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The four point theorem is a condition for distances to arise 
from trees. Based on this condition, for any tree T on n
vertices, we associate an 

(
n
2
)
×

(
n
2
)

matrix MT .
We find the rank and the Smith Normal Form (SNF) of 
the matrix MT and show that it only depends on n and is 
independent of the structure of the tree T . Curiously, the non-
zero part of the SNF of MT coincides with the SNF of the 
distance matrix of T . Many such “tree independent” results 
are known and this result is yet another such result.

© 2020 Published by Elsevier Inc.

1. Introduction

Let G be a connected graph with edges having nonnegative weights. Let D be its 
distance matrix whose (i, j)-th entry is the shortest path distance between i and j in 
G. Given G, finding D is easy with several all-pairs shortest path distance algorithms 
known. See for example Cormen, Leiserson, Rivest and Stein [7].
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The reverse question is this: given a positive integral matrix D, is there a connected 
graph G which induces the distances in D? More generally, given a matrix D, we want 
to know if there exists a graph G with weights on its edges and a subset S of the vertices 
of G such that the restriction of the shortest path distance (with respect to the edge 
weights) matrix DG of G to the vertices in S being equal to D. This difficult question was 
raised by Hakimi and Yau [9] and has connections to internet tomography, see Chung, 
Garrett, Graham and Shallcross [6].

Suppose, we add the restriction that we would like the underlying graph to be a 
tree. Does some condition on the entries of D ensure that the matrix D arises from 
tree distances? For trees, Buneman [5] showed that the entries of D need to satisfy the
famous four point condition (4PC henceforth). See Baldisseri [1] for more on this work 
and also see the work of Pachter and Speyer [11].

The 4PC is as follows: consider four vertices i, j, k and � and the three terms in 
P = {di,j +dk,�, di,k +dj,�, di,� +dj,k}, considered as a multi-set. The 4PC states that for 
all choices of four distinct vertices, the maximum element in P appears at least twice. 
Note that if among i, j, k and �, we only have three distinct vertices (say if i = j), then 
the 4PC gives us the triangle inequality. Thus, the 4PC is stronger than the triangle 
inequality.

We define a matrix MT inspired by the 4PC and obtain its rank and its invariant 
factors. The construction of the matrix MT does not have any justification other than 
the rich structure it seems to have.

For the rest of this paper we assume that we have a tree T with distance matrix D. 
For a positive integer n, let [n] = {1, 2, . . . , n} and let T have vertex set V (T ) = [n]. Let 
t =

(
n
2
)
. We assume n ≥ 4 in what follows as otherwise the trees are isomorphic (hence 

having the same distance matrix). For vertices x, y ∈ V (T ), let d(x, y) or dxy be the 
distance between x and y.

Form a t × t matrix MT as follows. The rows and the columns of MT are indexed by 
pairs e = {w, x}, f = {y, z}, where w, x, y, z ∈ V (T ) with w < x, y < z. We define the 
(e, f)-element of M as

m(e, f) = min(dwx + dyz, dwy + dxz, dwz + dxy).

Example. Consider the tree T

◦1

◦3 ◦4 ◦5

2

Then
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MT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13 23 34 45 12 14 15 24 25 35
13 0 2 2 2 1 1 2 3 4 3
23 2 0 2 2 1 3 4 1 2 3
34 2 2 0 2 3 1 2 1 2 1
45 2 2 2 0 3 3 2 3 2 1
12 1 1 3 3 0 2 3 2 3 4
14 1 3 1 3 2 0 1 2 3 2
15 2 4 2 2 3 1 0 3 2 1
24 3 1 1 3 2 2 3 0 1 2
25 4 2 2 2 3 3 2 1 0 1
35 3 3 1 1 4 2 1 2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Several matrices have been associated with trees T having vertex set [n]. Many results 
show that parameters of the matrices only depend on n and are independent of the struc-
ture of T . Graham and Pollak in [8] showed that the determinant of D is only a function 
of n. Bapat, Lal and Pati [2] generalized this to the determinant of the q-analogue of the 
distance matrix and the exponential distance matrix. Bapat and Sivasubramanian in [3]
later generalized this to the second immanant of the exponential distance matrix. Bapat 
and Sivasubramanian in [4] also showed that the Smith Normal form of the exponential 
distance matrix of T is independent of the structure of T . In this paper, we present more 
results of this type involving the matrix MT . Our main results are the following.

Theorem 1. Let T be a tree on n vertices. Then, the rank of MT equals n.

We next find the invariant factors of the matrix MT and show that these are also 
independent of the structure of the tree T . Recalling t =

(
n
2
)
, we prove the following.

Theorem 2. Let T be a tree on n vertices. The invariant factors of the matrix MT are

t − n times︷ ︸︸ ︷
0, . . . , 0 , 1, 1,

n − 3 times︷ ︸︸ ︷
2, . . . , 2 , 2(n− 1).

The invariant factors of the distance matrix D of a tree T on n vertices are known (see, 
for example, Hou and Woo [10]). It is a curious coincidence that the invariant factors of 
the distance matrix D are identical to the non-zero terms in Theorem 2. The proof of 
Theorem 1 appears in Section 2 and the proof of Theorem 2 appears in Section 3.

2. Rank of MT

Lemma 3. Let T be a tree with vertex set V (T ) = [n]. Then, the submatrix of M with 
rows and columns indexed by E(T ) is given by K = 2(J − I).
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Proof. Clearly m(ei, ei) = 0, i = 1, . . . , n − 1, and hence the diagonal elements of K are 
zero. Let ei, ej ∈ E(T ), i �= j, where ei = {w, x} and ej = {y, z}. We have dwx = dyz = 1
and dwy + dxz ≥ 2, dwz + dyx ≥ 2. Hence

m(ei, ej) = min(dwx + dyz, dwy + dxz, dwz + dxy) = 2.

It follows that the submatrix of M with rows and columns indexed by E(T ) is given by 
K = 2(J − I). �

The proof of the next result is easy and is omitted.

Lemma 4. The (n − 1) × (n − 1) matrix K = 2(J − I) is nonsingular and 2K−1 =
−I + 1

n−2J .

We introduce some notation. Recall that the edges of the tree are denoted e1, . . . , en−1. 
Let e = {i, j} be an edge of the complete graph on V (T ). We define the column vector xe

as follows. The coordinates of xe are indexed by e1, . . . , en−1. We set the �-th coordinate 
of xe to be dij − 1, if e� is on the ij-path and equal to dij + 1, otherwise. It may be 
observed that

x′
e = [m(e, e1), . . . ,m(e, en−1)]. (1)

Lemma 5. Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set E(T ) =
{e1, . . . , en−1}. Let e = {i, j}, i, j ∈ V (T ), i < j. Then x′

e1 = (n − 3)dij + n − 1.

Proof. There are dij edges on the ij-path, and for each such edge, the corresponding 
coordinate of xe is dij − 1. Similarly there are n − 1 − dij edges not on the ij-path, and 
for each such edge, the corresponding coordinate of xe is dij + 1. Hence the sum of the 
coordinates of xe is given by

x′
e1 = dij(dij − 1) + (n− 1 − dij)(dij + 1)

= d2
ij − dij + ndij + n− dij − 1 − d2

ij − dij

= (n− 3)dij + n− 1,

and the proof is complete. �
Lemma 6. Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set E(T ) =
{e1, . . . , en−1}. Let e = {i, j}, f = {u, v}, where i, j, u, v ∈ V (T ), i < j, u < v. Then

x′
eK

−1xf = −1
x′
exf + 1 ((n− 3)dij + n− 1)((n− 3)duv + n− 1).
2 2(n− 2)
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Proof. Using Lemmas 4 and 5 we get

x′
eK

−1xf = 1
2x

′
e

(
−I + 1

n− 2J
)
xf

= 1
2

(
−x′

exf + 1
n− 2(x′

e1)(x′
f1)

)

= −1
2x

′
exf + 1

2(n− 2)((n− 3)dij + n− 1)((n− 3)duv + n− 1).

This completes the proof. �
Corollary 7. Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set E(T ) =
{e1, . . . , en−1}. Let e = {i, j}, i, j ∈ V (T ), i < j, and let d = dij. Then

x′
eK

−1xe = (n− 1)(d− 1)2

2(n− 2) . (2)

Proof. By Lemma 6 we have

x′
eK

−1xe = −1
2x

′
exe + 1

2(n− 2)((n− 3)d + n− 1)2. (3)

Note that xe has d coordinates equal to d − 1 and n − 1 − d coordinates equal to d + 1. 
Therefore

x′
exe = d(d− 1)2 + (n− 1 − d)(d + 1)2. (4)

From (3) and (4) we get

x′
eK

−1xe = −1
2

(
d(d− 1)2 + (n− 1 − d)(d + 1)2 − ((n− 3)d + n− 1)2

n− 2

)
. (5)

We get the result (2) from (5) after simplification. �
Theorem 8. Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set E(T ) =
{e1, . . . , en−1}. Let e = {i, j}, f = {u, v}, where i, j, u, v ∈ V (T ), i < j, u < v. Then the 
(e, f)-element of M is given by

m(e, f) = x′
eK

−1xf −
√

(x′
eK

−1xe)(x′
fK

−1xf ). (6)

Proof. Let dij = d, duv = s. It follows from Lemma 6 and Corollary 7 that

x′
eK

−1xf −
√

(x′
eK

−1xe)(x′
fK

−1xf )
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= −1
2x

′
exf + 1

2(n− 2)((n− 3)d + n− 1)((n− 3)s + n− 1) − n− 1
2(n− 2)(d− 1)(s− 1)

= −1
2x

′
exf + 1

2((d + 1)(s + 1)(n− 1) − 4ds). (7)

We introduce some notation. Let P(i, j) denote the set of edges on the ij-path. From 
the structure of the vectors xe, xf it follows that

x′
exf = |P(i, j) ∩ P(u, v)|(d− 1)(s− 1) + |P(i, j) \ P(u, v)|(d− 1)(s + 1)

+ |P(u, v) \ P(i, j)|(d + 1)(s− 1)

+ |E(T ) \ P(i, j) \ P(u, v)|(d + 1)(s + 1). (8)

We consider two cases:

Case (i) The ij-path and the uv-path are edge-disjoint.

Then |P(i, j) ∩ P(u, v)| = 0, |P(i, j) \ P(u, v)| = d, |P(u, v) \ P(i, j)| = s, and 
|E(T ) \P(i, j) \P(u, v)| = n − 1 − d − s. Substituting in (8) we get x′

exf = ds(d − 1) +
s(s − 1)(d + 1) + (n − 1 − d − s)(d + 1)(s + 1) and then it follows from (7) that

x′
eK

−1xf −
√

(x′
eK

−1xe)(x′
fK

−1xf ) = d + s.

Note that in this case m(e, f) = d + s as well and hence the result is proved.

Case (ii) The ij-path and the uv-path are not edge-disjoint.

Let |P(i, j) ∩P(u, v)| = t. Then |P(i, j) \P(u, v)| = d −t, |P(u, v) \P(i, j)| = s −t, 
and |E(T ) \ P(i, j) \ P(u, v)| = n − 1 − d − s + t. Substituting in (8) we get x′

exf =
t(d −1)(s −1) +(d − t)(d −1)(s +1) +(s − t)(d +1)(s −1) +(n −1 −d −s + t)(d +1)(s +1)
and then it follows from (7) that

x′
eK

−1xf −
√

(x′
eK

−1xe)(x′
fK

−1xf ) = d + s− 2t.

Note that in this case m(e, f) = d + s − 2t as well and the result is proved. �
Theorem 9. Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set E(T ) =
{e1, . . . , en−1}. Then the matrix M has rank n.

Proof. We may write M in partitioned form as

M =
[

K M12
M21 M22

]
.

By the Schur complement formula for rank we have
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rankM = rankK + rank(M22 −M21K
−1M12)

= n− 1 + rank(M22 −M21K
−1M12). (9)

Consider the 2 × 2 submatrix of M22 −M21K
−1M12 formed by the rows indexed by e, f

and the columns indexed by g, h. In view of the observation (1), the matrix is given by[
m(e, g) − x′

eK
−1xg m(e, h) − x′

eK
−1xh

m(f, g) − x′
fK

−1xg m(f, h) − x′
fK

−1xh

]
. (10)

It follows by Theorem 8 that the matrix in (10) equals⎡
⎢⎣
√

(x′
eK

−1xe)(x′
gK

−1xg)
√

(x′
eK

−1xe)(x′
hK

−1xh)√
(x′

fK
−1xf )(x′

gK
−1xg)

√
(x′

fK
−1xf )(x′

hK
−1xh)

⎤
⎥⎦ . (11)

Clearly the determinant of the matrix in (11) is zero and hence the rank of M22 −
M21K

−1M12 is 1. It follows from (9) that the rank of M is n. �
3. Invariant factors of MT

Lemma 10. Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set E(T ) =
{e1, . . . , en−1}. Let i, j, u, v ∈ V (T ). Let α = dij + duv, β = diu + djv and γ = div + dju. 
Then α− β, β − γ and α− γ are even integers.

Proof. We assume, without loss of generality, that the ij-path and the uv-path are edge-
disjoint. Recall that P(i, j) denotes the set of edges on the ij-path. Then α = dij+duv =
|P(i, j)| + |P(u, v)|, β = diu + djv = |P(i, j)| + |P(u, v)| + 2|P(i, u) ∩ P(j, v)| and 
γ = div+dju = |P(i, j)| +|P(u, v)| +2|P(i, v) ∩P(j, u)|. Note that |P(i, u) ∩P(j, v)| =
|P(i, v) ∩ P(j, u)|. Hence β = γ. Since α − β = −2|P(i, u) ∩ P(j, v)|, it follows that 
α− β, β − γ and α− γ are even integers. �
Lemma 11. The invariant factors of the n × n matrix (n ≥ 3)⎡

⎢⎢⎢⎢⎢⎢⎣

−2 · · · 0 0 1
...

. . .
...

...
...

0 · · · −2 0 1
0 · · · 0 −2 1
1 · · · 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

are given by

1, 1,
n−3︷ ︸︸ ︷

2, . . . , 2, 2(n− 1).
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Proof. The result is a special case of [10, Corollary 2]. �
Lemma 12. The invariant factors of the n × n matrix (n ≥ 3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 · · · 2 2 2 3
2 0 · · · 2 2 2 3
...

. . .
...

...
...

...
2 · · · · · · 0 2 2 1
2 · · · · · · 2 0 2 1
2 · · · · · · 2 2 0 1
3 · · · · · · 3 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

are given by

1, 1,
n−3︷ ︸︸ ︷

2, . . . , 2, 2(n− 1).

Proof. Perform the following elementary operations on the matrix given in the Lemma: 
From column j, subtract column n − 1, column n − 2, and add column n; from row j, 
subtract row n −2, row n −1, and add row n, j = 1, 2, . . . , n −3. Then from column n −2, 
subtract column n, from row n − 2, subtract row n, from column n − 1, subtract column 
n, from row n −1 subtract row n. Then we get the matrix in Lemma 11. The two matrices 
thus have the same invariant factors and the proof is complete by Lemma 11. �
Lemma 13. Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set E(T ) =
{e1, . . . , en−1}. Let fi = {ui, vi}, i = 1, . . . , n be edges of the complete graph on V (T ). 
Let S be the n × (n − 1) matrix with its j-th row equal to x′

fj
, j = 1, . . . , n. Let h be the 

n × 1 column vector with its j-th element equal to d(uj, vj) − 1. Then

det[S, h] = (n− 2)2n−1θ,

for some integer θ.

Proof. Perform the following column operations on [S, h]. For k = 1, . . . , n − 1, subtract 
column n from column k. Since each element of xfj is either d(uj , vj) −1 or d(uj , vj) +1, 
the resulting matrix has each element equal to 0 or 2 in its first n − 1 columns. Divide 
columns 1, . . . , n − 1 by 2 and let the resulting matrix be W . Then we can write

det[S, h] = 2n−1 detW. (13)

In view of the definition of xfj , we observe that the k-th row of W has its last element 
equal to d(uk, vk) − 1, while among its first n − 1 elements, there are precisely d(uk, vk)
zeros and n − 1 − d(uk, vk) ones. To the last column of W , add columns 1, . . . , n − 1. 
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Then the last column becomes (n − 2)1. Thus detW = (n − 2)θ for some integer θ. The 
proof is complete in view of (13) �
Lemma 14. Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set E(T ) =
{e1, . . . , en−1}. Let fi = {ui, vi}, i = 1, . . . , n, and g = {w, z} be edges of the complete 
graph on V (T ). Let M1 be the n ×n submatrix of M with rows indexed by f1, . . . , fn and 
columns indexed by e1, . . . , en−1, g. Then

detM1 = (n− 1)2n−2θ′,

for some integer θ′.

Proof. Let S be the matrix defined in Lemma 13. Then note that M1 = [S, ̂h] for some 
vector ĥ.

By Theorem 8, the i-th element of ĥ is given by

m(fi, g) = x′
fiK

−1xg −
√

(x′
fi
K−1xfi)(x′

gK
−1xg)

= x′
fiK

−1xg −
n− 1

2(n− 2)(d(ui, vi) − 1)(d(w, z) − 1), (14)

in view of Corollary 7.
Let h1 be the n × 1 vector with its i-th element x′

fi
K−1xg, and let h2 be the n × 1

vector with its i-th element n−1
2(n−2) (d(ui, vi) − 1)(d(w, z) − 1), i = 1, . . . , n. By (14),

M1 = [S, ĥ] = [S, h1 − h2],

and by Laplace expansion along the last column,

detM1 = det[S, h1] − det[S, h2]. (15)

Note that

[S, h1] = [xf1 , . . . , xfn ]′K−1[xe1 , . . . , xen−1 , xg].

Thus the rank of [S, h1] is at most n − 1, and hence det[S, h1] = 0. Furthermore,

[S, h2] = [S, n− 1
2(n− 2)(d(w, z) − 1)h],

where h is defined in Lemma 13.
It follows from Lemma 13, that

det[S, h2] = n− 1 (d(w, z) − 1) det[S, h]
2(n− 2)
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= n− 1
2(n− 2)(d(w, z) − 1)(n− 2)2n−1θ

= (n− 1)2n−2θ′, (16)

for some integer θ′. The proof is complete by substituting (16) in (15). �
Theorem 15. Let T be a tree with vertex set V (T ) = {1, . . . , n} and edge set E(T ) =
{e1, . . . , en−1}. Then the invariant factors of M are given by

t−n︷ ︸︸ ︷
0, . . . , 0, 1, 1,

n−3︷ ︸︸ ︷
2, . . . , 2, 2(n− 1).

Proof. By Theorem 9, M has rank n and hence M has n nonzero invariant factors. As 
observed in the proof of Lemma 13, (12) is a submatrix of M . Thus M has an element 
equal to 1 and hence the g.c.d of the elements of M is 1. Consider the k × k submatrix 
X of M, 2 ≤ k ≤ n. We will show that detX is divisible by 2k−2. Let the rows of X
be indexed by s1 = {i1, j1}, . . . , sk = {ik, jk}, and the columns of X be indexed by 
t1 = {u1, v1}, . . . , tk = {uk, vk}. By Lemma 10, for i = 1, . . . , k,

m(si, ti) = min{d(i1, u1) + d(j1, v1), d(i1, v1) + d(j1, u1), d(i1, j1) + d(u1, v1)}

= d(i1, j1) + d(u1, v1) + 2θk,

for some integer θk. Thus we may write

X = X1 + X2 + X3,

where

X1 =

⎡
⎢⎣
d(i1, j1)

...
d(ik, jk)

⎤
⎥⎦[

1 · · · 1
]
, X2 =

⎡
⎢⎣

1
...
1

⎤
⎥⎦[

d(u1, v1) · · · d(uk, vk)
]
,

and X3 has all entries even. By the multilinearity of the determinant, detX can be 
evaluated as 

∑
S detS, where the summation is over all k× k matrices S such that each 

column of S is chosen to be a column of one of the matrices X1, X2, X3. If S contains at 
least k−2 columns of X3, then since all elements of X3 are even integers, detS is divisible 
by 2k−2. If S contains at least 3 columns which do not come from X3, then S must have 
either 2 columns of X1 or 2 columns of X2. Then, since rankX1 = rankX2 = 1, by 
Laplace expansion we see that detS = 0. Therefore we conclude that detX is divisible 
by 2k−2. Thus the g.c.d. of the k × k minors of M is divisible by 2k−2.

We assume, without loss of generality, that the edges en−2 and en−1 have a ver-
tex in common. Let en−2 = {s, t}, en−1 = {t, w} and let e = {s, w}. Then note that 
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m(e, en−1) = m(e, en−2) = 1 and m(e, ej) = 3, j = 1, . . . , n − 3. Thus the principal 
submatrix of M with rows and columns indexed by e1, . . . , en−1, e is given by (12).

By Lemma 12, the invariant factors of (12) are given by

1, 1,
n−3︷ ︸︸ ︷

2, . . . , 2, 2(n− 1).

Thus the g.c.d. of the k × k minors of (12), and hence of M , is 2k−2, 2 ≤ k < n − 1.
Our next objective is to show that the g.c.d. of the n ×n minors of M is (n − 1)2n−2. 

Let g = {w, z} be an edge of the complete graph on V (T ), distinct from e1, . . . , en−1. 
If M1 is an n × n submatrix of M whose columns are indexed by e1, . . . , en−1, g, then 
by Lemma 14, detM1 is divisible by (n − 1)2n−2. By symmetry, if M2 is an n × n

submatrix of M whose rows are indexed by e1, . . . , en−1, g, then detM2 is divisible by 
(n − 1)2n−2.

Let Cn(M) be the n-th compound of M . The rows and the columns of Cn(M)
are indexed by the n-subsets of {1, 2, . . . , 

(
t
2
)
}. We assume that the first subset is 

{e1, . . . , en−1, e}. It follows from the preceding discussion that any element in the first 
row and the first column of Cn is divisible by (n − 1)2n−2.

The (1, 1)-element of Cn(M) is the determinant of the matrix (7), which equals 
±(n − 1)2n−2 by Lemma 12.

Let
[
c11 c1q
cp1 cpq

]
be the 2 × 2 submatrix of Cn(M) formed by rows 1, p and columns 

1, q. By Theorem 9, M has rank n and hence Cn(M) has rank 1. Thus c11cpq−c1qcp1 = 0
and hence

cpq = c1qcp1
c11

. (17)

As noted earlier in this proof, c1q and cp1 are divisible by (n − 1)2n−2, while 
c11 = ±(n − 1)2n−2. it follows from (17) that cpq is divisible by (n − 1)2n−2. 
Furthermore, since c11 = ±(n − 1)2n−2, it follows that the g.c.d. of the n ×
n minors of M is (n − 1)2n−2. We conclude that the invariant factors of M

are

t−n︷ ︸︸ ︷
0, . . . , 0, 1, 1,

n−3︷ ︸︸ ︷
2, . . . , 2, 2(n− 1),

and the proof is complete. �
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