0.703 0.692
i = 2 1 0.846 0.727 0.637 0.571 0.525 0.496 0.482
i = 3 1 0.769 0.610 0.502 0.428 0.381 0.352 0.338
i = 4 1 0.692 0.506 0.392 0.320 0.276 0.250 0.238
i = 5 1 0.615 0.416 0.304 0.239 0.200 0.178 0.168
i = 6 1 0.538 0.338 0.234 0.177 0.145 0.127 0.119
i = 7 1 0.461 0.273 0.179 0.132 0.105 0.091 0.084


