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The alternating descent statistic on permutations was introduced by Chebikin as a variant 
of the descent statistic. In this paper, we get a formula for the signed enumeration of 
alternating descents and in our proof we need a signed convolution type identity involving 
the Eulerian polynomials. When n is even, we give a more general multivariate version 
and we also get a formula for the signed enumeration of the alternating major index. We 
generalize our results to the case when alternating descents are summed up with sign over 
the elements in classical Weyl groups.
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1. Introduction

For a positive integer n, let [n] = {1, 2, . . . , n} and let Sn be the group of all permutations of [n]. For π ∈ Sn with 
π = π1, π2, . . . , πn , define DES(π) = {i ∈ [n −1] : πi > πi+1} to be its set of descents and let des(π) = |DES(π)|. The classical 
Eulerian polynomial An(t) is the descent enumerating polynomial of Sn . That is,

An(t) =
∑

π∈Sn

tdes(π). (1)

This is a very well-studied polynomial. We refer the reader to the early book by Foata and Schützenberger [9] and the 
more recent book by Petersen [16] for various properties of Eulerian polynomials. Loday in [13] defined the polynomial 
SgnDesn(t) = ∑

π∈Sn
(−1)inv(π)tdes(π) and conjectured a recurrence relation satisfied by SgnDesn(t). This conjecture was 

later proved by Désarménien and Foata in [8]. Their result is the following:

Theorem 1 (Désarménien and Foata). For positive integers n, we have

SgnDesn(t) =
{

(1 − t)k Ak(t) if n = 2k,

(1 − t)k Ak+1(t) if n = 2k + 1.
(2)
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Later Wachs in [21] gave a combinatorial proof of Theorem 1. As a variation of descents, alternating descents of a permu-
tation are defined as follows. For π ∈ Sn , define

ALTDES(π) = {2i : π2i < π2i+1} ∪ {2i + 1 : π2i+1 > π2i+2},
and let altdes(π) = |ALTDES(π)|. The notion of alternating descent was introduced by Chebikin in [4], where he showed 
that the alternating descents on Sn are equidistributed with the 3-descent statistic on {π ∈ Sn+1 : π1 = 1} where we say 
that the permutation π has a 3-descent at index i if πiπi+1πi+2 has one of the patterns: 132, 213 or 321. Lin et al. in [12]
studied the alternating Eulerian polynomial defined as:

Ân(t) =
∑

π∈Sn

taltdes(π).

They proved for positive integers n that the polynomial Ân(t) is palindromic and unimodal.
Recall that for π ∈ Sn , its major index is defined as maj(π) = ∑

i∈DES(π) i, the sum of π ’s descent indices. Similarly, 
define π ’s alternate major index by altmaj(π) = ∑

i∈ALTDES(π) i. That is, altmaj(π) is the sum of π ’s alternate descent in-
dices. Remmel in [18] computed the exponential generating function (egf henceforth) of a bivariate polynomial enumerating 
alternating descents and the alternating major index over Sn . Remmel’s formula is similar to a similar egf for the joint 
distribution of descents and major index over Sn that was proved by Gessel [11] and Gessel and Garsia [10]. Further, in 
[18], Remmel also computed similar generating functions for the type B and the type D Coxeter groups.

Using derivative polynomials, Ma and Yeh in [14] presented an explicit and complicated formula for the number of 
permutations in Sn with a given number of alternating descents. We are interested in enumerating alternating descents in 
Sn with sign taken into account.

Signed enumeration of several statistics over various Coxeter groups and their subsets are known. Désarménien and Foata 
in [8] enumerated descents with sign in Sn and Reiner in [17] enumerated signed descents for types A, B and D Coxeter 
groups. Mantaci in [15] enumerated excedances with sign in Sn , Adin et al. in [1] enumerated signed mahonians in Coxeter 
groups. Tanimoto in [20] has shown divisibility of coefficients of the signed descent enumerator by prime numbers. Barnabei, 
Bonetti and Silimbani [2] have enumerated signed ascents over involutions using properties of the RSK correspondence. 
Motivated by the above signed enumeration results, we define the following:

SgnAltDesn(t) =
∑

π∈Sn

(−1)inv(π)taltdes(π). (3)

Over Sn , our first result is similar to Theorem 1 and is the following.

Theorem 2. For positive integers n, we have

SgnAltDesn(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − t)2m A2m(t) if n = 4m,

2t

1 + t
(1 − t)2m A2m(t) if n = 4m + 1,

(1 − t)2m+1 A2m+1(t) if n = 4m + 2,

0 if n = 4m + 3.

The proof of Theorem 2 appears in Section 3. When n is even, our proof gives a more general multivariate version of 
Theorem 2, see Theorem 8. Over Sn , we also get a formula for the signed enumeration of the alternating major index as 
a further artifact of our proof. We generalize our results to the case when alternating descents are summed up with sign 
over the elements in classical Weyl groups. Let Bn denote the group of signed permutations on [±n] = {±1, ±2, . . . , ±n}, 
that is π ∈ Bn consists of all permutations of [±n] that satisfy π(−i) = −π(i) for all i ∈ [n]. Let Dn ⊆ Bn denote the 
subset of Bn consisting of those elements which have an even number of negative entries. As both Bn and Dn are Coxeter 
groups, they have a natural notion of length and hence sign associated to their elements. As mentioned above, Remmel 
in [18] computed generating functions for the type B and type D alternating Eulerian polynomials. In the type B case, his 
definition for the alternating descent of a signed permutation is obtained by imposing a different order on the elements of 
[±n]. A different Coxeter theoretic definition based on type B descents was given by Ma, Fang, Mansour and Yeh in [7]. We 
enumerate both versions of alternating-descents with signs. Our type B counterparts are Theorem 13 and Theorem 14 and 
our type D counterpart is Theorem 21.

2. A signed convolution identity involving the Eulerian polynomials

In our proof of Theorem 2, we need an identity involving binomial coefficients and the Eulerian polynomials with signs 
for which we could not locate a reference. We thus present a proof in this short section. It is well known that the Eulerian 
polynomial An(t) satisfies the following convolution based quadratic recurrence involving binomial coefficients, see [9, Page 
70] or [16, Theorem 1.5].
2
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Theorem 3. For positive integers n, we have

An(t) = An−1(t) + t
n−2∑
i=0

(
n − 1

i

)
Ai(t)An−1−i(t)

where A0(t) = 1.

Chow in [5, Theorem 2.2] has given a q-analogue of Theorem 3 for the inversion based q-Eulerian polynomial. We need 
the following similar identity.

Theorem 4. For non-negative integers k, the following identity is satisfied by the Eulerian polynomials Ak(t):

k∑
r=0

(−1)r
(

k

r

)
Ar(t)Ak−r(t) =

⎧⎪⎨⎪⎩
1 if k = 0,

2t Ak(t)/(1 + t) if k > 0 is even,

0 if k is odd.

(4)

Proof. When k = 0, the left hand side is clearly 1 as we have A0(t) = 1. We next consider the case when k is odd. It is easy 
to see that the left hand side is zero by pairing the term when r = i with its negative when r = k − i. We move to the more 
interesting case when k is even.

Consider S(t, z) =
∑
k≥0

Ak(t)
zk

k! , the exponential generating function (egf henceforth) of the Eulerian polynomials Ak(t). 

We prove (4) by showing the equality of the egf of the left hand side and the right hand side.

Clearly, the coefficient of 
zk

k! in S(t, z) × S(t, −z) equals 
∞∑

k=0

(−1)r
(

k

r

)
Ar(t)Ak−r(t). Thus, the egf for the left hand side is 

S(t, z) × S(t, −z). On the other hand, the egf for the right hand side is

1 + 2t

1 + t

⎡⎣ ∞∑
k=2, k is even

Ak(t)
zk

k!

⎤⎦ = 2t

1 + t

[
S(t, z) + S(t,−z)

2

]
+

[
1 − 2t

1 + t

]
.

Therefore, we need to show the following:

S(t, z) × S(t,−z) = t

1 + t

(
S(t, z) + S(t,−z)

)
+

[
1 − 2t

1 + t

]
. (5)

It is well known (see [16]) that S(t, z) = t − 1

t − ez(t−1)
. Let p = ez(t−1) . Plugging this, (5) will follow if we prove the following:

p(t − 1)2

(t − p)(pt − 1)
= t

1 + t

[
t − 1

t − p
+ p(t − 1)

pt − 1

]
+ 1 − t

1 + t
. (6)

As (6) follows by simple algebraic manipulation, our proof is complete. �
3. Proof of Theorem 2

We break the proof in different parts depending on the parity of n in two subsections. We first consider the case when 
n = 2k. Our proof follows along the same lines as the proof of Wachs [21]. Nonetheless, we give a proof as it sets up the 
stage for enumerating SgnAltDesn(t) when n = 2k + 1.

3.1. Proving Theorem 2 when n = 2k

When n = 2k, we will show that SgnAltDes2k(t) = (1 − t)k Ak(t). We first define a map below and prove some of its 
properties. Consider the set

S1
2k = {π ∈S2k : there exists i ≤ k such that 2i − 1 and 2i are not adjacent}.

Define the map f : S1
2k 	→ S1

2k by

f (π) = (2i − 1,2i)π,
3
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where 1 ≤ i ≤ k is the smallest number such that the letters 2i − 1 and 2i are not in adjacent positions in π . That is, the 
map f switches the positions of 2i − 1 and 2i where i is the least number such that 2i − 1 and 2i are not consecutive in π . 
For π ∈ S1

2k , it is easy to note that sign(π) = −sign( f (π)) and that altdes(π) = altdes( f (π)). Thus, the set S1
2k contributes 

0 to the polynomial SgnAltDes2k(t).
Thus consider the set S2k \ S1

2k . Note that permutations in S2k \ S1
2k correspond bijectively to signed permutations of 

the letters 1, 2, . . . , k according to the following rule: each pair of adjacent letters 2i −1, 2i is replaced by i if 2i −1 is to the 
left of 2i in π and is replaced by −i (which we denote as i with a bar over i) if 2i is to the left of 2i −1 in π . Let Bk be the 
set of signed permutations on 1, 2, . . . , k. Denote this bijection as h : (S2k \S1

2k) 	→ Bk . For example, h(56214378) = 3124. 
For a signed permutation u ∈ Bk , let |u| ∈ Sk be the permutation obtained by ignoring the negative signs on u and let 
inv(|u|) denote the number of inversions in |u| (computed in Sk). For u ∈ Bk let negs(u) denoted the number of negative 
signs in u. In the above example if u = 3124, then we have inv(|u|) = inv(3124) = 2 and negs(u) = 2. The next claim helps 
us in moving information across the map h−1.

Claim 5. For u ∈ Bk, with u = u1, u2, . . . , uk, we have inv(h−1(u)) = 4 × inv(|u|) + negs(u) and altdes(h−1(u)) = asc(|u|) +
negs(u), where asc(u) = |{i ∈ [k − 1] : ui < ui+1}| is the number of ascents of u.

Proof. For π = π1, π2, . . . , πn ∈ Sn , we call the pair (i, j) of indices to be an inversion pair if i < j and πi > π j . Clearly, 
inv(π) is the number of inversion pairs of π . For |u| = |u|1|u|2 . . . |u|n , if (i, j) is an inversion pair of |u|, then (2i − 1, 2 j −
1), (2i − 1, 2 j), (2i, 2 j − 1), and (2i, 2 j) are inversion pairs of h−1(u). Further, if ui is negative, then (2i − 1, 2i) is a further 
inversion pair of h−1(u). Thus, inv(h−1(u)) = 4 × inv(|u|) + negs(u). Moreover, if ui is negative, then 2i − 1 is a descent 
and hence an alternating descent of h−1(u). Further, if i is an ascent of |u|, then 2i is an ascent and hence an alternating 
descent of h−1(u). Thus, altdes(h−1(u)) = asc(|u|) + negs(u). This completes the proof of the claim. �
Proof of Theorem 2 when n = 2k. By Claim 5, when u ∈ Bk , we have

(−1)inv(h−1(u))taltdes(h−1(u)) = (−t)negs(u)tasc(|u|). (7)

For w ∈Sk , let β(w) be the set of 2k permutations obtained by adding negative signs to elements of w . Thus, if u ∈ β(w)

then u ∈Bk and |u| = w .
From this, we have∑

π∈S2k\S1
2k

(−1)inv(π)taltdes(π) =
∑

u∈Bk

(−1)inv(h−1(u))taltdes(h−1(u))

=
∑

w∈Sk

∑
u∈β(w)

(−t)negs(u)tasc(w) = (1 − t)k

( ∑
w∈Sk

tasc(w)

)

= (1 − t)k Ak(t).

The equality on the first line is due to the bijection between S2k \ S1
2k and Bk . The second line follows from (7) and the 

last line from the fact that ascents and descents are equidistributed in Sk . The proof is complete. �
3.2. Proving Theorem 2 when n is odd

When n = 2k + 1 is odd, consider a similar set

S1
2k+1 = {π ∈S2k+1 : there exists i ≤ k such that 2i − 1 and 2i are not adjacent}.

Again, we can define the same map f :S1
2k+1 	→S1

2k+1 by f (π) = (2i −1, 2i)π where 1 ≤ i ≤ k is the smallest number such 
that the letters 2i −1 and 2i are not in adjacent positions in π . As before, when π ∈ S1

2k+1, it is easy to note that sign(π) =
−sign( f (π)) and that altdes(π) = altdes( f (π)). Hence the set S1

2k+1 contributes 0 to the polynomial SgnAltDes2k+1(t).

Note that for any π ∈ S2k+1 \ S1
2k+1, the position of 2k + 1 in π must be odd, as otherwise there will be some j such 

that 2 j − 1 and 2 j will be separated by 2k + 1 and hence non-adjacent. Thus, any π ∈ S2k+1 \ S1
2k+1 can be written as 

π = u, 2k + 1, v where for some S ⊆ [2k] with |S| being even, u, v are permutations of S, [2k] − S respectively with both 
u, v having pairs 2 j − 1 and 2 j in adjacent positions.

We denote the surviving set S2k+1 \S1
2k+1 as Surv2k+1 and we break Surv2k+1 as the disjoint union of the sets Survl

2k+1

where for 0 ≤ l ≤ k, Survl
2k+1 = u, 2k + 1, v with u being a permutation of S ⊆ [2k] with |S| = 2l. Next, we compute the 

contribution of the sets Survl
2k+1 to SgnAltDesn(t). Hence, define SurvSgnAltDesl

2k+1(t) =
∑

π∈Survl (−1)inv(π)taltdes(π) .

2k+1

4
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Lemma 6. For odd positive integers n = 2k + 1, we have

SurvSgnAltDesl
2k+1(t) =

⎧⎪⎪⎨⎪⎪⎩
(−1)kt(1 − t)k Ak(t) when l = 0,

(−1)k−l
(

k

l

)
t2(1 − t)k Al(t)Ak−l(t) when 1 ≤ l < k,

t(1 − t)k Ak(t) when l = k.

Proof. Let π = u, 2k + 1, v ∈ Survl
2k+1. We slightly modify the map h that we used in Claim 5 as follows. We first apply h

to u, v . We then convert the letter 2k + 1 to k + 1 to get h(π). Thus if π = 3421765, then u = 3421 and v = 65 and so 
h(π) = 2143. Thus h(π) ∈ Bk+1, but now the letter k + 1 will only occur without a negative sign.

We first consider the case when l = 0. The set Surv0
2k+1 has permutations 2k + 1, v where v ∈ S2k \ S1

2k . Let Bk be 
the set of signed permutations on 1, 2, . . . , k and as before, define the map h that bijectively takes the set Surv0

2k+1 to 
the set of permutations of the form k + 1, u where u = u1, u2, . . . , uk ∈ Bk . We use the same notation as in subsection 
3.1 and transfer information about statistics via the map h−1. Let w = k + 1, u ∈ Bk+1 where u ∈ Bk . The first position of 
h−1(w) is clearly an alternating descent. Subsequent odd descents in h−1(w) correspond to descents in u and even ascents 
in h−1(u) correspond to non-negative (or positive) elements in u. Since w1 = k + 1 is positive, this count is k − negs(u). 
We thus have altdes(h−1(w)) = 1 + des(|u|) + (k − negs(u)). It is easy to see that inv(h−1(w)) = 2k + 4inv(|u|) + negs(u) =
2k + 4inv(|w|) − 4k + negs(u). Therefore,

(−1)inv(h−1(w))taltdes(h−1(w)) = (−1)negs(u)tk−negs(u)+des(|u|)+1 = (−1)k(−t)k−negs(u)tdes(|u|)+1. (8)

Arguing as done in subsection 3.1 but using (8) instead of (7) gives an extra term of (−1)kt . This completes the proof when 
l = 0.

Next, we consider the case when 1 ≤ l ≤ k − 1. The set Survl
2k+1 has permutations of the form π = u, 2k + 1, v where u

has l consecutive pairs 2 j − 1, 2 j and v has the remaining (k − l) consecutive pairs. In this case, the function h maps the set 
Survl

2k+1 bijectively to the set of permutations of the form u, k +1, v where u = u1, u2, . . . , ul ∈Bl and v = v1, v2, . . . , vk−l ∈
Bk−l . Consider π ∈ Survl

2k+1 and let h(π) = u, k + 1, v where u = u1, u2, . . . , ul ∈ Bl and v = v1, v2, . . . , vk−l ∈ Bk−l . We 
again transfer information about statistics via the map h−1 and use the same notation from earlier. Let w = u, k + 1, v ∈
Bk+1. We can choose a set of l pairs from k in 

(k
l

)
ways and permute them in Bl ways to get u. As k + 1 appears in an 

odd position, h−1(w) has 2 alternating descents, at the position before and after 2k + 1. Arguing as before, one can check 
that altdes(h−1(w)) = 2 + asc(|u|) + des(|v|) + negs(u) + (k − l − negs(v)) and (−1)inv(h−1(w) = (−1)negs(u)+negs(v) . Thus, for 
w ∈Bk+1 with w = u, k + 1, v where u, v have lengths l, k − l respectively, we have

(−1)inv(h−1(w))taltdes(h−1(w)) = t2(−1)k−l(−t)negs(u)+k−l+negs(v)tasc(|u|)+des(|v|). (9)

From this, we have∑
π∈Survl

2k+1

(−1)inv(π)taltdes(π)

=
(

k

l

) ∑
u∈Bl

∑
v∈Bk−l

(−1)inv(h−1(u,k+1,v))taltdes(h−1(u,k+1,v))

= (−1)k−l
(

k

l

)
t2

∑
x∈Sl

∑
u∈β(x)

∑
y∈Sk−l

∑
v∈β(y)

(−t)negs(u)(−t)k−l−negs(v)tasc(x)+des(y)

=
(

k

l

)
t2(−1)k−l(1 − t)k

( ∑
w∈Sl

tasc(w)

)( ∑
x∈Sk−l

tdes(x)

)

= (−1)k−l
(

k

l

)
t2(1 − t)k Al(t)Ak−l(t).

The second line above follows from the bijection h The third line follows from (9) and the last line from the fact that 
ascents and descents are equidistributed in Sk . This completes the proof when 1 ≤ l < k.

We remark that the proof when l = k is very similar to the proof when k is even as we just add 2k + 1 at the end and 
this addition has no change on both the number of inversions and the number of alternating descents. As the proof of this 
case follows in the same manner, we omit it. The proof is now complete. �

We are now ready to prove Theorem 2 for n odd.
5
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Proof of Theorem 2. Let n = 4m + 1, and let k = 2m so that n = 2k + 1. As k is even, note that (−1)k = 1. By Lemma 6 and 
Theorem 4 we have

SgnAltDesn(t) = (1 − t)k

[
k∑

l=0

∑
π∈Survl

2k+1

(−1)inv(π)taltdes(π)

]

= (1 − t)k

[
(−1)kt Ak(t) +

(
k−1∑
l=1

(−1)k−lt2
(

k

l

)
Ak−l(t)Al(t)

)
+ t Ak(t)

]

= (1 − t)k

[
t2

(
k∑

l=0

(−1)k−l
(

k

l

)
Ak−l(t)Al(t)

)
+ (2t − 2t2)Ak(t)

]

= (1 − t)k

[
t2 2t Ak(t)

(1 + t)
+ (2t − 2t2)Ak(t)

]
= 2t(1 − t)k

1 + t
Ak(t).

Thus when n = 4m + 1, the proof is complete. We move to the case when n = 4m + 3. Consider the bijection Rev :S4m+3 	→
S4m+3, defined by reversing the permutation. Formally,

Rev(π1,π2, . . . ,π4m+2,π4m+3) = π4m+3,π4m+2, . . . ,π2,π1.

One can check that sign(π) = −sign(Rev(π)) and that altdes(π) = altdes(Rev(π)). Summing, we get zero, completing the 
proof. �
3.3. A multivariate refinement when n is even

In this subsection, we show that when n is even, our proof from subsection 3.1 gives us a multivariate refinement. It 
further refines Theorem 1 of Désarménien and Foata. We will see that Wachs proof of Theorem 1 goes through for this 
multivariate refinement. We start with the following bivariate refinement.

For π ∈ Sn define OddDES(π) = {2i + 1 ∈ [n] : π2i+1 > π2i+2} to be the set of odd positions where a descent occurs 
in π . Similarly, define EvenDES(π) = {2i ∈ [n] : π2i > π2i+1} to be the set of even positions where a descent occurs in 
π and define EvenASC(π) = {2i ∈ [n] : π2i < π2i+1} to be the set of even positions where an ascent occurs in π . Let 
odes(π) = |OddDES(π)|, edes(π) = |EvenDES(π)| and easc(π) = |EvenASC(π)|. As can be seen from the definitions, we have 
ALTDES(π) = OddDES(π) ∪ EvenASC(π) and DES(π) = OddDES(π) ∪ EvenDES(π). Define the signed bivariate alternating 
descent enumerator to be

SgnBivAltDesn(p,q) =
∑

π∈Sn

(−1)inv(π)podes(π)qeasc(π).

Similarly define the signed bivariate descent enumerator to be

SgnBivDesn(p,q) =
∑

π∈Sn

(−1)inv(π)podes(π)qedes(π).

As SgnAltDesn(t) = SgnBivAltDesn(t, t), this bivariate polynomial refines SgnAltDesn(t). We similarly have SgnDesn(t) =
SgnBivDesn(t, t). The following refinement of Theorem 2 when n is even is clear from the same proof given in subsection 
3.1. Wachs proof of Désarménien and Foata’s result also gives the following refinement of Theorem 1 when n is even. As 
the proof is identical, we just mention the result.

Theorem 7. Let n = 2k be an even positive integer. Then,

SgnBivAltDesn(p,q) = (1 − p)k Ak(q), (10)

SgnBivDesn(p,q) = (1 − p)k Ak(q). (11)

Moreover, it is easy to see that the following multivariate generalization of Theorem 7 also holds. For a permutation
π ∈ Sn , define the monomial mπ = ∏

i∈OddDES(π) pi where pi s are commuting variables. When n = 2k, define the following 
multivariate polynomials

SgnMultDesn(p1, p3, . . . , p2k−1,q) =
∑

(−1)inv(π)mπqedes(π)
π∈Sn

6
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and

SgnMultAltDesn(p1, p3, . . . , p2k−1,q) =
∑

π∈Sn

(−1)inv(π)mπqeasc(π).

Wachs proof of Désarménien and Foata’s result also gives the following multivariate refinement of Theorem 7.

Theorem 8. Let n = 2k be an even positive integer. Then,

SgnMultAltDesn(p1, p3, . . . , p2k−1,q) =
(

k∏
r=1

(1 − p2r−1)

)
Ak(q), (12)

SgnMultDesn(p1, p3, . . . , p2k−1,q) =
(

k∏
r=1

(1 − p2r−1)

)
Ak(q). (13)

It is easy to see that setting p1 = p3 = · · · = p2k−1 = p, we immediately get Theorem 7.
For π ∈ Sn , recall that DES(π) is its set of descents. Define the major index of π as maj(π) = ∑

i∈DES(π) i. Let 
SgnMajn(q) = ∑

π∈Sn
(−1)inv(π)qdes(π) denote the signed major index enumerator over Sn . Gessel and Simion (see [21]) 

showed that enumerating the major index with signs gives interesting results. For a positive integer n, let [n]q = 1 − qn

1 − q
. In 

particular, they showed the following.

Theorem 9 (Gessel and Simion). For positive integers n, we have

SgnMajn(q) = [1]q[2]−q[3]q[4]−q · · · [n](−1)n−1q.

For π ∈ Sn , recall that altmaj(π) = ∑
i∈ALTDES i is the sum of the alternate descent indices of π . For even positive integers 

n, the following result follows from Wachs’ involution.

Remark 10. For even positive integers n, Wachs’ involution also gives the following:∑
π∈Sn

(−1)inv(π)qaltmaj(π) = [1]q[2]−q[3]q[4]−q · · · [n](−1)n−1q.

4. Type B Coxeter groups

Let Bn be the set of permutations of [±n] = {±1, ±2, . . . , ±n} satisfying π(−i) = −π(i). The group Bn is referred to as 
the hyperoctahedral group or the group of signed permutations on [n]. For π ∈ Bn and for 1 ≤ i ≤ n, we alternately denote 
π(i) as πi and for 1 ≤ k ≤ n, we denote −k by k. For π = π1, π2, . . . , πn ∈ Bn , define DESB(π) = {i : πi > πi+1, i ≥ 0} to 
be its set of descents and let desB(π) = |DESB(π)|. Define Negs(π) = {πi : i > 0, πi < 0} as the set of elements of π which 
occur with a negative sign. The following definition of type B inversions is known (see Petersen’s book [16, Page 294]):

invB(π) = |{1 ≤ i < j ≤ n : πi > π j}| + |{1 ≤ i < j ≤ n : −πi > π j}| + |Negs(π)|. (14)

We refer to invB(π) alternatively as the length of π ∈Bn . For π = π1, π2, . . . , πn ∈ Bn , let π0 = 0, and define

ALTDESB(π) = {2i : π2i < π2i+1, i ≥ 0} ∪ {2i + 1 : π2i+1 > π2i+2, i ≥ 0},
ALTDESRMB(π) = {2i : π2i < π2i+1, i ≥ 1} ∪ {2i + 1 : π2i+1 > π2i+2, i ≥ 0}.

Let altdesB(π) = |ALTDESB(π)|, altdesrmB(π) = |ALTDESRMB(π)| and define the type B alternating Eulerian polynomial 
by

ÂB
n (t) =

∑
π∈Bn

taltdesB (π).

The polynomial ÂB
n (t) was studied by Ma, Fang, Mansour and Yeh in [7] where a recurrence relation satisfied by these 

polynomials was given. As π0 = 0, position 0 could contribute to even ascents. We are again interested in enumerating 
alternating descents with (the type B) sign taken into account. Thus, define
7
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SgnBAltDesn(t) =
∑

π∈Bn

(−1)invB (π)taltdesB (π),SgnBAltDesRmn(t) =
∑

π∈Bn

(−1)invB (π)taltdesrmB (π). (15)

Consider the identity permutation id = 1, 2, . . . , n − 1, n ∈ Bn and the set Bn(id) = {π ∈ Bn : |π | = id}. We clearly have 
|Bn(id)| = 2n . We first show that the signed enumeration of alternating descents outside the set Bn(id) is 0.

Lemma 11. For positive integers n, we have 
∑

π∈Bn\Bn(id)(−1)invB (π)taltdesB (π) = 0.

Proof. Let π = π1, π2, . . . , πn ∈ Bn \Bn(id)). As π /∈ Bn(id), there exists 1 ≤ j < n such that |π j | �= j. Let 1 ≤ k ≤ n be the 
smallest index such that |πk| �= k. Let |πr | = k. Thus 0 ≤ r − 1. Further, as π ∈ Bn \ Bn(id), we have r ≤ n. Define f by 
flipping the sign of k or k in π . Thus, define f : (Bn \Bn(id)) 	→ (Bn \Bn(id)) by

f (π1, . . . ,πr−1,k,πr+1, . . . ,πn) = π1, . . . ,πr−1,k,πr+1, . . . ,πn.

For example, if π = 1, 2, 3, 5, 4, then 4 is the smallest k with |π4| �= 4. Thus, f (π) = 1, 2, 3, 5, 4. For π ∈ Bn , it is easy 
to check that invB(π) �≡ invB( f (π)) (mod 2). That is, the map f flips the parity of the type B length (see [19, Lemma 3]). 
Recall r is the index with |πr | = |k|. Recall that we have r − 1 ≥ 0 and r ≤ n. Moreover, as |πr−1| > k we have πr−1 > k if 
and only if πr−1 > k. That is, r − 1 is an alternating descent of π if and only if r − 1 is an alternating descent of f (π). 
When r �= n, as |πr+1| > k, we have πr+1 > k if and only if πr+1 > k. A similar case when r = n is also easy to see. Thus, the 
map f preserves the number of alternating descents and is a sign-reversing involution. This completes the proof. �
Remark 12. The map f constructed in Lemma 11 not only satisfies altdesB(π) = altdesB( f (π)), but it also satisfies equality 
of the appropriate sets. That is, for all π ∈Bn ,

ALTDESB(π) = ALTDESB( f (π)) and ALTDESRMB(π) = ALTDESRMB( f (π)).

Theorem 13. For positive integers n, with m = (n + 1)/2�, we have

SgnBAltDesn(t) = (−1)m(1 − t)n.

Proof. By Lemma 11 for positive integers n, we have∑
π∈Bn

(−1)invB (π)taltdesB (π) =
∑

π∈Bn(id)

(−1)invB (π)taltdesB (π). (16)

To compute 
∑

π∈Bn(id)(−1)invB (π)taltdesB (π) , note that one can inductively get all permutations in Bn(id) by either insert-
ing ‘n’ or n at the end of permutations of Bn−1(id). Let π ∈Bn−1(id). We will consider π, n ∈ Bn(id) or π, n ∈ Bn(id).

When n −1 is even, for π ∈ Bn−1(id), it is easy to see the following: that altdesB(π, n) = altdesB(π) +1 and invB(π, n) =
invB(π); and that altdesB(π, n) = altdesB(π) and invB(π, n) = invB(π) + 2n − 1. Therefore, we have∑

π∈Bn(id)

(−1)invB (π)taltdesB (π) = (t − 1)
∑

π∈Bn−1(id)

(−1)invB (π)taltdesB (π). (17)

When n − 1 is odd, for π ∈ Bn−1(id), it is easy to see the following: that altdesB(π, n) = altdesB(π) and invB(π, n) =
invB(π); and that altdesB(π, n) = altdesB(π) + 1 and invB(π, n) = invB(π) + 2n − 1. Therefore, we have∑

π∈Bn(id)

(−1)invB (π)taltdesB (π) = (1 − t)
∑

π∈Bn−1(id)

(−1)invB (π)taltdesB (π). (18)

The following base cases are easy to check:∑
π∈B1(id)

(−1)invB (π)taltdesB (π) = −1(1 − t), and
∑

π∈B2(id)

(−1)invB (π)taltdesB (π) = −(1 − t)2.

Combining (16), (17) and (18) completes the proof. �
Theorem 14. For positive integers n, we have

SgnBAltDesRmn(t) = 0.
8



H.K. Dey and S. Sivasubramanian Discrete Mathematics 346 (2023) 113540
Proof. By Remark 12, we have∑
π∈Bn\Bn(id)

(−1)invB (π)taltdesrmB (π) = 0.

We now consider 
∑

π∈Bn(id)(−1)invB (π)taltdesrmB (π) . For this, consider the map g : Bn(id) 	→ Bn(id) defined by g(π1, . . . ,
πn) = π1, . . . , πn . The map g clearly flips the parity of type B inversions and preserves ALTDESRMB(π). Thus, we have ∑
π∈Bn(id)

(−1)invB (π)taltdesrmB (π) = 0, completing the proof. �

4.1. A multivariate version

We next give a multivariate version of Theorem 13 and Theorem 14. As in subsection 3.3, for π ∈ Bn , define the fol-
lowing monomial mB

π = ∏
i∈ALTDESB (π) ti and mRM,B

π = ∏
i∈ALTDESRMB (π) ti , where the ti ’s are commuting variables. Define the 

following multivariate polynomials

SgnBMultAltDesn(t0, t1, . . . , tn−1) =
∑

π∈Bn

(−1)invB (π)mB
π ,

and

SgnBMultAltDesRmn(t0, t1, . . . , tn−1) =
∑

π∈Bn

(−1)invB (π)mRM,B
π .

We have the following multivariate version of Theorem 13.

Theorem 15. For positive integers n, we have

SgnBMultAltDesn(t0, t1, . . . , tn−1) = (−1)m
n−1∏
r=0

(
1 − tr

)
,

where m = (n + 1)/2�.

Proof. By Remark 12, we have ALTDESB(π) = ALTDESB( f (π)). Thus,∑
π∈Bn\Bn(id)

(−1)invB (π)mB
π = 0.

Hence it suffices to compute 
∑

π∈Bn(id)(−1)invB (π)mB
π . Proceeding as in the proof of Theorem 13, we note the following 

analogues of (17) and (18). When n − 1 is even, we have∑
π∈Bn(id)

(−1)invB (π)mB
π = (tn−1 − 1)

∑
π∈Bn−1(id)

(−1)invB (π)mB
π , (19)

and when n − 1 is odd, we have∑
π∈Bn(id)

(−1)invB (π)mB
π = (1 − tn−1)

∑
π∈Bn−1(id)

(−1)invB (π)mB
π . (20)

It is easy to see that the base cases when n = 1, 2 are SgnBMultAltDes1(t0, t1) = (−1)(1 − t0) and SgnBMultAltDes2(t0, t1) =
(−1)(1 − t0)(1 − t1). Combining these with (19) and (20) completes the proof. �

The proof of Theorem 14 also gives us the following refinement whose proof we omit.

Theorem 16. For positive integers n, we have

SgnBMultAltDesRmn(t0, t1, . . . , tn−1) = 0.

Corollary 17. For π ∈ Bn, define altmajB(π) = ∑
i∈ALTDESB (π) . In a similar manner, define altmajrmB(π) = ∑

i∈ALTDESRMB (π) i. We 
have ∑

π∈Bn

(−1)invB (π)taltmajB (π) = 0 and
∑

π∈Bn

(−1)invB (π)taltmajrmB (π) = 0.

Proof. Set t0 = 1 and ti = ti for 1 ≤ i ≤ n − 1 in Theorem 15 and in Theorem 16. �

9
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4.2. A type B counterpart of Theorem 4

In this subsection, we give a type B counterpart of Theorem 4. Though we do not need it for any proof in this work, we 
present it as it may find applications elsewhere. Define the following polynomial

Bn(t) =
∑

π∈Bn

tdesB (π).

Theorem 18. For even positive integers k, we have the following identity for the type B Eulerian polynomials Bk(t):

k∑
r=0

(−1)r
(

k

r

)
Br(t)Bk−r(t) = 2k+1t Ak(t)

(1 + t)
. (21)

Proof. Our proof will be similar to the proof of Theorem 4. Consider the exponential generating functions for

B(t, z) =
∑
k≥0

Bk(t)
zk

k! ,

and recall

S(t, z) =
∑
k≥0

Ak(t)
zk

k! .

We proceed by using egfs in a similar way to that of Theorem 3. Subsequently, to show (21), we need to prove the 
following:

B(t, z)B(t,−z) = t

1 + t

[
S(t,2z) + S(t,−2z)

]
+

[
1 − 2t

1 + t

]
. (22)

Recall that S(t, z) = t − 1

t − ez(t−1)
and it is known that B(t, z) = (t − 1)ez(t−1)

t − e−2z(t−1)
(see [16, Theorem 13.3])). The proof of (22) now 

follows by simple algebraic manipulation and so we skip the details. �
5. Type D Coxeter groups

Let Dn ⊆ Bn be the subset of type B permutations that have an even number of negative signs. For π = π1, π2, . . . , πn ∈
Dn , the following combinatorial definition of type D inversions is well known (see, for example, Petersen’s book [16, Page 
302]):

invD(π) = invA(π) + |{1 ≤ i < j ≤ n : −πi > π j}|.
Here invA(π) is computed with respect to the usual order on Z. Let π ∈ Dn . We can also think of π as an element of Bn . 
Similarly, if π ∈ Bn , as the above definition of invD(π) is combinatorial, we can use it to define invD(π). From the above 
definition of invD(π) and the definition of invB(π) that we saw in Section 4, we get the following simple corollary which 
we will need later.

Corollary 19. Let π ∈ Bn. Then, invB(π) = invD(π) + |Negs(π)|.

In this section, we are interested in enumerating Type D alternating descents with sign taken into account. For π ∈ Dn , 
we define its type D alternating descent set of π to be identical to the type B alternating descent set of π . That is, 
ALTDESD(π) = ALTDESB(π) and let altdesD(π) = |ALTDESD(π)|. Consider the following polynomial:

SgnDAltDesn(t) =
∑

π∈Dn

(−1)invD (π)taltdesD (π). (23)

Remark 20. In the above definition, the exponent of −1 could have been invB(π) as well.

We prefer to give a proof of the multivariate version this time and infer the univariate variant by setting values to vari-
ables. Thus, for a permutation π ∈ Dn , define the monomial mD

π = ∏
ı∈ALTDESD (π) ti where the ti s are commuting variables. 

Define the following multivariate polynomial
10
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SgnDMultAltDesn(t0, t1, . . . , tn−1) =
∑

π∈Dn

(−1)invD (π)mD
π .

Theorem 21. For even positive integers n = 2k, we have

SgnDMultAltDesn(t0, t1, . . . , t2k−1) = (−1)k
2k−1∏
r=0

(
1 − tr

)
. (24)

For odd positive integers n = 2k + 1, we have

SgnDMultAltDesn(t0, t1, . . . , t2k) = (−1)kt2k

2k−1∏
r=0

(
1 − tr

)
. (25)

Proof. We first consider the case when n = 2k. Let π = π1, . . . , πn ∈Bn \Dn . As n is even, there exists i ∈ [n] such that the 
letters 2i − 1 and 2i are of opposite signs in π . Thus, π is of the form π1, . . . , πi = x, . . . , π j = y, . . . , πn where the indices 
i, j may be consecutive, where {|x|, |y|} = {2i − 1, 2i} and x, y are of different signs. Define

f (π) = π1, . . . ,πi = y, . . . ,π j = x, . . . ,πn.

It is easy to verify that the map f preserves the indices where alternating descents occur. Moreover, this map clearly 
changes the parity of invD . Thus, we have∑

π∈Bn\Dn

(−1)invD (π)mD
π = 0.

By Theorem 15, the proof of (24) is now complete. We now consider the case when n is odd, say n = 2k + 1. Let D1
n = {π ∈

Dn : πn = n}. We show that 
∑

π∈Dn\D1
n
(−1)invD (π)mD

π = 0. For this, we break Dn \ D1
n as the disjoint union of following 

three subsets:

1. D2
n = {π ∈ Dn : πn = n},

2. D3
n = {π ∈ Dn : |πn| < n, there exists i ≤ k such that ± (2i − 1) and ± (2i) are not adjacent},

3. D4
n = {π ∈ Dn : |πn| < n, for all i ≤ k , ±(2i − 1) and ± (2i) are adjacent}.

We first note that∑
π∈D2

n

(−1)invD (π)mD
π =

∑
π∈Bn−1\Dn−1

(−1)invD (π)mD
π = 0.

This follows by observing that inserting n in the last place of any permutation π ∈ Bn−1 \ Dn−1 does not change ALTDES
and the parity of invD .

We also clearly have 
∑

π∈D3
n
(−1)invD (π)mD

π = 0 as we can swap the letters x and y where {|x|, |y|} = {2i − 1, 2i} and 
this swapping does not change the set of alternating descents but change the parity of invD .

We now consider the set D4
n . For any π ∈ D4

n , we must have i ≥ 1 such that {|π2i−1|, |π2i |} �= {2i − 1, 2i}. We take the 
smallest such i. So, π is of the form π1, . . . , π j = x, π j+1 = y, . . . , πn where j > 2i − 1 and {|x|, |y|} = {2i − 1, 2i}. Define

f (π) = π1, . . . ,π j = y,π j+1 = x, . . . ,πn.

It is easy to verify that the map f preserves the indices where alternating descents occur. Moreover, this map clearly 
changes the parity of invD . Therefore, here also we have 

∑
π∈D4

n
(−1)invD (π)mD

π = 0.

Thus, we are only left with enumerating 
∑

π∈D1
n
(−1)invD (π)mD

π . As n = 2k + 1 and πn = n the 2k-th position is always 
an alternating descent. Thus,∑

π∈D1
n

(−1)invD (π)mD
π = t2kSgnDMultAltDesn(t0, t1, t2, t3, . . . , t2k−1).

By using (24), the proof of (25) is now complete. �
Enumerating mD

π over Bn \Dn gives us nice results and so we define

Sgn(B − D)MultAltDesn(t0, t1, . . . , tn−1) =
∑

(−1)invD (π)mD
π .
π∈Bn\Dn

11
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Corollary 22. When n ≥ 1, we have

Sgn(B − D)MultAltDesn(t0, t1, . . . , tn−1) =
{

0 if n is even,

(−1)(n−1)/2 ∏n−1
r=0 (1 − tr) if n is odd.

Proof. When n is even, the result follows from the proof of Theorem 21. When n is odd, the result follows by using 
Theorem 15 and Theorem 21. �

We end with the following corollary obtained by setting ti = t for all i in Theorem 21.

Corollary 23. When n ≥ 1, we have

SgnDAltDesn(t) =
{

(−1)k(1 − t)2k when n = 2k,

(−1)kt(1 − t)2k when n = 2k + 1.
(26)

We end this work with two remarks: the first on a type D version of Theorem 4 and another on Central Limit Theorems 
for alternating descents.

Remark 24. Using Brenti’s result (see [3, Corollary 4.8]) that connects the Eulerian polynomials of types A, B and D, and 
both Theorem 4 and Theorem 18, one can get a type D counterpart of Theorem 4. We do not do so as it gets somewhat 
complicated to state. It would be interesting to see if a cleaner statement similar to Theorem 4 or Theorem 18 can be made.

Remark 25 (Central Limit Theorems). It is not clear if there is a Central Limit Theorem (CLT henceforth) for alternating de-
scents over Sn . However, if there is a CLT over Sn , then using Theorem 2 and results from [6], there is a CLT for alternating 
descents over An .
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