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Gamma Positivity of the Excedance-Based
Eulerian Polynomial in Positive Elements
of Classical Weyl Groups
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Abstract. The Eulerian polynomial AExcn(t) enumerating excedances in
the symmetric group Sn is known to be gamma positive for all n. When
enumeration is done over the type B and type D Coxeter groups, the type
B and type D Eulerian polynomials are also gamma positive for all n. We
consider AExc+n (t) and AExc−

n (t), the polynomials which enumerate ex-
cedance in the alternating group An and in Sn − An, respectively. We
show that AExc+n (t) is gamma positive iff n ≥ 5 is odd. When n ≥ 4
is even, AExc+n (t) is not even palindromic, but we show that it is the
sum of two gamma positive summands. An identical statement is true
about AExc−

n (t). We extend similar results to the excedance based Euler-
ian polynomial when enumeration is done over the positive elements in
both type B and type D Coxeter groups. Gamma positivity results are
known when excedance is enumerated over derangements in Sn. We ex-
tend some of these to the case when enumeration is done over even and
odd derangements in Sn.
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1. Introduction

For a positive integer n, let [n] = {1, 2, . . . , n} and let Sn be the set of permuta-
tions on [n]. For π = π1, π2, . . . , πn ∈ Sn, define its excedance set as EXC(π) =
{i ∈ [n] : πi > i} and its number of excedances as exc(π) = |EXC(π)|. Define
its number of non-excedances as nexc(π) = |{i ∈ [n] : πi ≤ i}|. For π ∈ Sn,
define its number of inversions as inv(π) = |{1 ≤ i < j ≤ n : πi > πj}|. Let
DES(π) = {i ∈ [n − 1] : πi > πi+1} and ASC(π) = {i ∈ [n − 1] : πi < πi+1}
be its set of descents and ascents, respectively. Let des(π) = |DES(π)| be its
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number of descents and asc(π) = |ASC(π)| be its number of ascents. The
polynomial An(t) =

∑
π∈Sn

tdes(π) is the classical Eulerian polynomial. Let
An ⊆ Sn be the subset of even permutations. Define

An(t) =
∑

π∈Sn

tdes(π) and An(s, t) =
∑

π∈Sn

tdes(π)sn−1−des(π), (1)

AExcn(t) =
∑

π∈Sn

texc(π) and AExcn(s, t) =
∑

π∈Sn

texc(π)snexc(π)−1, (2)

AExc+n (t) =
∑

π∈An

texc(π) and AExc+n (s, t) =
∑

π∈An

texc(π)snexc(π)−1, (3)

AExc−
n (t) =

∑

π∈Sn−An

texc(π) and AExc−
n (s, t) =

∑

π∈Sn−An

texc(π)snexc(π)−1.

(4)

It is a well-known result of MacMahon [11] that both descents and ex-
cedances are equidistributed over Sn. That is, for all positive integers n,
An(t) = AExcn(t).

Let f(t) ∈ Q[t] be a degree n univariate polynomial with f(t) =
∑n

i=0 ait
i

where an �= 0. Let r be the least non-negative integer such that ar �= 0. Define
len(f) = n − r. The polynomial f(t) is said to be palindromic if ar+i = an−i

for 0 ≤ i ≤ �(n − r)/2�. Define the center of symmetry of f(t) to be (n + r)/2.
Note that for a palindromic polynomial f(t), its center of symmetry could be
half integral.

Let PalindPoly(n+r)/2,r(t) denote the set of palindromic univariate poly-
nomials f(t) =

∑n
i=0 ait

i with r being the least non-negative integer such that
ar > 0 and having center of symmetry (n + r)/2. Let Γ = {tr+i(1 + t)n−r−2i :
0 ≤ i ≤ �(n−r)/2�}. It is easy to see that if f(t) ∈ PalindPoly(n+r)/2,r(t), then

we can write f(t) =
∑�(n−r)/2�

i=0 γn,it
r+i(1 + t)n−r−2i. The polynomial f(t) is

said to be gamma positive if γn,i ≥ 0 for all i (that is, if f(t) has nonnegative
coefficients when expressed as a linear combination of elements of Γ).

It is well known that the Eulerian polynomials AExcn(t) are palindromic
(see Graham et al. [9]). Gamma positivity of AExcn(t) was first proved by
Foata and Schützenberger in [7]. Foata and Strehl [8] later used a group action
based proof which has been termed as “valley hopping” by Shapiro et al. [17].
This approach gives a combinatorial interpretation for γn,i, the gamma coef-
ficients. Several refinements of the gamma positivity of AExcn(t) are known
when enumeration is done both with respect to excedances and with respect
to descents. Shareshian and Wachs [19] have shown the following.

Theorem 1 (Shareshian and Wachs). For natural numbers n and for statistics
des∗, maj : Sn 	→ Z≥0 define the polynomial AExcn(p, q, t) =

∑
π∈Sn

pdes
∗(π)

qmaj(π)−exc(π)texc(π). Then, AExcn(p, q, t) =
∑�n/2�

i=0 γn,i(p, q)ti(1+t)n−2i where
the γn,i(p, q)’s are polynomials with positive coefficients.
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In some results, we have not defined those statistics which are not needed
for this paper. For the definition of these statistics that appear in Theorem
1, we refer the reader to the survey paper [1, Theorem 2.3] by Athanasiadis.
Similarly, for two statistics 2-13, 31-2 : Sn → Z≥0, Brändén [2] and Shin-and-
Zeng [20,21] have shown a p, q-refinement. We refer the reader to [1, Theorem
2.2] by Athanasiadis for definitions of these statistics.

Theorem 2 (Brändén, Shin and Zeng). For natural numbers n define the poly-
nomial An(p, q, t) =

∑
π∈Sn

p2-13(π)q31-2(π)tdes(π). Then, An(p, q, t) =
∑�n/2�

i=0

an,i(p, q)ti(1 + t)n−2i where the an,i(p, q)’s are polynomials with positive coef-
ficients.

Dey and Sivasubramanian in [6] have recently given gamma positivity
results when one sums descents over An. In this paper, we consider the case
when we sum excedances over An. It is simple to note that when n ≥ 3,
these two polynomials are different. Further, it is not hard to see that the
usual “valley hopping” gamma positivity proof of Foata and Strehl [8] does
not respect sign and hence does not help in getting results for An or Sn −An.
In Sect. 3, we show the following results when we enumerate excedances in
An. In Theorem 9, we show that AExc+n (s, t) is palindromic iff n ≡ 1 (mod 2).
Our first main result is the following.

Theorem 3. For odd positive integers n ≥ 5, both AExc+n (s, t) and AExc−
n (s, t)

are gamma positive and have center of symmetry (n − 1)/2.

As mentioned, when n ≡ 0 (mod 2) the polynomial AExc+n (s, t) is not
palindromic. We ask for the minimum number of gamma positive polynomials

which add up to give AExc+n (t) = AExc+n (s, t)
∣
∣
∣
∣
s=1

. Note that when a poly-

nomial is not palindromic, the minimum number of palindromic summands
needed is at least two. In the case of AExc+n (t), we show that one can choose
two palindromic polynomials that are gamma positive as well. Our next main
result is the following.

Theorem 4. For even positive integers n ≥ 4, both AExc+n (t) and AExc−
n (t)

can be written as a sum of two gamma positive polynomials. The two summands
have centers of symmetry that differ by one.

Thus, Theorem 3 refines the existing gamma positivity results for An(t)
when n is odd. When n is even, Theorem 4 refines the gamma positivity results
for An(t) by giving several gamma positive summands which when added give
An(t).

We generalize our results to the case when excedances are summed over
the elements with positive sign in classical Weyl groups. Let Bn denote the
group of signed permutations on [±n] = {−n,−(n − 1), . . . ,−1, 1, 2, . . . , n},
that is σ ∈ Bn consists of all permutations of [±n] that satisfy σ(−i) = −σ(i)
for all i ∈ [n]. We represent σ ∈ Bn as σ = σ1, σ2, . . . , σn where σi = σ(i). Let
Dn ⊆ Bn denote the subset consisting of those elements of Bn which have
an even number of negative entries. We use Brenti’s definition of excedance
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from [3] for elements of both Bn and Dn. Thus, similar to the excedance based
Eulerian polynomials, we have excedance based Eulerian polynomials of type
B and type D. There is also a natural notion of length in these groups and
we get similar results when summation is restricted to elements with even
length. In Sect. 4, we consider Type-B Weyl groups where our main results
are Theorems 14 and 15. In Sect. 5 we cover Type-D Weyl groups, where our
main result is Theorem 19. To the best of our knowledge, there were no results
on gamma positivity of the type D excedance based Eulerian polynomial.

Gamma positivity results are also known when excedances are summed
over derangements in Sn. Let SDn = {π ∈ Sn : πi �= i for all i} denote the set
of derangements in Sn. Let SD+

n = SDn ∩An and SD−
n = SDn ∩(Sn −An).

Define

ADerExcn(t) =
∑

π∈SDn

texc(π), (5)

ADerExc+n (t) =
∑

π∈SD+
n

texc(π) and ADerExc−
n (t) =

∑

π∈SD−
n

texc(π). (6)

The polynomial ADerExcn(t) is known to be real rooted (see Zhang [26])
and palindromic. Hence ADerExcn(t) is gamma positive (see for example Pe-
tersens book [16, Page 82]). Shin and Zeng in [20,21] have proved the following
refinement with respect to the number of inversions inv(π), number of cycles
cyc(π) and the nesting number nest(π) (see [1] for the definition of these sta-
tistics).

Theorem 5. (Shin and Zeng) For positive integers n, and for stat(π) ∈ {cyc(π),
inv(π),nest(π)}, the polynomial

∑
π∈SDn

qstat(π)texc(π) equals
∑�n/2�

i=0 bn,i(q)ti

(1 + t)n−2i where bn,i(q) is a polynomial with positive integral coefficients.

Setting q = 1 in Theorem 5 shows that the polynomial ADerExcn(t)
is gamma positive. Sun and Wang in [25] have given an alternative proof of
this fact. Their proof actually shows that the polynomials ADerExc+n (t) and
ADerExc−

n (t) are also gamma positive, though they do not explicitly mention
it. We move on to the bivariate polynomials appearing in Theorem 5. In Sect. 6,
we prove the following refinement of Theorem 5.

Theorem 6. For positive integers n, and for stat(π) ∈ {cyc(π), inv(π)}, we
have the following: both the polynomials

∑
π∈SD+

n
qstat(π)texc(π) and

∑
π∈SD−

n

qstat(π)texc(π) equal
∑�n/2�

i=0 b+n,i(q)t
i(1 + t)n−2i and

∑�n/2�
i=0 b−

n,i(q)t
i(1 + t)n−2i

respectively. Here, both b+n,i(q) and b−
n,i(q) are polynomials with positive integral

coefficients.

The proof of Theorem 6 essentially follows from the proof of Theorem 5.
This is true for all results in Sect. 6. In that section, our contribution lies more
in making the refining statements for An and Sn − An explicit, than in their
proofs.
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2. Preliminaries on Gamma Positive Polynomials

Most of the gamma positive polynomials in this work have homogeneous bi-
variate counterparts with the following slightly more general definition of
gamma positivity. Let f(s, t) =

∑n
i=0 ais

n−iti be a degree n homogenous
bivariate polynomial. Define f(s, t) to be palindromic if ai = an−i for all
i. More generally, we consider palindromic, degree n homogenous bivariate
polynomials which have n − r as the highest exponent of s with non-zero co-
efficient. Thus, an−r �= 0 and as f is palindromic ar = an−r �= 0. Define
the length len(f) of f to be n − 2r. Define the center of symmetry of a de-
gree n homogenous bivariate palindromic polynomial to be n/2. If f(s, t) is
palindromic, it is said to be bivariate gamma positive if it can be written as
f(s, t) =

∑�n/2�
i=0 γn,i(st)i(s + t)n−2i with γn,i ≥ 0 for all i.

Clearly, if f(s, t) is a bivariate gamma positive polynomial, then f(t) =
f(s, t)|s=1 is clearly a univariate gamma positive polynomial with the same
center of symmetry. We need the following lemmas. All of them are simple or
proved in [6]. For the sake of completeness, we include their proofs.

Lemma 1. Let f1(s, t) and f2(s, t) be two bivariate gamma positive polynomials
with respective centers of symmetry m1 and m2. Then, f1(s, t)f2(s, t) is gamma
positive with center of symmetry m1 + m2.

Let D be the operator
(

∂

∂s
+

∂

∂t

)

acting on polynomials in Q[s, t].

Lemma 2. Let f(s, t) be a bivariate gamma positive polynomial with center
of symmetry n/2. Then, Df(s, t) is gamma positive with center of symmetry
(n − 1)/2.

Proof. Let,

f(s, t) =
�n/2�∑

i=0

γn,i(st)i(s + t)n−2i with γn,i ≥ 0. Then,

Df(s, t) =
�n/2�∑

i=0

iγn,i(st)i−1(s + t)n−2i+1 +
�n/2�∑

i=0

2(n − 2i)γn,i(st)i(s + t)n−2i−1

=
�(n−1)/2�∑

i=0

βn,i(st)i(s + t)n−2i−1

where βn,i = (i+1)γn,i+1 +2(n−2i)γn,i. As n−2i ≥ 0 for all i, each βn,i ≥ 0.
It is also easy to see that Df(s, t) has center of symmetry (n−1)/2, completing
the proof. �

The following are easy corollaries.

Corollary 1. Let f(s, t) be a bivariate gamma positive polynomial with center
of symmetry n/2.

1. Then, for a natural number � ≤ n, D�f(s, t) is gamma positive with center
of symmetry (n − �)/2.
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2. Then, (st)if(s, t) is gamma positive with center of symmetry i + n/2.
3. Then, (s+ t)f(s, t) is gamma positive with center of symmetry (n+1)/2.

Our next important result is about univariate polynomials with odd
length.

Lemma 3. Let f(t) be a gamma positive polynomial with center of symmetry
n/2 and with odd len(f(t)). Then, f(t) is the sum of two gamma positive
polynomials p1(t) and p2(t) with centers of symmetry (n − 1)/2 and (n + 1)/2
respectively. In this way of writing, we have p2(t) = tp1(t).

Proof. Assume that f(t) has degree d. As f(t) has center of symmetry n/2 and
degree d, the lowest exponent of t with non-zero coefficient is n/2−(d−n/2) =
n − d. Thus, len(f) = d − (n − d) = 2d − n. Since f(t) is gamma positive and
has center of symmetry n/2, we have f(t) =

∑�n/2�
i=n−d γit

i(1 + t)n−2i. We also
have

f(t) =

�n/2�∑

i=n−d

γit
i(1 + t)n−2i−1(1 + t)

=

⎛

⎝
�n/2�∑

i=n−d

γit
i(1 + t)n−1−2i

⎞

⎠ +

⎛

⎝
�n/2�∑

i=n−d

γit
i+1(1 + t)n−1−2i

⎞

⎠ = p1(t) + p2(t).

It is easy to see that p1(t) and p2(t) are gamma positive with respective centers
of symmetry (n − 1)/2 and (n + 1)/2. The argument requires the exponent
n − 2i to be odd to enable us to pull out a (1 + t) factor from each term
γit

i(1 + t)n−2i especially when i = �n/2�. As len(f(t)) = 2d − n is odd, hence
n − 2i will be odd for all i. It is easy to see that p2(t) = tp1(t) and that p1(t)
and p2(t) have even length, completing the proof. �

3. Type A Coxeter Groups

For π = π1, π2, . . . , πn ∈ Sn, define posn(π) = π−1(n) to be the index i
such that π(i) = n. Let Si

n = {π ∈ Sn : posn(π) = i}, Ai
n = {π ∈ An :

posn(π) = i}, and Si
n − Ai

n = {π ∈ Sn − An : posn(π) = i}. We need Foata’s
First Fundamental Transformation which is a well known bijection that maps
excedances to descents (see Lothaire [10, Section 10.2]).

Theorem 7 (Foata’s First Fundamental Transformation). For positive integers
n ≥ 2, there exist a bijection FTn : Sn 	→ Sn such that des(FTn(π)) = exc(π).
Hence, the statistics des and exc are equidistributed over Sn.

For π ∈ Sn, define π′ to be π restricted to [n − 1]. We use the bijection
FTn of Theorem 7 to prove the following.

Lemma 4. For positive integers n ≥ 2, the following holds:
∑

π∈Sn−1
n

texc(π)snexc(π)−1 =
∑

π∈S1
n

tdes(π)sasc(π). (7)
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Proof. Define fn : Sn−1
n 	→ S1

n as follows: let π = π1, π2, . . . , πn−2, n, πn ∈
Sn−1

n . Let FTn−1(π′) = a1, a2, . . . , an−1. Then, define fn(π) = n, a1, a2, . . . ,
an−1. Clearly, fn is well-defined and is a bijection. Further, for π ∈ Sn−1

n ,
we have exc(π) = 1 + exc(π′) = 1 + des(FTn−1(π′)) = des(fn(π)). Hence,
nexc(π) = asc(fn(π)) + 1. The proof is complete. �
Lemma 5. For positive integers n ≥ 3 and r with 1 ≤ r ≤ n − 2, the following
holds:
∑

π∈Ar
n

texc(π)snexc(π)−1 =
∑

π∈Sr
n−Ar

n

texc(π)snexc(π)−1 =
1
2

∑

π∈Sr
n

texc(π)snexc(π)−1.

Proof. Define g : Ar
n 	→ Sr

n − Ar
n by g(π1, π2, . . . , πn−1, πn) = π1, π2, . . . , πn,

πn−1. That is, g swaps the last two elements of π. Clearly, g is a bijection
with inv(π) �≡ inv(g(π)) (mod 2). Moreover, as posn(π) ≤ n − 2, we have
exc(π) = exc(g(π)), completing the proof. �

3.1. Recurrences for AExc+n (s, t) and AExc−n (s, t)

The main result of this subsection is the following recurrence for AExc+n (s, t)
and AExc−

n (s, t).

Theorem 8. For positive integers n, the polynomials AExc+n (s, t) and
AExc−

n (s, t) satisfy the following recurrence:

AExc+n (s, t) = sAExc+n−1(s, t) + tAExc−
n−1(s, t) +

1
2
stDAn−1(s, t), (8)

AExc−
n (s, t) = sAExc−

n−1(s, t) + tAExc+n−1(s, t) +
1
2
stDAn−1(s, t). (9)

Proof. Foata’s First Fundamental transformation gives us:
∑

π∈Sn

texc(π)snexc(π)−1 =
∑

π∈Sn

tdes(π)sasc(π), (10)

∑

π∈Sn
n

texc(π)snexc(π)−1 =
∑

π∈Sn
n

tdes(π)sasc(π). (11)

In the second line, we have identified permutations in Sn−1 with σ ∈ Sn

having posn(σ) = n. Subtracting (7) and (11) from (10), we get
n−2∑

r=1

∑

π∈Sr
n

texc(π)snexc(π)−1 =
n−1∑

r=2

∑

π∈Sr
n

tdes(π)sasc(π). (12)

We have

AExc+n (s, t) =
n−2∑

r=1

∑

π∈Ar
n

texc(π)snexc(π)−1 +
∑

π∈An−1
n

texc(π)snexc(π)−1

+
∑

π∈An
n

texc(π)snexc(π)−1

=
1
2

n−2∑

r=1

∑

π∈Sr
n

texc(π)snexc(π)−1 + tAExc−
n−1(s, t) + sAExc+n−1(s, t)
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=
1
2

n−1∑

r=2

∑

π∈Sr
n

tdes(π)sasc(π) + tAExc−
n−1(s, t) + sAExc+n−1(s, t)

=
1
2
stDAn−1(s, t) + tAExc−

n−1(s, t) + sAExc+n−1(s, t).

The second line follows using Lemma 5. The third line follows from (12). The
last line follows using the fact that stDAn−1(s, t) is the contribution of all the
permutations where n is not in the initial or the final position. This is implicit
in the recurrence for the bivariate Eulerian polynomial An(s, t) given by Foata
and Schützenberger. This point is also elaborated in [6, Theorem 8]. The proof
of (9) is identical and is hence omitted. �

A simple corollary of Theorem 8 is the following result of Mantaci (see
[13]). Sivasubramanian in [22, Theorem 1] has given an alternate proof of
Mantaci’s result by evaluating the determinant of an appropriately defined
n × n matrix.

Corollary 2. For positive integers n ≥ 2,
∑

π∈Sn
(−1)inv(π)texc(π)snexc(π)−1 =

(s − t)n−1. In particular,
∑

π∈Sn
(−1)inv(π)texc(π) = (1 − t)n−1.

Proof. We use induction on n with n = 2 being the base case. When n = 2, it
is simple to note that

∑
π∈S2

(−1)inv(π)texc(π)snexc(π)−1 = s − t. Subtracting
(9) from (8) we get

∑

π∈Sn

(−1)inv(π)texc(π)snexc(π)−1 = AExc+n (s, t) − AExc−
n (s, t)

= (s − t)
[
AExc+n−1(s, t) − AExc−

n−1(s, t)
]

= (s − t)n−1.

The proof is complete. �

We need one more lemma. Recall that D is the operator
(

∂

∂s
+

∂

∂t

)

.

Lemma 6. For positive integers n ≥ 2, DAExc+n (s, t) = DAExc−
n (s, t) =

1
2DAExcn(s, t) = 1

2DAn(s, t).

Proof. We use induction on n. Clearly, when n = 2, AExc+2 (s, t) = s, AExc−
2

(s, t) = t while AExc2(s, t) = s + t. Thus, DAExc+2 (s, t) = DAExc−
2 (s, t) =

1
2DAExc2(s, t). By induction, let DAExc+n−1(s, t) = DAExc−

n−1(s, t) =
1
2DAExcn−1(s, t). By Theorem 8,

DAExc+n (s, t) = D

(

sAExc+n−1(s, t) + tAExc−
n−1(s, t) +

1
2
stDAExcn−1(s, t)

)

= sDAExc+n−1(s, t) + AExc+n−1(s, t) + tDAExc−
n−1(s, t)

+AExc−
n−1(s, t)

+
1
2
D

(

stDAExcn−1(s, t)
)
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= sDAExc−
n−1(s, t) + AExc+n−1(s, t)

+tDAExc+n−1(s, t) + AExc−
n−1(s, t)

+
1
2
D

(

stDAExcn−1(s, t)
)

= D

(

sAExc−
n−1(s, t) + tAExc+n−1(s, t) +

1
2
stDAExcn−1(s, t)

)

= DAExc−
n (s, t).

Here, the third line follows by induction. The proof is complete. �

Remark 1. Using Lemma 6, we rewrite Theorem 8 as follows. We will need this
modified version in our proof of Theorem 4. When we wish to denote either
one of AExc+n (s, t) or AExc−

n (s, t), we write AExc±
n (s, t). Theorem 8 is clearly

equivalent to the following:

AExc+n (s, t) = sAExc+n−1(s, t) + tAExc−
n−1(s, t) + stDAExc±

n−1(s, t), (13)

AExc−
n (s, t) = sAExc−

n−1(s, t) + tAExc+n−1(s, t) + stDAExc±
n−1(s, t). (14)

Let AExc+n (s, t) =
∑n−1

k=0 a+
n,ktksn−1−k and let AExc−

n (s, t) =
∑n−1

k=0 a−
n,ktksn−1−k. The following recurrences for the numbers a+

n,k and a−
n,k

were proved by Mantaci in [12,13]. It is easy to derive them using Remark 1.

Corollary 3. For positive integers n ≥ 2, we have

a+
n,k = ka−

n−1,k + (n − k)a−
n−1,k−1 + a+

n−1,k and

a−
n,k = ka+

n−1,k + (n − k)a+
n−1,k−1 + a−

n−1,k.

Proof. We only prove one of the recurrences. Let [tksn−k]f(s, t) denote the
coefficient of tksn−k in the polynomial f(s, t).

a+
n,k = [tksn−1−k]AExc+n (s, t)

= [tksn−1−k]
(
sAExc+n−1(s, t) + tAExc−

n−1(s, t) + stDAExc−
n−1(s, t)

)

= [tksn−2−k]AExc+n−1(s, t) + [tk−1sn−1−k]AExc−
n−1(s, t)

+[tk−1sn−2−k]DAExc−
n−1(s, t)

= ka−
n−1,k + (n − k)a−

n−1,k−1 + a+
n−1,k

Here, the second line follows with stDAExc−
n−1(s, t) chosen in the right hand

side of (13) (as part of Remark 1). The proof of the other part is similar and
is hence omitted. �

3.2. Palindromicity of AExc+n (s, t) and AExc−n (s, t)

We consider palindromicity of the polynomials AExc+n (s, t) and AExc−
n (s, t).

Theorem 9. For natural numbers n, AExc+n (s, t) and AExc−
n (s, t) are palin-

dromic if and only if n ≡ 1 mod 2.
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Proof. By Corollary 2,

AExc+n (s, t) =
1
2

(

AExcn(s, t) + (s − t)n−1

)

and

AExc−
n (s, t) =

1
2

(

AExcn(s, t) − (s − t)n−1

)

.

As mentioned earlier, it is well known that AExcn(s, t) is palindromic for
all n with center of symmetry (n − 1)/2 while it is clear that (s − t)n−1 is
palindromic with the same center of symmetry if and only if n is odd. Hence,
AExc+n (s, t) and AExc−

n (s, t) are palindromic iff n ≡ 1 mod 2. �

Using Theorem 8, multiple times, we get the following.

Theorem 10. For positive integers n, we have

AExc+n+4(s, t) = L1(s, t)AExc+n (s, t) + L2(s, t)AExc−
n (s, t) + L3(s, t)DAExc+n (s, t)

+

[

L4(s, t)D
2 + L5(s, t)D

3 + L6(s, t)D
4

]

AExc+n (s, t), (15)

AExc−
n+4(s, t) = L1(s, t)AExc−

n (s, t) + L2(s, t)AExc+n (s, t) + L3(s, t)DAExc−
n (s, t)

+

[

L4(s, t)D
2 + L5(s, t)D

3 + L6(s, t)D
4

]

AExc−
n (s, t). (16)

where the Li(s, t) with their centers of symmetry are as follows. Further, each
Li(s, t) is also gamma positive.

f(s, t) center of symmetry of f(s, t))
L1(s, t) = (s + t)4 + 7st(s + t)2 + 16(st)2 2
L2(s, t) = 15st(s + t)2 2
L3(s, t) = 15st(s + t)3 + 60(st)2(s + t) 5/2
L4(s, t) = 25(st)2(s + t)2 + 20(st)3 3
L5(s, t) = 10(st)3(s + t) 7/2
L6(s, t) = (st)4 4

Proof. Apply Theorem 8 twice to get

AExc+n+2(s, t) = (s2 + st + t2)AExc+n (s, t)

+3stAExc−
n (s, t) + 3st(s + t)DAExc+n (s, t)

+(st)2D2AExc+n (s, t), (17)
AExc−

n+2(s, t) = (s2 + st + t2)AExc−
n (s, t)

+3stAExc+n (s, t) + 3st(s + t)DAExc−
n (s, t)

+(st)2D2AExc−
n (s, t). (18)

Thus, we have

DAExc+n+2(s, t) = 3(s + t)AExcn(s, t)

+4(s2 + 4st + t2)DAExc+n (s, t)
+5st(s + t)D2AExc+n (s, t) + (st)2D3AExc+n (s, t), (19)

D2AExc+n+2(s, t) = 6AExcn(s, t)
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+30(s + t)DAExc+n (s, t) + 9(s2 + 4st + t2)D2AExc+n (s, t)
+7st(s + t)D3AExc+n (s, t) + (st)2D4AExc+n (s, t). (20)

(17) is equivalent to

AExc+n+4(s, t) = (s2 + st + t2)AExc+n+2(s, t) + 3stAExc−
n+2(s, t)

+3st(s + t)DAExc+n+2(s, t)

+(st)2D2AExc+n+2(s, t). (21)

We get (15) by plugging (17), (18), (19) and (20) in (21). It is routine
to check that each Li(s, t) is in addition, gamma positive. The proof of (16)
makes identical moves and is thus omitted. This completes the proof. �

3.3. Proof of Theorem 3

Our proof of Theorem 3 needs us to jump down from n + 4 to n rather than
from n + 2 to n. This is because the factors in each summand turns out to be
gamma positive only when the jump size is 4.

Proof of Theorem 3. When n = 5 and n = 7 one can check that

AExc+5 (s, t) = s4 + 11s3t + 36s2t2 + 11st3 + t4 = (s + t)4 + 7st(s + t)2 + 16(st)2,

AExc−
5 (s, t) = 15s3t + 30s2t2 + 15st3 = 15st(s + t)2,

AExc+7 (s, t) = s6 + 57s5t + 603s4t2 + 1198s3t3 + 603s2t4 + 57st5 + t6

= (s + t)6 + 51st(s + t)4 + 384(st)2(s + t)2 + 104(st)3,

AExc−
7 (s, t) = 63s5t + 588s4t2 + 1218s3t3 + 588s2t4 + 63st5,

= 63st(s + t)4 + 336(st)2(s + t)2 + 168(st)3.

Let n > 7 be odd positive integer and let m = n − 4. By induction, both
AExc+m(s, t) and AExc−

m(s, t) are gamma positive with centers of symmetry
1
2 (m − 1). Further, the Li(s, t)’s for 1 ≤ i ≤ 6 that appear in Theorem 10 are
gamma positive. Moreover, all the six terms in (15) have the same center of
symmetry 1

2 (m + 3) = 1
2 (n − 1). Thus by Theorem 10, AExc+n (s, t) is gamma

positive. In an identical manner, one can prove that AExc−
n (s, t) is gamma

positive with center of symmetry 1
2 (n − 1), completing the proof. �

3.4. Proof of Theorem 4

When n = 2m for a natural number m, Theorem 9, shows that the polynomials
AExc+n (t) and AExc−

n (t) are not palindromic. Thus, they cannot be written in
the gamma basis. Nonetheless, we show in this case that both AExc+n (t) and
AExc−

n (t) can be written as the sum of two gamma positive polynomials.

Proof of Theorem 4. We use induction on n. Our base case is when n = 2m =
4, one can check that AExc+4 (t) = 1 + 4t + 7t2 = (1 + 4t + t2) + 6t2 and
AExc−

4 (t) = t3 + 4t2 + 7t = t(1 + 4t + t2) + 6t. When n ≥ 6, by Remark 1 we
have
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AExc+2m+2(s, t) = sAExc+2m+1(s, t) + tAExc−
2m+1(s, t) + stDAExc+2m+1(s, t)

AExc+2m+2(t) = AExc+2m+1(t) + tAExc−
2m+1(t) +

(

stDAExc+2m+1(s, t)
)∣

∣
∣
∣
s=1

(22)

The polynomial p(s, t) = stDAExc+2m+1(s, t) is gamma positive with cen-
ter of symmetry m − 1/2 + 1. Hence, p(t) = p(s, t)|s=1 is a univariate gamma
positive polynomial with center of symmetry m + 1/2. Further, it is simple
to see that p(t) has odd length and thus by Lemma 3, it can be written as
p(t) = p1(t) + p2(t) with respective centers of symmetry m and m + 1. Thus,
(22) becomes

AExc+2m+2(t) = AExc+2m+1(t) + tAExc−
2m+1(t) + p1(t) + p2(t) (23)

= w1(t) + w2(t) (24)

where w1(t) = AExc+2m+1(t) + p1(t) and w2(t) = tAExc−
2m+1(t) + p2(t). By

Theorem 3, AExc+2m+1(t) and tAExc−
2m+1(t) are gamma positive with respec-

tive centers of symmetry m and m + 1. Thus, w1(t) and w2(t) are gamma
positive with the required centers of symmetry. As the proof for AExc−

2m+2(t)
is identical, we omit it. �

4. Type B Coxeter Groups

Let Bn be the set of permutations π of [±n] satisfying π(−i) = −π(i). We
denote −k as k as well. Bn is referred to as the hyperoctahedral group or the
group of signed permutations on [±n]. For π ∈ Bn we alternatively denote
π(i) as πi. For π ∈ Bn, define Negs(π) = {i : i > 0, πi < 0} to be the set
of elements which occur with a negative sign. As defined by Brenti in [3], let
invB(π) = |{1 ≤ i < j ≤ n : πi > πj}| − ∑

i∈Negs(π) πi. Let B+
n ⊆ Bn denote

the subset of elements having even invB() value and let B−
n = Bn − B+

n .
Following Brenti’s definition of excedance from [3], let excB(π) = |{i ∈

[n] : π|π(i)| > πi}| + |{i ∈ [n] : πi = −i}| and let nexcB(π) = n − excB(π). Let
wkexcB(π) = |{i ∈ [n] : π|π(i)| > πi}| + |{i ∈ [n] : πi = i}|. For π ∈ Bn, let
π0 = 0. As defined in Petersen’s book [16, Chapter 13], we give the following
definition of type B descents: desB(π) = |{i ∈ [0, 1, 2 . . . , n − 1] : πi > πi+1}|
and let ascB(π) = n − desB(π). Let

Bn(t) =
∑

π∈Bn

tdesB(π) and Bn(s, t) =
∑

π∈Bn

tdesB(π)sascB(π),

(25)

B+
n (s, t) =

∑

π∈B+
n

tdesB(π)sascB(π) and B−
n (s, t) =

∑

π∈B−
n

tdesB(π)sascB(π),

(26)
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BExcn(t) =
∑

π∈Bn

texcB(π) and BExcn(s, t) =
∑

π∈Bn

texcB(π)snexcB(π),

(27)

BExc+n (t) =
∑

π∈B+
n

texcB(π) and BExc+n (s, t) =
∑

π∈B+
n

texcB(π)snexcB(π),

(28)

BExc−
n (t) =

∑

π∈B−
n

texcB(π) and BExc−
n (s, t) =

∑

π∈B−
n

texcB(π)snexcB(π),

(29)

SgnBExcn(t) =
∑

π∈Bn

(−1)invB(π)texcB(π) and

SgnBExcn(s, t) =
∑

π∈Bn

(−1)invB(π)texcB(π)snexcB(π). (30)

Bn(s, t) is called the type B Eulerian polynomial and Brenti in [3, Theo-
rem 3.15] proved a type B counterpart of MacMahon’s theorem. Thus, we have
Bn(s, t) = BExcn(s, t). Brenti proved his result by showing the following.

Theorem 11 (Brenti). For positive integers n, there exists a bijection hn :
Bn 	→ Bn such that ascB(hn(π)) = wkexcB(π) and |Negs((hn(π))| = |Negs(π)|.

Gamma positivity of the type B Eulerian polynomial was shown by Chow
[5] and Petersen [15]. It can be checked that both proofs do not go through for
showing gamma positivity of B+

n (s, t) and B−
n (s, t). Dey and Sivasubramanian

in [6, Equation 39] gave the following recurrence for Bn(s, t).

Theorem 12. For positive integers n ≥ 2, the following recurrence holds:

Bn+1(s, t) = (s + t)Bn(s, t) + 2stDBn(s, t). (31)

Two points about this recurrence will be used later on in this work. The
first is the following explanation for the terms of the recurrence. This can be
seen from the proof of [6, Theorem 23].

Corollary 4. The term sBn(s, t) is the contribution from all π ∈ Bn+1 with
π(n + 1) = n + 1. The term tBn(s, t) is the contribution of π ∈ Bn+1 with
π(n + 1) = n + 1. The term 2stDBn(s, t) is the contribution of all π ∈ Bn+1

with π(n + 1) �∈ {n + 1, n + 1}.
The second point is that the following recurrence for the gamma coef-

ficients γB
n,i, which was given by Chow [5, Proposition 4.9], also follows from

Theorem 12. As we will need this in the proof of Theorem 20, we record it
here.

Corollary 5. If Bn(s, t) =
∑�n/2�

i=0 γB
n,i(st)

i(s + t)n−2i, then for i > 0, the
gamma coefficients satisfy the following recurrence γB

n+1,i = (2i + 1)γB
n,i +

4(n − 2i + 2)γB
n,i−1. Further γB

n,0 = 1 for all n. From this, we get that for all
n, γB

n,i is even when i > 0.
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We consider palindromicity of BExc+n (s, t) and BExc−
n (s, t). Using sign

reversing involutions, Sivasubramanian in [23, Theorem 8] proved

SgnBExcn(t) = (1 − t)n. (32)

We claim that the same sign reversing involution gives a bivariate version
of (32). We note that each term in the bivariate polynomial SgnBExcn(s, t) has
degree n. If a π ∈ Bn has excB(π) = k, then clearly, nexcB(π) = n − k. Thus,
the coefficient of tk in SgnBExcn(t) is the same as the coefficient of tksn−k in
SgnBExcn(s, t). Thus, we get the following bivariate version of (32):

SgnBExcn(s, t) = (s − t)n. (33)

We start by proving the following palindromicity result.

Lemma 7. Let n be a positive integer. BExc+n (s, t) and BExc−
n (s, t) are palin-

dromic iff n ≡ 0 (mod 2).

Proof. It is clear that BExc+n (s, t)= 1
2

(

BExcn(s, t)+(s−t)n

)

. As BExcn(s, t) =

Bn(s, t), it is palindromic for all n. The polynomial (s − t)n is palindromic iff
the exponent n ≡ 0 (mod 2). Thus, BExc+n (s, t) is palindromic iff n ≡ 0 (mod
2). A similar proof works for BExc−

n (s, t). �

We will need the following two lemmas to deduce the recurrences for
BExc+n (s, t) and BExc−

n (s, t).

Lemma 8. For positive integers n,
∑

π∈B+
n ,posn(π) �=n

texcB(π)snexcB(π) =
∑

π∈B−
n ,posn(π) �=n

texcB(π)snexcB(π)

=
1
2

∑

π∈Bn,posn(π) �=n

texcB(π)snexcB(π).

(34)

Proof. We need (33) for both n and n − 1. We have

SgnBExcn−1(s, t) = (s − t)n−1. (35)

Let π ∈ Bn−1 and put n at the last position in all such π. Such permuta-
tions contribute s(s− t)n−1 to SgnBExcn(s, t). Next, put n at the last position
in all π ∈ Bn−1. Such permutations contribute −t(s−t)n−1 to SgnBExcn(s, t).
Hence, we get

∑

π∈Bn,posn(π)=n

(−1)invB(π)texcB(π)snexcB(π) = (s − t)(s − t)n−1. (36)

Subtracting (36) from (33) we get
∑

π∈Bn,posn(π) �=n

(−1)invB(π)texcB(π)snexcB(π) = 0. (37)

Thus, we get (34), thereby completing the proof. �
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Lemma 9. For positive integers n,
∑

π∈Bn,posn(π) �=n

texcB(π)snexcB(π) =
∑

π∈Bn,posn(π) �=n

tdesB(π)sascB(π). (38)

Proof. From Brenti’s Theorem 11, we get the following
∑

π∈Bn

texcB(π)snexcB(π) =
∑

π∈Bn

tdesB(π)sascB(π), (39)

and
∑

π∈Bn−1

texcB(π)snexcB(π) =
∑

π∈Bn−1

tdesB(π)sascB(π). (40)

As in the earlier proof, let π ∈ Bn−1 and put n at the last position of π.
Such permutations have neither an extra excedance nor an extra descent. Next,
put n at the last position of all permutations in Bn−1. Each such permutation
will have one extra excedance and one extra descent. This gives

∑

π∈Bn,posn(π)=n

texcB(π)snexcB(π) =
∑

π∈Bn,posn(π)=n

tdesB(π)sascB(π). (41)

Subtracting (41) from (39), we get (38). The proof is complete. �

We can now give recurrences for BExc+n (s, t) and BExc−
n (s, t).

Theorem 13. For positive integers n ≥ 2, BExc+n (s, t) and BExc−
n (s, t) satisfy

the following recurrence relations:

BExc+n (s, t) = sBExc+n−1(s, t) + tBExc−
n−1(s, t) + stDBExcn−1(s, t),

(42)
BExc−

n (s, t) = sBExc−
n−1(s, t) + tBExc+n−1(s, t) + stDBExcn−1(s, t).

(43)

Proof. We consider (42) first. Recall BExc+n (s, t) =
∑

π∈B+
n

texcB(π)snexcB(π).
Consider the contribution to the right hand side from π ∈ B+

n with ‘n’ or ‘n’
occurring in position k for all possible choices of k. We claim that

BExc+n (s, t) = sBExc+n−1(s, t) + tBExc−
n−1(s, t) +

∑

π∈B+
n ,posn(π) �=n

texcB(π)snexcB(π).

Here, sBExc+n−1(s, t) accounts for the contribution of all π ∈ B+
n in which

the letter n appears in the last position and tBExc−
n−1(s, t) is the contribution

of all π ∈ B+
n in which the letter n appears in the last position. Further, by

Lemma 8 we get

BExc+n (s, t) = sBExc+n−1(s, t) + tBExc−
n−1(s, t) +

1

2

∑

π∈Bn,posn(π) �=n

texcB(π)snexcB(π)

= sBExc+n−1(s, t) + tBExc−
n−1(s, t) +

1

2

∑

π∈Bn,posn(π) �=n

tdesB(π)sascB(π)

= sBExc+n−1(s, t) + tBExc−
n−1(s, t) + stDBn−1(s, t)
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= sBExc+n−1(s, t) + tBExc−
n−1(s, t) + stDBExcn−1(s, t).

The second line follows from Lemma 9. The third line follows from Corol-
lary 4. The last line follows as Bn−1(s, t) = BExcn−1(s, t). These complete the
proof of (42). The proof of (43) follows identical steps and is hence omitted.

�
With these lemmas, we now prove the two main results of this Section.

Theorem 14. For even positive integers n ≥ 2, both BExc+n (s, t) and BExc−
n (s, t)

are gamma-positive with the same center of symmetry n
2 .

Proof. By Lemma 7, we need n ≡ 0 (mod 2) for palindromicity. We use induc-
tion on n with n = 2 being the base case. Clearly, BExc+2 (s, t) = s2 + 2st + t2

and BExc−
2 (s, t) = 4st, both of which are gamma positive with center of sym-

metry 1. Let n = 2m and by induction, assume that for n − 2 = 2m − 2,
both BExc+n−2(s, t) and BBExc−

n−2(s, t) are gamma positive with center of
symmetry m − 1. Using the recurrence relations (42) and (43) twice, we get

BExc+n (s, t) = (s2 + 2st + t2)BExc+n−2(s, t) + 4stBExc−
n−2(s, t)

+4st(s + t)DBExcn−2(s, t) + 2s2t2D2BExcn−2(s, t), (44)
BExc−

n (s, t) = (s2 + 2st + t2)BExc−
n−2(s, t) + 4stBExc+n−2(s, t)

+4st(s + t)DBExcn−2(s, t) + 2s2t2D2BExcn−2(s, t). (45)

We note that all the factors s2 + 2st + t2, 4st, 4st(s + t) and 2s2t2 are
gamma positive. By induction and Corollary 1, each of the four individual
terms in (44) and (45) are gamma positive with center of symmetry m. Thus,
both BExc+2m(s, t) and BExc−

2m(s, t) are gamma positive with center of sym-
metry m, completing the proof. �
Theorem 15. For odd positive integers n ≥ 3, BExc+n (t) and BExc−

n (t) can be
written as the sum of two gamma positive polynomials.

Proof. Let n ≥ 3 be an odd positive integer. We first prove that BExc+n (t) can
be written as a sum of two gamma positive polynomials. Setting s = 1 in (42),
we get

BExc+n (t) = BExc+n−1(t) + tBExc−
n−1(t) +

(

stDBExcn−1(s, t)
)∣

∣
∣
∣
s=1

. (46)

The polynomial r(s, t) = stDBExcn−1(s, t) is gamma positive with center
of symmetry 1

2 (n − 2) + 1. Hence, r(t) = r(s, t)|s=1 is a univariate gamma
positive polynomial with center of symmetry n/2. Further, as n is odd, it
is simple to see that r(t) has odd length and hence by Lemma 3 it can be
written as r(t) = r1(t) + r2(t) with respective centers of symmetry (n − 1)/2
and (n + 1)/2. Thus, (46) becomes

BExc+n (t) = BExc+n−1(t) + tBExc−
n−1(t) + r1(t) + r2(t) = w1(t) + w2(t).

where w1(t) = BExc+n−1(t) + r1(t) has center of symmetry (n − 1)/2 and
w2(t) = tBExc−

n−1(t) + r2(t) has center of symmetry (n + 1)/2. The proof of
the second part that BExc−

n (t) can be written as a sum of two gamma positive
polynomials is identical and hence is omitted. �
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Remark 2. When summation is over B+
n , the bivariate excedance based Euler-

ian polynomials are not gamma positive. When n = 3, our proof gives

BExc+3 (s, t) = s3 + 10s2t + 13st2 with r1(s, t) = s(s + t)2 + 8s2t and r2(s, t) = 12st2.

Thus, though BExc+3 (t) = BExc+3 (s, t)|s=1 is a sum of two gamma posi-
tive polynomials, BExc+3 (s, t) is not.

5. Type D Coxeter Groups

Let Dn = {σ ∈ Bn : |Negs(σ)| is even} denote the type D Coxeter group. For
π ∈ Dn, define as before, Negs(π) = {i : i > 0, πi < 0} to be the set of elements
which occur with a negative sign. As defined in Petersen’s book [16, Chapter
13], let invD(π) = inv(π) + |{1 ≤ i < j ≤ n : −πi > πj}|, where inv(π) is
the usual number of type A inversions of π with respect to the standard order
on Z. For π ∈ Dn, invD(π) is also termed as the length of π. In Dn, we have
the same definition of excedance as in Bn. Hence, excD(π) = excB(π) = |{i ∈
[n] : π|π(i)| > πi}| + |{i ∈ [n] : πi = −i}|, and let nexcD(π) = n − excD(π).
Let D+

n ⊆ Dn denote the subset of even length elements of Dn and let D−
n =

Dn − D+
n . Define

DExcn(t) =
∑

π∈Dn

texcD(π) and

DExcn(s, t) =
∑

π∈Dn

texcD(π)snexcD(π), (47)

(B-D)Excn(t) =
∑

π∈Bn−Dn

texcD(π) and (B-D)Excn(s, t) =
∑

π∈Bn−Dn

texcD(π)snexcD(π),

(48)
DExc+n (t) =

∑

π∈D+
n

texcD(π) and DExc+n (s, t) =
∑

π∈D+
n

texcD(π)snexcD(π), (49)

DExc−
n (t) =

∑

π∈D−
n

texcD(π) and DExc−
n (s, t) =

∑

π∈D−
n

texcD(π)snexcD(π), (50)

SgnDExcn(t) =
∑

π∈Dn

(−1)invD(π)texcD(π) and

SgnDExcn(s, t) =
∑

π∈Dn

(−1)invD(π)texcD(π)snexcD(π). (51)

Recall that Brenti showed that type B excedances and type B ascents are
equidistributed in Bn (see Theorem 11).

Remark 3. It is simple to give a similar bijection Tn : Bn 	→ Bn such that
desB(Tn(π)) = excB(π) and |Negs((Tn(π))| = |Negs(π)|. The bijection is very
similar to the proof of [10, Theorem 10.2.3] and [3, Theorem 3.15] and so we
only outline it.
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Outline of the bijection Tn: Let τ be a cyclic permutation of a finite set
B = {b1, b2, . . . , bm} of m integers. Define q(τ) as the following word of length
m:

q(τ) = τm(max B), τm−1(max B), . . . , τ(max B).

Clearly, τm(max B) = max B and q(τ) is a rearrangement of the m elements
of B in some order.

Now, let π ∈ Bn and let π = (π11, π12, . . . , π1i1)(π21, π22, . . . , π2i2) . . .
(πs1, πs2, . . . , πsis) be the standard disjoint cycle form of π. That is, each cycle
has its largest element (in absolute value) first and the cycles are written
in increasing order of the absolute values of their first elements. Let C1 =
(π11, π12, . . . , π1i1), C2 = (π21, π22, . . . , π2i2), . . . , Cs = (πs1, πs2, . . . , πsis). As
Ci are all cyclic permutations, hence we can form the words q(C1), q(C2),
. . . , q(Cs). Let Tn(π) be the juxtaposition q(C1)q(C2) . . . q(Cs). Thus we have
constructed the bijection Tn : Bn 	→ Bn. Proceeding along similar lines as in
the proof of [10, Theorem 10.2.3], one can check that desB(Tn(π)) = excB(π).
By construction, clearly |Negs((Tn(π))| = |Negs(π)|. We provide an example
of this bijection.

Let π = 3, 8, 6, 9, 5, 1, 4, 2, 7, 10 ∈ B10. We consider the standard disjoint
cycle form of π and this is (5)(6, 1, 3)(8, 2)(9, 7, 4)(10). Here, C1 = (5), C2 =
(6, 1, 3), C3 = (8, 2), C4 = (9, 7, 4) and C5 = (10) are the cyclic permutations.
It can be checked that q(C1) = 5, q(C2) = 6, 3, 1, q(C3) = 8, 2, q(C4) = 9, 4, 7
and q(C5) = 10. Thus, for π = 3, 8, 6, 9, 5, 1, 4, 2, 7, 10, we have T10(π) =
5, 6, 3, 1, 8, 2, 9, 4, 7, 10. It can be checked that excB(π) = 6 and desB(T10(π)) =
6.

Remark 4. By Remark 3, as the number of negative entries is preserved by the
bijection Tn, enumerating type B descents over Dn is equivalent to enumer-
ating type B excedances over Dn which is equivalent to enumerating Type D
excedances over Dn. That is, for positive integers n, we have

∑

π∈Dn

tdesB(π)sascB(π) =
∑

π∈Dn

texcD(π)snexcD(π).

Recall the operator D =
(

∂

∂s
+

∂

∂t

)

. We start by proving the following

recurrence relations.

Lemma 10. For positive integers n, the polynomials DExcn(s, t) satisfy the
following recurrence relations.

DExcn(s, t) = sDExcn−1(s, t) + t(B-D)Excn−1(s, t) + stDBExcn−1(s, t),

(52)
(B-D)Excn(s, t) = s(B-D)Excn−1(s, t) + tDExcn−1(s, t) + stDBExcn−1(s, t).

(53)

Proof. We consider (52) first. By Remark 4, we evaluate
∑

π∈Dn
tdesB(π)sascB(π).

Similar to Corollary 4, we explain where each term comes from. The contri-
bution from π ∈ Dn in which the letter ‘n’ appears in the last position is
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clearly s
∑

π∈Dn−1
tdesB(π)sascB(π). Likewise, t

∑
π∈Bn−1−Dn−1

tdesB(π)sascB(π)

is the contribution from π ∈ Dn in which the letter n appears in the last
position. The term stD

∑
π∈Dn−1

tdesB(π)sascB(π) accounts for all those per-
mutations π ∈ Dn in which the letter n appears in all positions except the last
position. The term stD

∑
π∈Bn−1−Dn−1

tdesB(π)sascB(π) accounts for all those
permutations π ∈ Dn in which the letter n appears at all positions except the
last. Summing all these, we get
∑

π∈Dn

tdesB(π)sascB(π) =s
∑

π∈Dn−1

tdesB(π)sascB(π) + t
∑

π∈Bn−1−Dn−1

tdesB(π)sascB(π)

+stD
∑

π∈Dn−1

tdesB(π)sascB(π)

+stD
∑

π∈Bn−1−Dn−1

tdesB(π)sascB(π).

The sum of the terms in the last line equals stDBExcn−1(s, t). In an identical
manner one can prove (53). �

Using Lemma 10, we next show that the polynomials DExcn(s, t) and
(B-D)Excn(s, t) are gamma positive. We first show that the polynomials
BExc+n (s, t) and DExcn(s, t) are identical.

Theorem 16. For integers n ≥ 2, BExc+n (s, t) = DExcn(s, t) and BExc−
n (s, t) =

(B-D)Excn(s, t). Hence, for even positive integers n ≥ 2, DExcn(s, t) and
(B-D)Excn(s, t) are gamma positive with the same center of symmetry n/2.
For odd positive integers n ≥ 3, the univariate polynomials DExcn(t) and
(B-D)Excn(t) can be written as a sum of 2 gamma positive polynomials.

Proof. It is simple to see that BExc+2 (s, t) = s2 + 2st + t2 = DExc2(s, t)
and BExc−

2 (s, t) = 4st = (B-D)Exc2(s, t). Further, recurrences (52) and (53)
for DExcn(s, t) and (B-D)Excn(s, t) respectively are identical to the recur-
rences (42) and (43). Thus, both the pairs of polynomials BExc+n (s, t) and
DExcn(s, t), and BExc−

n (s, t) and (B-D)Excn(s, t) are identical, completing
the proof. �

Though we have Lemma 10, to show gamma positivity of DExc+n (s, t)
and DExc−

n (s, t), we need the following alternate recurrence relation satisfied
by DExcn(s, t). This recurrence has a different form than the recurrence given
in Lemma 10. In particular, not every term involves n. We give this for ease
of later arguments.

Lemma 11. For positive integers n ≥ 2,

DExcn+4(s, t) = R1(s, t)DExcn(s, t) + R2(s, t)(B-D)Excn(s, t)

+R3(s, t)DBExcn(s, t)

+R4(s, t)D
2BExcn(s, t) + R5(s, t)DBExcn+1(s, t)

+R6(s, t)D
2BExcn+1(s, t) + R7(s, t)D

2BExcn+2(s, t) (54)



730 H. K. Dey et al.

where the following table lists Ri(s, t) and its center of symmetry. Further, the
Ri(s, t) are gamma positive.

Ri(s, t) center of symmetry of Ri(s, t))
R1(s, t) = (s + t)4 + 8st(s + t)2 + 16(st)2 2
R2(s, t) = 16st(s + t)2 2
R3(s, t) = 4st(s + t)3 + 32(st)2(s + t) 5/2
R4(s, t) = 2(st)2(s + t)2 + 8(st)3 3
R5(s, t) = 12(st)(s + t)2 2
R6(s, t) = 8(st)2(s + t) 5/2
R7(s, t) = 2(st)2 2

Define

Sn+4(s, t) = R2(s, t)(B-D)Excn(s, t) +

(

R3(s, t)D + R4(s, t)D
2

)

BExcn(s, t)

+

(

R5(s, t)D + R6(s, t)D
2

)

BExcn+1(s, t) + R7(s, t)D
2BExcn+2(s, t).

(55)

Then, Sn+4(s, t) is gamma positive with center of symmetry 1
2 (n+4) and each

gamma coefficient of Sn+4(s, t) is even.

Proof. Applying Lemma 10 twice, we get

DExcn+2(s, t) = (s + t)2DExcn(s, t) + 4st(B-D)Excn(s, t)

+4st(s + t)DBExcn(s, t) + 2(st)2D2BExcn(s, t),
(56)

(B-D)Excn+2(s, t) = 4stDExcn(s, t) + (s + t)2(B-D)Excn(s, t)

+4st(s + t)DBExcn(s, t) + 2(st)2D2BExcn(s, t)
. (57)

From (31) and the fact that Bn(s, t) = BExcn(s, t) for all positive integer
n, we get

BExcn+2(s, t) = (s + t)BExcn+1(s, t) + 2stDBExcn+1(s, t). (58)

Using (58) twice we get

DBExcn+2(s, t) = 2(s + t)BExcn(s, t) + 4stDBExcn(s, t)
+3(s + t)DBExcn+1(s, t) + 2stD2BExcn+1(s, t). (59)

(56) is equivalent to

DExcn+4(s, t) = (s + t)2DExcn+2(s, t) + 4st(B-D)Excn+2(s, t)

+4st(s + t)DBExcn+2(s, t) + 2(st)2D2BExcn+2(s, t).
(60)

We get (54) by plugging in (56), (57) and (59) in (60). Further, note that
Sn+4(s, t) is a sum of six gamma positive polynomials, each with center of
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symmetry 1
2 (n + 4). From the table, Ri(s, t) for 2 ≤ i ≤ 7 clearly have even

gamma coefficients and hence, Sn+4(s, t) also has even gamma coefficients.
�

Remark 5. In (57), when n is even, by induction, we get the following:
(B-D)Excn(s, t) is gamma positive with even gamma coefficients.

Lemma 11 has a few corollaries. By setting t = 1 and qi = t in [24,
Theorem 18] of Sivasubramanian, we get the following.

Theorem 17. For positive integers n, SgnDExcn(t) =

{
(1 − t)n if n even .

(1 − t)n−1 if n odd .

A slight modification of this result gives us a bivariate version of The-
orem 17. Each term in the bivariate polynomial SgnDExcn(s, t) clearly has
degree n. Any π ∈ Dn with excD(π) = k has nexcD(π) = n − k. Thus,
the coefficient of tk in SgnDExcn(t) is the same as the coefficient of tksn−k in
SgnDExcn(s, t). Hence, we have the following bivariate version of Theorem 17.

Theorem 18. For positive integers n, SgnDExcn(s, t)=

{
(s − t)n if n even .

s(s − t)n−1 if n odd .

We use Theorem 18 twice to get the following.

Corollary 6. For positive integers n, we have SgnDExcn+4(s, t) = (s − t)4

SgnDExcn(s, t).

We now come to the main Theorem of this section.

Theorem 19. For even positive integers n ≥ 4, DExc+n (s, t) and DExc−
n (s, t)

are gamma positive with center of symmetry 1
2n.

Proof. We use induction on n with the base cases being n = 4 and n = 6.
When n = 4 and n = 6 one can check the following.

DExc+4 (s, t) = s4 + 16s3t + 62s2t2 + 16st3 + t4 = (s + t)4 + 12st(s + t)2 + 32(st)2,

DExc−
4 (s, t) = 20s3t + 56s2t2 + 20st3 = 20st(s + t)2 + 16(st)2,

DExc+6 (s, t) = s6 + 176s5t + 2647s4t2 + 5872s3t3 + 2647s2t4 + 176st5 + t6

= (s + t)6 + 170st(s + t)4 + 1952(st)2(s + t)2 + 928(st)3,

DExc−
6 (s, t) = 182s5t + 2632s4t2 + 5892s3t3 + 2632s2t4 + 182st5,

= 182st(s + t)4 + 1904(st)2(s + t)2 + 992(st)3.

By Lemma 11 and Corollary 6,
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DExc+n+4(s, t) =
1

2

(

DExcn+4(s, t) + SgnDExcn+4(s, t)

)

=
1

2

(

R1(s, t)DExcn(s, t) + Sn+4(s, t) + (s − t)4SgnDExcn(s, t)

)

=
1

2

([

R1(s, t) + (s − t)4
]

DExc+n (s, t)

)

+
1

2

([

R1(s, t) − (s − t)4
]

DExc−
n (s, t)

)

+
1

2
Sn+4(s, t), (61)

The last line follows as DExcn(s, t) = DExc+n (s, t) + DExc−
n (s, t) while

SgnDExcn(s, t) = DExc+n (s, t) − DExc−
n (s, t). Similarly one can see that

DExc−
n+4(s, t) =

1
2

([

R1(s, t) − (s − t)4
]

DExc+n (s, t)
)

+
1
2

([

R1(s, t) + (s − t)4
]

DExc−
n (s, t)

)

+
1
2
Sn+4(s, t).

It is simple to see that R1(s, t) + (s − t)4 = 2(s + t)4 + 32(st)2 and
R1(s, t) − (s − t)4 = 16st(s + t)2 are both gamma positive with center of
symmetry 2 and both have even gamma coefficients. Let n be even with n > 7.
By induction, both DExc+n (s, t) and DExc−

n (s, t) are gamma positive with
the same center of symmetry 1

2n. By Lemma 11, Sn+4(s, t) has even gamma
coefficients and hence 1

2Sn+4(s, t) has integral gamma coefficients. Further,
each of the three terms in (61) have the same center of symmetry 1

2 (n + 4).
Thus by Lemma 11, the polynomial DExc+n+4(s, t) is gamma positive with
center of symmetry 1

2 (n + 4). In an identical manner, one can prove that
DExc−

n+4(s, t) is gamma positive with center of symmetry 1
2 (n + 4). �

Theorem 20. For odd positive integers n ≥ 5, DExc+n (t) and DExc−
n (t) can be

written as a sum of two gamma positive polynomials.

Proof. Let n ≥ 5 be an odd integer. We have

DExc+n (s, t) =
1
2

(

DExcn(s, t) + SgnDExcn(s, t)
)

=
1
2

(

sDExcn−1(s, t) + t(B-D)Excn−1(s, t)

+stDBExcn−1(s, t) + SgnDExcn(s, t)
)

=
1
2

(

sDExcn−1(s, t) + t(B-D)Excn−1(s, t)

+stDBExcn−1(s, t) + sSgnDExcn−1(s, t)
)

.
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Here, the second equality follows from Lemma 10 and the last equality
follows from Theorem 18 and the fact that n is odd. As sDExcn−1(s, t) +
sSgnDExcn−1(s, t) = 2sDExc+n−1(s, t), we get

DExc+n (t) =
1
2

(

2DExc+n−1(t) + t(B-D)Excn−1(t) +
[

stDBExcn−1(s, t)
]∣
∣
∣
∣
s=1

)

.

(62)

Our proof now follows along similar lines as the proof of Theorem 4.
The polynomial p(s, t) = stDBExcn−1(s, t) is gamma positive with center of
symmetry (n − 1)/2 − 1/2 + 1 = n/2. Hence, p(t) = p(s, t)|s=1 is a univariate
gamma positive polynomial with center of symmetry n/2. Further, it is simple
to see that p(t) has odd length and thus by Lemma 3, it can be written as
p(t) = p1(t) + p2(t) where p2(t) = tp1(t). It can be seen that p1(t) and p2(t)
have respective centers of symmetry (n − 1)/2 and (n + 1)/2. Thus, (62)
becomes

DExc+n (t) =
1

2

(

2DExc+n−1(t) + t(B-D)Excn−1(t) + p1(t) + p2(t)

)

= w1(t) + w2(t)

where w1(t) = 1
2

(

2DExc+n−1(t)+p1(t)
)

and w2(t) = 1
2

(

t(B-D)Excn−1(t)+

p2(t)
)

. Clearly, w1(t) has center of symmetry (n − 1)/2. By Theorem 16, as n

is even, n − 1 is odd and hence (B-D)Excn−1(t) is gamma positive polynomial
with center of symmetry (n − 1)/2. Therefore, w2(t) has center of symmetry
(n + 1)/2. By Remark 5, since n is odd, (B-D)Excn−1(t) has even gamma co-
efficients. Further, if BExcn−1(s, t) =

∑�(n−1)/2�
i=0 γB

n−1,i(st)
i(s+ t)n−1−2i, then

it can be checked that

stDBExcn−1(s, t) =
�(n−1)/2�∑

i=0

iγB
n−1,i(st)

i(s + t)n−2i

+
�(n−1)/2�∑

i=0

2(n − 1 − 2i)γB
n−1,i(st)

i+1(s + t)n−2−2i.

(63)

By Corollary 5, the gamma coefficients γB
n,i when i > 0 are even. From

(63), it is clear that the gamma coefficients of stDBExcn−1(s, t) are even.
Since p2(t) = tp1(t), the coefficients of both p1(t) and p2(t) are even. Thus,
the coefficients of both w1(t) and w2(t) are integral. An identical proof works
for DExc−

n (s, t). �

Remark 6. Using Theorem 16, it can be seen that Theorems 19 and 20 refine
our earlier Theorems 14 and 15, respectively.
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6. Excedances in Even and Odd Derangements

Let SDn ⊆ Sn be the subset of derangements in Sn. Recall ADerExcn(t)
was defined in (5). Sharesian and Wachs in [18] and Shin and Zeng in [20]
proved gamma positivity of ADerExcn(t). We need one more definition. Let
w = w1, w2, . . . , wn ∈ Sn. For 1 ≤ i ≤ n, an index i is said to be a double
excedance if wi > i > (w−1)i. Their result is as follows.

Theorem 21 (Shin and Zeng). For positive integers n, ADerExcn(t) =
∑�n/2�

i=0 θn,it
i(1 + t)n−2i where θn,i is equal to the number of derangements

w ∈ SDn with i excedances and no double excedance. Thus, ADerExcn(t) is
gamma positive.

Sun and Wang in [25] gave an alternate proof of Theorem 21 based on
a variant of valley hopping that we call cyclic valley hopping. It is a cyclic
version of the Modified Foata Strehl action. They constructed a group action
θ : Zn

2 × SDn 	→ SDn where the group Zn
2 acts on the set of derangements

via the functions θS(π) : SDn 	→ SDn, defined by θS(π) =
∏

x∈S θx(π) for
any set S ⊆ [n]. In the penultimate paragraph on Page 3, while showing that
the map θx is well-defined, they show that θx preserves cycle type, but do not
explicitly mention this.

Remark 7. From the above discussion, we get that the cyclic valley hopping
proof of Sun and Wang preserves cycle type and hence sign.

Thus, we get the following refinement of Theorem 21.

Theorem 22. For positive integers n, the polynomial ADerExc+n (t) =
∑�n/2�

i=0 θ+n,it
i(1 + t)n−2i where θ+n,i is equal to the number of derangements

w ∈ SDn ∩ An with i excedances and no double excedance. An identical state-
ment is true about ADerExc−

n (t). Hence both ADerExc+n (t) and ADerExc−
n (t)

are gamma positive.

We move on to refinements of this polynomial. Recall that cyc(w) de-
notes the number of cycles of a permutation w. We are now ready to prove
Theorem 6.

Proof of Theorem 6. We prove separately for the two statistics inv(π) and
cyc(π).

stat(π) = inv(π) : Shin and Zeng [20]. showed that

∑

π∈SDn

qinv(π)texc(π) =
�n/2�∑

i=0

bn,i(q)ti(1 + t)n−2i. (64)

where bn,i(q) =
∑

π∈SDn(i)
qinv(π). Here, SDn(i) consists of all elements of

SDn with exactly i excedances and no double excedances. Consider terms on
either side of the equality as polynomials in R[t, q]. The coefficient of q2r and
q2r+1 for each r ≥ 0 on either side are identical. Clearly, π ∈ SD+

n iff inv(π) or
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equivalently, the exponent of q is even. Thus, (64) factors nicely for SD+
n and

SD−
n . The same proof of Shin and Zeng [21, Theorem 2] gives us the following

∑

π∈SD+
n

qinv(π)texc(π) =
�n/2�∑

i=0

b+n,i(q)t
i(1 + t)n−2i (65)

with the following interpretation for the gamma coefficients:

b+n,i(q) =
∑

π∈SD+
n (i)

qinv(π) (66)

where SD+
n (i) ⊆ An is the set of positive derangements with i excedances and

no double excedance. An identical proof works when we sum over SD−
n .

stat(π) = cyc(π) : Shin and Zeng in [20, Theorem 11] also showed

∑

π∈SDn

qcyc(π)texc(π) =
�n/2�∑

i=0

fn,i(q)ti(1 + t)n−2i (67)

where fn,i(q) =
∑

π∈SDn(i)
qcyc(π). The following alternate definition of sign is

known, see for example Nelson [14]: sign(π) = (−1)n−cyc(π). Again, comparing
the coefficients of q2r and q2r+1 in both sides of (67), taking parity of n into
account gives us

∑

π∈SD+
n

qcyc(π)texc(π) =
�n/2�∑

i=0

f+
n,i(q)t

i(1 + t)n−2i (68)

with the following interpretation for the gamma coefficients:

f+
n,i(q) =

∑

π∈SD+
n (i)

qcyc(π) (69)

where SD+
n (i) ⊆ An is the set of positive derangements with i excedances and

no double excedance. An identical proof works when we sum over SD−
n . �

7. Open Problems

The main open question is to give interpretations of the gamma coefficients as
the cardinality of appropriately defined sets. We have several positivity results
about the gamma coefficients and interpretations for their gamma coefficients
are open.

Problem 1. Find an interpretation for the gamma coefficients that appear in
Theorems 3 and 4 for An and Sn − An. How do these add up to give the
gamma coefficients of Sn?

Problem 2. Similarly, find an interpretation for the gamma coefficients and
how they add up when we sum over even length elements in type-B Coxeter
groups (Theorems 14, 15) and type-D Coxeter groups (Theorems 19 and 20).
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Problem 3. Theorem 5 has three results while in Theorem 6 we are only able
to prove a refinement for only two of them. A bivariate refinement of Theorem
5 with respect to the statistic nest(π) seems true but we are unable to prove
it.

7.1. Type B Derangements

Derangements in Type B Coxeter groups are well known and the distribution
of Brenti’s definitions of excedance in them is well studied (see Chen, Tang
and Zhao [4]). It is known that BDerExcn(q), the polynomial that enumerates
excedances in type-B derangements is not palindromic. We end this work with
a conjecture.

Conjecture 1. For all natural numbers n ≥ 2, BDerExcn(q) is the sum of two
gamma positive polynomials.

Acknowledgements

The first author acknowledges support from a CSIR-SPM Fellowship. The
second author acknowledges support from project Grant P07 IR052, given by
IRCC, IIT Bombay and from project SERB/F/252/2019-2020 given by the
Science and Engineering Research Board (SERB), India.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Athanasiadis, C. A. Gamma-positivity in combinatorics and geometry. Semi-
naire Lotharingien Combin 77 (2016-2018), Art B77i, 64 pp.
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sical Weyl Groups. Séminaire Lotharingien de Combinatoire B74c (2016), 15 pp.

[25] Sun, H., and Wang, Y. A group action on derangements. Electronic Journal
of Combinatorics 21(1) (2014), #P 1.67.



738 H. K. Dey et al.

[26] Zhang, X. On q-derangements polynomials. In Combinatorics and Graph The-
ory 1 (Hefei) World Scientific Publication (1995), 462–465.

Hiranya Kishore Dey and Sivaramakrishnan Sivasubramanian
Department of Mathematics
Indian Institute of Technology, Bombay
Mumbai 400 076
India
e-mail: krishnan@math.iitb.ac.in

Hiranya Kishore Dey
e-mail: hkdey@math.iitb.ac.in

Received: 21 October 2019.

Accepted: 9 September 2020.


	Gamma Positivity of the Excedance-Based Eulerian Polynomial in Positive Elements  of Classical Weyl Groups
	Abstract
	1. Introduction
	2. Preliminaries on Gamma Positive Polynomials
	3. Type A Coxeter Groups
	3.1. Recurrences for  AExcn+(s,t) and  AExcn-(s,t)
	3.2. Palindromicity of  AExcn+(s,t) and  AExcn-(s,t)
	3.3. Proof of Theorem 3
	3.4. Proof of Theorem 4

	4. Type B Coxeter Groups
	5. Type D Coxeter Groups
	6. Excedances in Even and Odd Derangements
	7. Open Problems
	7.1. Type B Derangements

	Acknowledgements
	References




