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The Four point condition (4PC henceforth) is a well known 
condition characterising distances in trees T . Let w, x, y, z be 
four vertices in T and let dx,y denote the distance between 
vertices x, y in T . The 4PC condition says that among the 
three terms dw,x + dy,z , dw,y + dx,z and dw,z + dx,y the 
maximum value equals the second maximum value.
We define an 

(
n
2
)
×

(
n
2
)

sized matrix Max4PCT from a tree 
T where the rows and columns are indexed by size-2 subsets. 
The entry of Max4PCT corresponding to the row indexed by 
{w, x} and column {y, z} is the maximum value among the 
three terms dw,x + dy,z , dw,y + dx,z and dw,z + dx,y. In this 
work, we determine basic properties of this matrix like rank, 
give an algorithm that outputs a family of bases, and find 
the determinant of Max4PCT when restricted to our basis. 
We further determine the inertia and the Smith Normal Form 
(SNF) of Max4PCT .
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1. Introduction

Let T = (V, E) be a tree on n vertices. Associated to T are several matrices whose 
entries are functions of distance between the vertices. The most well studied of these is 
the n × n distance matrix DT of T whose rows and columns are indexed by vertices of 
T . The (i, j)-th entry of DT is di,j , the distance between vertex i and vertex j in T . 
About fifty years ago, Graham and Pollak in [13] showed that the determinant of DT is 
independent of the structure of the tree T and only depends on n, the number of vertices 
in T . This result has inspired several generalizations (see for example [3–9,12,14,15]). 
These papers illustrate the wealth of results concerning distances in trees. We refer the 
reader to the book [2] by Bapat for a good introduction to such matrices. An important 
condition characterising distances in trees was given by Buneman in [11] and is called 
the four-point condition (henceforth denoted as 4PC).

Fix a tree T and denote the distance between vertices x, y in T as dx,y. The 4PC 
states that for any four vertices w, x, y and z in T , among the three terms dw,x + dy,z, 
dw,y + dx,z and dw,z + dx,y, the maximum value equals the second maximum value. In 
order to understand the 4PC in more detail, Bapat and Sivasubramanian in [10] studied 
the 

(
n
2
)
×
(
n
2
)

matrix MT whose rows and columns are indexed by pairs of distinct vertices. 
The entry in the row indexed by {w, x} and column {y, z} of MT equals the minimum 
value among the three terms dw,x + dy,z, dw,y + dx,z and dw,z + dx,y. They showed the 
surprising result that the rank of MT is independent of the structure of T and only 
depends on n, the number of vertices in T . Among other results, they also gave the 
Smith Normal Form (henceforth SNF) of MT . It is somewhat surprising that DT , the 
distance matrix of T and MT , the min-4PC matrix of T have the same rank and the same 
invariant factors. We term the matrix MT as the minimum 4PC matrix and also denote 
it as Min4PCT . Analogously, in this work, we define Max4PCT , the 

(
n
2
)
×
(
n
2
)

maximum 
4PC matrix whose rows and columns are indexed by pairs of distinct vertices. The entry 
in the row indexed by {w, x} and column {y, z} of Max4PCT equals the maximum value
among the three terms dw,x + dy,z, dw,y + dx,z and dw,z + dx,y.

Related to this, Azimi and Sivasubramanian in [1] studied the 2-Steiner distance 
matrix D2(T ). This is also an 

(
n
2
)
×
(
n
2
)

matrix with the entry in the row indexed by {w, x}
and column indexed by {y, z} being the number of edges in a minimum subtree of T that 
contains the vertices w, x, y and z. For all positive integers k, one can define k-Steiner 
distance matrices Dk(T ) and in [1], the authors show that when k = 1, D1(T ) = DT

is the usual distance matrix. Interestingly, in [1, Lemma 4] they showed that D2(T ) =
1
2

(
Max4PCT +Min4PCT

)
. Thus, for any tree T , each entry of Max4PCT and Min4PCT

have the same parity and their average is the corresponding entry of D2(T ).
Thus, three 

(
n
2
)
×
(
n
2
)

matrices are associated to a tree T : the maximum 4PC matrix 
(denoted Max4PCT ), the minimum 4PC matrix (denoted Min4PCT ) and the average 
4PC matrix (denoted as D2(T )). Among these three matrices, results are known for two 
matrices. See Bapat and Sivasubramanian [10] for results on Min4PCT and see Azimi 
and Sivasubramanian [1] for results on D2(T ). To the best of our knowledge, there are 
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no results on the third matrix, Max4PCT . In this paper, we start filling this gap and 
study Max4PCT for a tree T . Our first result about Max4PCT is the following.

Theorem 1. Let T be a tree on n ≥ 3 vertices having p pendant vertices. Then,

rank(Max4PCT ) = 2(n− p).

For a matrix M , let P, Q be subsets of the row and column indices respectively. By 
M(P, Q) we denote the submatrix of M obtained by deleting the rows in P and columns 
in Q. By M [P, Q] we denote the submatrix of P obtained by restricting M to the rows 
in P and the columns in Q.

We determine a class of bases B of the row space of Max4PCT and for each B ∈ B, 
we determine the determinant of the submatrix Max4PCT [B, B] of Max4PCT induced 
on the rows and columns in B. Our basis B is constructed using a depth-first search type 
traversal of T . Our algorithm depends on a starting leaf vertex, and there are further 
choices as well in the execution of our algorithm. Thus, our output basis B will depend on 
these choices and is hence not unique. Nonetheless, the determinant of Max4PCT when 
restricted to the rows and columns of all such constructed bases has a clean formula 
which is our next result.

Theorem 2. Let B be a basis for the row space of Max4PCT that is output by the algorithm 
described in Lemma 9. Then,

detMax4PCT [B,B] = (−1)n−p22(n−p−1).

As mentioned earlier, the invariant factors and hence the SNF of Min4PCT were found 
by Bapat and Sivasubramanian in [10, Theorem 2]. As a counterpart, in Theorem 5, we 
determine the SNF of Max4PCT . In [1, Theorem 18], the authors showed that D2(T )
has exactly one positive eigenvalue, 2n − p − 2 negative eigenvalues and the rest of its 
eigenvalues are 0. If we denote the inertia of a real, symmetric matrix M by the triple 
(n0, n+, n−), where n0 is the nullity of M , n+ is the number of positive eigenvalues and 

n− is the number of negative eigenvalues, then D2(T ) has inertia 
((

n
2
)
−2n +p +1, 1, 2n −

p −2
)
. In Theorem 13, we determine the inertia of Max4PCT and show that it has n −p

positive eigenvalues and n −p negative eigenvalues. Thus Theorem 13 refines Theorem 1
by giving the number of positive and negative eigenvalues.

2. Rank of Max4PCT

Towards proving Theorem 1, we start with the following lemmas. For four vertices 
u, v, w, x ∈ V (T ), denote by Max4PCT ({u, v}, {w, x}) the entry of Max4PCT indexed 
by the row {u, v} and column {w, x}. Further, we denote the path between vertices u, v
in T as the u-v path.
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Lemma 3. Let T be a tree on n vertices. Suppose n is a pendant vertex of T with a unique 
neighbour n − 1. Let u be a vertex of T other than n and n − 1. Then, for all unordered 
pairs of distinct vertices {i, j}, we have

Max4PCT ({u, n}, {i, j}) = Max4PCT ({u, n− 1}, {i, j}) + 1.

Proof. Recall that u �= n − 1, n. Therefore, when v �= n, the v-n path in T must contain 
the vertex n − 1. Thus, we have

dv,n = dv,n−1 + 1 and hence du,n = du,n−1 + 1. (1)

Let 1 ≤ i < j ≤ n. Then by the definition of Max4PCT , we have

Max4PCT ({u, n}, {i, j}) = max{du,n−1 + di,j + 1, du,i + dn,j , du,j + dn,i}. (2)

We split the proof into two cases with the first case being when both i �= n and j �= n. 
In this case, by (1) it follows that

Max4PCT ({u, n}, {i, j}) = max{du,n−1 + di,j + 1, du,i + dn−1,j + 1, du,j + dn−1,i + 1}
= Max4PCT ({u, n− 1}, {i, j}) + 1.

The second case is when exactly one of i, j equals n. Let j = n and hence i ≤ n − 1. By 
the triangle inequality, we have

du,n−1 + di,n−1 ≥ du,i and du,n + di,n > 1 + du,i. (3)

Therefore, by (3), we have

Max4PCT ({u, n}, {i, n}) = max{du,n + di,n, du,i} = du,n + di,n.

Further, note that

Max4PCT ({u, n− 1}, {i, n})
= max{du,n−1 + di,n, du,i + 1, du,n + di,n−1}
= max{du,n + di,n − 1, du,i + 1, du,n + di,n − 1} [by (1)]

= du,n + di,n − 1 [by (1) and (3)]

= Max4PCT ({u, n}, {i, n}) − 1.

This completes the proof. �
Lemma 4. Let T be a tree on n vertices. Suppose p, q ∈ V (T ) such that p is a pendant 
vertex of T with q being the quasi-pendant vertex adjacent to p. Let u ∈ V (T ) be a 
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Fig. 1. Illustrating Lemma 4.

neighbour of q other than p and Bu be the connected component of T − q that contains 
the vertex u (Fig. 1). Then,

Max4PCT ({p, q}, {i, j}) =
{

Max4PCT ({u, q}, {i, j}) + 2 if i, j ∈ Bu,

Max4PCT ({u, q}, {i, j}) otherwise.

Proof. Clearly, for each i ∈ T and j ∈ Bu, it follows by triangle inequality that

di,j < du,i + dq,j . (4)

Let us first assume i, j ∈ Bu. Clearly dp,v = du,v + 2 for each v ∈ Bu. Therefore, it 
follows that

Max4PCT ({p, q}, {i, j}) = max{dp,q + di,j , dp,i + dq,j , dp,j + dq,i}

= max{1 + di,j , du,i + dq,j + 2, du,j + dq,i + 2}

= max{1 + di,j , du,i + dq,j , du,j + dq,i} + 2 [by (4)]

= max{du,q + di,j , du,i + dq,j , du,j + dq,i} + 2

= Max4PCT ({u, q}, {i, j}) + 2.

In the third last line above, we have used the easy to prove inequality that 1 + di,j is 
smaller than both du,i + dq,j and du,j + dq,i. We now assume that i /∈ Bu and j ∈ T . 
Note that if i = p and j ∈ T − p then dp,j + du,q = dq,j + dp,u. It follows that

Max4PCT ({p, q}, {p, j})

= max{dp,q + dp,j , dp,p + dq,j , dp,j + dp,q}

= max{du,q + dp,j , dp,j + dq,u} [as dq,j < dp,j ; dp,q = du,q]

= max{du,q + dp,j , dp,u + dq,j , dp,j + dq,u} [as dp,u + dq,j = du,q + dp,j ]

= Max4PCT ({u, q}, {p, j}).

We split the remaining part of the proof into two cases with the first case being when 
i /∈ Bu ∪ {p} and j ∈ Bu. Clearly, in this case, di,j = di,q + dq,u + du,j , and so we get
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du,i + dq,j = di,j + 1 > du,j + dq,i = di,j − 1. (5)

Therefore, we have

Max4PCT ({p, q}, {i, j}) = max{1 + di,j , du,i + dq,j , du,j + 2 + dq,i} [as dp,i = du,i]

= max{du,q + di,j , du,i + dq,j , du,j + dq,i} [ by (5)]

= Max4PCT ({u, q}, {i, j}).

Our second case, is when i /∈ Bu ∪ {p} and j /∈ Bu.
Note that if j �= p then dp,i = du,i, dp,j = du,j and so it follows that

Max4PCT ({p, q}, {i, j}) = max{du,q + di,j , du,i + dq,j , du,j + dq,i}

= Max4PCT ({u, q}, {i, j})

Finally, let us assume j = p and so i /∈ Bu ∪ {p}. Clearly, dp,i = du,i. Therefore, we 
get

Max4PCT ({p, q}, {i, p}) = max{dp,q + di,p, dp,i + dq,p, dp,p + dq,i}

= max{du,q + di,p, dp,i + dq,p} [as dq,i < dp,i]

= max{du,q + di,p, dq,i + du,p, du,i + dq,p}

= Max4PCT ({u, q}, {i, p}).

This completes the proof. �
With the two lemmas above, we are now ready to prove our main result of this section.

Proof. (Of Theorem 1) We use induction on n, the number of vertices in the tree T . 
When n = 3, the only tree is P3, the path on three vertices. It can be easily verified that 

Max4PCP3 =

⎡⎢⎣ 2 3 2
3 4 3
2 3 2

⎤⎥⎦ and rank(Max4PCP3) = 2. Therefore, the result is true for 

all trees on three vertices.
Assume that the result is true for all trees on n − 1 vertices. Let T be a tree on n

vertices. Without loss of any generality, let n be a pendant vertex that is adjacent to 
n − 1. Let T̂ be the tree obtained by deleting the vertex n from T . We divide the proof 
into two cases based on the degree of vertex n − 1 in T .

Case I: There exists a quasi-pendant vertex with degree two. We relabel the vertices 
of T if necessary. We assume that n is a leaf of T adjacent to n − 1 and that n − 1 has 
degree 2. Let n, n − 2 be the two neighbours of n − 1. Let T̂ be the tree obtained from 
T by deleting the vertex n from T .
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Let Vn be the collection of all 2-size unordered subsets of [n] := {1, 2, . . . , n} with 

distinct elements and let Un−1 =
{
{i, n} : i ∈ [n − 1]

}
. We order the elements of Vn as 

Vn =
(
Vn−1, Un−1

)
and use this order of pairs to index rows and columns of Max4PCT . 

We thus write Max4PCT in partitioned form as

Max4PCT =
[ Max4PCT̂ Max4PC12

Max4PCt
12 Max4PC22

]
,

where Max4PC12 = Max4PCT [Vn−1, Un−1] and Max4PC22 = Max4PCT [Un−1, Un−1].
For a pair {u, v} of distinct vertices in V , denote the row (column) of Max4PCT

indexed by {u, v} as Rowu,v (as Colu,v respectively). We perform the following row and 
column operations. For 1 ≤ i < n − 1, perform Rowi,n = Rowi,n − Rowi,n−1 and also 
perform Coli,n = Coli,n−Coli,n−1. If performing row and column operations on M gives 
us the matrix N , we denote this by M ∼ N . By Lemma 3, we get

Max4PCT ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Max4PCT̂

0 · · · 0 1
...

. . .
...

...
0 · · · 0 1

u

0 · · · 0
...

. . .
...

0 · · · 0
1 · · · 1

0

0
...
0
1

ut 0 · · · 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Denote the row indexed by {u, v} in Max4PCT̂ as RowT̂ (u, v). In T̂ , let vertex n − 2
be adjacent to vertices n − 1 and n − 3. Note that we only need the degree of n − 2 in 
T̂ to be at least two, not exactly two. Since vertex n − 1 is a pendant vertex in T̂ , by 
Lemma 3, for all v ∈ T̂ − {n − 1, n − 2}, we get RowT̂ (n − 1, v) = RowT̂ (n − 2, v) + 1t.

Further, note that Max4PCT ({n − 1, n}, {n − 1, n − 3}) = 3 and Max4PCT ({n −
1, n}, {n −2, n −3}) = 4. Hence, by performing the row operation Rown−2,n = Rown−2,n−
Rown−1,n−3 + Rown−2,n−3 and Coln−2,n = Coln−2,n −Coln−1,n−3 + Coln−2,n−3, we get

Max4PCT ∼

⎡⎢⎢⎢⎣
Max4PCT̂ 0 0

0 0 0
0 0 2
0 0 2 2

⎤⎥⎥⎥⎦ .

This completes the proof of case I.
Case II: All quasi-pendant vertices in T have degree at least three: Let (v1, . . . , vk)

be a path whose length is equal to the diameter of T . Clearly v1 is a pendant vertex 
and v2 is a quasi-pendant vertex in T . As all quasi pendant vertices have degree at least 
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three, v2 has another pendant vertex p other than v1 adjacent to it. By relabelling, we 
assume that v1 = n and p = n − 1 are two pendant vertices in T adjacent to v2 = n − 2. 
Further, as n − 2 has degree at least three, let n − 3 be adjacent to n − 2. By Lemma 3,

Rowi,n = Rowi,n−1 = Rowi,n−2 + 1t, for each i �= n− 2.

Let Bn−3 be the connected component of T −{n − 2} that contains the vertex n − 3. 
By Lemma 4, we get

Max4PCT ({n− 2, n}, {i, j})

=
{

Max4PCT ({n− 3, n− 2}, {i, j}) + 2 if i, j ∈ Bn−3

Max4PCT ({n− 3, n− 2}, {i, j}) otherwise

= Max4PCT ({n− 2, n− 1}, {i, j}), for each 1 ≤ i < j ≤ n.

Hence, by performing the row operation Rowi,n = Rowi,n−Rowi,n−2−Rown−3,n−1 +
Rown−3,n−2 and Coli,n = Coli,n − Coli,n−2 − Coln−3,n−1 + Coln−3,n−2, when i �= n − 2
and Rown−2,n = Rown−2,n−Rown−2,n−1 and Coln−2,n = Coln−2,n−Coln−2,n−1 we get

Max4PCT ∼

⎡⎣Max4PCT̂ 0

0 0

⎤⎦ .

This completes the proof of case II. Our proof is complete. �
3. Smith normal form of Max4PCT

In this section, we determine the invariant factors of Max4PCT . Our main result is 
the following.

Theorem 5. Let T be a tree on n ≥ 3 vertices with p leaves. Then, the invariant factors 
of Max4PCT are

(n2)−2(n−p)︷ ︸︸ ︷
0, · · · , 0 , 1, 1,

2(n−p−1)︷ ︸︸ ︷
2, · · · , 2 .

Proof. We prove the result by induction on the number of vertices in the tree T . Our 
base case is when n = 3. In this case, the only tree is the path P3 on three vertices. 
Clearly,

Max4PCP3 =
[2 3 2

3 4 3
]

=
[1 0 0

0 1 0
][1 0 0

0 1 0
][2 3 2

3 4 3
]
.

2 3 2 1 0 1 0 0 0 0 0 1
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Therefore, the result follows when n = 3.
We assume that the result is true for all trees on n − 1 vertices. Let T be a tree on 

n vertices where n > 3. Without loss of generality, let us assume that n is a pendant 
vertex adjacent to n − 1. Let T̂ = T −{n} be the tree obtained by deleting the vertex n
from T . As done earlier, we divide the proof into two cases based on the degree of vertex 
n − 1 in T .

Case I: If the degree of n − 1 in T is two, then, as done in Case I of the proof of 
Theorem 1 we see that

Max4PCT ∼

⎡⎢⎢⎢⎣
Max4PCT̂ 0 0

0 0 0
0 0 2
0 0 2 2

⎤⎥⎥⎥⎦ ∼

⎡⎢⎢⎢⎣
Max4PCT̂ 0 0

0 0 0
0 0 −2 0
0 0 2

⎤⎥⎥⎥⎦ .

The second similarity above is obvious and so our proof is over in this case.
Case II: If the degree of n − 1 in T is at least three, then as done in Case II of the 

proof of Theorem 1 we see that

Max4PCT ∼

⎡⎣Max4PCT̂ 0

0 0

⎤⎦ .

Hence, in both cases, the result follows by applying the induction hypothesis. �
4. Basis for the row space of Max4PCT

In this section we define a set B of bases of the row space of Max4PCT . We start 
with the following Corollary about the rank of Max4PCT when we remove a type of leaf 
from T .

Corollary 6. Let T be a tree on n vertices with n > 3. Suppose there exist two leaves u
and v adjacent to the same vertex. Then we have

rank(Max4PCT ) = rank(Max4PCT−u) = rank(Max4PCT−v).

Proof. Follows from Theorem 1. �
Let T be a tree on n vertices with p leaves. By Theorem 1, the rank of Max4PCT

is 2(n − p). To give a basis for the rowspace of Max4PCT , we need an index set with 
cardinality 2(n − p). We know that the number of blocks in LG(T ), the line graph of T
is n − p. Thus, in order to construct a basis for RowSpace(Max4PCT ) we shall take two 
elements from each block of LG(T ) in the following algorithmic way. Our algorithm is 
very similar to a depth first search (DFS) algorithm. It turns out, that our algorithm is 
easy for non-star graphs and so we first handle the case when T is a star tree.
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Lemma 7. Let T be a star tree on n vertices. Then, the rank of Max4PCT is two. Suppose 
1 is the central vertex of T , then, the rows indexed by {1, i} and {j, k} are linearly 
independent, where 1 < i ≤ j < k ≤ n. Further, let B be the collection {{1, i}, {j, k}}
where 1 < i ≤ j < k ≤ n. Let B ∈ B be a basis. Then, the determinant of the sub-matrix 
Max4PCT [B, B] of Max4PCT induced on the rows and columns in B is given by

detMax4PCT [B,B] = −1.

Proof. Let T be a star tree on n vertices and let 1 be its central vertex (having degree 
n − 1). Thus 2, . . . , n are leaves of T . Let Vn be the collection of all 2-size subsets of [n], 
V1 = {{1, i} | 2 ≤ i ≤ n}, V2 = {{j, k} | 2 ≤ j < k ≤ n}. Clearly Vn can be partitioned 
as V1 ∪ V2. Thus, we write Max4PCT in partitioned form as

Max4PCT =
[
2J1 3J2
3J t

2 4J3

]
,

where each Ji is an all ones matrix with appropriate size, i = 1, 2, 3. This completes the 
proof. �

Note that if T is a tree on three vertices then T is a star tree. Henceforth, we assume 
that T is a tree on at least four vertices, and that T is not a star tree.

Remark 8. Let T be a tree on n ≥ 3 vertices and LG(T ) be its line graph. Then, it is 
easy to see that the number of vertices in each block of LG(T ) is at least two.

Lemma 9 (Algorithm to construct a basis for row space of Max4PCT ). Let T be a tree 
on n > 3 vertices and LG(T ) be its line graph. Initialise G = LG(T ) and B = ∅.

Suppose T is not a star tree. Consider a vertex {p, q} in G where p is a leaf in T and 
q is adjacent to p. Set the vertex {p, q} of LG(T ) as a starting vertex and set the next 
starting vertex set as the empty set.

Step 1. Note that the starting vertex cannot be a cut vertex of G. Therefore, there exists 
a unique block Bc in G that contains the starting vertex. We call the block Bc as the
current block.

Step 2. If the current block Bc contains a cut vertex of G.
a. We choose a cut vertex {u, v} in Bc and call it the chosen vertex. Further, add all 

other cut vertices of G that are in Bc (that is, other than the cut vertex {u, v}) 
into the next starting vertex set.

b. Let Ĝ be the graph obtained from G by removing all edges of Bc and then deleting 
all the non-cut vertices of Bc from G. (Define G = G − {edges in Bc} and then 
define Ĝ = G −(Bc−{non cut vertices in Bc}). Thus, Ĝ has one block lesser than 
G.) Note that all the cut vertices of G which are in Bc become non-cut vertices 
in Ĝ. Set G = Ĝ.



A. Azimi et al. / Linear Algebra and its Applications 691 (2024) 133–150 143
c. To our set B, we add two elements; the starting vertex and the symmetric differ-
ence between the starting vertex and the chosen vertex {u, v}.

d. Redefine the starting vertex as the chosen vertex {u, v} and go to Step 1.
Step 3. If the current block Bc does not contain any cut vertex of G.

a. Choose a vertex {u, v} in Bc other than the starting vertex and call it the chosen 
vertex.

b. Add the two elements starting vertex and the chosen vertex {u, v} to B.
c. Define Ĝ = G −Bc. Set G = Ĝ.
d. If next starting vertex set is the empty set, output B and terminate the algorithm. 

Otherwise, choose an element, say {w, x} from the next starting vertex set, and 
delete it from next starting vertex set. Now redefine the starting vertex as {w, x}
and go to Step 1.

In the following example we illustrate the algorithm described in Lemma 9.

Example 10. Consider the tree T shown below. Its line graph LG(T ) is shown on the 
right.

Suppose we start the algorithm by choosing the leaf 1 in T . Therefore, {1, 2} is our 
starting vertex. We use black coloured, grey coloured, and red coloured nodes to represent 
the starting vertex, the chosen vertex, and the next starting vertex respectively.

Recall that initially G = LG(T ). The block containing {1, 2} is the current block Bc

and is marked using dotted lines. Clearly, Bc contains only one other cut vertex of G
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(vertex {2, 4}) and so the chosen vertex is {2, 4}. As there is only one cut vertex of G
in Bc, by Step 2a, the next starting vertex set is the empty set (see the graph drawn on 
the left in the above diagram). By Step 2b, construct Ĝ from G by deleting all edges 
of Bc along with vertices {1, 2} and {2, 3}. (See the graph drawn on the right in the 
above diagram.) By Step 2c, add {1, 2} and {1, 4} (the symmetric difference of {1, 2}
and {2, 4}) to B. By Step 2d, we make {2, 4} as the current starting vertex and proceed 
to Step 1.

As the starting vertex is {2, 4}, the block that contains it is Bc. Note that Bc contains 
two cut vertices of G: viz {4, 5} and {4, 8}. By Step 2a, we choose {4, 8} as our chosen 
vertex and so the next starting set is {{4, 5}}. (See the left graph in the above diagram.) 
Construct Ĝ from G by performing Step 2b. Ĝ is shown in the graph on the right, in 
the above diagram. By Step 2c, after adding {2, 4} and {2, 8} (the symmetric difference 
of {2, 4} and {4, 8}) to B, the set B becomes B = {{1, 2}, {1, 4}, {2, 4}, {2, 8}}. By Step 
2d, we make {4, 8} as the current starting vertex and proceed to Step 1 again.

As the starting vertex is {4, 8}, the current block Bc is the one containing it and is 
drawn with dotted lines. Note that Bc does not contain any cut vertex of G. By Step 
3a, we choose {8, 9} as our chosen vertex. (See the left graph in the below diagram.) By 
applying Step 3b, the set B now becomes B = {{1, 2}, {1, 4}, {2, 4}, {2, 8}, {4, 8}, {8, 9}}. 
Note that no symmetric difference is performed to the newly added elements of B at 
this stage. Construct Ĝ from G by following Step 3c, which is shown in the right graph 
of the below diagram. Note that {4, 5} is the only element on next starting vertex set. 
Thus, {4, 5} is our starting vertex and we proceed to Step 1.



A. Azimi et al. / Linear Algebra and its Applications 691 (2024) 133–150 145
Fig. 2. Red coloured elements of LG(T ) indicate elements contributed to B in Example 10. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

Since {4, 5} is our starting vertex, by Step 1, the current block Bc is {{4, 5}, {5, 6},
{5, 10}}. Note that Bc contains only one cut vertex of G which is our chosen vertex and 
is marked with grey coloured node in the below figure. By Step 2b, we construct the 
graph Ĝ, see the right side graph in the below figure. After applying Step 2c, the set B
becomes

B = {{1, 2}, {1, 4}, {2, 4}, {2, 8}, {4, 8}, {8, 9}, {4, 5}, {4, 6}}.

Now proceed to Step 1 again with {5, 6} as our starting vertex.

Since {5, 6} is starting vertex, by Step 1, the current block Bc is {{5, 6}, {6, 7}}. Note 
that Bc does not contain any cut vertex of G. After applying Steps 3a-b, the set B
becomes

B = {{1, 2}, {1, 4}, {2, 4}, {2, 8}, {4, 8}, {8, 9}, {4, 5}, {4, 6}, {5, 6}, {6, 7}}.

Note that by applying Step 3c, we will get an empty graph as Ĝ. Since there is no element 
in next starting vertex set, by Step 3d, we terminate the process. Note that the final set 
B contains 10 elements and each block of LG(T ) contributes exactly two elements to 
B. We mark those elements of LG(T ) using red colour in Fig. 2. Note that red coloured 
edges of LG(T ) mean we take the symmetric difference of the end points of this edge to 
get a 2-sized subset of V (T ).

Define B to be the union of all the sets B obtained by the algorithm described in 
Lemma 9 where the union is taken over all possible choices of starting vertices. In our next 
result, we discuss some properties of the output B obtained by applying the algorithm.
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Theorem 11. Let T be a tree on n ≥ 3 vertices with p leaves. Let B ∈ B be an output of 
our algorithm described in Lemma 9. Then, the following is true.

a. If T is not a star tree, then there exist unique vertices u, v, w ∈ T such that 
{u, v}, {u, w} ∈ B with d(u) = 1, d(w) > 1 (recall d(u) is the degree of vertex 
u) and with both {u, v}, {v, w} ∈ E(T ).

b. The number of elements in B is 2(n − p).
c. The set B is a basis for the row space of Max4PCT .
d. We have detMax4PCT [B, B] = (−1)n−p 22(n−p−1).

Proof. Proof of Item a. In the algorithm, the initial starting vertex {u, v} is clearly 
taken with u being a leaf adjacent to v. Since T is not a star, the number of blocks in 
LG(T ) is at least two. Thus, the block of LG(T ) that contains the vertex {u, v} must 
contain a cut vertex of G. By Step 2 of Lemma 9, it follows that there exists a cut vertex 
{v, w} ∈ LG(T ) that give rise to {u, v}, {u, w} ∈ B.

We now show the uniqueness of u. Suppose, to the contrary, there are u1, v1, w1 ∈ T

such that {u1, v1}, {u1, w1} ∈ B with u �= u1, {u1, v1} and {v1, w1} ∈ E(T ), with 
d(u1) = 1, and d(w1) > 1. Clearly, both {u1, v1}, {u1, w1} were added to B in Step 2c. 
Since {u1, w1} is not an edge in T , it follows that in some step {u1, v1} was a starting 
vertex. As u �= u1, it follows that degree of the vertex u1 in T is at least two. This 
contradicts that u1 is a leaf.

Proof of Item b. If T is a star tree, then, there is nothing to prove. Suppose T is not a 
star tree. By Lemma 9, note that in each step, exactly one block of the line graph of T
is removed and exactly two elements corresponding to that block are added in B. Since 
the number of block in LG(T ) is (n − p), B has 2(n − p) elements.

Proof of Item c. We use induction on n. Our base case when T has three vertices can 
easily be verified. Suppose the result is true for all tree on n − 1 vertices. Let T be a tree 
on n vertices. If T is a star tree then the result follows by Lemma 7.

Suppose T is not a star tree. Let B be a set output by our algorithm described in 
Lemma 9. By part (a), there exist unique vertices u, v, w in B such that {u, v}, {u, w} ∈ T

with d(u) = 1 and {u, v}, {v, w} ∈ E(T ). Without of loss of generality let us assume 
u = 1, v = 2, and w = 3. Note that, by Lemma 3, we get

Max4PCT [B, {1, 3}] = Max4PCT [B, {2, 3}] + 1. (6)

Now note that for each leaf l �= 1 in T , if {l, v} ∈ B for some v then {v, l} ∈ E(T ) and 
{v, w} ∈ B, where w is a neighbour of v other than l. Without loss of any generality, let us 
assume x is a leaf lying on a path whose length is the diameter of T with {x, y} ∈ E(T ). 
Note that if there is more than one leaf attached at y, then by the induction hypothesis 
and Corollary 6, it follows that B is a basis for the row space of Max4PCT .

Let us assume d(y) = 2 and {y, z} ∈ E(T ). It follows that {x, y}, {y, z} ∈ B. Suppose 
w be the neighbour of z other than y such that {z, w} ∈ B. Let B̂ be the set obtained by 
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applying Lemma 9 on T −x in the same sequence as it was applied for T while obtaining 
the set B. By induction hypothesis, B̂ is a basis for the row space of Max4PCT−x. Now 
we divide the remaining part of the proof into two cases.

We first assume that {y, z} ∈ B̂. It follows that {y, w} ∈ B. Then, B̂ = B \
{{x, y}, {y, w}}. Note that the matrix Max4PCT [B, B] can be partitioned as

Max4PCT [B,B] =

⎡⎢⎣
{x, y} {y, w}

Max4PCT−x[B̂, B̂] u v

{x, y} ut 2 3
{y, w} vt 3 4

⎤⎥⎦,
where u = Max4PCT [B̂, {x, y}] and v = Max4PCT−x[B̂, {y, w}].

By Lemma 3, we have

Max4PCT−x[B̂, {y, w}] = Max4PCT−x[B̂, {z, w}] + 1.

Further, note that Max4PCT ({z, w}, {x, y}) = 4 and Max4PCT ({z, w}, {y, w}) = 3. 
Hence, by performing the row operation Rowy,w = Rowy,w−Rowz,w−(Row1,3−Row2,3)
in Max4PCT [B, B] and an identical column operation, we obtain

⎡⎢⎣
{x, y} {y, w}

Max4PCT−x[B̂, B̂] u 0
{x, y} ut 2 −2
{y, w} 0t −2 0

⎤⎥⎦.
It follows that detMax4PCT [B, B] = (−4) ×detMax4PCT−x[B̂, B̂]. Hence, by induc-

tion hypothesis, it follows that B is a basis for the row space of Max4PCT .
Now we consider the case when {y, z} /∈ B̂. It follows that B̂ = B \ {{y, z}, {x, y}}. 

We can clearly partition the matrix Max4PCT [B, B] as follows.

Max4PCT [B,B] =

⎡⎢⎣
{y, z} {x, y}

Max4PCT−x[B̂, B̂] w u

{y, z} wt 2 2
{x, y} ut 2 2

⎤⎥⎦,
where u = Max4PCT−x[B̂, {x, y}] and w = Max4PCT [B̂, {y, z}].

By Lemma 4, it follows that u = w + 21. Hence, by performing the row operation 
Rowx,y = Rowx,y − Rowy,z − (Row1,3 − Row2,3) in Max4PCT [B, B] and an identical 
column operation, we get
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⎡⎢⎣
{y, z} {x, y}

Max4PCT−x[B̂, B̂] u 0
{y, z} ut 2 −2
{x, y} 0t −2 0

⎤⎥⎦
It follows that detMax4PCT [B, B] = (−4) × det Max4PCT−x[B̂, B̂]. Hence, by the in-
duction hypothesis, it follows that B is a basis for the row space of Max4PCT , completing 
the proof.

Proof of Item d. The result follows from the proof of Item c and noting that when 
n = 3, the determinant value is (−1). �
5. Inertia of Max4PCT

In this section, we determine the inertia of Max4PCT . For an n × n real symmetric 
matrix A, we denote its number of positive, negative and zero eigenvalues by n+, n−
and n0, respectively. We denote the inertia of A by Inertia(A) and define it as the triple 
(n0, n+, n−). Since A is a real symmetric matrix, n0 + n+ + n− = n. We recall the well 
known Sylvester’s law of inertia.

Theorem 12 (Sylvester’s Law of Inertia). Let A be a real symmetric matrix of order n
and let Q be a nonsingular matrix of order n. Then Inertia(A) = Inertia(QAQt).

The main result of this Section is the following where we determine the inertia of 
Max4PCT .

Theorem 13. Let T be a tree on n vertices with p leaves. Then, the inertia of Max4PCT

is

Inertia(Max4PCT ) = (n0, n+, n−) =
((

n

2

)
− 2(n− p), n− p, n− p

)
.

Proof. By induction on n, we first prove that if B is a basis for the row space of Max4PCT

obtained by applying Lemma 9 then Inertia(Max4PCT [B, B]) = (0, n − p, n − p).
If T is tree on n < 4 vertices then the result can be verified easily. Now notice that if 

two leaves u and v of T have a common neighbour, then by Corollary 6, we have

rank(Max4PCT ) = rank(Max4PCT−u) = rank(Max4PCT−v).

Hence, the result follows by applying induction hypothesis on the tree T − u. We thus 
assume that T is a tree such that every quasi-pendant vertex of T is adjacent to exactly 
one leaf. Let B be a basis of the row space of Max4PCT obtained by applying Lemma 9.

Without loss of generality, assume that n is a leaf adjacent to n − 1 with {n, n − 1} ∈
B but {n, n − 2} /∈ B where n − 2 is a neighbour of n − 1. We first compute 
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Inertia(Max4PCT [B, B]). The proof of Item c of Theorem 11 gives detMax4PCT [B, B] =
−4 detMax4PCT−n[B̂, B̂], where B̂ is the basis for the row space of Max4PCT−n ob-
tained by applying Lemma 9 on T − n in the same sequence as applied to get B.

Clearly, by Theorem 1, rank(Max4PCT ) = rank(Max4PCT−n) + 2 and so the num-
ber of nonzero eigenvalues of Max4PCT [B, B] is two more than of Max4PCT−n[B̂, B̂]. 
Since the product of det Max4PCT [B, B] and detMax4PCT−n[B̂, B̂] is negative, 
the number of positive eigenvalues of Max4PCT [B, B] is exactly one more than 
that of Max4PCT−n[B̂, B̂]. This argument also gives the result on the number 
of negative eigenvalues of Max4PCT [B, B]. Hence, by the induction hypothesis, 
Inertia(Max4PCT [B, B]) = (0, n − p, n − p).

Since Max4PCT is a real symmetric matrix, there exists an orthogonal matrix Q

such that QMax4PCTQ
t =

[
Max4PCT [B,B] 0

0 0

]
. Hence, the result holds by applying 

Theorem 12. �
In our final result, we explicitly describe the eigenvalues of Max4PCT when T is a 

star tree.

Theorem 14. Let Sn be the star tree on n vertices. Then, we have

det(xI − Max4PCSn
) = x(n2)−2

(
x2 − 2(n− 1)2x− (n− 1)

(
n− 1

2

))
,

and the nonzero eigenvalues of Max4PCSn
are

(n− 1)2 ±
√

(n− 1)4 + (n− 1)
(
n− 1

2

)
.

Proof. Clearly, rank(Max4PCSn
) = 2. Let λ and μ be the two nonzero eigenvalues of 

Max4PCSn
. Now note that

Max4PCSn
=

[
2J(n−1)×(n−1) 3J(n−1)×(n−1

2 )
3J(n−1

2 )×(n−1) 4J(n−1
2 )×(n−1

2 )

]
.

Therefore, λ +μ = 2(n − 1) +4
(
n−1

2
)

= 2(n − 1)2. Further, note that the sum of all 2 × 2
principal minors of Max4PCSn

is −(n − 1)
(
n−1

2
)
. It follows that

λμ = −(n− 1)
(
n− 1

2

)
.

Solving the quadratic gives us the two individual roots. Further, the characteristic poly-
nomial of Max4PCSn

is given by

x(n2)−2
(
x2 − 2(n− 1)2x− (n− 1)

(
n− 1

))
.
2
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This completes the proof. �
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